1
|
Peng TY, Lu JM, Zheng XL, Zeng C, He YH. The role of lactate metabolism and lactylation in pulmonary arterial hypertension. Respir Res 2025; 26:99. [PMID: 40075458 PMCID: PMC11905457 DOI: 10.1186/s12931-025-03163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by elevated pulmonary artery pressure and vascular remodeling. Recent studies have underscored the pivotal role of metabolic dysregulation and epigenetic modifications in the pathogenesis of PAH. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that links cellular metabolism with activity regulation. Recent findings indicate that, in addition to altered glycolytic activity and dysregulated. Lactate homeostasis and lactylation-a novel epigenetic modification-also play a significant role in the development of PAH. This review synthesizes current knowledge regarding the relationship between altered glycolytic activity and PAH, with a particular focus on the cumulative effects of lactate in pulmonary vascular cells. Furthermore, lactylation, an emerging epigenetic modification, is discussed in the context of PAH. By elucidating the complex interplay between lactate metabolism and lactylation in PAH, this review aims to provide insights into potential therapeutic targets. Understanding these metabolic pathways may lead to innovative strategies for managing PAH and improving patient outcomes. Future research should focus on the underlying mechanisms through which lactylation influences the pathophysiology of PAH, thereby aiding in the development of targeted interventions.
Collapse
Affiliation(s)
- Tong-Yu Peng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jun-Mi Lu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xia-Lei Zheng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu-Hu He
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Carter K, Shah E, Waite J, Rana D, Zhao ZQ. Pathophysiology of Angiotensin II-Mediated Hypertension, Cardiac Hypertrophy, and Failure: A Perspective from Macrophages. Cells 2024; 13:2001. [PMID: 39682749 PMCID: PMC11640308 DOI: 10.3390/cells13232001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Heart failure is a complex syndrome characterized by cardiac hypertrophy, fibrosis, and diastolic/systolic dysfunction. These changes share many pathological features with significant inflammatory responses in the myocardium. Among the various regulatory systems that impact on these heterogeneous pathological processes, angiotensin II (Ang II)-activated macrophages play a pivotal role in the induction of subcellular defects and cardiac adverse remodeling during the progression of heart failure. Ang II stimulates macrophages via its AT1 receptor to release oxygen-free radicals, cytokines, chemokines, and other inflammatory mediators in the myocardium, and upregulates the expression of integrin adhesion molecules on both monocytes and endothelial cells, leading to monocyte-endothelial cell-cell interactions. The transendothelial migration of monocyte-derived macrophages exerts significant biological effects on the proliferation of fibroblasts, deposition of extracellular matrix proteins, induction of perivascular/interstitial fibrosis, and development of hypertension, cardiac hypertrophy and heart failure. Inhibition of macrophage activation using Ang II AT1 receptor antagonist or depletion of macrophages from the peripheral circulation has shown significant inhibitory effects on Ang II-induced vascular and myocardial injury. The purpose of this review is to discuss the current understanding in Ang II-induced maladaptive cardiac remodeling and dysfunction, particularly focusing on molecular signaling pathways involved in macrophages-mediated hypertension, cardiac hypertrophy, fibrosis, and failure. In addition, the challenges remained in translating these findings to the treatment of heart failure patients are also addressed.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Qing Zhao
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, GA 31404, USA
| |
Collapse
|
3
|
Beikoghli Kalkhoran S, Basalay M, He Z, Golforoush P, Roper T, Caplin B, Salama AD, Davidson SM, Yellon DM. Investigating the cause of cardiovascular dysfunction in chronic kidney disease: capillary rarefaction and inflammation may contribute to detrimental cardiovascular outcomes. Basic Res Cardiol 2024; 119:937-955. [PMID: 39472324 PMCID: PMC11628583 DOI: 10.1007/s00395-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 12/10/2024]
Abstract
Myocardial ischemia-reperfusion (IR) injury is a major cause of morbidity and mortality in patients with chronic kidney disease (CKD). The most frequently used and representative experimental model is the rat dietary adenine-induced CKD, which leads to CKD-associated CVD. However, the continued intake of adenine is a potential confounding factor. This study investigated cardiovascular dysfunction following brief adenine exposure, CKD development and return to a normal diet. Male Wistar rats received a 0.3% adenine diet for 10 weeks and normal chow for an additional 8 weeks. Kidney function was assessed by urinalysis and histology. Heart function was assessed by echocardiography. Sensitivity to myocardial IR injury was assessed using the isolated perfused rat heart (Langendorff) model. The inflammation profile of rats with CKD was assessed via cytokine ELISA, tissue histology and RNA sequencing. Induction of CKD was confirmed by a significant increase in plasma creatinine and albuminuria. Histology revealed extensive glomerular and tubular damage. Diastolic dysfunction, measured by the reduction of the E/A ratio, was apparent in rats with CKD even following a normal diet. Hearts from rats with CKD had significantly larger infarcts after IR injury. The CKD rats also had statistically higher levels of markers of inflammation including myeloperoxidase, KIM-1 and interleukin-33. RNA sequencing revealed several changes including an increase in inflammatory signaling pathways. In addition, we noted that CKD induced significant cardiac capillary rarefaction. We have established a modified model of adenine-induced CKD, which leads to cardiovascular dysfunction in the absence of adenine. Our observations of capillary rarefaction and inflammation suggest that these may contribute to detrimental cardiovascular outcomes.
Collapse
Affiliation(s)
- Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Maryna Basalay
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Zhenhe He
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Pelin Golforoush
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Tayeba Roper
- Centre for Kidney and Bladder Health, Royal Free Hospital, University College London, London, England, UK
| | - Ben Caplin
- Centre for Kidney and Bladder Health, Royal Free Hospital, University College London, London, England, UK
| | - Alan D Salama
- Centre for Kidney and Bladder Health, Royal Free Hospital, University College London, London, England, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London & UCL Hospital, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
4
|
Kumar S, Mohan V, Kant Singh R, Kumar Gautam P, Kumar S, Shukla A, Kumar Patel A, Yadav L, Acharya A. Tumor-derived Hsp70-CD14 interaction enhances the antitumor potential of cytotoxic T cells by activating tumor-associated macrophages to express CC chemokines and CD40 costimulatory molecules. Int Immunopharmacol 2024; 138:112584. [PMID: 38944948 DOI: 10.1016/j.intimp.2024.112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Heat shock proteins are a widely distributed group of proteins. It is constitutively expressed in almost all organisms and shows little variation throughout evolution. Previously, HSPs, particularly Hsp70, were recognized as molecular chaperones that aid in the proper three-dimensional folding of newly synthesized polypeptides in cells. Recently, researchers have focused on the potential induction of immune cells, including macrophages, antigen-specific CD8+ cytotoxic T cells, and PBMCs. It induces the expression of CC chemokines such as MIP-1α and RANTES, which are responsible for the chemotactic movement and migration of immune cells at the site of infection to neutralize foreign particles in vivo and in vitro in several cell lines but their effect on tumor-associated macrophages is still not known. These cytokines are also known to influence the movement of several immune cells, including CD8+ cytotoxic T cells, toward inflammatory sites. Therefore, the effect of tumor-derived autologous Hsp70 on the expression of MIP-lα and RANTES in tumor-associated macrophages (TAMs) was investigated. Our results indicated that Hsp70 treatment-induced MIP-lα and RANTES expression was significantly greater in TAMs than in NMOs. According to the literature, the CC chemokine shares the same receptor, CCR5, as HIV does for their action, and therefore could provide better completion to the virus for ligand binding. Furthermore, Hsp70-preactivated TAMs induced increased IL-2 and IFN-γ expression in T cells during coculture for 48 h and upregulated the antitumor immune response of the host. Therefore, the outcome of our study could be useful for developing a better approach to restricting the growth and progression of tumors.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Vijay Mohan
- School of Biological and Life Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishi Kant Singh
- Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016, India
| | - Pramod Kumar Gautam
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sandeep Kumar
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Alok Shukla
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Anand Kumar Patel
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Lokesh Yadav
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Arbind Acharya
- Centre of Advanced Study, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
5
|
Zylberberg AK, Cottle DL, Runting J, Rodrigues G, Tham MS, Jones LK, Cumming HE, Short KM, Zaph C, Smyth IM. Modulating inflammation with interleukin 37 treatment ameliorates murine Autosomal Dominant Polycystic Kidney Disease. Kidney Int 2024; 105:731-743. [PMID: 38158181 DOI: 10.1016/j.kint.2023.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of kidney failure and is associated with substantial morbidity and mortality. Interstitial inflammation is attributed to the action of infiltrating macrophages and is a feature thought to aggravate disease progression. Here, we investigated the therapeutic potential of the anti-inflammatory IL37b cytokine as a treatment for ADPKD using genetic mouse models, demonstrating that transgenic expression of human IL37b reduced collecting duct cyst burden in both early and adult-onset ADPKD rodent models. Moreover, injection of recombinant human IL37b could also reduce cyst burden in early onset ADPKD mice, an observation not associated with increased macrophage number at early stages of cyst formation. Interestingly, transgenic IL37b expression also did not alter macrophage numbers in advanced disease. Whole kidney RNA-seq highlighted an IL37b-mediated upregulation of the interferon signaling pathway and single-cell RNA-seq established that these changes originate at least partly from kidney resident macrophages. We further found that blocking type I interferon signaling in mice expressing IL37b resulted in increased cyst number, confirming this as an important pathway by which IL37b exerts its beneficial effects. Thus, our studies show that IL37b promotes interferon signaling in kidney resident macrophages which suppresses cyst initiation, identifying this protein as a potential therapy for ADPKD.
Collapse
Affiliation(s)
- Allara K Zylberberg
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Denny L Cottle
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| | - Jessica Runting
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Grace Rodrigues
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ming Shen Tham
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Lynelle K Jones
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Helen E Cumming
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Colby Zaph
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ian M Smyth
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Liu Y, Xu K, Xiang Y, Ma B, Li H, Li Y, Shi Y, Li S, Bai Y. Role of MCP-1 as an inflammatory biomarker in nephropathy. Front Immunol 2024; 14:1303076. [PMID: 38239353 PMCID: PMC10794684 DOI: 10.3389/fimmu.2023.1303076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
The Monocyte chemoattractant protein-1 (MCP-1), also referred to as chemokine ligand 2 (CCL2), belongs to the extensive chemokine family and serves as a crucial mediator of innate immunity and tissue inflammation. It has a notable impact on inflammatory conditions affecting the kidneys. Upon binding to its receptor, MCP-1 can induce lymphocytes and NK cells' homing, migration, activation, differentiation, and development while promoting monocytes' and macrophages' infiltration, thereby facilitating kidney disease-related inflammation. As a biomarker for kidney disease, MCP-1 has made notable advancements in primary kidney diseases such as crescentic glomerulonephritis, chronic glomerulonephritis, primary glomerulopathy, idiopathic proteinuria glomerulopathy, acute kidney injury; secondary kidney diseases like diabetic nephropathy and lupus nephritis; hereditary kidney diseases including autosomal dominant polycystic kidney disease and sickle cell kidney disease. MCP-1 not only predicts the occurrence, progression, prognosis of the disease but is also closely associated with the severity and stage of nephropathy. When renal tissue is stimulated or experiences significant damage, the expression of MCP-1 increases, demonstrating a direct correlation with the severity of renal injury.
Collapse
Affiliation(s)
- Yanlong Liu
- Heilongjiang Provincial Health Commission, Harbin, China
| | - Ke Xu
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Yuhua Xiang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Boyan Ma
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Hailong Li
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yuan Li
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Shi
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Shuju Li
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yan Bai
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
He S, Yao L, Li J. Role of MCP-1/CCR2 axis in renal fibrosis: Mechanisms and therapeutic targeting. Medicine (Baltimore) 2023; 102:e35613. [PMID: 37861543 PMCID: PMC10589562 DOI: 10.1097/md.0000000000035613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Renal fibrosis is a common pathological manifestation in various chronic kidney diseases. Inflammation plays a central role in renal fibrosis development. Owing to their significant participation in inflammation and autoimmunity, chemokines have always been the hot spot and focus of scientific research and clinical intervention. Among the chemokines, monocyte chemoattractant protein-1 (MCP-1), also known as C-C motif chemokine ligand 2, together with its main receptor C-C chemokine receptor type 2 (CCR2) are important chemokines in renal fibrosis. The MCP-1/CCR2 axis is activated when MCP-1 binds to CCR2. Activation of MCP-1/CCR2 axis can induce chemotaxis and activation of inflammatory cells, and initiate a series of signaling cascades in renal fibrosis. It mediates and promotes renal fibrosis by recruiting monocyte, promoting the activation and transdifferentiation of macrophages. This review summarizes the complex physical processes of MCP-1/CCR2 axis in renal fibrosis and addresses its general mechanism in renal fibrosis by using specific examples, together with the progress of targeting MCP-1/CCR2 in renal fibrosis with a view to providing a new direction for renal fibrosis treatment.
Collapse
Affiliation(s)
- Shiyang He
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
- Basic and Applied Laboratory of Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Lan Yao
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Li
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
- Basic and Applied Laboratory of Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| |
Collapse
|
8
|
Domaniza M, Hluchy M, Cizkova D, Humenik F, Slovinska L, Hudakova N, Hornakova L, Vozar J, Trbolova A. Two Amnion-Derived Mesenchymal Stem-Cells Injections to Osteoarthritic Elbows in Dogs-Pilot Study. Animals (Basel) 2023; 13:2195. [PMID: 37443993 DOI: 10.3390/ani13132195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to investigate the potential of cell-based regenerative therapy for elbow joints affected by osteoarthritis. Interest was focused on two intra-articular applications of amnion-derived mesenchymal stem cells (A-MSCs) to a group of different breeds of dogs with elbow osteoarthritis (13 joints). Two injections were performed 14 days apart. We evaluated synovial fluid biomarkers, such as IFN-γ, IL-6, IL-15, IL-10, MCP-1, TNF-α, and GM-CSF, by multiplex fluorescent micro-bead immunoassay in the treated group of elbows (n = 13) (day 0, day 14, and day 28) and in the control group of elbows (n = 9). Kinematic gait analysis determined the joint range of motion (ROM) before and after each A-MSCs application. Kinematic gait analysis was performed on day 0, day 14, and day 28. Kinematic gait analysis pointed out improvement in the average range of motion of elbow joints from day 0 (38.45 ± 5.74°), day 14 (41.7 ± 6.04°), and day 28 (44.78 ± 4.69°) with statistical significance (p < 0.05) in nine elbows. Correlation analyses proved statistical significance (p < 0.05) in associations between ROM (day 0, day 14, and day 28) and IFN-γ, IL-6, IL-15, MCP-1, TNF-α, and GM-CSF concentrations (day 0, day 14, and day 28). IFN-γ, IL-6, IL-15, MCP-1, GM-CSF, and TNF- α showed negative correlation with ROM at day 0, day 14, and day 28, while IL-10 demonstrated positive correlation with ROM. As a consequence of A-MSC application to the elbow joint, we detected a statistically significant (p < 0.05) decrease in concentration levels between day 0 and day 28 for IFN-γ, IL-6, and TNF-α and statistically significant increase for IL-10. Statistical significance (p < 0.05) was detected in TNF-α, IFN-γ, and GM-CSF concentrations between day 14 and the control group as well as at day 28 and the control group. IL-6 concentrations showed statistical significance (p < 0.05) between day 14 and the control group.
Collapse
Affiliation(s)
- Michal Domaniza
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Marian Hluchy
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L.Pasteur University Hospital, Trieda SNP 1, 040 11 Kosice, Slovakia
| | - Nikola Hudakova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Lubica Hornakova
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Juraj Vozar
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Alexandra Trbolova
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
9
|
Linder BA, Babcock MC, Pollin KU, Watso JC, Robinson AT. Short-term high-salt consumption does not influence resting or exercising heart rate variability but increases MCP-1 concentration in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2023; 324:R666-R676. [PMID: 36939211 PMCID: PMC10110701 DOI: 10.1152/ajpregu.00240.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
High salt consumption increases blood pressure (BP) and cardiovascular disease risk by altering autonomic function and increasing inflammation. However, it is unclear whether salt manipulation alters resting and exercising heart rate variability (HRV), a noninvasive measure of autonomic function, in healthy young adults. The purpose of this investigation was to determine whether short-term high-salt intake 1) alters HRV at rest, during exercise, or exercise recovery and 2) increases the circulating concentration of the inflammatory biomarker monocyte chemoattractant protein 1 (MCP-1). With the use of a randomized, placebo-controlled, crossover study, 20 participants (8 females; 24 ± 4 yr old, 110 ± 10/64 ± 8 mmHg) consumed salt (3,900 mg sodium) or placebo capsules for 10 days each separated by ≥2 wk. We assessed HRV during 10 min of baseline rest, 50 min of cycling (60% V̇o2peak), and recovery. We quantified HRV using the standard deviation of normal-to-normal RR intervals, the root mean square of successive differences (RMSSD), and additional time and frequency domain metrics of HRV. Plasma samples were collected to assess MCP-1 concentration. No main effect of high salt or condition × time interaction was observed for HRV metrics. However, acute exercise reduced HRV (e.g., RMSSD time: P < 0.001, condition: P = 0.877, interaction: P = 0.422). High salt elevated plasma MCP-1 (72.4 ± 12.5 vs. 78.14 ± 14.7 pg/mL; P = 0.010). Irrespective of condition, MCP-1 was moderately associated (P values < 0.05) with systolic (r = 0.32) and mean BP (r = 0.33). Short-term high-salt consumption does not affect HRV; however, it increases circulating MCP-1, which may influence BP in young adults.
Collapse
Affiliation(s)
- Braxton A Linder
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kamila U Pollin
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- War Related Illness and Injury Study Center, Washington DC Veteran Affairs Medical Center, Washington, District of Columbia, United States
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
10
|
Nguyen DT, Kleczko EK, Dwivedi N, Monaghan MLT, Gitomer BY, Chonchol MB, Clambey ET, Nemenoff RA, Klawitter J, Hopp K. The tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase 1 regulates polycystic kidney disease progression. JCI Insight 2023; 8:e154773. [PMID: 36422996 PMCID: PMC9870090 DOI: 10.1172/jci.insight.154773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic nephropathy, is characterized by phenotypic variability that exceeds genic effects. Dysregulated metabolism and immune cell function are key disease modifiers. The tryptophan metabolites, kynurenines, produced through indoleamine 2,3-dioxygenase 1 (IDO1), are known immunomodulators. Here, we study the role of tryptophan metabolism in PKD using an orthologous disease model (C57BL/6J Pkd1RC/RC). We found elevated kynurenine and IDO1 levels in Pkd1RC/RC kidneys versus wild type. Further, IDO1 levels were increased in ADPKD cell lines. Genetic Ido1 loss in Pkd1RC/RC animals resulted in reduced PKD severity, as measured by cystic index and percentage kidney weight normalized to body weight. Consistent with an immunomodulatory role of kynurenines, Pkd1RC/RC;Ido1-/- mice presented with significant changes in the cystic immune microenvironment (CME) versus controls. Kidney macrophage numbers decreased and CD8+ T cell numbers increased, both known PKD modulators. Also, pharmacological IDO1 inhibition in Pkd1RC/RC mice and kidney-specific Pkd2-knockout mice with rapidly progressive PKD resulted in less severe PKD versus controls, with changes in the CME similar to those in the genetic model. Our data suggest that tryptophan metabolism is dysregulated in ADPKD and that its inhibition results in changes to the CME and slows disease progression, making IDO1 a therapeutic target for ADPKD.
Collapse
Affiliation(s)
- Dustin T. Nguyen
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Emily K. Kleczko
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Nidhi Dwivedi
- Department of Medicine, Division of Renal Diseases and Hypertension
| | | | | | - Michel B. Chonchol
- Department of Medicine, Division of Renal Diseases and Hypertension
- Consortium for Fibrosis Research and Translation, and
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raphael A. Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension
- Consortium for Fibrosis Research and Translation, and
| | - Jelena Klawitter
- Department of Medicine, Division of Renal Diseases and Hypertension
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension
- Consortium for Fibrosis Research and Translation, and
| |
Collapse
|
11
|
Li Z, Zimmerman KA, Cherakara S, Chumley PH, Collawn JF, Wang J, Haycraft CJ, Song CJ, Chacana T, Andersen RS, Croyle MJ, Aloria EJ, Hombal RP, Thomas IN, Chweih H, Simanyi KL, George JF, Parant JM, Mrug M, Yoder BK. A kidney resident macrophage subset is a candidate biomarker for renal cystic disease in preclinical models. Dis Model Mech 2023; 16:dmm049810. [PMID: 36457161 PMCID: PMC9884121 DOI: 10.1242/dmm.049810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Although renal macrophages have been shown to contribute to cyst development in polycystic kidney disease (PKD) animal models, it remains unclear whether there is a specific macrophage subpopulation involved. Here, we analyzed changes in macrophage populations during renal maturation in association with cystogenesis rates in conditional Pkd2 mutant mice. We observed that CD206+ resident macrophages were minimal in a normal adult kidney but accumulated in cystic areas in adult-induced Pkd2 mutants. Using Cx3cr1 null mice, we reduced macrophage number, including CD206+ macrophages, and showed that this significantly reduced cyst severity in adult-induced Pkd2 mutant kidneys. We also found that the number of CD206+ resident macrophage-like cells increased in kidneys and in the urine from autosomal-dominant PKD (ADPKD) patients relative to the rate of renal functional decline. These data indicate a direct correlation between CD206+ resident macrophages and cyst formation, and reveal that the CD206+ resident macrophages in urine could serve as a biomarker for renal cystic disease activity in preclinical models and ADPKD patients. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 732104, USA
| | - Sreelakshmi Cherakara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phillip H. Chumley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Courtney J. Haycraft
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cheng J. Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Teresa Chacana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Reagan S. Andersen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mandy J. Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ernald J. Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raksha P. Hombal
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Isis N. Thomas
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hanan Chweih
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristin L. Simanyi
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James F. George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Shao F, Ci L, Shi J, Fang F, Yan B, Liu X, Yao X, Zhang M, Yang H, Wang Z, Fei J. Bioluminescence imaging of mouse monocyte chemoattractant protein-1 expression in inflammatory processes. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1507-1517. [PMID: 36239355 PMCID: PMC9828394 DOI: 10.3724/abbs.2022143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays a crucial role in various inflammatory diseases. To reveal the impact of MCP-1 during diseases and to develop anti-inflammatory agents, we establish a transgenic mouse line. The firefly luciferase gene is incorporated into the mouse genome and driven by the endogenous MCP-1 promoter. A bioluminescence photographing system is applied to monitor luciferase levels in live mice during inflammation, including lipopolysaccharide-induced sepsis, concanavalin A-induced T cell-dependent liver injury, CCl 4-induced acute hepatitis, and liver fibrosis. The results demonstrate that the luciferase signal induced in inflammatory processes is correlated with endogenous MCP-1 expression in mice. Furthermore, the expressions of MCP-1 and the luciferase gene are dramatically inhibited by administration of the anti-inflammatory drug dexamethasone in a septicemia model. Our results suggest that the transgenic MCP-1-Luc mouse is a useful model to study MCP-1 expression in inflammation and disease and to evaluate the efficiency of anti-inflammatory drugs in vivo.
Collapse
Affiliation(s)
- Fangyang Shao
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China,Institute of BiophysicsChinese Academy of SciencesBeijing100101China,College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Lei Ci
- Shanghai Engineering Research Center for Model OrganismsSMOCShanghai201203China,Correspondence address. Tel: +86-21-65982429; (J.F.) / Tel: +86-21-20791155; (L.C.) @modelorg.com
| | - Jiahao Shi
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Fei Fang
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Bowen Yan
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xijun Liu
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xiangyu Yao
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Mengjie Zhang
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Hua Yang
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model OrganismsSMOCShanghai201203China
| | - Jian Fei
- School of Life Sciences and TechnologyTongji UniversityShanghai200092China,Correspondence address. Tel: +86-21-65982429; (J.F.) / Tel: +86-21-20791155; (L.C.) @modelorg.com
| |
Collapse
|
13
|
Song CJ, Li Z, Ahmed UKB, Bland SJ, Yashchenko A, Liu S, Aloria EJ, Lever JM, Gonzalez NM, Bickel MA, Giles CB, Georgescu C, Wren JD, Lang ML, Benveniste EN, Harrington LE, Tsiokas L, George JF, Jones KL, Crossman DK, Agarwal A, Mrug M, Yoder BK, Hopp K, Zimmerman KA. A Comprehensive Immune Cell Atlas of Cystic Kidney Disease Reveals the Involvement of Adaptive Immune Cells in Injury-Mediated Cyst Progression in Mice. J Am Soc Nephrol 2022; 33:747-768. [PMID: 35110364 PMCID: PMC8970461 DOI: 10.1681/asn.2021030278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/16/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.
Collapse
Affiliation(s)
- Cheng J. Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ummey Khalecha Bintha Ahmed
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Bland
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Alex Yashchenko
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ernald J. Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremie M. Lever
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nancy M. Gonzalez
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Cory B. Giles
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mark L. Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Etty N. Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Laurie E. Harrington
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Leo Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James F. George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth L. Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michal Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katharina Hopp
- Polycystic Kidney Disease Program, Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kurt A. Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
14
|
Liao X, Zhang W, Dai H, Jing R, Ye M, Ge W, Pei S, Pan L. Neutrophil-Derived IL-17 Promotes Ventilator-Induced Lung Injury via p38 MAPK/MCP-1 Pathway Activation. Front Immunol 2022; 12:768813. [PMID: 34975857 PMCID: PMC8714799 DOI: 10.3389/fimmu.2021.768813] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is one of the most common complications of mechanical ventilation and can severely affect health. VILI appears to involve excessive inflammatory responses, but its pathogenesis has not yet been clarified. Since interleukin-17 (IL-17) plays a critical role in the immune system and the development of infectious and inflammatory diseases, we investigated here whether it plays a role in VILI. In a mouse model of VILI, mechanical ventilation with high tidal volume promoted the accumulation of lung neutrophils, leading to increased IL-17 levels in the lung, which in turn upregulated macrophage chemoattractant protein-1 via p38 mitogen-activated protein kinase. Depletion of neutrophils decreases the production IL-17 in mice and inhibition of IL-17 significantly reduced HTV-induced lung injury and inflammatory response. These results were confirmed in vitro using RAW264.7 macrophage cultures. Our results suggest that IL-17 plays a pro-inflammatory role in VILI and could serve as a new target for its treatment.
Collapse
Affiliation(s)
- Xiaoting Liao
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weikang Zhang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mengling Ye
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wanyun Ge
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shenglin Pei
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
15
|
Gelzinis TA. Pulmonary Hypertension in 2021: Part I-Definition, Classification, Pathophysiology, and Presentation. J Cardiothorac Vasc Anesth 2021; 36:1552-1564. [PMID: 34344595 DOI: 10.1053/j.jvca.2021.06.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 11/11/2022]
Abstract
The World Symposium on Pulmonary Hypertension (WSPH) was organized by the World Health Organization in 1973 in response to an increase in pulmonary arterial hypertension in Europe caused by aminorex, an appetite suppressant. The mandate of this meeting was to review the latest clinical and scientific research and to formulate recommendations to improve the diagnosis and management of pulmonary hypertension (PH).1 Since 1998, the WSPH has met every five years and in 2018, the sixth annual WSPH revised the hemodynamic definition of PH. This two-part series will review the updated definition, classification, pathophysiology, presentation, diagnosis, management, and perioperative management of patients with PH. In the first part of this series, the definition, classification, pathophysiology, and presentation will be reviewed.
Collapse
|
16
|
Bodine SC, Brooks HL, Bunnett NW, Coller HA, Frey MR, Joe B, Kleyman TR, Lindsey ML, Marette A, Morty RE, Ramírez JM, Thomsen MB, Yosten GLC. An American Physiological Society cross-journal Call for Papers on "Inter-Organ Communication in Homeostasis and Disease". Am J Physiol Lung Cell Mol Physiol 2021; 321:L42-L49. [PMID: 34010064 PMCID: PMC8321848 DOI: 10.1152/ajplung.00209.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, New York University, New York, New York
| | - Hilary A Coller
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California
- Department of Biological Chemistry, University of California, Los Angeles, California
| | - Mark R Frey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bina Joe
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
- Center for Hypertension and Personalized Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Hôpital Laval, Laval University, Quebec City, Québec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Québec, Canada
| | - Rory E Morty
- Department of Translational Pulmonology and the Translational Lung Research Center Heidelberg, University Hospital Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, Justus Liebig University Giessen, member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jan-Marino Ramírez
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, Washington
- Center on Human Development and Disability, University of Washington, Seattle, Washington
- Center for Integrative Brain Research at the Seattle Children's Research Institute, University of Washington, Seattle, Washington
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Aloria EJG, Song CJ, Li Z, Croyle MJ, Mrug M, Zimmerman KA, Yoder BK. Ly6c hi Infiltrating Macrophages Promote Cyst Progression in Injured Conditional Ift88 Mice. ACTA ACUST UNITED AC 2021; 2:989-995. [PMID: 34396149 PMCID: PMC8359900 DOI: 10.34067/kid.0000882021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ernald Jules G Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cheng J Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michal Mrug
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Nephrology, Department of Internal Medicine, The University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Abstract
Interstitial inflammation is an important feature of cystic kidney disease. Renal macrophages are the most well-studied inflammatory cell in the kidney, and their involvement in cyst formation has been reported in different animal models and patients with cystic kidney disease. Originally, it was believed that renal macrophages were maintained from a constant supply of bone marrow-derived circulating monocytes, and could be recruited to the kidney in response to local inflammation. However, this idea has been challenged using fate-mapping methods, by showing that at least two distinct developmental origins of macrophages are present in the adult mouse kidney. The first type, infiltrating macrophages, are recruited from circulating monocytes and gradually develop macrophage properties on entering the kidney. The second, resident macrophages, predominantly originate from embryonic precursors, colonize the kidney during its development, and proliferate in situ to maintain their population throughout adulthood. Infiltrating and resident macrophages work together to maintain homeostasis and properly respond to pathologic conditions, such as AKI, cystic kidney disease, or infection. This review will briefly summarize current knowledge of resident macrophages in cystic kidney disease.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Xiao Y, Chen PP, Zhou RL, Zhang Y, Tian Z, Zhang SY. Pathological Mechanisms and Potential Therapeutic Targets of Pulmonary Arterial Hypertension: A Review. Aging Dis 2020; 11:1623-1639. [PMID: 33269111 PMCID: PMC7673851 DOI: 10.14336/ad.2020.0111] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiovascular disease characterized by pulmonary vasculature reconstruction and right ventricular dysfunction. The mortality rate of PAH remains high, although multiple therapeutic strategies have been implemented in clinical practice. These drugs mainly target the endothelin-1, prostacyclin and nitric oxide pathways. Management for PAH treatment includes improving symptoms, enhancing quality of life, and extending survival rate. Existing drugs developed to treat the disease have resulted in enormous economic and healthcare liabilities. The estimated cost for advanced PAH has exceeded $200,000 per year. The pathogenesis of PAH is associated with numerous molecular processes. It mainly includes germline mutation, inflammation, dysfunction of pulmonary arterial endothelial cells, epigenetic modifications, DNA damage, metabolic dysfunction, sex hormone imbalance, and oxidative stress, among others. Findings based on the pathobiology of PAH may have promising therapeutic outcomes. Hence, faced with the challenges of increasing healthcare demands, in this review, we attempted to explore the pathological mechanisms and alternative therapeutic targets, including other auxiliary devices or interventional therapies, in PAH. The article will discuss the potential therapies of PAH in detail, which may require further investigation before implementation.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei-Pei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Lin Zhou
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Ni F, Zhang Y, Peng X, Li J. Correlation between osteoarthritis and monocyte chemotactic protein-1 expression: a meta-analysis. J Orthop Surg Res 2020; 15:516. [PMID: 33168099 PMCID: PMC7654153 DOI: 10.1186/s13018-020-02045-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Objective We evaluated the association between monocyte chemotactic protein-1 (MCP-1) and osteoarthritis. Methods We searched PubMed, Cochrane Library, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), VIP (Chinese database), and Wan Fang (Chinese database) (before May 10, 2020), with no language limitations. STATA version 12.0 and Revman version 5.3 were used for data analysis. The standard mean difference (SMD) and corresponding 95% confidence intervals (95% CIs) were calculated. Nine clinical studies, including 376 patients with osteoarthritis and 306 healthy controls, were evaluated. Results The combined SMDs of MCP-1 expression levels suggested that MCP-1 expression was significantly higher in patients with osteoarthritis than healthy controls (SMD = 1.97, 95% CI = 0.66–3.28, p = 0.003). Moreover, subgroup analysis implied that osteoarthritis patients from both Asians and mixed populations had higher MCP-1 expression levels than controls, whereas Caucasians did not (p > 0.05). Serum MCP-1 levels (SMD = 2.83, 95% CI = 1.07–4.6, p < 0.00001) were significantly higher in patients with osteoarthritis than in controls; however, this difference was not significant in synovial fluid and cartilage tissue. Subgroup analysis for ethnicity showed that MCP-1 levels were significantly higher in Chinese, Dutch, and Brazilian patients with osteoarthritis than in control groups, although significant differences were not observed for American and Italian subgroups. Conclusions Our meta-analysis demonstrated that MCP-1 expression levels were higher in patients with osteoarthritis than in healthy controls and that MCP-1 may play important roles in the progression of osteoarthritis. Serum MCP-1 levels may serve as a potential biomarker for the diagnosis of osteoarthritis.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yanchao Zhang
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, People's Republic of China
| | - Xiaoxiao Peng
- Daxing Teaching Hospital of Capital Medical University, Beijing, 102600, People's Republic of China
| | - Jianjun Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
21
|
Zimmerman KA, Hopp K, Mrug M. Role of chemokines, innate and adaptive immunity. Cell Signal 2020; 73:109647. [PMID: 32325183 DOI: 10.1016/j.cellsig.2020.109647] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Polycystic Kidney Disease (PKD) triggers a robust immune system response including changes in both innate and adaptive immunity. These changes involve immune cells (e.g., macrophages and T cells) as well as cytokines and chemokines (e.g., MCP-1) that regulate the production, differentiation, homing, and various functions of these cells. This review is focused on the role of the immune system and its associated factors in the pathogenesis of PKDs as evidenced by data from cell-based systems, animal models, and PKD patients. It also highlights relevant pre-clinical and clinical studies that point to specific immune system components as promising candidates for the development of prognostic biomarkers and therapeutic strategies to improve PKD outcomes.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, Polycystic Kidney Disease Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michal Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
22
|
Zimmerman KA, Huang J, He L, Revell DZ, Li Z, Hsu JS, Fitzgibbon WR, Hazard ES, Hardiman G, Mrug M, Bell PD, Yoder BK, Saigusa T. Interferon Regulatory Factor-5 in Resident Macrophage Promotes Polycystic Kidney Disease. ACTA ACUST UNITED AC 2020; 1:179-190. [PMID: 33490963 DOI: 10.34067/kid.0001052019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Autosomal dominant polycystic kidney disease is caused by genetic mutations in PKD1 or PKD2. Macrophages and their associated inflammatory cytokines promote cyst progression; however, transcription factors within macrophages that control cytokine production and cystic disease are unknown. Methods In these studies, we used conditional Pkd1 mice to test the hypothesis that macrophage-localized interferon regulatory factor-5 (IRF5), a transcription factor associated with production of cyst-promoting cytokines (TNFα, IL-6), is required for accelerated cyst progression in a unilateral nephrectomy (1K) model. Analyses of quantitative real-time PCR (qRT-PCR) and flow-cytometry data 3 weeks post nephrectomy, a time point before the onset of severe cystogenesis, indicate an accumulation of inflammatory infiltrating and resident macrophages in 1K Pkd1 mice compared with controls. qRT-PCR data from FACS cells at this time demonstrate that macrophages from 1K Pkd1 mice have increased expression of Irf5 compared with controls. To determine the importance of macrophage-localized Irf5 in cyst progression, we injected scrambled or IRF5 antisense oligonucleotide (ASO) in 1K Pkd1 mice and analyzed the effect on macrophage numbers, cytokine production, and renal cystogenesis 6 weeks post nephrectomy. Results Analyses of qRT-PCR and IRF5 ASO treatment significantly reduced macrophage numbers, Irf5 expression in resident-but not infiltrating-macrophages, and the severity of cystic disease. In addition, IRF5 ASO treatment in 1K Pkd1 mice reduced Il6 expression in resident macrophages, which was correlated with reduced STAT3 phosphorylation and downstream p-STAT3 target gene expression. Conclusions These data suggest that Irf5 promotes inflammatory cytokine production in resident macrophages resulting in accelerated cystogenesis.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jifeng Huang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lan He
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dustin Z Revell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jung-Shan Hsu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - E Starr Hazard
- Academic Affairs Faculty and Computational Biology Resource Center, Medical University of South Carolina, Charleston, South Carolina
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Michal Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|