1
|
Xu C, Nie X, Xu R, Zhou L, Wang D. Protective effects of Apelin-13 on nicotine-induced H9c2 cardiomyocyte apoptosis and oxidative stress. Tob Induc Dis 2025; 23:TID-23-33. [PMID: 40104400 PMCID: PMC11915093 DOI: 10.18332/tid/201400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
INTRODUCTION We aimed to explore the role of Apelin-13 in resisting oxidation, inflammation as well as apoptosis and its underlying mechanisms of action using a model of nicotine-induced H9c2 cardiomyocyte injury. METHODS H9c2 cardiomyocytes were randomly divided into control, nicotine, nicotine + Apelin-13, and Apelin-13 groups. Cell counting kit-8 assay was conducted to determine the cell viability. Interleukin (IL)-6, superoxide dismutase, tumor necrosis factor-alpha (TNF-α), glutathione peroxidase (GSH-Px), IL-β, catalase (CAT), IL-8, lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined. A 2',7'-dichlorodihydrofluorescein diacetate assay was conducted to measure the intracellular reactive oxygen species (ROS) level. The morphology of apoptotic cardiomyocytes was observed by 4',6-diamidino-2-phenylindole staining. Western blotting was employed to measure the protein expressions of apoptotic factors B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X (Bax). Apoptosis was quantified using Annexin V/propidium iodide staining. RESULTS Exposure of H9c2 cardiomyocytes to 10 μM nicotine significantly reduced cell viability and increased LDH release, oxidative stress (elevated MDA and ROS levels with decreased superoxide dismutase, GSH-Px, and CAT activities), pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, IL-8), and apoptotic markers (increased Bax with decreased Bcl-2 expression, along with nuclear condensation) (p<0.05). In contrast, treatment with 2 μM Apelin-13 significantly alleviated these deleterious effects, enhancing cell viability, restoring antioxidant enzyme activities, reducing oxidative and inflammatory responses, and inhibiting apoptosis (p<0.05). CONCLUSIONS Nicotine induction increases the oxidative stress and apoptotic capacity of H9c2 cardiomyocytes, but Apelin-13 protects H9c2 cardiomyocytes against nicotine-induced apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Can Xu
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xinyu Nie
- Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ru Xu
- Nanjing University Medical School, Nanjing, People's Republic of China
| | - Luyang Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Dongjin Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Wang X, Su S. The hidden impact: the rate of nicotine metabolism and kidney health. Front Endocrinol (Lausanne) 2024; 15:1424068. [PMID: 39355620 PMCID: PMC11442274 DOI: 10.3389/fendo.2024.1424068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Objectives The effects of nicotine metabolism on the kidneys of healthy individuals have not been determined. The nicotine metabolite ratio (NMR) indicates the rate of nicotine metabolism and is linked to smoking behaviors and responses to tobacco treatments. We conducted this study in order to investigated the relationship between nicotine metabolite ratio (NMR) and kidney function. Methods An analysis of cross-sectional data of adults was conducted using a population survey dataset (National Health and Nutrition Examination Survey Data 2013/2018 of the United States). A weighted multivariate regression analysis was conducted to estimate the correlation between NMR and kidney function. Furthermore, we apply fitting smooth curves to make the relationship between NMR and estimated glomerular filtration rate (eGFR) more visualized. Results The research included a total of 16153 participants. Weighted multivariate regression analyses adjusted for possible variables showed a negative relationship between NMR and estimated glomerular filtration rate (eGFR).The β (95%CI) of the regression equation between NMR and eGFR was -2.24 (-2.92, -1.55), the trend testing showed consistent results. NMR is positively correlated with urinary albumin creatinine ratio (uACR), but it is not statistically significant. A stratified analysis found a negative correlation between NMR and eGFR in all age, gender and diabetes subgroups, the results were not statistically significant among Mexican Americans and other races. Notably, each unit rise in NMR corresponded to a 4.54 ml/min·1.73m² lower eGFR in diabetic participants and a 6.04 ml/min·1.73m² lower eGFR in those aged 60 and above. Conclusions Our study shows that nicotine metabolite ratio is negatively associated with kidney function among most adults. It will be necessary to conduct more well-designed prospective clinical trials in order to determine the exact causal interactions between NMR and kidney function. Specific mechanisms also need to be further explored in basic experiments.
Collapse
Affiliation(s)
| | - Shanshan Su
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional
Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Üremiş MM, Gürel E, Aslan M, Taşlıdere E. Dexpanthenol protects against nicotine-induced kidney injury by reducing oxidative stress and apoptosis through activation of the AKT/Nrf2/HO-1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1105-1114. [PMID: 37606756 DOI: 10.1007/s00210-023-02671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Dexpanthenol (DEX), a subtype of vitamin B5, plays an important role in anabolic reactions, cellular energy and regeneration in the body. Nicotine has been shown to induce kidney damage through the mechanisms of oxidative stress and apoptosis. The purpose of this study was to investigate the potential protective effects of DEX against nicotine-induced kidney damage through modulation of the AKT/Nrf2/HO-1 signaling pathway. Male rats were intraperitoneally administered with 0.5 mg/kg/day nicotine and/or 500 mg/kg/day DEX for 8 weeks. Following administration, renal function tests were conducted on serum samples, and histopathological examinations and analysis of oxidative stress markers and antioxidant enzymes were performed on tissue samples. Protein levels of Akt, Nrf-2, HO-1, Bcl-xL, and Caspase-9 were also evaluated. Nicotine administration resulted in decreased protein levels of p-Akt, Nrf-2, HO-1, and Bcl-xL and increased Caspase-9 protein levels. In addition, nicotine administration caused an increase in MDA, TOS, and OSI levels and a decrease in GSH, GSH-Px, GST, CAT, SOD, and TAS levels. Additionally, BUN and Creatinine levels increased after nicotine administration. DEX administration positively regulated these parameters and brought them closer to control levels. Nicotine-induced kidney injury caused apoptosis and oxidative stress through Caspase-9 activation. DEX effectively prevented nicotine-induced kidney damage by increasing intracellular antioxidant levels and regulating apoptosis through Bcl-xL activation. These findings suggest that DEX has potential as a protective agent against nicotine-induced kidney damage.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Elif Gürel
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Meral Aslan
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Elif Taşlıdere
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
4
|
Habas E, Al Adab A, Arryes M, Alfitori G, Farfar K, Habas AM, Akbar RA, Rayani A, Habas E, Elzouki A. Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates. Cureus 2023; 15:e46737. [PMID: 38022248 PMCID: PMC10631488 DOI: 10.7759/cureus.46737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic kidney disease (CKD) is caused by hypoxia in the renal tissue, leading to inflammation and increased migration of pathogenic cells. Studies showed that leukocytes directly sense hypoxia and respond by initiating gene transcription, encoding the 2-integrin adhesion molecules. Moreover, other mechanisms participate in hypoxia, including anemia. CKD-associated anemia is common, which induces and worsens hypoxia, contributing to CKD progression. Anemia correction can slow CKD progression, but it should be cautiously approached. In this comprehensive review, the underlying pathophysiology mechanisms and the impact of renal tissue hypoxia and anemia in CKD onset and progression will be reviewed and discussed in detail. Searching for the latest updates in PubMed Central, Medline, PubMed database, Google Scholar, and Google search engines were conducted for original studies, including cross-sectional studies, cohort studies, clinical trials, and review articles using different keywords, phrases, and texts such as "CKD progression, anemia in CKD, CKD, anemia effect on CKD progression, anemia effect on CKD progression, and hypoxia and CKD progression". Kidney tissue hypoxia and anemia have an impact on CKD onset and progression. Hypoxia causes nephron cell death, enhancing fibrosis by increasing interstitium protein deposition, inflammatory cell activation, and apoptosis. Severe anemia correction improves life quality and may delay CKD progression. Detection and avoidance of the risk factors of hypoxia prevent recurrent acute kidney injury (AKI) and reduce the CKD rate. A better understanding of kidney hypoxia would prevent AKI and CKD and lead to new therapeutic strategies.
Collapse
Affiliation(s)
| | - Aisha Al Adab
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Mehdi Arryes
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | | | | | - Ala M Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | - Raza A Akbar
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Amnna Rayani
- Hemat-oncology Department, Pediatric Tripoli Hospital, Tripoli University, Tripoli, LBY
| | - Eshrak Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | | |
Collapse
|
5
|
Chen J, Xiao H, Xue R, Kumar V, Aslam R, Mehdi SF, Luo H, Malhotra A, Lan X, Singhal P. Nicotine exacerbates diabetic nephropathy through upregulation of Grem1 expression. Mol Med 2023; 29:92. [PMID: 37415117 DOI: 10.1186/s10020-023-00692-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinical reports indicate that smoking is a significant risk factor for chronic kidney disease, and the tobacco epidemic exacerbates kidney damage in patients with DN. However, the underlying molecular mechanisms remain unclear. METHOD In the present study, we used a diabetic mouse model to investigate the molecular mechanisms for nicotine-exacerbated DN. Twelve-week-old female mice were injected with streptozotocin (STZ) to establish a hyperglycemic diabetic model. After four months, the control and hyperglycemic diabetic mice were further divided into four groups (control, nicotine, diabetic mellitus, nicotine + diabetic mellitus) by intraperitoneal injection of nicotine or PBS. After two months, urine and blood were collected for kidney injury assay, and renal tissues were harvested for further molecular assays using RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry. In vitro studies, we used siRNA to suppress Grem1 expression in human podocytes. Then we treated them with nicotine and high glucose to compare podocyte injury. RESULT Nicotine administration alone did not cause apparent kidney injury, but it significantly increased hyperglycemia-induced albuminuria, BUN, plasma creatinine, and the kidney tissue mRNA expression of KIM-1 and NGAL. Results from RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry analysis revealed that, compared to hyperglycemia or nicotine alone, the combination of nicotine treatment and hyperglycemia significantly increased the expression of Grem1 and worsened DN. In vitro experiments, suppression of Grem1 expression attenuated nicotine-exacerbated podocyte injury. CONCLUSION Grem1 plays a vital role in nicotine-exacerbated DN. Grem1 may be a potential therapeutic target for chronic smokers with DN.
Collapse
Affiliation(s)
- Jianning Chen
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Haiting Xiao
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Rui Xue
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Vinod Kumar
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Rukhsana Aslam
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Syed Faizan Mehdi
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Huairong Luo
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Xiqian Lan
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Pravin Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
6
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Xu Q, Zhang T, Xia T, Jin B, Chen H, Yang X. Epidemiological Trends of Kidney Cancer Along with Attributable Risk Factors in China from 1990 to 2019 and Its Projections Until 2030: An Analysis of the Global Burden of Disease Study 2019. Clin Epidemiol 2023; 15:421-433. [PMID: 37013109 PMCID: PMC10066698 DOI: 10.2147/clep.s400646] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Background Understanding the past and future burden of kidney cancer in China over years provides essential references for optimizing the prevention and management strategies. Methods The data on incidence, mortality, disability-adjusted life-years (DALYs) and age-standardized rates of kidney cancer in China, 1990-2019, were collected from the database of Global Burden of Disease Study 2019. The estimated annual percentage change (EAPC) was calculated to depict the trends of kidney cancer burden, and Bayesian age-period-cohort analysis was used to predict the incidence and mortality in the next decade. Results Over the past 30 years, the number of new kidney cancer cases sharply increased from 11.07 thousand to 59.83 thousand, and the age-standardized incidence rate (ASIR) tripled from 1.16/100,000 to 3.21/100,000. The mortality and DALYs also presented an increasing pattern. Smoking and high body mass index were mainly risk factors for kidney cancer. We predicted that by 2030, the incident cases and deaths of kidney cancer would increase to 126.8 thousand and 41.8 thousand, respectively. Conclusion In the past 30 years, the kidney cancer burden gradually increased in China, and it will continue to rise in the next decade, which reveals more targeted intervention measures are necessary.
Collapse
Affiliation(s)
- Qianqian Xu
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, People’s Republic of China
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, 250012, People’s Republic of China
| | - Tingxiao Zhang
- Organ Transplant Department, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Tong Xia
- Organ Transplant Department, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Bin Jin
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, People’s Republic of China
- Department of Hepatobiliary Surgery, General Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
- Correspondence: Xiaorong Yang, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Lixia District, Jinan, 250012, People’s Republic of China, Tel +86 53182166951, Email
| |
Collapse
|
8
|
Scharf P, Rizzetto F, Xavier LF, Farsky SHP. Xenobiotics Delivered by Electronic Nicotine Delivery Systems: Potential Cellular and Molecular Mechanisms on the Pathogenesis of Chronic Kidney Disease. Int J Mol Sci 2022; 23:10293. [PMID: 36142207 PMCID: PMC9498982 DOI: 10.3390/ijms231810293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized as sustained damage to the renal parenchyma, leading to impaired renal functions and gradually progressing to end-stage renal disease (ESRD). Diabetes mellitus (DM) and arterial hypertension (AH) are underlying diseases of CKD. Genetic background, lifestyle, and xenobiotic exposures can favor CKD onset and trigger its underlying diseases. Cigarette smoking (CS) is a known modified risk factor for CKD. Compounds from tobacco combustion act through multi-mediated mechanisms that impair renal function. Electronic nicotine delivery systems (ENDS) consumption, such as e-cigarettes and heated tobacco devices, is growing worldwide. ENDS release mainly nicotine, humectants, and flavorings, which generate several byproducts when heated, including volatile organic compounds and ultrafine particles. The toxicity assessment of these products is emerging in human and experimental studies, but data are yet incipient to achieve truthful conclusions about their safety. To build up the knowledge about the effect of currently employed ENDS on the pathogenesis of CKD, cellular and molecular mechanisms of ENDS xenobiotic on DM, AH, and kidney functions were reviewed. Unraveling the toxic mechanisms of action and endpoints of ENDS exposures will contribute to the risk assessment and implementation of proper health and regulatory interventions.
Collapse
Affiliation(s)
| | | | | | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|
9
|
Abousaad S, Ahmed F, Abouzeid A, Ongeri EM. Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury. Physiol Rep 2022; 10:e15468. [PMID: 36117389 PMCID: PMC9483619 DOI: 10.14814/phy2.15468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023] Open
Abstract
Meprin metalloproteinases have been implicated in the pathophysiology of ischemia/reperfusion (IR)-induced kidney injury. Previous in vitro data showed that meprin β proteolytically processes interleukin-6 (IL-6) resulting in its inactivation. Recently, meprin-β was also shown to cleave the IL-6 receptor. The goal of this study was to determine how meprin β expression impacts IL-6 and downstream modulators of the JAK2-STAT3-mediated signaling pathway in IR-induced kidney injury. IR was induced in 12-week-old male wild-type (WT) and meprin β knockout (βKO) mice and kidneys obtained at 24 h post-IR. Real-time PCR, western blot, and immunostaining/microscopy approaches were used to quantify mRNA and protein levels respectively, and immunofluorescence counterstaining with proximal tubule (PT) markers to determine protein localization. The mRNA levels for IL-6, CASP3 and BCL-2 increased significantly in both genotypes. Interestingly, western blot data showed increases in protein levels for IL-6, CASP3, and BCL-2 in the βKO but not in WT kidneys. However, immunohistochemical data showed increases in IL-6, CASP3, and BCL-2 proteins in select kidney tubules in both genotypes, shown to be PTs by immunofluorescence counterstaining. IR-induced increases in p-STAT-3 and p-JAK-2 in βKO at a global level but immunoflourescence counterstaining demonstrated p-JAK2 and p-STAT3 increases in select PT for both genotypes. BCL-2 increased only in the renal corpuscle of WT kidneys, suggesting a role for meprins expressed in leukocytes. Immunohistochemical analysis confirmed higher levels of leukocyte infiltration in WT kidneys when compared to βKO kidneys. The present data demonstrate that meprin β modulates IR-induced kidney injury in part via IL-6/JAK2/STAT3-mediated signaling.
Collapse
Affiliation(s)
- Shaymaa Abousaad
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Faihaa Ahmed
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Ayman Abouzeid
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Elimelda Moige Ongeri
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
10
|
Jiang YJ, Cui S, Luo K, Ding J, Nan QY, Piao SG, Xuan MY, Zheng HL, Jin YJ, Jin JZ, Lee JP, Chung BH, Choi BS, Yang CW, Li C. Nicotine exacerbates tacrolimus-induced renal injury by programmed cell death. Korean J Intern Med 2021; 36:1437-1449. [PMID: 34666433 PMCID: PMC8588984 DOI: 10.3904/kjim.2021.326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS Cigarette smoking is an important modifiable risk factor in kidney disease progression. However, the underlying mechanisms for this are lacking. This study aimed to assess whether nicotine (NIC), a major toxic component of cigarette smoking, would exacerbates tacrolimus (TAC)-induced renal injury. METHODS Sprague-Dawley rats were treated daily with NIC, TAC, or both drugs for 4 weeks. The influence of NIC on TAC-caused renal injury was examined via renal function, histopathology, oxidative stress, mitochondria, endoplasmic reticulum (ER) stress, and programmed cell death (apoptosis and autophagy). RESULTS Both NIC and TAC significantly impaired renal function and histopathology, while combined NIC and TAC treatment aggravated these parameters beyond the effects of either alone. Increased oxidative stress, ER stress, mitochondrial dysfunction, proinf lammatory and profibrotic cytokine expressions, and programmed cell death from either NIC or TAC were also aggravated by the two combined. CONCLUSION Our observations suggest that NIC exacerbates chronic TAC nephrotoxicity, implying that smoking cessation may be beneficial for transplant smokers taking TAC.
Collapse
Affiliation(s)
- Yu Ji Jiang
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Sheng Cui
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kang Luo
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Postdoctoral Research Institute for Basic Medicine, Yanbian University College of Medicine, Yanji, China
| | - Jun Ding
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Qi Yan Nan
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Department of Intensive Care Unit, Yanbian University Hospital, Yanji, China
| | - Shang Guo Piao
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Mei Ying Xuan
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Department of Health Examination Central, Yanbian University, Yanji, China
| | - Hai Lan Zheng
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Yong Jie Jin
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Zhe Jin
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Byung Ha Chung
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bum Soon Choi
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Transplantation Research Center, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
11
|
Yun Y, Chen J, Wang X, Li Y, Hu Z, Yang P, Qin L. Tofacitinib Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Blocking the JAK-STAT1/STAT3 Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8877056. [PMID: 33511217 PMCID: PMC7822662 DOI: 10.1155/2021/8877056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
Septic acute kidney injury (AKI) is the most common AKI syndrome in the intensive care unit (ICU), and it accounts for approximately half of AKI cases. Tofacitinib (TOFA) is a pan-Janus kinase (JAK) inhibitor that exhibits potent anti-inflammatory activity in rheumatoid arthritis. However, no study has examined the functional role of TOFA in septic AKI. In the present study, we investigated the protective effects of TOFA on septic AKI and the underlying mechanisms. A lipopolysaccharide- (LPS-) induced AKI model was established in C57BL/6 mice via an intraperitoneal injection of LPS (10 mg/kg). One hour after LPS challenge, the mice were orally administered TOFA (5, 10, or 15 mg/kg) every 6 h until sacrifice at 24 h. We found that TOFA significantly ameliorated LPS-induced renal histopathological changes and dysfunction. TOFA also suppressed the expression levels of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IFN-γ) and the parameters of oxidative stress (MDA, GSH, SOD, and CAT) in kidney tissues. These results may be associated with the inhibitory effect of TOFA on the JAK-STAT1/STAT3 pathway, which was significantly activated by LPS challenge. TOFA treatment also inhibited LPS-induced activation of the TLR4/NF-κB pathway. In conclusion, we revealed that TOFA had a protective effect on LPS-induced AKI, and it may be a promising therapeutic agent for septic AKI.
Collapse
Affiliation(s)
- Yang Yun
- Department of Physiology, China Medical University, Liaoning 110122, China
| | - Jingyu Chen
- Department of Physiology, China Medical University, Liaoning 110122, China
| | - Xuejiao Wang
- Department of Physiology, China Medical University, Liaoning 110122, China
| | - Yingzhuo Li
- Department of Physiology, China Medical University, Liaoning 110122, China
| | - Zhifan Hu
- Department of Physiology, China Medical University, Liaoning 110122, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Liaoning 110001, China
| | - Ling Qin
- Department of Physiology, China Medical University, Liaoning 110122, China
| |
Collapse
|
12
|
Patel NJ, Nassal DM, Gratz D, Hund TJ. Emerging therapeutic targets for cardiac arrhythmias: role of STAT3 in regulating cardiac fibroblast function. Expert Opin Ther Targets 2020; 25:63-73. [PMID: 33170045 DOI: 10.1080/14728222.2021.1849145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction : Cardiac fibrosis contributes to the development of cardiovascular disease (CVD) and arrhythmia. Cardiac fibroblasts (CFs) are collagen-producing cells that regulate extracellular matrix (ECM) homeostasis. A complex signaling network has been defined linking environmental stress to changes in CF function and fibrosis. Signal Transducer and Activator of Transcription 3 (STAT3) has emerged as a critical integrator of pro-fibrotic signals in CFs downstream of several established signaling networks. Areas covered : This article provides an overview of STAT3 function in CFs and its involvement in coordinating a vast web of intracellular pro-fibrotic signaling molecules and transcription factors. We highlight recent work elucidating a critical role for the fibroblast cytoskeleton in maintaining spatial and temporal control of STAT3-related signaling . Finally, we discuss potential opportunities and obstacles for therapeutic targeting of STAT3 to modulate cardiac fibrosis and arrhythmias. Relevant publications on the topic were identified through Pubmed. Expert opinion : Therapeutic targeting of STAT3 for CVD and arrhythmias presents unique challenges and opportunities. Thus, it is critical to consider the multimodal and dynamic nature of STAT3 signaling. Going forward, it will be beneficial to consider ways to maintain balanced STAT3 function, rather than large-scale perturbations in STAT3 function.
Collapse
Affiliation(s)
- Nehal J Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, OH, USA
| |
Collapse
|
13
|
Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J. Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation. Antioxid Redox Signal 2020; 33:145-165. [PMID: 31856585 DOI: 10.1089/ars.2019.7975] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. Recent Advances: The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR). cAMP response element-binding (CREB)-binding protein (CBP)/p300, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), early growth response protein 1 (EGR-1), and SP-1. NF-κB is cooperatively coactivated with AP-1, STAT3, EGR-1, and SP-1 during the inflammatory process, whereas NF-κB complexes with CBP/p300 and PGC-1α regulate the expression of antioxidant genes. PGC-1α may act as selective repressor of phospho-p65 toward interleukin-6 (IL-6) in acute inflammation. p65 and nuclear factor erythroid 2-related factor 2 (NRF2) compete for binding to coactivator CBP/p300 playing opposite roles in the regulation of inflammatory genes. S-nitrosylation or tyrosine nitration favors the recruitment of specific NF-κB subunits to κB sites. Critical Issues: NF-κB is a redox-sensitive transcription factor that forms specific signaling complexes to regulate selectively the expression of target genes in acute inflammation. Protein-protein interactions with coregulatory proteins, other transcription factors, and chromatin-remodeling proteins provide transcriptional specificity to NF-κB. Furthermore, different NF-κB subunits may form distinct redox-sensitive homo- and heterodimers with distinct affinities for κB sites. Future Directions: Further research is required to elucidate the whole NF-κB interactome to fully characterize the complex NF-κB signaling network in redox signaling, inflammation, and cancer.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Pablo Martí-Andrés
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Liu X, Peveri G, Bosetti C, Bagnardi V, Specchia C, Gallus S, Lugo A. Dose-response relationships between cigarette smoking and kidney cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2019; 142:86-93. [DOI: 10.1016/j.critrevonc.2019.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023] Open
|
15
|
Nath KA, Garovic VD, Grande JP, Croatt AJ, Ackerman AW, Farrugia G, Katusic ZS, Belcher JD, Vercellotti GM. Heme oxygenase-2 protects against ischemic acute kidney injury: influence of age and sex. Am J Physiol Renal Physiol 2019; 317:F695-F704. [PMID: 31215802 PMCID: PMC6842883 DOI: 10.1152/ajprenal.00085.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Heme oxygenase (HO) activity is exhibited by inducible (HO-1) and constitutive (HO-2) proteins. HO-1 protects against ischemic and nephrotoxic acute kidney injury (AKI). We have previously demonstrated that HO-2 protects against heme protein-induced AKI. The present study examined whether HO-2 is protective in ischemic AKI. Renal ischemia was imposed on young and aged HO-2+/+ and HO-2-/- mice. On days 1 and 2 after renal ischemia, there were no significant differences in renal function between young male HO-2+/+ and HO-2-/- mice, between young female HO-2+/+ and HO-2-/- mice, or between aged female HO-2+/+ and HO-2-/- mice. However, in aged male mice, HO-2 deficiency worsened renal function on days 1 and 2 after ischemic AKI, and, on day 2 after ischemia, such deficiency augmented upregulation of injury-related genes and worsened histological injury. Renal HO activity was markedly decreased in unstressed aged male HO-2-/- mice and remained so after ischemia, despite exaggerated HO-1 induction in HO-2-/- mice after ischemia. Such exacerbation of deficiency of HO-2 protein and HO activity may reflect phosphorylated STAT3, as activation of this proinflammatory transcription factor was accentuated early after ischemia in aged male HO-2-/- mice. This exacerbation may not reflect impaired induction of nephroprotectant genes, since the induction of HO-1, sirtuin 1, and β-catenin was accentuated in aged male HO-2-/- mice after ischemia. We conclude that aged male mice are hypersensitive to ischemic AKI and that HO-2 mitigates such sensitivity. We speculate that this protective effect of HO-2 may be mediated, at least in part, by suppression of phosphorylated STAT3-dependent signaling.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Allan W Ackerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - John D Belcher
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Gregory M Vercellotti
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
16
|
Wang Z, Liu B, Zhu J, Wang D, Wang Y. Nicotine-mediated autophagy of vascular smooth muscle cell accelerates atherosclerosis via nAChRs/ROS/NF-κB signaling pathway. Atherosclerosis 2019; 284:1-10. [PMID: 30856513 DOI: 10.1016/j.atherosclerosis.2019.02.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/22/2018] [Accepted: 02/01/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Cigarette smoking is an established risk factor for atherosclerosis. Nicotine, the major constituent of cigarettes, mediates the phenotype switching of vascular smooth muscle cells (VSMCs) and contributes to atherogenesis. Recent studies show that autophagy regulates atherogenesis via several pathways. The aim of this study is to determine whether nicotine regulates autophagy and subsequently mediates the phenotypic transition of VSMCs. METHODS AND RESULTS Oil Red O and HE staining of aortic sections of ApoE-/- mice showed that nicotine promoted atherosclerosis, and in situ expression of α-SMA indicated the involvement of VSMCs. Western blotting documented that nicotine induced the aorta autophagy. Cultured VSMCs treated with nicotine resulted in the increase of LC3 II-to-LC3 I ratio and the decrease of P62, along with GFP-LC3 puncta assay and transmission electron microscopy, further reflecting nicotine-induced autophagy. In addition, Western blotting and quantitative real-time PCR showed that VSMCs exposed to nicotine underwent changes in the expression of differentiation markers (α-SMA, SM22α and osteopontin), confirming the role of nicotine in VSMC differentiation. Transwell migration and scratch assays demonstrated that nicotine increased the migratory capacity of VSMCs. Finally, nicotine also increased the levels of reactive oxygen species (ROS), as measured by DCFH-DA staining. After respectively inhibiting autophagy (3-MA), oxidative stress (NAC), NF-κB activity (BAY 11-7082, si-p65) and nicotinic acetylcholine receptors (nAChRs, hexamethonium), nicotine-induced autophagy and VSMC phenotype switching were reversed. CONCLUSIONS Nicotine-induced autophagy promotes the phenotype switching of VSMCs and accelerates atherosclerosis, which is partly mediated by the nAChRs/ROS/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhiyan Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Bei Liu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jumo Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Di Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yi Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
17
|
Nicotine enhances mesangial cell proliferation and fibronectin production in high glucose milieu via activation of Wnt/β-catenin pathway. Biosci Rep 2018; 38:BSR20180100. [PMID: 29572389 PMCID: PMC6269139 DOI: 10.1042/bsr20180100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinic reports indicate cigarette smoking is an independent risk factor for chronic kidney disease including DN; however, the underlying molecular mechanisms are not clear. Recent studies have demonstrated that nicotine, one of the active compounds in cigarette smoke, contributes to the pathogenesis of the cigarette smoking-accelerated chronic kidney disease. One of the characteristics of DN is the expansion of mesangium, a precursor of glomerular sclerosis. In the present study, we examined the involvement of Wnt/β-catenin pathway in nicotine-mediated mesangial cell growth in high glucose milieu. Primary human renal mesangial cells were treated with nicotine in the presence of normal (5 mM) or high glucose (30 mM) followed by evaluation for cell growth. In the presence of normal glucose, nicotine increased both the total cell numbers and Ki-67 positive cell ratio, indicating that nicotine stimulated mesangial cell proliferation. Although high glucose itself also stimulated mesangial cell proliferation, nicotine further enhanced the mitogenic effect of high glucose. Similarly, nicotine increased the expression of Wnts, β-catenin, and fibronectin in normal glucose medium, but further increased mesangial cell expression of these proteins in high glucose milieu. Pharmacological inhibition or genetic knockdown of β-catenin activity or expression with specific inhibitor FH535 or siRNA significantly impaired the nicotine/glucose-stimulated cell proliferation and fibronectin production. We conclude that nicotine may enhance renal mesangial cell proliferation and fibronectin production under high glucose milieus partly through activating Wnt/β-catenin pathway. Our study provides insight into molecular mechanisms involved in DN.
Collapse
|
18
|
Chang YW, Singh KP. Duration-dependent effects of nicotine exposure on growth and AKT activation in human kidney epithelial cells. Mol Cell Biochem 2018; 448:51-60. [PMID: 29396723 DOI: 10.1007/s11010-018-3312-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/27/2018] [Indexed: 01/06/2023]
Abstract
Exposure to nicotine is known to cause adverse effects in many target organs including kidney. Epidemiological studies suggest that nicotine-induced kidney diseases are prevalent worldwide. However, the impact of duration of exposure on the nicotine-induced adverse effects in normal kidney cells and the underlying molecular mechanism is still unclear. Hence, the objective of this study was to evaluate both acute and long-term effects of nicotine in normal human kidney epithelial cells (HK-2). Cells were treated with 1 and 10 µM nicotine for acute and long-term duration. The result of cell viability showed that the acute exposure to 1 µM nicotine has no significant effect on growth. However, the 10 µM nicotine caused significant decrease in the growth of HK-2 cells. The long-term exposure resulted in significantly increased cell growth in both 1 and 10 µM nicotine-treated groups. Analysis of cell cycle and expression of marker genes related to proliferation and apoptosis further confirmed the effects of nicotine. Additionally, the analysis of growth signaling pathway revealed the decreased level of pAKT in cells with acute exposure whereas the increased level of pAKT in long-term nicotine-exposed cells. This suggests that nicotine, through modulating the AKT pathway, controls the duration-dependent effects on the growth of HK-2 cells. In summary, this is the first report showing long-duration exposure to nicotine causes increased proliferation of human kidney epithelial cells through activation of AKT pathway.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79409, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
19
|
Abstract
Epidemiological studies have indicated that smoking is a pivotal risk factor for the progression of several chronic diseases. Nicotine, the addictive component of cigarettes, has powerful pathophysiological properties in the body. Although the effects of cigarette smoking on corneal re-epithelialization have been studied, the effects of nicotine on corneal wound healing-related neovascularization and fibrosis have not been fully demonstrated. The aim of this study was to evaluate the effects of chronic administration of nicotine on corneal wound healing following acute insult induced by an alkali burn. BALB/C female mice randomly received either vehicle (2% saccharin) or nicotine (100 or 200 μg/ml in 2% saccharin) in drinking water ad libitum. After 1 week, animals were re-randomized and the experimental group was subjected to a corneal alkali burn, and then nicotine was administered until day 14 after the alkali burn. A corneal alkali burn model was generated by placing a piece of 2 mm-diameter filter paper soaked in 1N NaOH on the right eye. Histopathological analysis and the expression level of the pro-angiogenic genes vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9) revealed that chronic nicotine administration enhanced alkali burn-induced corneal neovascularization. Furthermore, the mRNA expression of the pro-fibrogenic factors α-smooth muscle actin (αSMA), transforming growth factor-β (TGF-β), and collagen α1 (Col1) was enhanced in the high-concentration nicotine-treated group compared with the vehicle group after corneal injury. Immunohistochemical analysis also showed that the αSMA-positive area was increased in chronic nicotine-treated mice after corneal alkali burn. An in vitro assay found that expression of the α3, α7, and β1 nicotinic acetylcholine receptor (nAChR) subunits was significantly increased by chemical injury in human corneal fibroblast cells. Moreover, alkali-induced fibrogenic gene expression and proliferation of fibroblast cells were further increased by treatment with nicotine and cotinine. The proliferation of such cells induced by treatment of nicotine and cotinine was reduced by inhibition of the PI3K and PKC pathways using specific inhibitors. In conclusion, chronic administration of nicotine accelerated the angiogenic and fibrogenic healing processes in alkali-burned corneal tissue.
Collapse
Affiliation(s)
- Jong Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Lan X, Lederman R, Eng JM, Shoshtari SSM, Saleem MA, Malhotra A, Singhal PC. Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress. PLoS One 2016; 11:e0167071. [PMID: 27907022 PMCID: PMC5132002 DOI: 10.1371/journal.pone.0167071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022] Open
Abstract
Background Cigarette smoking plays an important role in the progression of chronic kidney disease (CKD). Nicotine, one of the major components of cigarette smoking, has been demonstrated to increase proliferation of renal mesangial cells. In this study, we examined the effect of nicotine on podocyte injury. Methods To determine the expression of nicotinic acetylcholine receptors (nAChR subunits) in podocytes, cDNAs and cell lysate of cultured human podocytes were used for the expression of nAChR mRNAs and proteins, respectively; and mouse renal cortical sections were subjected to immunofluorescant staining. We also studied the effect of nicotine on podocyte nephrin expression, reactive oxygen species (ROS) generation (via DCFDA loading followed by fluorometric analysis), proliferation, and apoptosis (morphologic assays). We evaluated the effect of nicotine on podocyte downstream signaling including phosphorylation of ERK1/2, JNK, and p38 and established causal relationships by using respective inhibitors. We used nAChR antagonists to confirm the role of nicotine on podocyte injury. Results Human podocytes displayed robust mRNA and protein expression of nAChR in vitro studies. In vivo studies, mice renal cortical sections revealed co-localization of nAChRs along with synaptopodin. In vitro studies, nephrin expression in podocyte was decreased by nicotine. Nicotine stimulated podocyte ROS generation; nonetheless, antioxidants such as N-acetyl cysteine (NAC) and TEMPOL (superoxide dismutase mimetic agent) inhibited this effect of nicotine. Nicotine did not modulate proliferation but promoted apoptosis in podocytes. Nicotine enhanced podocyte phosphorylation of ERK1/2, JNK, and p38, and their specific inhibitors attenuated nicotine-induced apoptosis. nAChR antagonists significantly suppressed the effects of nicotine on podocyte. Conclusions Nicotine induces podocyte apoptosis through ROS generation and associated downstream MAPKs signaling. The present study provides insight into molecular mechanisms involved in smoking associated progression of chronic kidney disease.
Collapse
Affiliation(s)
- Xiqian Lan
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
- * E-mail: (XL); (PS)
| | - Rivka Lederman
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Judith M. Eng
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Seyedeh Shadafarin Marashi Shoshtari
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Moin A. Saleem
- Academic Renal Unit, Southmead Hospital, Bristol, United Kingdom
| | - Ashwani Malhotra
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
| | - Pravin C. Singhal
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, United States of America
- * E-mail: (XL); (PS)
| |
Collapse
|
21
|
Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res 2016; 14:15-39. [PMID: 26847481 PMCID: PMC4851450 DOI: 10.3121/cmr.2015.1282] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Qiangwei Fu
- Kabara Cancer Research Institute, La Crosse, WI
| | - Sean P Colgan
- Mucosal Inflammation Program and University of Colorado School of Medicine, Aurora, CO
| | - Carl Simon Shelley
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
22
|
Margaritopoulos GA, Vasarmidi E, Jacob J, Wells AU, Antoniou KM. Smoking and interstitial lung diseases. Eur Respir Rev 2015; 24:428-35. [PMID: 26324804 PMCID: PMC9487692 DOI: 10.1183/16000617.0050-2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
For many years has been well known that smoking could cause lung damage. Chronic obstructive pulmonary disease and lung cancer have been the two most common smoking-related lung diseases. In the recent years, attention has also focused on the role of smoking in the development of interstitial lung diseases (ILDs). Indeed, there are three diseases, namely respiratory bronchiolitis-associated ILD, desquamative interstitial pneumonia and pulmonary Langerhans cell histiocytosis, that are currently considered aetiologically linked to smoking and a few others which are more likely to develop in smokers. Here, we aim to focus on the most recent findings regarding the role of smoking in the pathogenesis and clinical behaviour of ILDs. Smoking is implicated in the pathogenesis and clinical behaviour of interstitial lung diseasehttp://ow.ly/PYLcT
Collapse
|
23
|
Brosius FC, He JC. JAK inhibition and progressive kidney disease. Curr Opin Nephrol Hypertens 2015; 24:88-95. [PMID: 25415616 DOI: 10.1097/mnh.0000000000000079] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW To review the role of Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling in the progression of chronic kidney diseases. RECENT FINDINGS The JAK-STAT pathway transmits signals from extracellular ligands, including many cytokines and chemokines. While these responses are best characterized in lymphoid cells, they also occur in kidney cells such as podocytes, mesangial cells, and tubular cells. JAK-STAT expression and signaling abnormalities occur in humans and animal models of different chronic kidney diseases. Enhanced expression and augmented activity of JAK1, JAK2, and STAT3 promote diabetic nephropathy and their inhibition appears to reduce the disease. Activation of JAK-STAT signaling in autosomal dominant polycystic kidney disease may play an important role in cyst growth. Activation of JAK-STAT signaling promotes HIV-associated nephropathy and may also participate in the tubular responses to chronic obstructive uropathy. On the basis of data from experimental models, inhibition of JAK-STAT signaling, via increased expression of the suppressors of cytokine signaling proteins or pharmacologic inhibition of JAK and STAT proteins, could play a therapeutic role in multiple chronic kidney diseases. SUMMARY Activation of the JAK-STAT pathway appears to play a role in the progression of some chronic kidney diseases. More work is needed to determine the specific role the pathway plays in individual diseases.
Collapse
Affiliation(s)
- Frank C Brosius
- aDepartments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA bDepartment of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
24
|
Maternal nicotine exposure during gestation and lactation induces kidney injury and fibrosis in rat offspring. Pediatr Res 2015; 77:56-63. [PMID: 25279991 DOI: 10.1038/pr.2014.148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/06/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Maternal tobacco smoke exposure adversely affected fetal kidney development. Nicotine stimulates epithelial-mesenchymal transition and connective tissue growth factor (CTGF) expression in the renal epithelium. We hypothesized that maternal nicotine exposure would induce kidney fibrosis and involve CTGF in newborn rats. METHODS Nicotine was administered to pregnant Sprague-Dawley rats at a dose of 6 mg/kg/d from gestational days 7-21 and gestational day 7 to postnatal day 14. A control group was injected with normal saline. Neonatal kidney tissues underwent histological analysis, collagen measurement, and western blot analysis. RESULTS Tubular injury scores and total collagen contents were significantly higher in rats born to nicotine-treated dams than in rats born to normal saline-treated dams on postnatal days 7 and 21. Masson's trichrome staining further verified the presence of kidney fibrosis. Prenatal and/or postnatal nicotine exposure increased CTGF expression on postnatal days 7 and 21. CONCLUSION Maternal nicotine exposure during gestation and lactation induces neonatal kidney fibrosis, and CTGF may be involved in the pathogenesis of kidney fibrosis. These results may be relevant to premature low-birth-weight infants who are conveyed a high risk of developing chronic kidney disease and exposed to breast milk of smoking mothers during the neonatal period.
Collapse
|
25
|
Pahang H, Nikravesh MR, Jalali M, Ebrahimzadeh Bideskan A, Zargari P, Sadr Nabavi A. Fibronectin regulation by vitamin C treatment in kidneys of nicotinic mice offspring. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e17056. [PMID: 25237577 PMCID: PMC4166096 DOI: 10.5812/ircmj.17056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/12/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
Background: Maternal cigarette smoking causes health risks and developmental defects in the offspring. So far, many studies have been conducted to suppress the effects of nicotine. However, the effects of coadministration of vitamin C and nicotine on extracellular matrix have not gained enough attention. Objectives: This study decided to investigate the effects of vitamin C on fibronectin expression in kidneys of mice offspring, treated with nicotine. Materials and Methods: Eighteen female pregnant BALB/c mice were selected; six mice in the experimental group 1 (exp 1) received nicotine (3 mg/kg/day), six mice in the experimental group 2 (exp 2) received 3 mg/kg/day nicotine and 9 mg/kg/day vitamin C simultaneously, and six were used as the control group and received 3 mL/kg/day normal saline via intraperitoneal (IP) injection parallel to other groups, since the 6th day of gestation to the end of prenatal period. In the first days of delivery, fibronectin content of neonatal kidneys was studied by immunohistochemistry (IHC) assay and gene expression was studied by the real-time PCR. Results: IHC results showed that fibronectin reaction significantly increased in proximal convoluted tubules of exp 1 compared with the control offspring; on the other hand, fibronectin reaction decreased in the mice offspring of exp 2. Gene expression results showed that fibronectin expression in the exp 1 offspring significantly increased compared with the control ones and fibronectin expression decreased in the mice offspring of exp 2. Conclusions: This study revealed that vitamin C could reduce the fibronectin accumulation effects of nicotine on kidney.
Collapse
Affiliation(s)
- Hasan Pahang
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Corresponding Author: Mohammad Reza Nikravesh, Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran. Tel: +98-5118002490, Fax: +98-5118002484, E-mail:
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Alireza Ebrahimzadeh Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Peyman Zargari
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Ariane Sadr Nabavi
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| |
Collapse
|
26
|
Weimbs T, Olsan EE, Talbot JJ. Regulation of STATs by polycystin-1 and their role in polycystic kidney disease. JAKSTAT 2014; 2:e23650. [PMID: 24058808 PMCID: PMC3710321 DOI: 10.4161/jkst.23650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 01/14/2023] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common genetic disease caused by mutations in the gene coding for polycystin-1 (PC1). PC1 can regulate STAT transcription factors by a novel, dual mechanism. STAT3 and STAT6 are aberrantly activated in renal cysts. Genetic and pharmacological approaches to inhibit STAT3 or STAT6 have led to promising results in ADPKD mouse models. Here, we review current findings that lead to a model of PC1 as a key regulator of STAT signaling in renal tubule cells. We discuss how PC1 may orchestrate appropriate epithelial responses to renal injury, and how this system may lead to aberrant STAT activation in ADPKD thereby causing inappropriate activation of tissue repair programs that culminate in renal cyst growth and fibrosis.
Collapse
Affiliation(s)
- Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute; University of California, Santa Barbara; Santa Barbara, CA USA
| | | | | |
Collapse
|
27
|
Jiang H, Li L, Li-Ling J, Qiu G, Niu Z, Jiang H, Li Y, Huang Y, Sun K. Increased Tbx1 expression may play a role via TGFβ-Smad2/3 signaling pathway in acute kidney injury induced by gentamicin. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1595-1605. [PMID: 24817956 PMCID: PMC4014240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
T-box 1 (Tbx1) gene is closely involved in embryonic kidney development. To explore the role of Tbx1 in acute kidney injury (AKI) and the underlying mechanism, we detected the expression of Tbx1 and components of transforming growth factor-beta (TGF-β) signaling pathways including TGF-β, phosphorylated Smad2/3 (p-Smad2/3) and phosphorylated Smad1/5/8 (p-Smad1/5/8) in kidney tissues derived from a rat model for AKI induced by gentamicin (GM). Apoptosis of renal cells was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), along with the expression of two essential genes involved in apoptosis, caspase-3 and Bcl-2. Correlation between Tbx1 expression and the number of TUNEL-positive cells was analyzed by a Spearman test. Expression of TGF-β, p-Smad2/3 and p-Smad1/5/8 in Tbx1-knockdown NRK cells was also analyzed by real-time RT-PCR and Western blotting. Markedly increased Tbx1 expression was found in the injured kidney tissues, which has activated the TGFβ-Smad2/3 pathway whilst suppressed Smad1/5/8 expression. Conversely, decreased TGF-β and p-Smad2/3 levels, and elevated p-Smad1/5/8 levels were detected in Tbx1-knockdown NRK cells. More apoptotic cells were detected in the injured kidneys, which has well correlated with the expression of Tbx1. Expression of caspase-3 was markedly increased, while Bcl-2 was decreased in the injured kidney tissues. Above findings suggested that activation of Tbx1 is involved in AKI through the TGFβ-Smad2/3 pathway. Tbx1 expression may therefore serve as a marker for AKI, and Tbx1-blocking therapies may provide an option for treating GM-induced nephropathy.
Collapse
Affiliation(s)
- Hongkun Jiang
- Department of Pediatrics, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| | - Lei Li
- Department of Orthopedics, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Jesse Li-Ling
- Sino-Dutch Biomedical and Information Engineering School, Northeastern UniversityShenyang 110003, China
- Institute of Medical Genetics, School of Life Science, Joint Key Laboratory for Bio-resource Research and Utilization of Sichuan and Chongqing, Sichuan UniversityChengdu 610064, China
| | - Guangrong Qiu
- Department of Medical Genetics, China Medical UniversityShenyang 110001, China
| | - Zhibin Niu
- Department of Pediatrics, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Hong Jiang
- Department of Pediatrics, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| | - Yunpeng Li
- Department of Orthopedics, Shengjing Hospital of China Medical UniversityShenyang 110004, China
| | - Yaoguo Huang
- Department of Pediatrics, The First Affiliated Hospital of China Medical UniversityShenyang 110001, China
| | - Kailai Sun
- Department of Medical Genetics, China Medical UniversityShenyang 110001, China
| |
Collapse
|
28
|
Abstract
Mutations in the gene coding for the integral membrane protein polycystin-1 (PC1) are the cause of most cases of autosomal-dominant polycystic kidney disease (ADPKD), a very common disease that leads to kidney failure and currently lacks approved treatment. Recent work has revealed that PC1 can regulate the transcription factor STAT3, and that STAT3 is aberrantly activated in the kidneys of ADPKD patients and PKD mouse models. Recent approaches to directly inhibit STAT3 in PKD mouse models have been promising. Numerous signaling pathways are known to activate STAT3 and many have long been implicated in the pathogenesis of PKD - such as EGF/EGFR, HGF/c-Met, Src. However, a role of STAT3 in the pathogenesis of PKD had never been considered until now. Here, we review the current findings that suggest that STAT3 is a promising target for the treatment of PKD.
Collapse
Affiliation(s)
- Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-9610, U.S.A
| | - Jeffrey J Talbot
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-9610, U.S.A
| |
Collapse
|
29
|
Jensen K, Afroze S, Ueno Y, Rahal K, Frenzel A, Sterling M, Guerrier M, Nizamutdinov D, Dostal DE, Meng F, Glaser SS. Chronic nicotine exposure stimulates biliary growth and fibrosis in normal rats. Dig Liver Dis 2013; 45:754-61. [PMID: 23587498 PMCID: PMC3800482 DOI: 10.1016/j.dld.2013.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/05/2013] [Accepted: 02/27/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epidemiological studies have indicated smoking to be a risk factor for the progression of liver diseases. Nicotine is the chief addictive substance in cigarette smoke and has powerful biological properties throughout the body. Nicotine has been implicated in a number of disease processes, including increased cell proliferation and fibrosis in several organ systems. AIMS The aim of this study was to evaluate the effects of chronic administration of nicotine on biliary proliferation and fibrosis in normal rats. METHODS In vivo, rats were treated with nicotine by osmotic minipumps for two weeks. Proliferation, α7-nicotinic receptor and profibrotic expression were evaluated in liver tissue, cholangiocytes and a polarized cholangiocyte cell line (normal rat intrahepatic cholangiocyte). Nicotine-dependent activation of the Ca(2+)/IP3/ERK 1/2 intracellular signalling pathway was also evaluated in normal rat intrahepatic cholangiocyte. RESULTS Cholangiocytes express α7-nicotinic receptor. Chronic administration of nicotine to normal rats stimulated biliary proliferation and profibrotic gene and protein expression such as alpha-smooth muscle actin and fibronectin 1. Activation of α7-nicotinic receptor stimulated Ca(2+)/ERK1/2-dependent cholangiocyte proliferation. CONCLUSION Chronic exposure to nicotine contributes to biliary fibrosis by activation of cholangiocyte proliferation and expression of profibrotic genes. Modulation of α7-nicotinic receptor signalling axis may be useful for the management of biliary proliferation and fibrosis during cholangiopathies.
Collapse
Affiliation(s)
- Kendal Jensen
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
| | - Syeda Afroze
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kinan Rahal
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Gastroenterology, Temple, Texas USA
| | - Amber Frenzel
- Undergraduate Research Program, Texas Bioscience Institute-Temple College, Temple, Texas USA
| | - Melanie Sterling
- Undergraduate Research Program, Texas Bioscience Institute-Temple College, Temple, Texas USA
| | - Micheleine Guerrier
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
| | - Damir Nizamutdinov
- Central Texas Veterans Health Care System, Temple, Texas USA
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Molecular Cardiology, Temple, Texas USA
| | - David E. Dostal
- Central Texas Veterans Health Care System, Temple, Texas USA
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Molecular Cardiology, Temple, Texas USA
| | - Fanyin Meng
- Central Texas Veterans Health Care System, Temple, Texas USA
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Gastroenterology, Temple, Texas USA
| | - Shannon S. Glaser
- Central Texas Veterans Health Care System, Temple, Texas USA
- Scott & White Healthcare - Digestive Disease Research Center, Temple, Texas USA
- Texas A&M Health Science Center College of Medicine and Scott and White Healthcare Department of Internal Medicine, Division of Gastroenterology, Temple, Texas USA
| |
Collapse
|
30
|
Zgheib C, Zouein FA, Kurdi M, Booz GW. Differential STAT3 signaling in the heart: Impact of concurrent signals and oxidative stress. JAKSTAT 2013; 1:101-10. [PMID: 23904970 PMCID: PMC3670289 DOI: 10.4161/jkst.19776] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple lines of evidence suggest that the transcription factor STAT3 is linked to a protective and reparative response in the heart. Thus, increasing duration or intensity of STAT3 activation ought to minimize damage and improve heart function under conditions of stress. Two recent studies using genetic mouse models, however, report findings that appear to refute this proposition. Unfortunately, studies often approach the question of the role of STAT3 in the heart from the perspective that all STAT3 signaling is equivalent, particularly when it comes to signaling by IL-6 type cytokines, which share the gp130 signaling protein. Moreover, STAT3 activation is typically equated with phosphorylation of a critical tyrosine residue. Yet, STAT3 transcriptional behavior is subject to modulation by serine phosphorylation, acetylation, and redox status of the cell. Unphosphorylated STAT3 is implicated in gene induction as well. Thus, how STAT3 is activated and also what other signaling events are occurring at the same time is likely to impact on the outcome ultimately linked to STAT3. Notably STAT3 may serve as a scaffold protein allowing it to interact with other singling pathways. In this context, canonical gp130 cytokine signaling may function to integrate STAT3 signaling with a protective PI3K/AKT signaling network via mutual involvement of JAK tyrosine kinases. Differences in the extent of integration may occur between those cytokines that signal through gp130 homodimers and those through heterodimers of gp130 with a receptor α chain. Signal integration may have importance not only for deciding the particular gene profile linked to STAT3, but for the newly described mitochondrial stabilization role of STAT3 as well. In addition, disruption of integrated gp130-related STAT3 signaling may occur under conditions of oxidative stress, which negatively impacts on JAK catalytic activity. For these reasons, understanding the importance of STAT3 signaling to heart function requires a greater appreciation of the plasticity of this transcription factor in the context in which it is investigated.
Collapse
Affiliation(s)
- Carlos Zgheib
- Department of Pharmacology and Toxicology; School of Medicine; and the Center for Excellence in Cardiovascular-Renal Research; The University of Mississippi Medical Center; Jackson, MS USA
| | | | | | | |
Collapse
|
31
|
Singh VP, Singh N, Jaggi AS. A review on renal toxicity profile of common abusive drugs. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:347-57. [PMID: 23946695 PMCID: PMC3741492 DOI: 10.4196/kjpp.2013.17.4.347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/25/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Drug abuse has become a major social problem of the modern world and majority of these abusive drugs or their metabolites are excreted through the kidneys and, thus, the renal complications of these drugs are very common. Morphine, heroin, cocaine, nicotine and alcohol are the most commonly abused drugs, and their use is associated with various types of renal toxicity. The renal complications include a wide range of glomerular, interstitial and vascular diseases leading to acute or chronic renal failure. The present review discusses the renal toxicity profile and possible mechanisms of commonly abused drugs including morphine, heroin, cocaine, nicotine, caffeine and alcohol.
Collapse
Affiliation(s)
- Varun Parkash Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147002, India
| | | | | |
Collapse
|
32
|
Jain G, Jaimes EA. Nicotine signaling and progression of chronic kidney disease in smokers. Biochem Pharmacol 2013; 86:1215-23. [PMID: 23892062 DOI: 10.1016/j.bcp.2013.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 11/24/2022]
Abstract
The deleterious health effects of cigarette smoking are far reaching, and it remains the most important modifiable risk factor for improving overall morbidity and mortality. In addition to being a risk factor for cancer, cardiovascular disease and lung disease, there is strong evidence, both from human and animal studies, demonstrating a role for cigarette smoking in the progression of chronic kidney disease (CKD). Clinical studies have shown a strong correlation between cigarette smoking and worsening CKD in patients with diabetes, hypertension, polycystic kidney disease, and post kidney transplant. Nicotine, in addition to its role in the addictive properties of cigarette smoking, has other biological effects via activation of non-neuronal nicotinic acetylcholine receptors (nAChRs). Several nAChR subunits are expressed in the normal kidney and blockade of the α7-nAChR subunit ameliorates the effects of nicotine in animal models of CKD. Nicotine increases the severity of renal injury in animal models including acute kidney injury, diabetes, acute nephritis and subtotal nephrectomy. The renal effects of nicotine are also linked to increased generation of reactive oxygen species and activation of pro-fibrotic pathways. In humans, nicotine induces transitory increases in blood pressure accompanied by reductions in glomerular filtration rate and effective renal plasma flow. In summary, clinical and experimental evidence indicate that nicotine is at least in part responsible for the deleterious effects of cigarette smoking in the progression of CKD. The mechanisms involved are the subject of active investigation and may result in novel strategies to ameliorate the effects of cigarette smoking in CKD.
Collapse
Affiliation(s)
- Gaurav Jain
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
33
|
Zouein FA, Kurdi M, Booz GW. Dancing rhinos in stilettos: The amazing saga of the genomic and nongenomic actions of STAT3 in the heart. JAKSTAT 2013; 2:e24352. [PMID: 24069556 PMCID: PMC3772108 DOI: 10.4161/jkst.24352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 01/15/2023] Open
Abstract
A substantial body of evidence has shown that signal transducer and activator of transcription 3 (STAT3) has an important role in the heart in protecting the myocardium from ischemia and oxidative stress. These actions are attributed to STAT3 functioning as a transcription factor in upregulating cardioprotective genes. Loss of STAT3 has been implicated as well in the pathogenesis of heart failure and, in that context and in addition to the loss of a cardioprotective gene program, nuclear STAT3 has been identified as a transcriptional repressor important for the normal functioning of the ubiquitin-proteasome system for protein degradation. The later finding establishes a genomic role for STAT3 in controlling cellular homeostasis in cardiac myocytes independent of stress. Surprisingly, although a well-studied area, very few downstream gene targets of STAT3 in the heart have been definitively identified. In addition, STAT3 is now known to induce gene expression by noncanonical means that are not well characterized in the heart. On the other hand, recent evidence has shown that STAT3 has important nongenomic actions in cardiac myocytes that affect microtubule stability, mitochondrial respiration, and autophagy. These extranuclear actions of STAT3 involve protein–protein interactions that are incompletely understood, as is their regulation in both the healthy and injured heart. Moreover, how the diverse genomic and nongenomic actions of STAT3 crosstalk with each other is unchartered territory. Here we present an overview of what is and is not known about both the genomic and nongenomic actions of STAT3 in the heart from a structure-function perspective that focuses on the impact of posttranslational modifications and oxidative stress in regulating the actions and interactions of STAT3. Even though we have learnt a great deal about the role played by STAT3 in the heart, much more awaits to be discovered.
Collapse
Affiliation(s)
- Fouad A Zouein
- Department of Pharmacology and Toxicology; School of Medicine; and The Jackson Center for Heart Research at UMMC; The Cardiovascular-Renal Research Center; The University of Mississippi Medical Center; Jackson, MS USA
| | | | | |
Collapse
|
34
|
Speeckaert MM, Delanghe JR, Vanholder RC. Chronic nicotine exposure and acute kidney injury: new concepts and experimental evidence. Nephrol Dial Transplant 2013; 28:1329-31. [PMID: 23449342 DOI: 10.1093/ndt/gft019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
35
|
Arany I, Clark J, Reed DK, Juncos LA. Chronic nicotine exposure augments renal oxidative stress and injury through transcriptional activation of p66shc. Nephrol Dial Transplant 2013; 28:1417-25. [PMID: 23328708 DOI: 10.1093/ndt/gfs596] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Chronic nicotine (Ch-NIC) exposure exacerbates ischemia/reperfusion (I/R)-induced oxidative stress and acute kidney injury (AKI), and mitochondrial production of reactive oxygen species (ROS) in cultured renal proximal tubule cells (RPTCs). Because Ser36-phosphorylated p66shc modulates mitochondrial ROS production and injury of RPTCs, we hypothesized that Ch-NIC exacerbates AKI by increasing stress-induced phosphorylation of p66shc. METHODS We first tested whether Ch-NIC augments I/R-AKI-induced expression and phosphorylation of p66shc in vivo. We then examined whether knocking down p66shc, or impairing its Ser36 phosphorylation or binding to cytochrome c, alters the effects of Ch-NIC on oxidative stress (H₂O₂)-induced production of ROS, mitochondrial depolarization and injury in RPTCs in vitro. RESULTS We found that Ch-NIC increased the expression of p66shc in the control and ischemic kidneys, but only increased its Ser36 phosphorylation after renal I/R. Knocking down p66shc or impairing phosphorylation of its Ser36 residue, via the S36A mutation (but not the phosphomimetic S36D mutation), blunted Ch-NIC + H2O2-dependent ROS production, mitochondrial depolarization and injury in RPTCs. Additionally, Ch-NIC + H2O2-dependent binding of p66shc to mitochondrial cytochrome c was attenuated by S36A mutation of p66shc, and impairing cytochrome c binding (via W134F mutation) abolished ROS production, mitochondrial depolarization and injury, while ectopic overexpression of p66shc (which mimics Ch-NIC treatment) augmented oxidant injury. We determined that Ch-NIC stimulates the p66shc promoter through p53- and epigenetic modification (promoter hypomethylation). CONCLUSIONS Ch-NIC worsens oxidative stress-dependent acute renal injury by increasing expression and consequent oxidative stress-dependent Ser36 phosphorylation of p66shc. Thus, targeting this pathway may have therapeutic relevance in preventing/ameliorating tobacco-related kidney injury.
Collapse
Affiliation(s)
- Istvan Arany
- Division of Pediatric Nephrology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA.
| | | | | | | |
Collapse
|
36
|
Jensen K, Nizamutdinov D, Guerrier M, Afroze S, Dostal D, Glaser S. General mechanisms of nicotine-induced fibrogenesis. FASEB J 2012; 26:4778-87. [PMID: 22906950 PMCID: PMC3509054 DOI: 10.1096/fj.12-206458] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/06/2012] [Indexed: 01/06/2023]
Abstract
Cigarette smoking contributes to the development of cancer, and pathogenesis of other diseases. Many chemicals have been identified in cigarettes that have potent biological properties. Nicotine is especially known for its role in addiction and plays a role in other physiological effects of smoking and tobacco use. Recent studies have provided compelling evidence that, in addition to promoting cancer, nicotine also plays a pathogenic role in systems, such as the lung, kidney, heart, and liver. In many organ systems, nicotine modulates fibrosis by altering the functions of fibroblasts. Understanding the processes modulated by nicotine holds therapeutic potential and may guide future clinical and research decisions. This review discusses the role of nicotine in the general fibrogenic process that governs fibrosis and fibrosis-related diseases, focusing on the cellular mechanisms that have implications in multiple organ systems. Potential research directions for the management of nicotine-induced fibrosis, and potential clinical considerations with regard to nicotine-replacement therapy (NRT) are presented.
Collapse
Affiliation(s)
| | - Damir Nizamutdinov
- Division of Molecular Cardiology, Department of Internal Medicine, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Temple, Texas, USA; and
| | | | | | - David Dostal
- Division of Molecular Cardiology, Department of Internal Medicine, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Temple, Texas, USA; and
| | - Shannon Glaser
- Division of Gastroenterology and
- Scott and White Healthcare Digestive Disease Research Center, Temple, Texas, USA
| |
Collapse
|
37
|
Zgheib C, Kurdi M, Zouein FA, Gunter BW, Stanley BA, Zgheib J, Romero DG, King SB, Paolocci N, Booz GW. Acyloxy nitroso compounds inhibit LIF signaling in endothelial cells and cardiac myocytes: evidence that STAT3 signaling is redox-sensitive. PLoS One 2012; 7:e43313. [PMID: 22905257 PMCID: PMC3419695 DOI: 10.1371/journal.pone.0043313] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 07/19/2012] [Indexed: 12/31/2022] Open
Abstract
We previously showed that oxidative stress inhibits leukemia inhibitory factor (LIF) signaling by targeting JAK1, and the catalytic domains of JAK 1 and 2 have a cysteine-based redox switch. Thus, we postulated that the NO sibling and thiophylic compound, nitroxyl (HNO), would inhibit LIF-induced JAK-STAT3 activation. Pretreatment of human microvascular endothelial cells (HMEC-1) or neonatal rat cardiomyocytes with the HNO donors Angeli’s salt or nitrosocyclohexyl acetate (NCA) inhibited LIF-induced STAT3 activation. NCA pretreatment also blocked the induction of downstream inflammatory genes (e.g. intercellular adhesion molecule 1, CCAAT/enhancer binding protein delta). The related 1-nitrosocyclohexyl pivalate (NCP; not a nitroxyl donor) was equally effective in inhibiting STAT3 activation, suggesting that these compounds act as thiolate targeting electrophiles. The JAK1 redox switch is likely not a target of acyloxy nitroso compounds, as NCA had no effect on JAK1 catalytic activity and only modestly affected JAK1-induced phosphorylation of the LIF receptor. However, pretreatment of recombinant human STAT3 with NCA or NCP reduced labeling of free sulfhydryl residues. We show that NCP in the presence of diamide enhanced STAT3 glutathionylation and dimerization in adult mouse cardiac myocytes and altered STAT3 under non-reducing conditions. Finally, we show that monomeric STAT3 levels are decreased in the Gαq model of heart failure in a redox-sensitive manner. Altogether, our evidence indicates that STAT3 has redox-sensitive cysteines that regulate its activation and are targeted by HNO donors and acyloxy nitroso compounds. These findings raise the possibility of new therapeutic strategies to target STAT3 signaling via a redox-dependent manner, particularly in the context of cardiac and non-cardiac diseases with prominent pro-inflammatory signaling.
Collapse
Affiliation(s)
- Carlos Zgheib
- Departments of Pharmacology and Toxicology, School of Medicine, and Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Mazen Kurdi
- Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University, Rafic Hariri Educational Campus, Hadath, Lebanon
| | - Fouad A. Zouein
- Departments of Pharmacology and Toxicology, School of Medicine, and Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Barak W. Gunter
- Departments of Pharmacology and Toxicology, School of Medicine, and Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Brian A. Stanley
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Joe Zgheib
- Department of Medicine, Division of Cardiology, Centre Hospitalier Universitaire de Nancy, Brabois, France
| | - Damian G. Romero
- Department of Biochemistry, School of Medicine, and Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - S. Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Clinical Medicine Department, Section of General Pathology, University of Perugia, Perugia, Italy
| | - George W. Booz
- Departments of Pharmacology and Toxicology, School of Medicine, and Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| |
Collapse
|