1
|
Mokgonyana PJ, Mokwatsi GG, Gwini SM, Gafane-Matemane LF. The relationship between kidney function and the soluble (pro)renin receptor in young adults: the African-PREDICT study. BMC Nephrol 2025; 26:172. [PMID: 40181300 PMCID: PMC11966904 DOI: 10.1186/s12882-025-04038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
High renin angiotensin-aldosterone system (RAAS) activity is associated with target organ damage. Soluble (pro)renin receptor [s(P)RR] forms part of the RAAS cascade and is associated with kidney damage through both angiotensin II-dependent and -independent pathways. Additionally, s(P)RR levels are higher in hypertension and chronic kidney disease (CKD) patients. However, little is known regarding ethnic and sex differences in s(P)RR levels and its potential associations with kidney function in young healthy adults. Identifying these associations in young populations is essential for identification of areas of intervention to prevent CKD. This study aimed to compare levels of s(P)RR across ethnic and sex groups and determine s(P)RR associations with markers of kidney function, including estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (uACR) and alpha 1-microglobulin (uA1M). The study included 1156 young healthy Black and White South Africans aged 20-30 years (Men, N = 555; Women, N = 601). We measured uA1M, albumin and creatinine in urine to calculate uACR. s(P)RR, cystatin C and creatinine were measured in serum and eGFR was calculated. Independent t-tests and multiple regression analyses were carried out to compare groups and explore associations. s(P)RR levels were higher in White participants, and higher in White men than in women (all p < 0.001). eGFR was higher in both Black men and women than in White men and women (both p ≤ 0.001). Both uA1M and uACR were higher in Black men than in White men (both p ≤ 0.003). We observed an independent negative association between eGFR and s(P)RR in Black women only (Adj.R2 = 0.309; Std. β=-0.141; p = 0.026), while uA1M associated positively with s(P)RR in the White group only (Adj.R2 = 0.063; Std. β = 0.115; p = 0.018). No associations were evident between uACR and s(P)RR in any of the groups. The positive association between uA1M and s(P)RR suggest that s(P)RR may contribute to kidney damage in young White participants through pathways associated with inflammation and fibrosis. A better understanding of mechanisms linking s(P)RR to kidney damage may lead to discovery of areas of therapeutic interventions for the prevention and treatment of CKD in different population groups. Trial registration ClinicalTrials.gov NCT03292094. Registration date 2017-09-12.
Collapse
Affiliation(s)
- Phuti J Mokgonyana
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Gontse G Mokwatsi
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Stella M Gwini
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
2
|
Zhu M, Yi X, Song S, Yang H, Yu J, Xu C. Principle role of the (pro)renin receptor system in cardiovascular and metabolic diseases: An update. Cell Signal 2024; 124:111417. [PMID: 39321906 DOI: 10.1016/j.cellsig.2024.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
(Pro)renin receptor (PRR), along with its soluble form, sPRR, functions not only as a crucial activator of the local renin-angiotensin system but also engages with and activates various angiotensin II-independent signaling pathways, thus playing complex and significant roles in numerous physiological and pathophysiological processes, including cardiovascular and metabolic disorders. This article reviews current knowledge on the intracellular partners of the PRR system and explores its physiological and pathophysiological impacts on cardiovascular diseases as well as conditions related to glucose and lipid metabolism, such as hypertension, heart disease, liver disease, diabetes, and diabetic complications. Targeting the PRR system could emerge as a promising therapeutic strategy for treating these conditions. Elevated levels of circulating sPRR might indicate the severity of these diseases, potentially serving as a biomarker for diagnosis and prognosis in clinical settings. A comprehensive understanding of the functions and regulatory mechanisms of the PRR system could facilitate the development of novel therapeutic approaches for the prevention and management of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Mengzhi Zhu
- College of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
3
|
Luo R, Yang KT, Wang F, Zheng H, Yang T. Collecting Duct Pro(Renin) Receptor Contributes to Unilateral Ureteral Obstruction-Induced Kidney Injury via Activation of the Intrarenal RAS. Hypertension 2024; 81:2152-2161. [PMID: 39171392 PMCID: PMC11410543 DOI: 10.1161/hypertensionaha.123.21740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Although the concept of the intrarenal renin-angiotensin system (RAS) in renal disease is well-described in the literature, the precise pathogenic role and mechanism of this local system have not been directly assessed in the absence of confounding influence from the systemic RAS. The present study used novel mouse models of collecting duct (CD)-specific deletion of (pro)renin receptor (PRR) or renin together with pharmacological inhibition of soluble PRR production to unravel the precise contribution of the intrarenal RAS to renal injury induced by unilateral ureteral obstruction. METHODS We examined the impact of CD-specific deletion of PRR, CD-specific deletion of renin, and S1P (site-1 protease) inhibitor PF429242 treatment on renal fibrosis and inflammation and the indices of the intrarenal RAS in a mouse model of unilateral ureteral obstruction. RESULTS After 3 days of unilateral ureteral obstruction, the indices of the intrarenal RAS including the renal medullary renin content, activity and mRNA expression, and Ang (angiotensin) II content in obstructed kidneys of floxed mice were all increased. That effect was reversed with CD-specific deletion of PRR, CD-specific deletion of renin, and PF429242 treatment, accompanied by consistent improvement in renal fibrosis and inflammation. On the other hand, renal cortical renin levels were unaffected by unilateral ureteral obstruction, irrespective of the genotype. Similar results were obtained via pharmacological inhibition of S1P, the key protease for the generation of soluble PRR. CONCLUSIONS Our results reveal that PRR-dependent/soluble PRR-dependent activation of CD renin represents a key determinant of the intrarenal RAS and, thus, obstruction-induced renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Renfei Luo
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Kevin T. Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Fei Wang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Huaqing Zheng
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Schofield LG, Delforce SJ, Pryor JC, Endacott SK, Lumbers ER, Marshall SA, Pringle KG. The soluble (pro)renin receptor promotes a preeclampsia-like phenotype both in vitro and in vivo. Hypertens Res 2024; 47:1627-1641. [PMID: 38605139 PMCID: PMC11150152 DOI: 10.1038/s41440-024-01678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Preeclampsia is classified as new-onset hypertension coupled with gross endothelial dysfunction. Placental (pro)renin receptor ((P)RR) and plasma soluble (P)RR (s(P)RR) are elevated in patients with preeclampsia. Thus, we aimed to interrogate the role (P)RR may play in the pathogenesis of preeclampsia. Human uterine microvascular endothelial cells (HUtMECs, n = 4) were cultured with either; vehicle (PBS), 25-100 nM recombinant s(P)RR, or 10 ng/ml TNF-a (positive control) for 24 h. Conditioned media and cells were assessed for endothelial dysfunction markers via qPCR, ELISA, and immunoblot. Angiogenic capacity was assessed through tube formation and adhesion assays. Additionally, pregnant rats were injected with an adenovirus overexpressing s(P)RR from mid-pregnancy (day 8.5), until term (n = 6-7 dams/treatment). Maternal and fetal tissues were assessed. HUtMECs treated with recombinant s(P)RR displayed increased expression of endothelial dysfunction makers including vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and endothelin-1 mRNA expression (P = 0.003, P = 0.001, P = 0.009, respectively), along with elevated endothelin-1 protein secretion (P < 0.001) compared with controls. Recombinant s(P)RR impaired angiogenic capacity decreasing the number of branches, total branch length, and mesh area (P < 0.001, P = 0.004, and P = 0.009, respectively), while also increasing vascular adhesion (P = 0.032). +ADV rats exhibited increased systolic (P = 0.001), diastolic (P = 0.010), and mean arterial pressures (P = 0.012), compared with -ADV pregnancies. Renal arteries from +ADV-treated rats had decreased sensitivity to acetylcholine-induced relaxation (P = 0.030), compared with -ADV pregnancies. Our data show that treatment with s(P)RR caused hypertension and growth restriction in vivo and caused marked endothelial dysfunction in vitro. These findings demonstrate the significant adverse actions of s(P)RR on vascular dysfunction that is characteristic of the preeclamptic phenotype.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Jennifer C Pryor
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- National Health & Medical Research Council (NHMRC) Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Sarah A Marshall
- Department of Obstetrics and Gynaecology, The Ritchie Centre, School of Clinical Sciences, Monash University and The Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
5
|
Yan Z, Yang T, Li X, Jiang Z, Jia W, Zhou J, Fang H. Apelin-13: a novel approach to suppressing renin production in RVHT. Am J Physiol Cell Physiol 2024; 326:C1683-C1696. [PMID: 38646785 DOI: 10.1152/ajpcell.00092.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Renovascular hypertension (RVHT) is characterized by renal artery stenosis and overactivated renin-angiotensin system (RAS). Apelin, known for its negative modulation of RAS, has protective effects against cardiovascular diseases. The role and mechanisms of the primary active form of apelin, apelin-13, in RVHT are unclear. In this study, male Sprague-Dawley rats were divided into control, two-kidney one-clip (2K1C) model, and 2K1C with apelin-13 treatment groups. Renin expression was analyzed using immunohistochemistry and molecular techniques. Full-length (pro)renin receptor (fPRR) and soluble PRR (sPRR) levels were assessed via Western blotting, and cAMP levels were measured using ELISA. Plasma renin content, plasma renin activity (PRA), angiotensin II (ANG II), and sPRR levels were determined by ELISA. Human Calu-6 and mouse As4.1 cells were used to investigate renin production mechanisms. The 2K1C model exhibited increased systolic blood pressure, plasma renin content, PRA, sPRR, and ANG II levels, while apelin-13 treatment reduced these elevations. Apelin-13 inhibited cAMP production, renin mRNA expression, protein synthesis, and PRR/sPRR protein expression in renal tissue. In Calu-6 cells, cAMP-induced fPRR and site-1 protease (S1P)-derived sPRR expression, which was blocked by cAMP-responsive element-binding protein (CREB) inhibition. Apelin-13 suppressed cAMP elevation, CREB phosphorylation, fPRR/sPRR protein expression, and renin production. Recombinant sPRR (sPRR-His) stimulated renin production, which was inhibited by the PRR decoy peptide PRO20 and S1P inhibitor PF429242. These findings suggest that apelin-13 inhibits plasma renin expression through the cAMP/PKA/sPRR pathway, providing a potential therapeutic approach for RVHT. Understanding the regulation of renin production is crucial for developing effective treatments.NEW & NOTEWORTHY Our research elucidated that apelin-13 inhibits renin production through the cAMP/PKA/soluble (pro)renin receptor pathway, presenting a promising therapeutic approach for renovascular hypertension (RVHT) by targeting renin expression mechanisms. These findings underscore the potential of apelin-13 as a novel strategy to address RVHT.
Collapse
Affiliation(s)
- Ziqing Yan
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Teng Yang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Xinxuan Li
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Zipeng Jiang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Wankun Jia
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Jin Zhou
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| | - Hui Fang
- School of PharmacyWeifang Medical University, Weifang, Shandong, China
| |
Collapse
|
6
|
Xie S, Zou W, Liu S, Yang Q, Hu T, Zhu WP, Tang H, Wang C. Site 1 protease aggravates acute kidney injury by promoting tubular epithelial cell ferroptosis through SIRT3-SOD2-mtROS signaling. FEBS J 2024; 291:1575-1592. [PMID: 38243371 DOI: 10.1111/febs.17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality. Ferroptosis, a newly discovered form of oxidative cell death, is involved in the pathogenesis of renal I/R injury; however, the underlying mechanism remains to be explored. Here, we reported that site 1 protease (S1P) promotes ischemic kidney injury by regulating ferroptotic cell death of tubular epithelial cells. S1P abundance was measured in hypoxia/reoxygenation (H/R)-treated Boston University mouse proximal tubular (BUMPT) cells and I/R-induced murine kidney tissue. S1P expression in BUMPT cells and kidneys was initially activated by hypoxic stimulation, accompanied by the ferroptotic response. Blocking S1P blunted H/R-induced ferroptotic cell death, which also restored sirtuin 3 (SIRT3) expression and superoxide dismutase 2 (SOD2) activity in BUMPT cells. Next, inhibition of S1P expression restored I/R-suppressed SIRT3 abundance, SOD2 activity and reduced the elevated level of mitochondria reactive oxygen species (mtROS), which attenuated tubular cell ferroptosis and renal I/R injury. In conclusion, S1P promoted renal tubular epithelial cell ferroptosis under I/R status by activating SIRT3-SOD2-mtROS signaling, thereby accelerating kidney injury. Thus, targeting S1P signaling may serve as a promising strategy for I/R kidney injury.
Collapse
Affiliation(s)
- Shiying Xie
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Qinglan Yang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Tiantian Hu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Wei-Ping Zhu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Hua Tang
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
7
|
Xie S, Song S, Liu S, Li Q, Zou W, Ke J, Wang C. (Pro)renin receptor mediates tubular epithelial cell pyroptosis in diabetic kidney disease via DPP4-JNK pathway. J Transl Med 2024; 22:26. [PMID: 38183100 PMCID: PMC10768114 DOI: 10.1186/s12967-023-04846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND (Pro)renin receptor (PRR) is highly expressed in renal tubules, which is involved in physiological and pathological processes. However, the role of PRR, expressed in renal tubular epithelial cells, in diabetic kidney disease (DKD) remain largely unknown. METHODS In this study, kidney biopsies, urine samples, and public RNA-seq data from DKD patients were used to assess PRR expression and cell pyroptosis in tubular epithelial cells. The regulation of tubular epithelial cell pyroptosis by PRR was investigated by in situ renal injection of adeno-associated virus9 (AAV9)-shRNA into db/db mice, and knockdown or overexpression of PRR in HK-2 cells. To reveal the underlined mechanism, the interaction of PRR with potential binding proteins was explored by using BioGrid database. Furthermore, the direct binding of PRR to dipeptidyl peptidase 4 (DPP4), a pleiotropic serine peptidase which increases blood glucose by degrading incretins under diabetic conditions, was confirmed by co-immunoprecipitation assay and immunostaining. RESULTS Higher expression of PRR was found in renal tubules and positively correlated with kidney injuries of DKD patients, in parallel with tubular epithelial cells pyroptosis. Knockdown of PRR in kidneys significantly blunted db/db mice to kidney injury by alleviating renal tubular epithelial cells pyroptosis and the resultant interstitial inflammation. Moreover, silencing of PRR blocked high glucose-induced HK-2 pyroptosis, whereas overexpression of PRR enhanced pyroptotic cell death of HK-2 cells. Mechanistically, PRR selectively bound to cysteine-enrich region of C-terminal of DPP4 and augmented the protein abundance of DPP4, leading to the downstream activation of JNK signaling and suppression of SIRT3 signaling and FGFR1 signaling, and then subsequently mediated pyroptotic cell death. CONCLUSIONS This study identified the significant role of PRR in the pathogenesis of DKD; specifically, PRR promoted tubular epithelial cell pyroptosis via DPP4 mediated signaling, highlighting that PRR could be a promising therapeutic target in DKD.
Collapse
Affiliation(s)
- Shiying Xie
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Qiong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jianting Ke
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
8
|
Fang H, Lin D, Li X, Wang L, Yang T. Therapeutic potential of Ganoderma lucidum polysaccharide peptide in Doxorubicin-induced nephropathy: modulation of renin-angiotensin system and proteinuria. Front Pharmacol 2023; 14:1287908. [PMID: 37841924 PMCID: PMC10570435 DOI: 10.3389/fphar.2023.1287908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: In the Doxorubicin (DOX)-induced nephropathy model, proteinuria is a manifestation of progressive kidney injury. The pathophysiology of renal illness is heavily influenced by the renin-angiotensin system (RAS). To reduce renal RAS activation and proteinuria caused by DOX, this study evaluated the effectiveness of Ganoderma lucidum polysaccharide peptide (GL-PP), a new glycopeptide produced from Ganoderma lucidum grown on grass. Methods: Three groups of BALB/c male mice were created: control, DOX, and DOX + GL-PP. GL-PP (100 mg/kg) was administered to mice by intraperitoneal injection for 4 weeks following a single intravenous injection of DOX (10 mg/kg via the tail vein). Results: After 4 weeks, full-length and soluble pro(renin) receptor (fPRR/sPRR) overexpression in DOX mouse kidneys, which is crucial for the RAS pathway, was dramatically inhibited by GL-PP therapy. Additionally, GL-PP successfully reduced elevation of urinary renin activity and angiotensin II levels, supporting the idea that GL-PP inhibits RAS activation. Moreover, GL-PP showed a considerable downregulation of nicotinamide adenine nucleotide phosphate oxidase 4 (NOX4) expression and a decrease in hydrogen peroxide (H2O2) levels. GL-PP treatment effectively reduced glomerular and tubular injury induced by DOX, as evidenced by decreased proteinuria, podocyte damage, inflammation, oxidative stress, apoptosis, and fibrosis. Discussion: GL-PP inhibits intrarenal PRR/sPRR-RAS activation and upregulation of NOX4 and H2O2, suggesting potential therapeutic approaches against DOX-induced nephropathy.
Collapse
Affiliation(s)
- Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinxuan Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lianfu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Teng Yang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
9
|
Fang H, Yang T, Zhou B, Li X. (Pro)Renin Receptor Decoy Peptide PRO20 Protects against Oxidative Renal Damage Induced by Advanced Oxidation Protein Products. Molecules 2023; 28:molecules28073017. [PMID: 37049779 PMCID: PMC10096258 DOI: 10.3390/molecules28073017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with advanced oxidation protein products (AOPPs). A recent study has shown that AOPP-induced renal tubular injury is mediated by the (pro)renin receptor (PRR). However, it is unclear whether the PRR decoy inhibitor PRO20 can protect against renal damage related to AOPPs in vivo. In this study, we examined the role of the PRR in rats with AOPP-induced renal oxidative damage. Male SD rats were subjected to unilateral nephrectomy, and after a four-day recuperation period, they were randomly divided into four groups (n = 6/group) for four weeks: control (CTR), unmodified rat serum albumin (RSA, 50 mg/kg/day via tail-vein injection), AOPPs-RSA (50 mg/kg/day via tail-vein injection), and AOPPs-RSA + PRO20 (50 mg/kg/day via tail-vein injection + 500 μg/kg/day via subcutaneous injection) groups. PRO20 was administered 3 days before AOPPs-RSA injection. Renal histopathology evaluation was performed by periodic acid–Schiff (PAS) staining, and biochemical parameters related to renal injury and oxidative stress biomarkers were evaluated. The expression of related indicators was quantified by RT-qPCR and immunoblotting analysis. In the results, rats in the AOPPs-RSA group exhibited higher levels of albuminuria, inflammatory cell infiltration, and tubular dilation, along with upregulation of oxidative stress, profibrotic and proinflammatory factors, and elevation of AOPP levels. Meanwhile, in the PRO20 group, these were significantly reduced. Moreover, the levels of almost all components of the renin-angiotensin system (RAS) and Nox4-dependent H2O2 production in urine and the kidneys were elevated by AOPPs-RSA, while they were suppressed by PRO20. Furthermore, AOPPs-RSA rats showed elevated kidney expression of the PRR and soluble PRR (sPRR) and increased renal excretion of sPRR. In summary, these findings suggest that PRR inhibition may serve as a protective mechanism against AOPP-induced nephropathy by inhibiting the intrarenal RAS and Nox4-derived H2O2 mechanisms.
Collapse
|
10
|
Wang B, Jie H, Wang S, Dong B, Zou Y. The role of (pro)renin receptor and its soluble form in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1086603. [PMID: 36824459 PMCID: PMC9941963 DOI: 10.3389/fcvm.2023.1086603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
The renin-angiotensin system (RAS) is a major classic therapeutic target for cardiovascular diseases. In addition to the circulating RAS, local tissue RAS has been identified in various tissues and plays roles in tissue inflammation and tissue fibrosis. (Pro)renin receptor (PRR) was identified as a new member of RAS in 2002. Studies have demonstrated the effects of PRR and its soluble form in local tissue RAS. Moreover, as an important part of vacuolar H+-ATPase, it also contributes to normal lysosome function and cell survival. Evidently, PRR participates in the pathogenesis of cardiovascular diseases and may be a potential therapeutic target of cardiovascular diseases. This review focuses on the effects of PRR and its soluble form on the physiological state, hypertension, myocardial ischemia reperfusion injury, heart failure, metabolic cardiomyopathy, and atherosclerosis. We aimed to investigate the possibilities and challenges of PRR and its soluble form as a new therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Boyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuangxi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China,Shuangxi Wang,
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Bo Dong,
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Yunzeng Zou,
| |
Collapse
|
11
|
Fu Z, Zheng H, Kaewsaro K, Lambert J, Chen Y, Yang T. Mutagenesis of the cleavage site of (pro)renin receptor abrogates aldosterone-salt-induced hypertension and renal injury in mice. Am J Physiol Renal Physiol 2023; 324:F1-F11. [PMID: 36302140 PMCID: PMC9762973 DOI: 10.1152/ajprenal.00088.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
Soluble (pro)renin receptor (sPRR), the extracellular domain of (pro)renin receptor (PRR), is primarily generated by site-1 protease and furin. It has been reported that sPRR functions as an important regulator of intrarenal renin contributing to angiotensin II (ANG II)-induced hypertension. Relatively, less is known for the function of sPRR in ANG II-independent hypertension such as mineralocorticoid excess. In the present study, we used a novel mouse model with mutagenesis of the cleavage site in PRR (termed as PRRR279V/L282V or mutant) to examine the phenotype during aldosterone (Aldo)-salt treatment. The hypertensive response of mutant mice to Aldo-salt treatment was blunted in parallel with the attenuated response of plasma volume expansion and renal medullary α-epithelial Na+ channel expression. Moreover, Aldo-salt-induced hypertrophy in the heart and kidney as well as proteinuria were improved, accompanied by blunted polydipsia and polyuria. Together, these results represent strong evidence favoring endogenous sPRR as a mediator of Aldo-salt-induced hypertension and renal injury.NEW & NOTEWORTHY We used a novel mouse model with mutagenesis of the cleavage site of PRR to support soluble PRR as an essential mediator of aldosterone-salt-induced hypertension and also as a potential therapeutic target for patients with mineralocorticoid excess. We firstly report that soluble PRR-dependent pathway medicates the Na+-retaining action of aldosterone in the distal nephron, which opens up a new area for a better understanding of the molecular basis of renal handling of Na+ balance and blood pressure.
Collapse
Affiliation(s)
- Ziwei Fu
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Huaqing Zheng
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
- Renal Section, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Kannaree Kaewsaro
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Jacob Lambert
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Yanting Chen
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Tianxin Yang
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
- Renal Section, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
12
|
Yang T. Potential of soluble (pro)renin receptor in kidney disease: can it go beyond a biomarker? Am J Physiol Renal Physiol 2022; 323:F507-F514. [PMID: 36074917 PMCID: PMC9602801 DOI: 10.1152/ajprenal.00202.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022] Open
Abstract
(Pro)renin receptor (PRR), also termed ATPase H+-transporting accessory protein 2 (ATP6AP2), is a type I transmembrane receptor and is capable of binding and activating prorenin and renin. Apart from its association with the renin-angiotensin system, PRR has been implicated in diverse developmental, physiological, and pathophysiological processes. Within the kidney, PRR is predominantly expressed in the distal nephron, particularly the intercalated cells, and activation of renal PRR contributes to renal injury in various rodent models of chronic kidney disease. Moreover, recent evidence demonstrates that PRR is primarily cleaved by site-1 protease to produce 28-kDa soluble PRR (sPRR). sPRR seems to mediate most of the known pathophysiological functions of renal PRR through modulating the activity of the intrarenal renin-angiotensin system and provoking proinflammatory and profibrotic responses. Not only does sPRR activate renin, but it also directly binds and activates the angiotensin II type 1 receptor. This review summarizes recent advances in understanding the roles and mechanisms of sPRR in the context of renal pathophysiology.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
13
|
Chen B, Brem AS, Gong R. The Janus view: Dual roles for hypoxia-inducible factor in renal repair after acute kidney injury. Am J Physiol Renal Physiol 2022; 323:F1-F3. [PMID: 35635325 DOI: 10.1152/ajprenal.00130.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Bohan Chen
- Division of Nephrology, University of Toledo Medical Center, Toledo, Ohio, United States
| | - Andrew Samuel Brem
- Division of Kidney Disease and Hypertension, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States
| | - Rujun Gong
- Division of Nephrology, University of Toledo Medical Center, Toledo, Ohio, United States
| |
Collapse
|
14
|
Leite APDO, Li XC, Nwia SM, Hassan R, Zhuo JL. Angiotensin II and AT 1a Receptors in the Proximal Tubules of the Kidney: New Roles in Blood Pressure Control and Hypertension. Int J Mol Sci 2022; 23:2402. [PMID: 35269547 PMCID: PMC8910592 DOI: 10.3390/ijms23052402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Contrary to public perception, hypertension remains one of the most important public health problems in the United States, affecting 46% of adults with increased risk for heart attack, stroke, and kidney diseases. The mechanisms underlying poorly controlled hypertension remain incompletely understood. Recent development in the Cre/LoxP approach to study gain or loss of function of a particular gene has significantly helped advance our new insights into the role of proximal tubule angiotensin II (Ang II) and its AT1 (AT1a) receptors in basal blood pressure control and the development of Ang II-induced hypertension. This novel approach has provided us and others with an important tool to generate novel mouse models with proximal tubule-specific loss (deletion) or gain of the function (overexpression). The objective of this invited review article is to review and discuss recent findings using novel genetically modifying proximal tubule-specific mouse models. These new studies have consistently demonstrated that deletion of AT1 (AT1a) receptors or its direct downstream target Na+/H+ exchanger 3 (NHE3) selectively in the proximal tubules of the kidney lowers basal blood pressure, increases the pressure-natriuresis response, and induces natriuretic responses, whereas overexpression of an intracellular Ang II fusion protein or AT1 (AT1a) receptors selectively in the proximal tubules increases proximal tubule Na+ reabsorption, impairs the pressure-natriuresis response, and elevates blood pressure. Furthermore, the development of Ang II-induced hypertension by systemic Ang II infusion or by proximal tubule-specific overexpression of an intracellular Ang II fusion protein was attenuated in mutant mice with proximal tubule-specific deletion of AT1 (AT1a) receptors or NHE3. Thus, these recent studies provide evidence for and new insights into the important roles of intratubular Ang II via AT1 (AT1a) receptors and NHE3 in the proximal tubules in maintaining basal blood pressure homeostasis and the development of Ang II-induced hypertension.
Collapse
Affiliation(s)
- Ana Paula de Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiao C. Li
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia L. Zhuo
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Hu J, Tan Y, Chen Y, Mo S, Hekking B, Su J, Pu M, Lu A, Symons JD, Yang T. Role of (Pro)Renin Receptor in Cyclosporin A-Induced Nephropathy. Am J Physiol Renal Physiol 2022; 322:F437-F448. [PMID: 35073210 PMCID: PMC9662808 DOI: 10.1152/ajprenal.00332.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcineurin inhibitors (CNIs) such as cyclosporin A (CsA) have been widely used to improve graft survival following solid-organ transplantation. However, the clinical use of CsA is often limited by its nephrotoxicity. The present study tested the hypothesis that activation of (pro)renin receptor (PRR) contributes to CsA-induced nephropathy by activating the renin-angiotensin system (RAS). Renal injury in male Sprague-Dawley rats was induced by a low-salt diet combined with CsA as evidenced by elevated plasma creatinine and BUN levels, decreased creatinine clearance and induced renal inflammation, apoptosis as well as interstitial fibrosis, elevated urinary N-acetyl-β-D-glucosaminidase activity and urinary kidney injury molecular 1 content. Each index of renal injury was attenuated following a 2-wk treatment with a PRR decoy inhibitor PRO20. While CsA rats with kidney injury displayed increased renal sPRR abundance, plasma sPRR, renin activity, Ang II, and heightened urinary total prorenin/renin content; RAS activation was attenuated by PRO20. Exposure of cultured human renal proximal tubular HK-2 cells to CsA induced expression of fibronectin and sPRR production, but the fibrotic response was attenuated by PRO20 and siRNA-mediated PRR knockdown. These findings support the hypothesis that activation of PRR contributes to CsA-induced nephropathy by activating the RAS in rats. Of importance, we provide strong proof of concept that targeting PRR offers a novel therapeutic strategy to limit nephotoxic effects of immunosuppressant drugs.
Collapse
Affiliation(s)
- Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yandan Tan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanting Chen
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Brittin Hekking
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - J. David Symons
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| |
Collapse
|
16
|
Advanced Oxidation Protein Product Promotes Oxidative Accentuation in Renal Epithelial Cells via the Soluble (Pro)renin Receptor-Mediated Intrarenal Renin-Angiotensin System and Nox4-H 2O 2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5710440. [PMID: 34873430 PMCID: PMC8642821 DOI: 10.1155/2021/5710440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022]
Abstract
Full-length (pro)renin receptor (fPRR), a research hotspot of the renin-angiotensin system (RAS), plays a serious role in kidney injury. However, the relationship between fPRR and advanced oxidation protein product (AOPP) remains largely unexplored. This study was aimed at exploring the effect of fPRR, especially its 28 kDa soluble form called soluble PRR (sPRR), in AOPP-induced oxidative stress in HK-2 cells, a renal proximal tubular epithelial cell line. Incubation of HK-2 cells with 100 μg/ml AOPP resulted in significant upregulation of fPRR expression and caused an approximately fourfold increase in medium sPRR secretion. However, unmodified albumin did not demonstrate the same effects under the same concentration. Treatment of HK-2 cells with the site-1 protease (S1P) inhibitor PF429242 (40 μM) or S1P siRNA significantly inhibited AOPP-induced sPRR generation. fPRR decoy inhibitor PRO20 and PF429242 treatment for 24 h remarkably attenuated the AOPP-induced upregulation of RAS components. Furthermore, PF429242 significantly reduced the AOPP-stimulated expression of NADPH oxidase 4 (Nox4) and H2O2 expression. The use of a small recombinant protein, named sPRR-His, reversed these alterations. In conclusion, these results provided the first demonstration of AOPP-promoted activation of sPRR. Increased renal proximal tubule Nox4-derived H2O2 contributed to the aggravation of oxidative stress. Targeting S1P-derived sPRR is a promising intervention strategy for chronic kidney disease.
Collapse
|
17
|
Culver SA, Akhtar S, Rountree-Jablin C, Keller SR, Cathro HP, Gildea JJ, Siragy HM. Knockout of Nephron ATP6AP2 Impairs Proximal Tubule Function and Prevents High-Fat Diet-Induced Obesity in Male Mice. Endocrinology 2021; 162:bqab200. [PMID: 34534267 PMCID: PMC8489432 DOI: 10.1210/endocr/bqab200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/24/2022]
Abstract
ATP6AP2 expression is increased in the nephron during high-fat diet (HFD) and its knockout (ATP6AP2 KO) reduces body weight (WT) in mice. We evaluated the contribution of ATP6AP2 to urinary glucose (UG) and albumin (Ualb) handling during HFD. We hypothesized that nephron ATP6AP2 KO increases UG and Ualb and minimizes HFD-induced obesity. Eight-week-old male C57BL/6J mice with inducible nephron-specific ATP6AP2 KO and noninduced controls were fed either normal diet (ND, 12% kcal fat) or HFD (45% kcal fat) for 6 months. ATP6AP2 KO mice on ND had 20% (P < 0.01) lower WT compared with controls. HFD-fed mice had 41% (P < 0.05) greater WT than ND-fed control mice. In contrast, ATP6AP2 KO abrogated the increase in WT induced by HFD by 40% (P < 0.05). Mice on HFD had less caloric intake compared with ND controls (P < 0.01). There were no significant differences in metabolic rate between all groups. UG and Ualb was significantly increased in ATP6AP2 KO mice on both ND and HFD. ATP6AP2 KO showed greater levels of proximal tubule apoptosis and histologic evidence of proximal tubule injury. In conclusion, our results demonstrate that nephron-specific ATP6AP2 KO is associated with glucosuria and albuminuria, most likely secondary to renal proximal tubule injury and/or dysfunction. Urinary loss of nutrients may have contributed to the reduced WT of knockout mice on ND and lack of WT gain in response to HFD. Future investigation should elucidate the mechanisms by which loss of renal ATP6AP2 causes proximal tubule injury and dysfunction.
Collapse
Affiliation(s)
- Silas A Culver
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Safia Akhtar
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Callie Rountree-Jablin
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Susanna R Keller
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helen P Cathro
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - John J Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helmy M Siragy
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
18
|
Qin M, Xu C, Yu J. The Soluble (Pro)Renin Receptor in Health and Diseases: Foe or Friend? J Pharmacol Exp Ther 2021; 378:251-261. [PMID: 34158404 DOI: 10.1124/jpet.121.000576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
The (pro)renin receptor (PRR) is a single-transmembrane protein that regulates the local renin-angiotensin system and participates in various intracellular signaling pathways, thus exhibiting a significant physiopathologic relevance in cellular homeostasis. A soluble form of PRR (sPRR) is generated through protease-mediated cleavage of the full-length PRR and secreted into extracellular spaces. Accumulating evidence indicates pivotal biologic functions of sPRR in various physiopathological processes. sPRR may be a novel biomarker for multiple diseases. SIGNIFICANCE STATEMENT: Circulating sPRR concentrations are elevated in patients and animals under various physiopathological conditions. This minireview highlights recent advances in sPRR functions in health and pathophysiological conditions. Results suggest that sPRR may be a novel biomarker for multiple diseases, but further studies are needed to determine the diagnostic value of sPRR.
Collapse
Affiliation(s)
- Manman Qin
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Jun Yu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| |
Collapse
|
19
|
Quadri SS, Cooper C, Ghaffar D, Vaishnav H, Nahar L. The Pathological Role of Pro(Renin) Receptor in Renal Inflammation. J Exp Pharmacol 2021; 13:339-344. [PMID: 33776491 PMCID: PMC7989955 DOI: 10.2147/jep.s297682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
(Pro)renin receptor (PRR) is the recently discovered component of the renin-angiotensin-aldosterone system (RAS). Many organs contain their own RAS, wherein PRR can exert organ-specific localized effects. The Binding of prorenin/renin to PRR activates angiotensin-dependent and independent pathways which leads to the development of physiological and pathological effects. Continued progress in PRR research suggests that the upregulation of PRR contributes to the development of hypertension, glomerular injury, and progression of kidney disease and inflammation. In the current review, we highlight the function of the PRR in renal inflammation in pathophysiological conditions.
Collapse
Affiliation(s)
- Syed S Quadri
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Caleb Cooper
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Dawood Ghaffar
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Hitesh Vaishnav
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Ludmila Nahar
- Department of Medicine, School of Medicine/John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|