1
|
Lichtenberger FB, Xu M, Erdoğan C, Fei L, Mathar I, Dietz L, Sandner P, Seeliger E, Boral S, Bonk JS, Sieckmann T, Persson PB, Patzak A, Cantow K, Khedkar PH. Activating soluble guanylyl cyclase attenuates ischemic kidney damage. Kidney Int 2025; 107:476-491. [PMID: 39571904 DOI: 10.1016/j.kint.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/22/2024]
Abstract
Can direct activation of soluble guanylyl cyclase (sGC) provide kidney-protection? To answer this, we tested the kidney-protective effects of a sGC activator, which functions independent of nitric oxide and with oxidized sGC, in an acute kidney injury (AKI) model with transition to chronic kidney disease (CKD). We hypothesize this treatment would provide protection of kidney microvasculature, kidney blood flow, fibrosis, inflammation, and kidney damage. Assessment took place on days three, seven, 14 (acute phase) and 84 (late phase) after unilateral ischemia reperfusion injury (IRI) in rats. Post-ischemia, animals received vehicle or the sGC activator BAY 60-2770 orally. In the vehicle group, medullary microvessels narrowed and cortical microvessels showed hypertrophic inward remodeling. The mRNA levels of acute injury markers (Kim-1, Ngal) were high in the acute phase but declined in the late phase. Kidney weight decreased after the acute phase, while fibrosis started after day seven. Abundance of fibrotic (Col1a, Tgf-β1) and inflammatory markers (Il-6, Tnf-α) remained elevated throughout, along with mononuclear cell invasion, with elevated plasma cystatin C and creatinine. BAY 60-2770 treatment increased tissue cGMP concentration, dilated kidney microvasculature, and enhanced blood flow and oxygenation. This intervention significantly attenuated kidney weight loss, cell damage, fibrosis, and inflammation. Plasma cystatin C and creatinine improved significantly with sGC activator treatment indicating functional recovery, though possible GFR increase above kidney reserve in uninjured kidneys could not be excluded. In cultured human tubular cells (HK-2 cells) exposed to hypoxia or profibrotic TGF-β, BAY 60-2770 improved abundance patterns of pathologically relevant genes. Overall, our results show that sGC activation may provide effective kidney-protection and attenuate the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Falk-Bach Lichtenberger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Minze Xu
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Cem Erdoğan
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lingyan Fei
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ilka Mathar
- Cardiovascular Research, Bayer AG Pharmaceuticals, Wuppertal, Germany
| | - Lisa Dietz
- Cardiovascular Research, Bayer AG Pharmaceuticals, Wuppertal, Germany
| | - Peter Sandner
- Cardiovascular Research, Bayer AG Pharmaceuticals, Wuppertal, Germany
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sengül Boral
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Sophie Bonk
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Sieckmann
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pontus B Persson
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kathleen Cantow
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pratik H Khedkar
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Rutkowski N, Görlitz F, Wiesner E, Binz-Lotter J, Feil S, Feil R, Benzing T, Hackl MJ. Real-time imaging of cGMP signaling shows pronounced differences between glomerular endothelial cells and podocytes. Sci Rep 2024; 14:26099. [PMID: 39478086 PMCID: PMC11525973 DOI: 10.1038/s41598-024-76768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Recent clinical trials of drugs enhancing cyclic guanosine monophosphate (cGMP) signaling for cardiovascular diseases have renewed interest in cGMP biology within the kidney. However, the role of cGMP signaling in glomerular endothelial cells (GECs) and podocytes remains largely unexplored. Using acute kidney slices from mice expressing the FRET-based cGMP biosensor cGi500 in endothelial cells or podocytes enabled real-time visualization of cGMP. Stimulation with atrial natriuretic peptide (ANP) or SNAP (NO donor) and various phosphodiesterase (PDE) inhibitors elevated intracellular cGMP in both cell types. GECs showed a transient cGMP response upon particulate or soluble guanylyl cyclase activation, while the cGMP response in podocytes reached a plateau following ANP administration. Co-stimulation (ANP + SNAP) led to an additive response in GECs. The administration of PDE inhibitors revealed a broader basal PDE activity in GECs dominated by PDE2a. In podocytes, basal PDE activity was mainly restricted to PDE3 and PDE5 activity. Our data demonstrate the existence of both guanylyl cyclase pathways in GECs and podocytes with cell-specific differences in cGMP synthesis and degradation, potentially suggesting new therapeutic options for kidney diseases.
Collapse
Affiliation(s)
- Nelli Rutkowski
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frederik Görlitz
- Bio- and Nanophotonics, Department of Microsystem Engineering, University of Freiburg, Freiburg, Germany
| | - Eva Wiesner
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Thomas Benzing
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Nephrolab Cologne, CECAD Research Center, University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
| |
Collapse
|
3
|
Feng Y, Liu J, Gong L, Han Z, Zhang Y, Li R, Liao H. Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway. Chin J Nat Med 2024; 22:619-631. [PMID: 39059831 DOI: 10.1016/s1875-5364(24)60571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 07/28/2024]
Abstract
Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg-1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Yan Zhang
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Hui Liao
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China.
| |
Collapse
|
4
|
Rademaker MT, Scott NJA, Charles CJ, Richards AM. Combined Inhibition of Phosphodiesterase-5 and -9 in Experimental Heart Failure. JACC. HEART FAILURE 2024; 12:100-113. [PMID: 37921801 DOI: 10.1016/j.jchf.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Intracellular second messenger cyclic guanosine monophosphate (cGMP) mediates bioactivity of the natriuretic peptides and nitric oxide, and is key to circulatory homeostasis and protection against cardiovascular disease. Inhibition of cGMP-degrading phosphodiesterases (PDEs) PDE5 and PDE9 are emerging as pharmacological targets in heart failure (HF). OBJECTIVES The present study investigated dual enhancement of cGMP in experimental HF by combining inhibition of PDE-5 (P5-I) and PDE-9 (P9-I). METHODS Eight sheep with pacing-induced HF received on separate days intravenous P5-I (sildenafil), P9-I (PF-04749982), P5-I+P9-I, and vehicle control, in counterbalanced order. RESULTS Compared with control, separate P5-I and P9-I significantly increased circulating cGMP concentrations in association with reductions in mean arterial pressure (MAP), left atrial pressure (LAP), and pulmonary arterial pressure (PAP), with effects of P5-I on cGMP, MAP, and PAP greater than those of P9-I. Only P5-I decreased pulmonary vascular resistance. Combination P5-I+P9-I further reduced MAP, LAP, and PAP relative to inhibition of either phosphodiesterase alone. P9-I and, especially, P5-I elevated urinary cGMP levels relative to control. However, whereas inhibition of either enzyme increased urine creatinine excretion and clearance, only P9-I induced a significant diuresis and natriuresis. Combined P5-I+P9-I further elevated urine cGMP with concomitant increases in urine volume, sodium and creatinine excretion, and clearance similar to P9-I alone, despite the greater MAP reductions induced by combination treatment. CONCLUSIONS Combined P5-I+P9-I amalgamated the superior renal effects of P9-I and pulmonary effects of P5-1, while concurrently further reducing cardiac preload and afterload. These findings support combination P5-I+P9-I as a therapeutic strategy in HF.
Collapse
Affiliation(s)
- Miriam T Rademaker
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand.
| | - Nicola J A Scott
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | - Christopher J Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | - A Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand; Cardiovascular Research Institute, National University of Singapore, Singapore
| |
Collapse
|
5
|
Edmonston D, Sparks M, Rajagopal S, Wolf M. Sildenafil and Kidney Function in Heart Failure with Preserved Ejection Fraction. KIDNEY360 2023; 4:631-640. [PMID: 36978225 PMCID: PMC10278830 DOI: 10.34067/kid.0000000000000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 03/30/2023]
Abstract
Key Points Sildenafil induced an acute effect on eGFR without change in the overall eGFR slope after 24 weeks in a heart failure with preserved ejection fraction (HFpEF) cohort. N -terminal pro–brain natriuretic peptide levels and baseline diuretic use were most strongly associated with eGFR decline in this HFpEF cohort. Long-term studies are required to determine sildenafil's influence on kidney function and outcomes in HFpEF. Background CKD worsens the prognosis for people with heart failure with preserved ejection fraction (HFpEF). In the Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic HFpEF (RELAX) trial, sildenafil decreased eGFR compared with placebo despite favorable kidney effects in preclinical models. Since acute eGFR decline precedes long-term kidney benefits for select medications, we assessed the influence of sildenafil on acute and chronic eGFR slopes. Methods The RELAX trial randomized 216 participants to placebo or sildenafil and assessed 24-week changes in cardiopulmonary exercise testing, cardiovascular imaging, and laboratory data. We applied linear mixed modeling to calculate the total, acute (0–12 weeks), and chronic (3–24 weeks) eGFR slopes by treatment. Using regression modeling, we assessed respective associations between eGFR slope and baseline data and clinical end points. We repeated the analyses using a binary outcome on the basis of a substantial (≥20%) decline in eGFR. Results The mean baseline eGFR was 60.8 ml/min per 1.73 m2, and the mean eGFR slope during follow-up was −3.21 ml/min per 1.73 m2 per year. Sildenafil did not alter total eGFR slope compared with placebo (difference +0.47 ml/min per 1.73 m2 per year, 95% confidence interval [CI], −6.63 to 7.57 ml/min per 1.73 m2 per year). Sildenafil users tended to experience a more negative acute eGFR slope (difference −3.15 ml/min per 1.73 m2 per year) and more positive chronic slope (+2.06 ml/min per 1.73 m2 per year) compared with placebo, but neither difference reached statistical significance. Baseline N -terminal pro–B-type natriuretic peptide and loop diuretic use were associated with worse eGFR trajectory regardless of treatment. Substantial eGFR decline was associated with increase in endothelin-1 and a greater risk of hospitalization or death (HR, 2.34, 95% CI, 1.21 to 4.53, P =0.01). Conclusions Sildenafil induced an acute effect on eGFR without change in the overall eGFR slope after 24 weeks in an HFpEF cohort, suggesting lack of long-term risk related to early reduction in eGFR after initiating treatment. Long-term studies are needed to determine the effect of sildenafil on kidney function in HFpEF.
Collapse
Affiliation(s)
- Daniel Edmonston
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Matthew Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Renal Section, Durham VA Health Care System, Durham, North Carolina
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
6
|
Xu M, Lichtenberger FB, Erdoǧan C, Lai E, Persson PB, Patzak A, Khedkar PH. Nitric Oxide Signalling in Descending Vasa Recta after Hypoxia/Re-Oxygenation. Int J Mol Sci 2022; 23:7016. [PMID: 35806018 PMCID: PMC9266395 DOI: 10.3390/ijms23137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Reduced renal medullary oxygen supply is a key factor in the pathogenesis of acute kidney injury (AKI). As the medulla exclusively receives blood through descending vasa recta (DVR), dilating these microvessels after AKI may help in renoprotection by restoring renal medullary blood flow. We stimulated the NO-sGC-cGMP signalling pathway in DVR at three different levels before and after hypoxia/re-oxygenation (H/R). Rat DVR were isolated and perfused under isobaric conditions. The phosphodiesterase 5 (PDE5) inhibitor sildenafil (10-6 mol/L) impaired cGMP degradation and dilated DVR pre-constricted with angiotensin II (Ang II, 10-6 mol/L). Dilations by the soluble guanylyl cyclase (sGC) activator BAY 60-2770 as well as the nitric oxide donor sodium nitroprusside (SNP, 10-3 mol/L) were equally effective. Hypoxia (0.1% O2) augmented DVR constriction by Ang II, thus potentially aggravating tissue hypoxia. H/R left DVR unresponsive to sildenafil, yet sGC activation by BAY 60-2770 effectively dilated DVR. Dilation to SNP under H/R is delayed. In conclusion, H/R renders PDE5 inhibition ineffective in dilating the crucial vessels supplying the area at risk for hypoxic damage. Stimulating sGC appears to be the most effective in restoring renal medullary blood flow after H/R and may prove to be the best target for maintaining oxygenation to this vulnerable area of the kidney.
Collapse
Affiliation(s)
- Minze Xu
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Falk-Bach Lichtenberger
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Cem Erdoǧan
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Enyin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Pontus B. Persson
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| | - Pratik H. Khedkar
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (P.H.K.)
| |
Collapse
|
7
|
Zhong C, Xu M, Boral S, Summer H, Lichtenberger FB, Erdoğan C, Gollasch M, Golz S, Persson PB, Schleifenbaum J, Patzak A, Khedkar PH. Age Impairs Soluble Guanylyl Cyclase Function in Mouse Mesenteric Arteries. Int J Mol Sci 2021; 22:ijms222111412. [PMID: 34768842 PMCID: PMC8584026 DOI: 10.3390/ijms222111412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Endothelial dysfunction (ED) comes with age, even without overt vessel damage such as that which occurs in atherosclerosis and diabetic vasculopathy. We hypothesized that aging would affect the downstream signalling of the endothelial nitric oxide (NO) system in the vascular smooth muscle (VSM). With this in mind, resistance mesenteric arteries were isolated from 13-week (juvenile) and 40-week-old (aged) mice and tested under isometric conditions using wire myography. Acetylcholine (ACh)-induced relaxation was reduced in aged as compared to juvenile vessels. Pretreatment with L-NAME, which inhibits nitrix oxide synthases (NOS), decreased ACh-mediated vasorelaxation, whereby differences in vasorelaxation between groups disappeared. Endothelium-independent vasorelaxation by the NO donor sodium nitroprusside (SNP) was similar in both groups; however, SNP bolus application (10−6 mol L−1) as well as soluble guanylyl cyclase (sGC) activation by runcaciguat (10−6 mol L−1) caused faster responses in juvenile vessels. This was accompanied by higher cGMP concentrations and a stronger response to the PDE5 inhibitor sildenafil in juvenile vessels. Mesenteric arteries and aortas did not reveal apparent histological differences between groups (van Gieson staining). The mRNA expression of the α1 and α2 subunits of sGC was lower in aged animals, as was PDE5 mRNA expression. In conclusion, vasorelaxation is compromised at an early age in mice even in the absence of histopathological alterations. Vascular smooth muscle sGC is a key element in aged vessel dysfunction.
Collapse
Affiliation(s)
- Cheng Zhong
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Minze Xu
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Sengül Boral
- Institute of Pathology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Holger Summer
- Bayer AG, Research & Development, 42113 Wuppertal, Germany; (H.S.); (S.G.)
| | - Falk-Bach Lichtenberger
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Cem Erdoğan
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Department of Internal and Geriatric Medicine, University of Greifswald, Geriatric Medicine, 17475 Greifswald, Germany
| | - Stefan Golz
- Bayer AG, Research & Development, 42113 Wuppertal, Germany; (H.S.); (S.G.)
| | - Pontus B. Persson
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Johanna Schleifenbaum
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
- Correspondence:
| | - Pratik H. Khedkar
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| |
Collapse
|
8
|
Dąbkowski K, Kreft E, Sałaga-Zaleska K, Chyła G, Kuchta A, Jankowski M. Redox regulation of hemodynamics response to diadenosine tetraphosphate an agonist of P2 receptors and renal function in diet-induced hypercholesterolemic rats. Physiol Rep 2021; 9:e14888. [PMID: 34110719 PMCID: PMC8191177 DOI: 10.14814/phy2.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022] Open
Abstract
Hypercholesterolemia and oxidative stress may lead to disturbances in the renal microvasculature in response to vasoactive agents, including P2 receptors (P2R) agonists. We investigated the renal microvascular response to diadenosine tetraphosphate (Ap4A), an agonist of P2R, in diet‐induced hypercholesteremic rats over 28 days, supplemented in the last 10 days with tempol (2 mM) or DL‐buthionine‐(S,R)‐sulfoximine (BSO, 20 mM) in the drinking water. Using laser Doppler flowmetry, renal blood perfusion in the cortex and medulla (CBP, MBP) was measured during the infusion of Ap4A. This induced a biphasic response in the CBP: a phase of rapid decrease was followed by one of rapid increase extended for 30 min in both the normocholesterolemic and hypercholesterolemic rats. The phase of decreased CBP was not affected by tempol or BSO in either group. Early and extended increases in CBP were prevented by tempol in the hypercholesterolemia rats, while, in the normocholesterolemic rats, only the extended increase in CBP was affected by tempol; BSO prevented extended increase in CBP in normocholesterolemic rats. MBP response is not affected by hypercholesterolemia. The hypercholesterolemic rats were characterized by increased urinary albumin and 8‐isoPGF2α excretion. Moreover, BSO increased the urinary excretion of nephrin in the hypercholesterolemic rats but, similar to tempol, did not affect the excretion of albumin in their urine. The results suggest the important role of redox balance in the extracellular nucleotide regulation of the renal vasculature and glomerular injury in hypercholesterolemia.
Collapse
Affiliation(s)
- Kamil Dąbkowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewelina Kreft
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Gabriela Chyła
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Affiliation(s)
- Falk Bach Lichtenberger
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Vegetative Physiology Berlin Germany
| | - Andreas Patzak
- Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Vegetative Physiology Berlin Germany
| |
Collapse
|