1
|
Wang W, Yu Y, Li X, Chen J, Zhang L, Wen J. Significance of Arterial Spin Labeling for Reducing Biopsies in Patients With Kidney Allograft Dysfunction. J Magn Reson Imaging 2024; 59:1777-1784. [PMID: 37515309 DOI: 10.1002/jmri.28926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Although biopsy is often entailed for managing patients with kidney allograft dysfunction, it is associated with potential complications of severe hemorrhage. Arterial spin labeling (ASL) is a non-invasive technique that assesses tissue perfusion. PURPOSE To assess the utility of ASL for the discrimination of patients with post-transplant allograft dysfunction who do not need biopsy from those who need. STUDY TYPE Prospective. SUBJECTS Forty-six patients (34 males/12 females, aged 38.8 ± 9.5 years) with kidney allograft dysfunction, including 31 in which biopsy directly lead to changes in management (NECESSARY group) and 15 in which clinical management did not alter after biopsy (UNNECESSARY group). FIELD STRENGTH/SEQUENCE 3.0 T and 3D fast-spin echo sequence. ASSESSMENT All patients underwent both ASL scan and biopsies. The serum creatinine, proteinuria, pathologic results, and cortical ASL readings were obtained and compared between the two groups. STATISTICAL ANALYSES Chi-square test, independent student t-test, Mann-Whitney U test, receiver-operating characteristic curve. A two-tailed P < 0.05 denoted statistical significance. RESULTS The NECESSARY group presented with significantly elevated serum creatinine as compared with the UNNECESSARY group (1.87 ± 0.56 mg/dL vs. 1.31 ± 0.37 mg/dL). The acute composite score was significantly higher in the NECESSARY group than that in the UNNECESSARY group (7 [4-8] vs. 1 [0-2]). Cortical ASL in the NECESSARY group was significantly decreased as compared with the UNNECESSARY group (108.06 [69.96-134.92] mL/min/100 g vs. 153.48 [113.19-160.37] mL/min/100 g). Serum creatinine differentiated UNNCESSARY group from the NECESSARY group with an area under the curve (AUC) and specificity of 0.79 and 54.84%, respectively. By comparison, the cortical ASL yielded an AUC of 0.75 and a specificity of 70.97%. Notably, the specificity was increased to 90.30% by combined use of serum creatinine and cortical ASL. DATA CONCLUSION The combined use of ASL and serum creatinine yielded a high specificity for selecting patients who may not need allograft biopsy. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Wei Wang
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yuanmeng Yu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern University, Nanjing, China
- Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xue Li
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinsong Chen
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiqiu Wen
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Fu J, Lin Z, Zhang B, Song L, Qin N, Qiu J, Yang M, Zou Y. Magnetic Resonance Imaging in Atherosclerotic Renal Artery Stenosis: The Update and Future Directions from Interventional Perspective. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:23-31. [PMID: 38322626 PMCID: PMC10843188 DOI: 10.1159/000534499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/23/2023] [Indexed: 02/08/2024]
Abstract
Background Atherosclerotic renal artery stenosis (ARAS) is a condition where the renal arteries become narrowed due to atherosclerosis, leading to reduced blood flow to the kidneys and various renal complications. The effectiveness of interventional treatments, such as renal artery angioplasty and stenting, remains debated, making patient selection for these procedures challenging. Summary This review focuses on the diagnosis and management of ARAS, with a particular emphasis on the potential role of functional magnetic resonance imaging (MRI) in evaluating renal function and mechanisms. By summarizing current diagnostic approaches and outcomes of interventional treatments, the review highlights the importance of informed clinical decision-making in ARAS management. Functional MRI emerges as a promising noninvasive tool to assess renal function, aiding in patient stratification and treatment planning. Key Messages The efficacy of interventional treatments for ARAS requires further investigation and careful patient selection. Functional MRI holds promise as a noninvasive means to assess renal function and mechanisms, potentially guiding more effective clinical decisions in ARAS management. Advancing research in diagnostic methods, particularly functional MRI, can enhance our understanding and improve the treatment outcomes for ARAS patients.
Collapse
Affiliation(s)
- Jia Fu
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Zhiyong Lin
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Bihui Zhang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Li Song
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Naishan Qin
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jianxing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Min Yang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Madhvapathy SR, Wang JJ, Wang H, Patel M, Chang A, Zheng X, Huang Y, Zhang ZJ, Gallon L, Rogers JA. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 2023; 381:1105-1112. [PMID: 37676965 DOI: 10.1126/science.adh7726] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/19/2023] [Indexed: 09/09/2023]
Abstract
Early-stage organ transplant rejection can be difficult to detect. Percutaneous biopsies occur infrequently and are risky, and measuring biomarker levels in blood can lead to false-negative and -positive outcomes. We developed an implantable bioelectronic system capable of continuous, real-time, long-term monitoring of the local temperature and thermal conductivity of a kidney for detecting inflammatory processes associated with graft rejection, as demonstrated in rat models. The system detects ultradian rhythms, disruption of the circadian cycle, and/or a rise in kidney temperature. These provide warning signs of acute kidney transplant rejection that precede changes in blood serum creatinine/urea nitrogen by 2 to 3 weeks and approximately 3 days for cases of discontinued and absent administration of immunosuppressive therapy, respectively.
Collapse
Affiliation(s)
- Surabhi R Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA 60208
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA 60208
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA 60611
| | - Heling Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA 60208
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA 60208
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100085 China
| | - Manish Patel
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA 60208
- Department of Intervention Radiology, University of Illinois at Chicago, Chicago, IL, USA 60612
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL USA 60637
| | - Xin Zheng
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA 60611
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA 60208
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA 60208
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA 60611
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA 60611
| | - Lorenzo Gallon
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA 60611
- Department of Nephrology, Northwestern University, Chicago, IL, USA 60611
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA 60208
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA 60208
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA 60208
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA 60611
| |
Collapse
|
4
|
Chuang KH, Kober F, Ku MC. Quantitative Analysis of Renal Perfusion by Arterial Spin Labeling. Methods Mol Biol 2021; 2216:655-666. [PMID: 33476029 PMCID: PMC9703271 DOI: 10.1007/978-1-0716-0978-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The signal intensity differences measured by an arterial-spin-labelling (ASL) magnetic resonance imaging (MRI) experiment are proportional to the local perfusion, which can be quantified with kinetic modeling. Here we present a step-by-step tutorial for the data post-processing needed to calculate an ASL perfusion map. The process of developing an analysis software is described with the essential program code, which involves nonlinear fitting a tracer kinetic model to the ASL data. Key parameters for the quantification are the arterial transit time (ATT), which is the time the labeled blood takes to flow from the labeling area to the tissue, and the tissue T1. As ATT varies with vasculature, physiology, anesthesia and pathology, it is recommended to measure it using multiple delay times. The tutorial explains how to analyze ASL data with multiple delay times and a T1 map for quantification.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Frank Kober
- Aix-Marseille Université, CNRS UMR7339, Faculté de Médecine, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Marseille, France.
| | - Min-Chi Ku
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
5
|
Bueters R, Bael A, Gasthuys E, Chen C, Schreuder MF, Frazier KS. Ontogeny and Cross-species Comparison of Pathways Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Neonates (Review): Kidney. Drug Metab Dispos 2020; 48:353-367. [PMID: 32114509 DOI: 10.1124/dmd.119.089755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/04/2020] [Indexed: 02/13/2025] Open
Abstract
The kidneys play an important role in many processes, including urine formation, water conservation, acid-base equilibrium, and elimination of waste. The anatomic and functional development of the kidney has different maturation time points in humans versus animals, with critical differences between species in maturation before and after birth. Absorption, distribution, metabolism, and excretion (ADME) of drugs vary depending on age and maturation, which will lead to differences in toxicity and efficacy. When neonate/juvenile laboratory animal studies are designed, a thorough knowledge of the differences in kidney development between newborns/children and laboratory animals is essential. The human and laboratory animal data must be combined to obtain a more complete picture of the development in the kidneys around the neonatal period and the complexity of ADME in newborns and children. This review examines the ontogeny and cross-species differences in ADME processes in the developing kidney in preterm and term laboratory animals and children. It provides an overview of insights into ADME functionality in the kidney by identifying what is currently known and which gaps still exist. Currently important renal function properties such as glomerular filtration rate, renal blood flow, and ability to concentrate are generally well known, while detailed knowledge about transporter and metabolism maturation is growing but is still lacking. Preclinical data in those properties is limited to rodents and generally covers only the expression levels of transporter or enzyme-encoding genes. More knowledge on a functional level is needed to predict the kinetics and toxicity in neonate/juvenile toxicity and efficacy studies. SIGNIFICANCE STATEMENT: This review provides insight in cross-species developmental differences of absorption, distribution, metabolism, and excretion properties in the kidney, which should be considered in neonate/juvenile study interpretation, hypotheses generation, and experimental design.
Collapse
Affiliation(s)
- Ruud Bueters
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - An Bael
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Elke Gasthuys
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Connie Chen
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Michiel F Schreuder
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| | - Kendall S Frazier
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Division of Discovery, Product Development & Supply, Department of Nonclinical Safety, Beerse, Belgium (R.B.); ZNA Queen Paola Children's Hospital, Department of Pediatric Nephrology, Antwerp, Belgium (A.B.); Department of Paediatrics, Faculty of Medicine, Ghent University, Gent, Belgium (E.G.); Health and Environmental Sciences Institute, Washington, DC (C.C.); Radboudumc Amalia Children's Hospital, Department of Pediatric Nephrology, Nijmegen, The Netherlands (M.F.S.); and GlaxoSmithKline, Collegeville, Pennsylvania (K.S.F.)
| |
Collapse
|
6
|
Romero CA, Carretero OA. Tubule-vascular feedback in renal autoregulation. Am J Physiol Renal Physiol 2019; 316:F1218-F1226. [PMID: 30838873 DOI: 10.1152/ajprenal.00381.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Afferent arteriole (Af-Art) diameter regulates pressure and flow into the glomerulus, which are the main determinants of the glomerular filtration rate. Thus, Af-Art resistance is crucial for Na+ filtration. Af-Arts play a role as integrative centers, where systemic and local systems interact to determine the final degree of resistance. The tubule of a single nephron contacts an Af-Art of the same nephron at two locations: in the transition of the thick ascending limb to the distal tubule (macula densa) and again in the connecting tubule. These two sites are the anatomic basis of two intrinsic feedback mechanisms: tubule-glomerular feedback and connecting tubule-glomerular feedback. The cross communications between the tubules and Af-Arts integrate tubular Na+ and water processing with the hemodynamic conditions of the kidneys. Tubule-glomerular feedback provides negative feedback that tends to avoid salt loss, and connecting tubule-glomerular feedback provides positive feedback that favors salt excretion by modulating tubule-glomerular feedback (resetting it) and increasing glomerular filtration rate. These feedback mechanisms are also exposed to systemic modulators (hormones and the nervous system); however, they can work in isolated kidneys or nephrons. The exaggerated activation or absence of any of these mechanisms may lead to disequilibrium in salt and water homeostasis, especially in extreme conditions (e.g., high-salt diet/low-salt diet) and may be part of the pathogenesis of some diseases. In this review, we focus on molecular signaling, feedback interactions, and the physiological roles of these two feedback mechanisms.
Collapse
Affiliation(s)
- Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|