1
|
Duan XP, Zhang CB, Wang WH, Lin DH. Role of calcineurin in regulating renal potassium (K +) excretion: Mechanisms of calcineurin inhibitor-induced hyperkalemia. Acta Physiol (Oxf) 2024; 240:e14189. [PMID: 38860527 PMCID: PMC11250626 DOI: 10.1111/apha.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Biao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
2
|
Duan XP, Zheng JY, Jiang SP, Wang MX, Zhang C, Chowdhury T, Wang WH, Lin DH. mTORc2 in Distal Convoluted Tubule and Renal K + Excretion during High Dietary K + Intake. J Am Soc Nephrol 2024; 35:00001751-990000000-00330. [PMID: 38788191 PMCID: PMC11387030 DOI: 10.1681/asn.0000000000000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
Key Points
High K stimulates mechanistic target of rapamycin complex 2 (mTORc2) in the distal convoluted tubule (DCT).Inhibition of mTORc2 decreased the basolateral Kir4.1/Kir5.1 and Na-Cl cotransporter in the DCT.Inhibition of mTORc2 of the DCT compromised kidneys' ability to excrete potassium during high K intake.
Background
Renal mechanistic target of rapamycin complex 2 (mTORc2) plays a role in regulating renal K+ excretion (renal-EK) and K+ homeostasis. Inhibition of renal mTORc2 causes hyperkalemia due to suppressing epithelial Na+ channel and renal outer medullary K+ (Kir1.1) in the collecting duct. We now explore whether mTORc2 of distal convoluted tubules (DCTs) regulates basolateral Kir4.1/Kir5.1, Na-Cl cotransporter (NCC), and renal-EK.
Methods
We used patch-clamp technique to examine basolateral Kir4.1/Kir5.1 in early DCT, immunoblotting, and immunofluorescence to examine NCC expression and in vivo measurement of urinary K+ excretion to determine baseline renal-EK in mice treated with an mTORc2 inhibitor and in DCT-specific rapamycin-insensitive companion of mTOR knockout (DCT-RICTOR-KO) mice.
Results
Inhibition of mTORc2 with AZD8055 abolished high-K+–induced inhibition of Kir4.1/Kir5.1 in DCT, high potassium–induced depolarization of the DCT membrane, and high potassium–induced suppression of phosphorylated Na-Cl cotransporter (pNCC) expression. AZD8055 stimulated the 40-pS inwardly rectifying K+ channel (Kir4.1/Kir5.1-heterotetramer) in early DCT in the mice on overnight high potassium intake; this effect was absent in the presence of protein kinase C inhibitors, which also stimulated Kir4.1/Kir5.1. AZD8055 treatment decreased renal-EK in animals on overnight high-potassium diet. Deletion of RICTOR in the DCT increased the Kir4.1/Kir5.1-mediated K+ currents, hyperpolarized the DCT membrane, and increased the expression of pWNK4 and pNCC. Renal-EK was lower and plasma K+ was higher in DCT-RICTOR-KO mice than corresponding control mice. In addition, overnight high-potassium diet did not inhibit Kir4.1/Kir5.1 activity in the DCT and failed to inhibit the expression of pNCC in DCT-RICTOR-KO mice. Overnight high potassium intake stimulated renal-EK in control mice, but this effect was attenuated in DCT-RICTOR-KO mice. Thus, overnight high potassium intake induced hyperkalemia in DCT-RICTOR-KO mice but not in control mice.
Conclusions
mTORc2 of the DCT inhibits Kir4.1/Kir5.1 activity and NCC expression and stimulates renal-EK during high potassium intake.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Jun-Ya Zheng
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Shao-Peng Jiang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ming-Xiao Wang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Chengbiao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Tanzina Chowdhury
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
3
|
Saha B, Shabbir W, Takagi E, Duan XP, Leite Dellova DCA, Demko J, Manis A, Loffing-Cueni D, Loffing J, Sørensen MV, Wang WH, Pearce D. Potassium Activates mTORC2-dependent SGK1 Phosphorylation to Stimulate Epithelial Sodium Channel: Role in Rapid Renal Responses to Dietary Potassium. J Am Soc Nephrol 2023; 34:1019-1038. [PMID: 36890646 PMCID: PMC10278851 DOI: 10.1681/asn.0000000000000109] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023] Open
Abstract
SIGNIFICANCE STATEMENT Rapid renal responses to ingested potassium are essential to prevent hyperkalemia and also play a central role in blood pressure regulation. Although local extracellular K + concentration in kidney tissue is increasingly recognized as an important regulator of K + secretion, the underlying mechanisms that are relevant in vivo remain controversial. To assess the role of the signaling kinase mTOR complex-2 (mTORC2), the authors compared the effects of K + administered by gavage in wild-type mice and knockout mice with kidney tubule-specific inactivation of mTORC2. They found that mTORC2 is rapidly activated to trigger K + secretion and maintain electrolyte homeostasis. Downstream targets of mTORC2 implicated in epithelial sodium channel regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. These findings offer insight into electrolyte physiologic and regulatory mechanisms. BACKGROUND Increasing evidence implicates the signaling kinase mTOR complex-2 (mTORC2) in rapid renal responses to changes in plasma potassium concentration [K + ]. However, the underlying cellular and molecular mechanisms that are relevant in vivo for these responses remain controversial. METHODS We used Cre-Lox-mediated knockout of rapamycin-insensitive companion of TOR (Rictor) to inactivate mTORC2 in kidney tubule cells of mice. In a series of time-course experiments in wild-type and knockout mice, we assessed urinary and blood parameters and renal expression and activity of signaling molecules and transport proteins after a K + load by gavage. RESULTS A K + load rapidly stimulated epithelial sodium channel (ENaC) processing, plasma membrane localization, and activity in wild-type, but not in knockout, mice. Downstream targets of mTORC2 implicated in ENaC regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. We observed differences in urine electrolytes within 60 minutes, and plasma [K + ] was greater in knockout mice within 3 hours of gavage. Renal outer medullary potassium (ROMK) channels were not acutely stimulated in wild-type or knockout mice, nor were phosphorylation of other mTORC2 substrates (PKC and Akt). CONCLUSIONS The mTORC2-SGK1-Nedd4-2-ENaC signaling axis is a key mediator of rapid tubule cell responses to increased plasma [K + ] in vivo . The effects of K + on this signaling module are specific, in that other downstream mTORC2 targets, such as PKC and Akt, are not acutely affected, and ROMK and Large-conductance K + (BK) channels are not activated. These findings provide new insight into the signaling network and ion transport systems that underlie renal responses to K +in vivo .
Collapse
Affiliation(s)
- Bidisha Saha
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Waheed Shabbir
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Enzo Takagi
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Deise Carla Almeida Leite Dellova
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
- Current address: Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo, Brazil
| | - John Demko
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Anna Manis
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | | | | | - Mads Vaarby Sørensen
- Department of Biomedicine, Unit of Physiology, Aarhus University, Aarhus, Denmark
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - David Pearce
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
4
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
5
|
Wu A, Wolley MJ, Mayr HL, Cheng L, Cowley D, Li B, Campbell KL, Terker AS, Ellison DH, Welling PA, Fenton RA, Stowasser M. Randomized trial on the effect of oral potassium chloride supplementation on the thiazide-sensitive sodium chloride cotransporter in healthy adults. Kidney Int Rep 2023. [DOI: 10.1016/j.ekir.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
6
|
Castañeda-Bueno M, Ellison DH. Blood pressure effects of sodium transport along the distal nephron. Kidney Int 2022; 102:1247-1258. [PMID: 36228680 PMCID: PMC9754644 DOI: 10.1016/j.kint.2022.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; LeDucq Transatlantic Network of Excellence, Portland, Oregon, USA; Renal Section, VA Portland Healthcare System, Portland, Oregon, USA.
| |
Collapse
|
7
|
Johnston JG, Wingo CS. Potassium Homeostasis and WNK Kinases in the Regulation of the Sodium-Chloride Cotransporter: Hyperaldosteronism and Its Metabolic Consequences. KIDNEY360 2022; 3:1823-1828. [PMID: 36514400 PMCID: PMC9717643 DOI: 10.34067/kid.0005752022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Jermaine G. Johnston
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Veterans Administration Medical Center, North Florida/South Georgia Veterans Health Administration, Gainesville, Florida
| | - Charles S. Wingo
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Veterans Administration Medical Center, North Florida/South Georgia Veterans Health Administration, Gainesville, Florida
| |
Collapse
|
8
|
Palmer LG. Directing two-way traffic in the kidney: A tale of two ions. J Gen Physiol 2022; 154:213433. [PMID: 36048011 PMCID: PMC9437110 DOI: 10.1085/jgp.202213179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The kidneys regulate levels of Na+ and K+ in the body by varying urinary excretion of the electrolytes. Since transport of each of the two ions can affect the other, controlling both at the same time is a complex task. The kidneys meet this challenge in two ways. Some tubular segments change the coupling between Na+ and K+ transport. In addition, transport of Na+ can shift between segments where it is coupled to K+ reabsorption and segments where it is coupled to K+ secretion. This permits the kidney to maintain electrolyte balance with large variations in dietary intake.
Collapse
Affiliation(s)
- Lawrence G. Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, NY,Correspondence to Lawrence G. Palmer:
| |
Collapse
|
9
|
Kidney-Specific CAP1/Prss8-Deficient Mice Maintain ENaC-Mediated Sodium Balance through an Aldosterone Independent Pathway. Int J Mol Sci 2022; 23:ijms23126745. [PMID: 35743186 PMCID: PMC9224322 DOI: 10.3390/ijms23126745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
The serine protease prostasin (CAP1/Prss8, channel-activating protease-1) is a confirmed in vitro and in vivo activator of the epithelial sodium channel ENaC. To test whether proteolytic activity or CAP1/Prss8 abundance itself are required for ENaC activation in the kidney, we studied animals either hetero- or homozygous mutant at serine 238 (S238A; Prss8cat/+ and Prss8cat/cat), and renal tubule-specific CAP1/Prss8 knockout (Prss8PaxLC1) mice. When exposed to varying Na+-containing diets, no changes in Na+ and K+ handling and only minor changes in the expression of Na+ and K+ transporting protein were found in both models. Similarly, the α- or γENaC subunit cleavage pattern did not differ from control mice. On standard and low Na+ diet, Prss8cat/+ and Prss8cat/cat mice exhibited standard plasma aldosterone levels and unchanged amiloride-sensitive rectal potential difference indicating adapted ENaC activity. Upon Na+ deprivation, mice lacking the renal CAP1/Prss8 expression (Prss8PaxLC1) exhibit significantly decreased plasma aldosterone and lower K+ levels but compensate by showing significantly higher plasma renin activity. Our data clearly demonstrated that the catalytic activity of CAP1/Prss8 is dispensable for proteolytic ENaC activation. CAP1/Prss8-deficiency uncoupled ENaC activation from its aldosterone dependence, but Na+ homeostasis is maintained through alternative pathways.
Collapse
|
10
|
Zapf AM, Grimm PR, Al-Qusairi L, Delpire E, Welling PA. Low Salt Delivery Triggers Autocrine Release of Prostaglandin E2 From the Aldosterone-Sensitive Distal Nephron in Familial Hyperkalemic Hypertension Mice. Front Physiol 2022; 12:787323. [PMID: 35069250 PMCID: PMC8770744 DOI: 10.3389/fphys.2021.787323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant activation of with-no-lysine kinase (WNK)-STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) kinase signaling in the distal convoluted tubule (DCT) causes unbridled activation of the thiazide-sensitive sodium chloride cotransporter (NCC), leading to familial hyperkalemic hypertension (FHHt) in humans. Studies in FHHt mice engineered to constitutively activate SPAK specifically in the DCT (CA-SPAK mice) revealed maladaptive remodeling of the aldosterone sensitive distal nephron (ASDN), characterized by decrease in the potassium excretory channel, renal outer medullary potassium (ROMK), and epithelial sodium channel (ENaC), that contributes to the hyperkalemia. The mechanisms by which NCC activation in DCT promotes remodeling of connecting tubule (CNT) are unknown, but paracrine communication and reduced salt delivery to the ASDN have been suspected. Here, we explore the involvement of prostaglandin E2 (PGE2). We found that PGE2 and the terminal PGE2 synthase, mPGES1, are increased in kidney cortex of CA-SPAK mice, compared to control or SPAK KO mice. Hydrochlorothiazide (HCTZ) reduced PGE2 to control levels, indicating increased PGE2 synthesis is dependent on increased NCC activity. Immunolocalization studies revealed mPGES1 is selectively increased in the CNT of CA-SPAK mice, implicating low salt-delivery to ASDN as the trigger. Salt titration studies in an in vitro ASDN cell model, mouse CCD cell (mCCD-CL1), confirmed PGE2 synthesis is activated by low salt, and revealed that response is paralleled by induction of mPGES1 gene expression. Finally, inhibition of the PGE2 receptor, EP1, in CA-SPAK mice partially restored potassium homeostasis as it partially rescued ROMK protein abundance, but not ENaC. Together, these data indicate low sodium delivery to the ASDN activates PGE2 synthesis and this inhibits ROMK through autocrine activation of the EP1 receptor. These findings provide new insights into the mechanism by which activation of sodium transport in the DCT causes remodeling of the ASDN.
Collapse
Affiliation(s)
- Ava M Zapf
- Molecular Medicine, Graduate Program in Life Sciences, University of Maryland Medical School, Baltimore, MD, United States
| | - Paul R Grimm
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lama Al-Qusairi
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Paul A Welling
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
11
|
Polidoro JZ, Luchi WM, Seguro AC, Malnic G, Girardi ACC. Paracrine and endocrine regulation of renal potassium secretion. Am J Physiol Renal Physiol 2022; 322:F360-F377. [DOI: 10.1152/ajprenal.00251.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The seminal studies conducted by Giebisch and colleagues in the 1960s paved the way for understanding the renal mechanisms involved in K+ homeostasis. It was demonstrated that differential handling of K+ in the distal segments of the nephron is crucial for proper K+ balance. Although aldosterone had been classically ascribed as the major ion transport regulator in the distal nephron, thereby contributing to K+ homeostasis, it became clear that aldosterone per se could not explain the kidney's ability to modulate kaliuresis in both acute and chronic settings. The existence of alternative kaliuretic and antikaliuretic mechanisms was suggested by physiological studies in the 1980s but only gained form and shape with the advent of molecular biology. It is now established that the kidneys recruit several endocrine and paracrine mechanisms for adequate kaliuretic response. These mechanisms include the direct effects of peritubular K+, a gut-kidney regulatory axis sensing dietary K+ levels, the kidney secretion of kallikrein during postprandial periods, the upregulation of angiotensin II receptors in the distal nephron during chronic changes in the K+ diet, and the local increase of prostaglandins by low K+ diet. This review discusses recent advances in the understanding of endocrine and paracrine mechanisms underlying the modulation of K+ secretion and how these mechanisms impact kaliuresis and K+ balance. We also highlight important unknowns about the regulation of renal K+ excretion under physiological circumstances.
Collapse
Affiliation(s)
- Juliano Z. Polidoro
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Weverton Machado Luchi
- Department of Internal Medicine, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Antonio Carlos Seguro
- Department of Nephrology (LIM 12), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
12
|
Preston RA, Afshartous D, Caizapanta EV, Materson BJ, Rodco R, Alonso E, Alonso AB. Characterization of Potassium-Induced Natriuresis in Hypertensive Postmenopausal Women During Both Low and High Sodium Intake. Hypertension 2022; 79:813-826. [PMID: 35045721 DOI: 10.1161/hypertensionaha.121.18392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Potassium-induced natriuresis may contribute to the beneficial effects of potassium on blood pressure but has not been well-characterized in human postmenopausal hypertension. We determined the time course and magnitude of potassium-induced natriuresis and kaliuresis compared with hydrochlorothiazide in 19 hypertensive Hispanic postmenopausal women. We also determined the modulating effects of sodium intake, sodium-sensitivity, and activity of the thiazide-sensitive NCC (sodium-chloride cotransporter). METHODS Sixteen-day inpatient confinement: 8 days low sodium followed by 8 days high sodium intake. During both periods, we determined sodium and potassium excretion following 35 mmol oral KCl versus 50 mg hydrochlorothiazide. We determined sodium-sensitivity as change in 24-hour systolic pressure from low to high sodium. We determined NCC activity by standard thiazide-sensitivity test. RESULTS Steady-state sodium intake was the key determinant of potassium-induced natriuresis. During low sodium intake, sodium excretion was low and did not increase following 35 mmol KCl indicating continued sodium conservation. Conversely, during high sodium intake, sodium excretion increased sharply following 35 mmol KCl to ≈37% of that produced by hydrochlorothiazide. Under both low and high sodium intake, 35 mmol potassium was mostly excreted within 5 hours, accompanied by a sodium load reflecting the steady-state sodium intake, consistent with independent regulation of sodium/potassium excretion in the human distal nephron. CONCLUSIONS Potassium-induced natriuresis was not greater in sodium-sensitive versus sodium-resistant hypertensives or hypertensives with higher versus lower basal NCC activity. We studied an acute KCl challenge. It remains to further characterize potassium-induced natriuresis during chronic potassium increase and when potassium is administered a complex potassium-containing meal.
Collapse
Affiliation(s)
- Richard A Preston
- Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine University of Miami. Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL. (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.).,University of Miami Clinical and Translational Science Institutes (CTSI), Miller School of Medicine, University of Miami, FL. (R.A.P.).,The Peggy and Harold Katz Family Drug Discovery center, Miller School of Medicine, University of Miami, FL. (R.A.P.)
| | - David Afshartous
- Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine University of Miami. Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL. (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Evelyn V Caizapanta
- Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine University of Miami. Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL. (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Barry J Materson
- Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine University of Miami. Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL. (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Rolando Rodco
- Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine University of Miami. Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL. (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Eileen Alonso
- Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine University of Miami. Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL. (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Alberto B Alonso
- Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine University of Miami. Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL. (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| |
Collapse
|
13
|
Pearce D, Manis AD, Nesterov V, Korbmacher C. Regulation of distal tubule sodium transport: mechanisms and roles in homeostasis and pathophysiology. Pflugers Arch 2022; 474:869-884. [PMID: 35895103 PMCID: PMC9338908 DOI: 10.1007/s00424-022-02732-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl-, and HCO3-, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components-kinases, ubiquitin ligases, phosphatases, transcription factors, and others-have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl- cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.
Collapse
Affiliation(s)
- David Pearce
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Anna D. Manis
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA USA
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, Erlangen, Germany
| |
Collapse
|
14
|
Isaeva E, Bohovyk R, Fedoriuk M, Shalygin A, Klemens CA, Zietara A, Levchenko V, Denton JS, Staruschenko A, Palygin O. Crosstalk between ENaC and basolateral K ir 4.1/K ir 5.1 channels in the cortical collecting duct. Br J Pharmacol 2021; 179:2953-2968. [PMID: 34904226 DOI: 10.1111/bph.15779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/06/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Inwardly rectifying K+ (Kir ) channels located on the basolateral membrane of epithelial cells of the distal nephron play a crucial role in K+ handling and blood pressure control, making these channels an attractive target for the treatment of hypertension. The purpose of the present study was to determine how the inhibition of basolateral Kir 4.1/Kir 5.1 heteromeric K+ channel affects epithelial sodium channel (ENaC)-mediated Na+ transport in the principal cells of cortical collecting duct (CCD). EXPERIMENTAL APPROACH The effect of fluoxetine, amitriptyline, and recently developed Kir inhibitor, VU0134992, on the activity of Kir 4.1, Kir 4.1/Kir 5.1, and ENaC were tested using electrophysiological approaches in Chinese hamster ovary (CHO) cells transfected with respective channel subunits, cultured polarized epithelial mCCDcl1 cells, and freshly isolated rat and human CCD tubules. To test the effect of pharmacological Kir 4.1/Kir 5.1 inhibition on electrolyte homeostasis in vivo and corresponding changes in distal tubule transport, Dahl salt-sensitive rats were injected with amitriptyline (15 mg kg-1 day-1 ) for three days. KEY RESULTS We found that inhibition of Kir 4.1/Kir 5.1, but not Kir 4.1 channel, depolarizes cell membrane, induces the elevation of intracellular Ca2+ concentration, and suppresses ENaC activity. Furthermore, we demonstrate that amitriptyline administration leads to a significant drop in plasma K+ level, triggering sodium excretion and diuresis. CONCLUSION AND IMPLICATIONS Present data uncovers a specific role of the Kir 4.1/Kir 5.1 channel in the modulation of ENaC activity and emphasizes the potential for using Kir 4.1/Kir 5.1 inhibitors to regulate electrolyte homeostasis and blood pressure.
Collapse
Affiliation(s)
- Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Ruslan Bohovyk
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Mykhailo Fedoriuk
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Alexey Shalygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Adrian Zietara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Jerod S Denton
- Department of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Onishi K, Fu HY, Sofue T, Tobiume A, Moritoki M, Saiga H, Ohmura-Hoshino M, Hoshino K, Minamino T. Galectin-9 deficiency exacerbates lipopolysaccharide-induced hypothermia and kidney injury. Clin Exp Nephrol 2021; 26:226-233. [PMID: 34698914 DOI: 10.1007/s10157-021-02152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Galectin-9 (Gal-9) is a multifunctional lectin that moderates inflammation and organ damage. In this study, we tested whether Gal-9 has a protective role in the pathogenesis of endotoxemic acute kidney injury. METHODS We examined the levels of Gal-9 in control mice after lipopolysaccharide (LPS) administration. We developed Gal-9 knockout (KO) mice that lack Gal-9 systemically and evaluated the role of Gal-9 in LPS-induced proinflammatory cytokines, vascular permeability, and renal injury. RESULTS Gal-9 levels were increased in the plasma, kidney, and spleen within 4 h after LPS administration to wild-type mice. Gal-9 deficiency did not affect the LPS-induced increase in plasma tumor necrosis factor-α levels at 1 h or vascular permeability at 6 h. Lower urine volume and reduced creatinine clearance were observed in Gal-9-KO mice compared with wild-type mice after LPS administration. Gal-9-KO mice had limited improvement in urine volume after fluid resuscitation compared with wild-type mice. LPS reduced the body temperature 12 h after its administration. Hypothermia had disappeared in wild-type mice by 24 h, whereas it was sustained until 24 h in Gal-9-KO mice. Importantly, maintaining body temperature in Gal-9-KO mice improved the response of urine flow to fluid resuscitation. CONCLUSION Deficiency in Gal-9 worsened LPS-induced hypothermia and kidney injury in mice. The accelerated hypothermia induced by Gal-9 deficiency contributed to the blunted response to fluid resuscitation.
Collapse
Affiliation(s)
- Keisuke Onishi
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
| | - Hai Ying Fu
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Tadashi Sofue
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Atsushi Tobiume
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Masahiro Moritoki
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Hiroyuki Saiga
- Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Mari Ohmura-Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.,Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, 1200 Kayo-cho, Yokkaichi, Mie, 512-8045, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Tetsuo Minamino
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| |
Collapse
|
16
|
Ayuzawa N, Fujita T. The Mineralocorticoid Receptor in Salt-Sensitive Hypertension and Renal Injury. J Am Soc Nephrol 2021; 32:279-289. [PMID: 33397690 PMCID: PMC8054893 DOI: 10.1681/asn.2020071041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypertension and its comorbidities pose a major public health problem associated with disease-associated factors related to a modern lifestyle, such high salt intake or obesity. Accumulating evidence has demonstrated that aldosterone and its receptor, the mineralocorticoid receptor (MR), have crucial roles in the development of salt-sensitive hypertension and coexisting cardiovascular and renal injuries. Accordingly, clinical trials have repetitively shown the promising effects of MR blockers in these diseases. We and other researchers have identified novel mechanisms of MR activation involved in salt-sensitive hypertension and renal injury, including the obesity-derived overproduction of aldosterone and ligand-independent signaling. Moreover, recent advances in the analysis of cell-specific and context-dependent mechanisms of MR activation in various tissues-including a classic target of aldosterone, aldosterone-sensitive distal nephrons-are now providing new insights. In this review, we summarize recent updates to our understanding of aldosterone-MR signaling, focusing on its role in salt-sensitive hypertension and renal injury.
Collapse
Affiliation(s)
- Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan,Shinshu University School of Medicine, Nagano, Japan,Research Center for Social Systems, Shinshu University, Nagano, Japan
| |
Collapse
|
17
|
Preston RA, Afshartous D, Caizapanta EV, Materson BJ, Rodco R, Alonso E, Alonso AB. Thiazide-Sensitive NCC (Sodium-Chloride Cotransporter) in Human Metabolic Syndrome: Sodium Sensitivity and Potassium-Induced Natriuresis. Hypertension 2021; 77:447-460. [PMID: 33390050 DOI: 10.1161/hypertensionaha.120.15933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The thiazide-sensitive sodium-chloride cotransporter (NCC;SLC12A3) is central to sodium and blood pressure regulation. Metabolic syndrome induces NCC upregulation generating sodium-sensitive hypertension in experimental animal models. We tested the role of NCC in sodium sensitivity in hypertensive humans with metabolic syndrome. Conversely, oral potassium induces NCC downregulation producing potassium-induced natriuresis. We determined the time course and magnitude of potassium-induced natriuresis compared with the natriuresis following hydrochlorothiazide (HCTZ) as a reference standard. We studied 19 obese hypertensive humans with metabolic syndrome during 13-day inpatient confinement. We determined sodium sensitivity by change in 24-hour mean systolic pressure by automated monitor from days 5 (low sodium) to 10 (high sodium). We determined NCC activity by standard 50 mg HCTZ sensitivity test (day 11). We determined potassium-induced natriuresis following 35 mmol KCl (day 13). We determined (1) whether NCC activity was greater in sodium-sensitive versus sodium-resistant participants and correlated with sodium sensitivity and (2) time course and magnitude of potassium-induced natriuresis following 35 mmol KCl directly compared with 50 mg HCTZ. NCC activity was not greater in sodium-sensitive versus sodium-resistant humans and did not correlate with sodium sensitivity. Thirty-five-millimoles KCl produced a rapid natriuresis approximately half that of 50 mg HCTZ with a greater kaliuresis. Our investigation tested a key hypothesis regarding NCC activity in human hypertension and characterized potassium-induced natriuresis following 35 mmol KCl compared with 50 mg HCTZ. In obese hypertensive adults with metabolic syndrome ingesting a high-sodium diet, 35 mmol KCl had a net natriuretic effect approximately half that of 50 mg HCTZ.
Collapse
Affiliation(s)
- Richard A Preston
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.).,University of Miami Clinical and Translational Science Institutes, FL (R.A.P.).,Peggy and Harold Katz Family Drug Discovery Center, Miami, FL (R.A.P.)
| | - David Afshartous
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Evelyn V Caizapanta
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Barry J Materson
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Rolando Rodco
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Eileen Alonso
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| | - Alberto B Alonso
- From the Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, FL (R.A.P., D.A., E.V.C., B.J.M., R.R., E.A., A.B.A.)
| |
Collapse
|
18
|
Ayasse N, Berg P, Leipziger J, Sørensen MV. ENaC expression correlates with the acute furosemide-induced K + excretion. Physiol Rep 2021; 9:e14668. [PMID: 33410279 PMCID: PMC7788322 DOI: 10.14814/phy2.14668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In the aldosterone-sensitive distal nephron (ASDN), epithelial sodium channel (ENaC)-mediated Na+ absorption drives K+ excretion. K+ excretion depends on the delivery of Na+ to the ASDN and molecularly activated ENaC. Furosemide is known as a K+ wasting diuretic as it greatly enhances Na+ delivery to the ASDN. Here, we studied the magnitude of acute furosemide-induced kaliuresis under various states of basal molecular ENaC activity. METHODS C57/Bl6J mice were subjected to different dietary regimens that regulate molecular ENaC expression and activity levels. The animals were anesthetized and bladder-catheterized. Diuresis was continuously measured before and after administration of furosemide (2 µg/g BW) or benzamil (0.2 µg/g BW). Flame photometry was used to measure urinary [Na+ ] and [K+ ]. The kidneys were harvested and, subsequently, ENaC expression and cleavage activation were determined by semiquantitative western blotting. RESULTS A low K+ and a high Na+ diet markedly suppressed ENaC protein expression, cleavage activation, and furosemide-induced kaliuresis. In contrast, furosemide-induced kaliuresis was greatly enhanced in animals fed a high K+ or low Na+ diet, conditions with increased ENaC expression. The furosemide-induced diuresis was similar in all dietary groups. CONCLUSION Acute furosemide-induced kaliuresis differs greatly and depends on the a priori molecular expression level of ENaC. Remarkably, it can be even absent in animals fed a high Na+ diet, despite a marked increase of tubular flow and urinary Na+ excretion. This study provides auxiliary evidence that acute ENaC-dependent K+ excretion requires both Na+ as substrate and molecular activation of ENaC.
Collapse
Affiliation(s)
- Niklas Ayasse
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - Peder Berg
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - Jens Leipziger
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
- Aarhus Institute of Advanced StudiesAarhus UniversityAarhus CDenmark
| | | |
Collapse
|
19
|
Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Front Physiol 2020; 11:585907. [PMID: 33192599 PMCID: PMC7606576 DOI: 10.3389/fphys.2020.585907] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
20
|
Meor Azlan NF, Zhang J. Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease. Cells 2020; 9:2293. [PMID: 33066544 PMCID: PMC7602155 DOI: 10.3390/cells9102293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
The SLC12 family of cation-chloride-cotransporters (CCCs) is comprised of potassium chloride cotransporters (KCCs), which mediate Cl- extrusion and sodium-potassium chloride cotransporters (N[K]CCs), which mediate Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. The functions of CCCs influence a variety of physiological processes, many of which overlap with the pathophysiology of cardiovascular disease. Although not all of the cotransporters have been linked to Mendelian genetic disorders, recent studies have provided new insights into their functional role in vascular and renal cells in addition to their contribution to cardiovascular diseases. Particularly, an imbalance in potassium levels promotes the pathogenesis of atherosclerosis and disturbances in sodium homeostasis are one of the causes of hypertension. Recent findings suggest hypothalamic signaling as a key signaling pathway in the pathophysiology of hypertension. In this review, we summarize and discuss the role of CCCs in cardiovascular disease with particular emphasis on knowledge gained in recent years on NKCCs and KCCs.
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China
| |
Collapse
|
21
|
Wei KY, Gritter M, Vogt L, de Borst MH, Rotmans JI, Hoorn EJ. Dietary potassium and the kidney: lifesaving physiology. Clin Kidney J 2020; 13:952-968. [PMID: 33391739 PMCID: PMC7769543 DOI: 10.1093/ckj/sfaa157] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 02/07/2023] Open
Abstract
Potassium often has a negative connotation in Nephrology as patients with chronic kidney disease (CKD) are prone to develop hyperkalaemia. Approaches to the management of chronic hyperkalaemia include a low potassium diet or potassium binders. Yet, emerging data indicate that dietary potassium may be beneficial for patients with CKD. Epidemiological studies have shown that a higher urinary potassium excretion (as proxy for higher dietary potassium intake) is associated with lower blood pressure (BP) and lower cardiovascular risk, as well as better kidney outcomes. Considering that the composition of our current diet is characterized by a high sodium and low potassium content, increasing dietary potassium may be equally important as reducing sodium. Recent studies have revealed that dietary potassium modulates the activity of the thiazide-sensitive sodium-chloride cotransporter in the distal convoluted tubule (DCT). The DCT acts as a potassium sensor to control the delivery of sodium to the collecting duct, the potassium-secreting portion of the kidney. Physiologically, this allows immediate kaliuresis after a potassium load, and conservation of potassium during potassium deficiency. Clinically, it provides a novel explanation for the inverse relationship between dietary potassium and BP. Moreover, increasing dietary potassium intake can exert BP-independent effects on the kidney by relieving the deleterious effects of a low potassium diet (inflammation, oxidative stress and fibrosis). The aim of this comprehensive review is to link physiology with clinical medicine by proposing that the same mechanisms that allow us to excrete an acute potassium load also protect us from hypertension, cardiovascular disease and CKD.
Collapse
Affiliation(s)
- Kuang-Yu Wei
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Division of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Yang L, Frindt G, Xu Y, Uchida S, Palmer LG. Aldosterone-dependent and -independent regulation of Na + and K + excretion and ENaC in mouse kidneys. Am J Physiol Renal Physiol 2020; 319:F323-F334. [PMID: 32628540 DOI: 10.1152/ajprenal.00204.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated the regulation of Na+ and K+ excretion and the epithelial Na+ channel (ENaC) in mice lacking the gene for aldosterone synthase (AS) using clearance methods to assess excretion and electrophysiology and Western blot analysis to test for ENaC activity and processing. After 1 day of dietary Na+ restriction, AS-/- mice lost more Na+ in the urine than AS+/+ mice did. After 1 wk on this diet, both genotypes strongly reduced urinary Na+ excretion, but creatinine clearance decreased only in AS-/- mice. Only AS+/+ animals exhibited increased ENaC function, assessed as amiloride-sensitive whole cell currents in collecting ducts or cleavage of αENaC and γENaC in Western blots. To assess the role of aldosterone in the excretion of a K+ load, animals were fasted overnight and refed with high-K+ or low-K+ diets for 5 h. Both AS+/+ and AS-/- mice excreted a large amount of K+ during this period. In both phenotypes the excretion was benzamil sensitive, indicating increased K+ secretion coupled to ENaC-dependent Na+ reabsorption. However, the increase in plasma K+ under these conditions was much larger in AS-/- animals than in AS+/+ animals. In both groups, cleavage of αENaC and γENaC increased. However, Na+ current measured ex vivo in connecting tubules was enhanced only in AS+/+ mice. We conclude that in the absence of aldosterone, mice can conserve Na+ without ENaC activation but at the expense of diminished glomerular filtration rate. Excretion of a K+ load can be accomplished through aldosterone-independent upregulation of ENaC, but aldosterone is required to excrete the excess K+ without hyperkalemia.
Collapse
Affiliation(s)
- Lei Yang
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Yuanyuan Xu
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York.,Department of Cardiology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
23
|
Deletion of the myeloid endothelin-B receptor confers long-term protection from angiotensin II-mediated kidney, eye and vessel injury. Kidney Int 2020; 98:1193-1209. [PMID: 32569653 PMCID: PMC7652550 DOI: 10.1016/j.kint.2020.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
The endothelin system may be an important player in hypertensive end-organ injury as endothelin-1 increases blood pressure and is pro-inflammatory. The immune system is emerging as an important regulator of blood pressure and we have shown that the early hypertensive response to angiotensin-II infusion was amplified in mice deficient of myeloid endothelin-B (ETB) receptors (LysM-CreEdnrblox/lox). Hypothesizing that these mice would display enhanced organ injury, we gave angiotensin-II to LysM-CreEdnrblox/lox and littermate controls (Ednrblox/lox) for six weeks. Unexpectedly, LysM-CreEdnrblox/lox mice were significantly protected from organ injury, with less proteinuria, glomerulosclerosis and inflammation of the kidney compared to controls. In the eye, LysM-CreEdnrblox/lox mice had fewer retinal hemorrhages, less microglial activation and less vessel rarefaction. Cardiac remodeling and dysfunction were similar in both groups at week six but LysM-CreEdnrblox/lox mice had better endothelial function. Although blood pressure was initially higher in LysM-CreEdnrblox/lox mice, this was not sustained. A natriuretic switch at about two weeks, due to enhanced ETB signaling in the kidney, induced a hypertensive reversal. By week six, blood pressure was lower in LysM-CreEdnrblox/lox mice than in controls. At six weeks, macrophages from LysM-CreEdnrblox/lox mice were more anti-inflammatory and had greater phagocytic ability compared to the macrophages of Ednrblox/lox mice. Thus, myeloid cell ETB receptor signaling drives this injury both through amplifying hypertension and by inflammatory polarization of macrophages.
Collapse
|
24
|
Penton D, Vohra T, Banki E, Wengi A, Weigert M, Forst AL, Bandulik S, Warth R, Loffing J. Collecting system-specific deletion of Kcnj10 predisposes for thiazide- and low-potassium diet-induced hypokalemia. Kidney Int 2020; 97:1208-1218. [PMID: 32299681 DOI: 10.1016/j.kint.2019.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
The basolateral potassium channel KCNJ10 (Kir4.1), is expressed in the renal distal convoluted tubule and controls the activity of the thiazide-sensitive sodium chloride cotransporter. Loss-of-function mutations of KCNJ10 cause EAST/SeSAME syndrome with salt wasting and severe hypokalemia. KCNJ10 is also expressed in the principal cells of the collecting system. However, its pathophysiological role in this segment has not been studied in detail. To address this, we generated the mouse model AQP2cre:Kcnj10flox/flox with a deletion of Kcnj10 specifically in the collecting system (collecting system-Kcnj10-knockout). Collecting system-Kcnj10-knockout mice responded normally to standard and high potassium diet. However, this knockout exhibited a higher kaliuresis and lower plasma potassium than control mice when treated with thiazide diuretics. Likewise, collecting systemKcnj10-knockout displayed an inadequately high kaliuresis and renal sodium retention upon dietary potassium restriction. In this condition, these knockout mice became hypokalemic due to insufficient downregulation of the epithelial sodium channel (ENaC) and the renal outer medullary potassium channel (ROMK) in the collecting system. Consistently, the phenotype of collecting system-Kcnj10-knockout was fully abrogated by ENaC inhibition with amiloride and ameliorated by genetic inactivation of ROMK in the collecting system. Thus, KCNJ10 in the collecting system contributes to the renal control of potassium homeostasis by regulating ENaC and ROMK. Hence, impaired KCNJ10 function in the collecting system predisposes for thiazide and low potassium diet-induced hypokalemia and likely contributes to the pathophysiology of renal potassium loss in EAST/SeSAME syndrome.
Collapse
Affiliation(s)
- David Penton
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Twinkle Vohra
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Eszter Banki
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Agnieszka Wengi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Maria Weigert
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Anna-Lena Forst
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Sascha Bandulik
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland.
| |
Collapse
|
25
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Gritter M, Rotmans JI, Hoorn EJ. Role of Dietary K + in Natriuresis, Blood Pressure Reduction, Cardiovascular Protection, and Renoprotection. Hypertension 2019; 73:15-23. [PMID: 30571564 DOI: 10.1161/hypertensionaha.118.11209] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Martin Gritter
- From the Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.G., E.J.H.)
| | - Joris I Rotmans
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, the Netherlands (J.I.R.)
| | - Ewout J Hoorn
- From the Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.G., E.J.H.)
| |
Collapse
|
27
|
The role of distal tubule and collecting duct sodium reabsorption in sunitinib-induced hypertension. J Hypertens 2019; 36:892-903. [PMID: 29283974 DOI: 10.1097/hjh.0000000000001650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Antiangiogenic receptor tyrosine kinase inhibitors (RTKI) induce arterial hypertension which may limit their use. Renal fractional sodium excretion (FENa) is reduced in early RTKI-induced hypertension, whereas fractional lithium excretion is unaltered. Therefore, we tested the hypothesis that activated distal tubule and collecting duct sodium reabsorption contributes to RTKI-induced hypertension. METHODS Amiloride-sensitive and hydrochlorothiazide (HCTZ)-sensitive fractional sodium reabsorption (FRNa) and renal epithelial sodium channel (ENaC) as well as sodium chloride cotransporter (NCC) abundances were determined in sunitinib-treated and control rats. The antihypertensive effects of amiloride and HCTZ were investigated by radiotelemery. RESULTS After 4 days of treatment, mean arterial pressure was 20 mmHg higher, FENa was lower (0.32 ± 0.08% vs. 0.65 ± 0.14%; P < 0.05), and renal medullary-ENaC protein abundance was higher in sunitinib-treated rats than in controls. Amiloride-sensitive FRNa was 2.37 ± 0.52% in sunitinib-treated rats vs. 2.66 ± 0.44% in controls (n.s.). HCTZ increased FENa by a similar magnitude without affecting amiloride-sensitive FRNa in both groups. After 14 days of treatment, renal medullary β-ENaC protein abundance was higher in rats that received sunitinib than in controls, whereas α-ENaC, γ-ENaC, and NCC abundances were similar in both groups. Amiloride and HCTZ reduced the sunitinib-induced mean arterial pressure rise by 8 ± 3 mmHg (P < 0.05) and 12 ± 2 mmHg (P < 0.05), respectively, without additive effects when combined. CONCLUSION ENaC-dependent and thiazide-sensitive sodium-retaining mechanisms are not overactive in sunitinib-induced hypertension but ENaC blockers and in particular thiazides may be suitable for its treatment.
Collapse
|
28
|
Sørensen MV, Saha B, Jensen IS, Wu P, Ayasse N, Gleason CE, Svendsen SL, Wang WH, Pearce D. Potassium acts through mTOR to regulate its own secretion. JCI Insight 2019; 5:126910. [PMID: 31013253 DOI: 10.1172/jci.insight.126910] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Potassium (K+) secretion by kidney tubule cells is central to electrolyte homeostasis in mammals. In the K+ secretory "principal" cells of the distal nephron, electrogenic Na+ transport by the epithelial sodium channel (ENaC) generates the electrical driving force for K+ transport across the apical membrane. Regulation of this process is attributable in part to aldosterone, which stimulates the gene transcription of the ENaC-regulatory kinase, SGK1. However, a wide range of evidence supports the conclusion that an unidentified aldosterone-independent pathway exists. We show here that in principal cells, K+ itself acts through the type 2 mTOR complex (mTORC2) to activate SGK1, which stimulates ENaC to enhance K+ excretion. The effect depends on changes in K+ concentration on the blood side of the cells, and requires basolateral membrane K+-channel activity. However, it does not depend on changes in aldosterone, or on enhanced distal delivery of Na+ from upstream nephron segments. These data strongly support the idea that K+ is sensed directly by principal cells to stimulate its own secretion by activating the mTORC2-SGK1 signaling module, and stimulate ENaC. We propose that this local effect acts in concert with aldosterone and increased Na+ delivery from upstream nephron segments to sustain K+ homeostasis.
Collapse
Affiliation(s)
- Mads Vaarby Sørensen
- Departments of Biomedicine and Physiology, Aarhus University, Aarhus, Denmark.,Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Bidisha Saha
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Iben Skov Jensen
- Departments of Biomedicine and Physiology, Aarhus University, Aarhus, Denmark
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Niklas Ayasse
- Departments of Biomedicine and Physiology, Aarhus University, Aarhus, Denmark
| | - Catherine E Gleason
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | | | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - David Pearce
- Department of Medicine, Division of Nephrology, and Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| |
Collapse
|
29
|
Molecular mechanisms for the regulation of blood pressure by potassium. CURRENT TOPICS IN MEMBRANES 2019; 83:285-313. [PMID: 31196607 DOI: 10.1016/bs.ctm.2019.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been well documented that the amount of potassium in the diet is associated with blood pressure levels in the population: the higher the potassium consumption, the lower the blood pressure and the cardiovascular mortality. In the last few years certain mechanisms for potassium regulation of salt reabsorption in the kidney have been elucidated at the molecular level. In this work we discuss the evidence demonstrating the relationship between potassium intake and blood pressure levels in human populations and in animal models, as well as the experimental data that reveal the effects of potassium on transepithelial Na+ reabsorption in different nephron segments. We also discuss the physiological relevance of K+-induced natriuresis, and finally, we focus on the molecular mechanisms by which extracellular potassium modulates the activity of the renal NaCl cotransporter, which is the mechanism that has been best dissected so far.
Collapse
|
30
|
Kamel KS, Schreiber M, Halperin ML. Renal potassium physiology: integration of the renal response to dietary potassium depletion. Kidney Int 2018; 93:41-53. [PMID: 29102372 DOI: 10.1016/j.kint.2017.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/30/2023]
Abstract
We summarize the current understanding of the physiology of the renal handling of potassium (K+), and present an integrative view of the renal response to K+ depletion caused by dietary K+ restriction. This renal response involves contributions from different nephron segments, and aims to diminish the rate of excretion of K+ as a result of: decreasing the rate of electrogenic (and increasing the rate of electroneutral) reabsorption of sodium in the aldosterone-sensitive distal nephron (ASDN), decreasing the abundance of renal outer medullary K+ channels in the luminal membrane of principal cells in the ASDN, decreasing the flow rate in the ASDN, and increasing the reabsorption of K+ in the cortical and medullary collecting ducts. The implications of this physiology for the association between K+ depletion and hypertension, and K+ depletion and formation of calcium kidney stones are discussed.
Collapse
Affiliation(s)
- Kamel S Kamel
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Martin Schreiber
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mitchell L Halperin
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Craigie E, Menzies RI, Larsen CK, Jacquillet G, Carrel M, Wildman SS, Loffing J, Leipziger J, Shirley DG, Bailey MA, Unwin RJ. The renal and blood pressure response to low sodium diet in P2X4 receptor knockout mice. Physiol Rep 2018; 6:e13899. [PMID: 30350402 PMCID: PMC6198136 DOI: 10.14814/phy2.13899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023] Open
Abstract
In the kidney, purinergic (P2) receptor-mediated ATP signaling has been shown to be an important local regulator of epithelial sodium transport. Appropriate sodium regulation is crucial for blood pressure (BP) control and disturbances in sodium balance can lead to hypo- or hypertension. Links have already been established between P2 receptor signaling and the development of hypertension, attributed mainly to vascular and/or inflammatory effects. A transgenic mouse model with deletion of the P2X4 receptor (P2X4-/- ) is known to have hypertension, which is thought to reflect endothelial dysfunction and impaired nitric oxide (NO) release. However, renal function in this model has not been characterized; moreover, studies in vitro have shown that the P2X4 receptor can regulate renal epithelial Na+ channel (ENaC) activity. Therefore, in the present study we investigated renal function and sodium handling in P2X4-/- mice, focusing on ENaC-mediated Na+ reabsorption. We confirmed an elevated BP in P2X4-/- mice compared with wild-type mice, but found that ENaC-mediated Na+ reabsorption is no different from wild-type and does not contribute to the raised BP observed in the knockout. However, when P2X4-/- mice were placed on a low sodium diet, BP normalized. Plasma aldosterone concentration tended to increase according to sodium restriction status in both genotypes; in contrast to wild-types, P2X4-/- mice did not show an increase in functional ENaC activity. Thus, although the increased BP in P2X4-/- mice has been attributed to endothelial dysfunction and impaired NO release, there is also a sodium-sensitive component.
Collapse
Affiliation(s)
- Eilidh Craigie
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
- Institue for AnatomyUniversity of ZürichZürichSwitzerland
| | - Robert I. Menzies
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
| | - Casper K. Larsen
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - Grégory Jacquillet
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
| | - Monique Carrel
- Institue for AnatomyUniversity of ZürichZürichSwitzerland
| | - Scott S. Wildman
- Urinary System Physiology UnitMedway School of PharmacyUniversity of KentKentUnited Kingdom
| | | | - Jens Leipziger
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - David G. Shirley
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
| | - Matthew A. Bailey
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
| | - Robert J. Unwin
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
- CVRM iMEDAstraZeneca GothenburgGothenburgSweden
| |
Collapse
|
32
|
Ivy JR, Evans LC, Moorhouse R, Richardson RV, Al-Dujaili EAS, Flatman PW, Kenyon CJ, Chapman KE, Bailey MA. Renal and Blood Pressure Response to a High-Salt Diet in Mice With Reduced Global Expression of the Glucocorticoid Receptor. Front Physiol 2018; 9:848. [PMID: 30038578 PMCID: PMC6046455 DOI: 10.3389/fphys.2018.00848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/14/2018] [Indexed: 01/02/2023] Open
Abstract
Salt-sensitive hypertension is common in glucocorticoid excess. Glucocorticoid resistance also presents with hypercortisolemia and hypertension but the relationship between salt intake and blood pressure (BP) is not well defined. GRβgeo/+ mice have global glucocorticoid receptor (GR) haploinsufficiency and increased BP. Here we examined the effect of high salt diet on BP, salt excretion and renal blood flow in GRβgeo/+mice. Basal BP was ∼10 mmHg higher in male GRβgeo/+ mice than in GR+/+ littermates. This modest increase was amplified by ∼10 mmHg following a high-salt diet in GRβgeo/+ mice. High salt reduced urinary aldosterone excretion but increased renal mineralocorticoid receptor expression in both genotypes. Corticosterone, and to a lesser extent deoxycorticosterone, excretion was increased in GRβgeo/+ mice following a high-salt challenge, consistent with enhanced 24 h production. GR+/+ mice increased fractional sodium excretion and reduced renal vascular resistance during the high salt challenge, retaining neutral sodium balance. In contrast, sodium excretion and renal vascular resistance did not adapt to high salt in GRβgeo/+ mice, resulting in transient sodium retention and sustained hypertension. With high-salt diet, Slc12a3 and Scnn1a mRNAs were higher in GRβgeo/+ than controls, and this was reflected in an exaggerated natriuretic response to thiazide and benzamil, inhibitors of NCC and ENaC, respectively. Reduction in GR expression causes salt-sensitivity and an adaptive failure of the renal vasculature and tubule, most likely reflecting sustained mineralocorticoid receptor activation. This provides a mechanistic basis to understand the hypertension associated with loss-of-function polymorphisms in GR in the context of habitually high salt intake.
Collapse
Affiliation(s)
- Jessica R Ivy
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Louise C Evans
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Moorhouse
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel V Richardson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emad A S Al-Dujaili
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Peter W Flatman
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher J Kenyon
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karen E Chapman
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Yang YS, Xie J, Yang SS, Lin SH, Huang CL. Differential roles of WNK4 in regulation of NCC in vivo. Am J Physiol Renal Physiol 2018; 314:F999-F1007. [PMID: 29384416 PMCID: PMC6031911 DOI: 10.1152/ajprenal.00177.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 11/22/2022] Open
Abstract
The Na+-Cl- cotransporter (NCC) in distal convoluted tubule (DCT) plays important roles in renal NaCl reabsorption. The current hypothesis for the mechanism of regulation of NCC focuses on WNK4 and intracellular Cl- concentration ([Cl-]i). WNK kinases bind Cl-, and Cl- binding decreases the catalytic activity. It is believed that hypokalemia under low K+ intake decreases [Cl-]i to activate WNK4, which thereby phosphorylates and stimulates NCC through activation of SPAK. However, increased NCC activity and apical NaCl entry would mitigate the fall in [Cl-]i. Whether [Cl-]i in DCT under low-K+ diet is sufficiently low to activate WNK4 is unknown. Furthermore, increased luminal NaCl delivery also stimulates NCC and causes upregulation of the transporter. Unlike low K+ intake, increased luminal NaCl delivery would tend to increase [Cl-]i. Thus we investigated the role of WNK4 and [Cl-]i in regulating NCC. We generated Wnk4-knockout mice and examined regulation of NCC by low K+ intake and by increased luminal NaCl delivery in knockout (KO) and wild-type mice. Wnk4-KO mice have marked reduction in the abundance, phosphorylation, and functional activity of NCC vs. wild type. Low K+ intake increases NCC phosphorylation and functional activity in wild-type mice, but not in Wnk4-KO mice. Increased luminal NaCl delivery similarly upregulates NCC, which, contrary to low K+ intake, is not abolished in Wnk4-KO mice. The results reveal that modulation of WNK4 activity by [Cl-]i is not the sole mechanism for regulating NCC. Increased luminal NaCl delivery upregulates NCC via yet unknown mechanism(s) that may override inhibition of WNK4 by high [Cl-]i.
Collapse
MESH Headings
- Animals
- Biological Transport
- Gene Expression Regulation, Enzymologic
- Injections, Subcutaneous
- Kidney Tubules, Distal/drug effects
- Kidney Tubules, Distal/enzymology
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- Potassium, Dietary/metabolism
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Renal Elimination
- Renal Reabsorption
- Sodium Chloride/administration & dosage
- Sodium Chloride/metabolism
- Sodium Chloride Symporter Inhibitors/pharmacology
- Solute Carrier Family 12, Member 3/deficiency
- Solute Carrier Family 12, Member 3/genetics
- Solute Carrier Family 12, Member 3/metabolism
Collapse
Affiliation(s)
- Yih-Sheng Yang
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jian Xie
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, and Graduate Institute of Medical Sciences, National Defense Medical Center , Taipei , Taiwan
- Graduate Institute of Biomedical Sciences, Academia Sinica, Taipei , Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, and Graduate Institute of Medical Sciences, National Defense Medical Center , Taipei , Taiwan
| | - Chou-Long Huang
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
34
|
Ayasse N, de Bruijn PIA, Berg P, Sørensen MV, Leipziger J. Hydrochlorothiazide and acute urinary acidification: The "voltage hypothesis" of ENaC-dependent H + secretion refuted. Acta Physiol (Oxf) 2018; 223:e13013. [PMID: 29226589 DOI: 10.1111/apha.13013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
Abstract
AIM The "voltage hypothesis" of H+ secretion states that urinary acidification following increased Na+ delivery to the collecting duct (CD) is ENaC dependent leading to transepithelial voltage-dependent increase in H+ secretion. We recently showed that furosemide acidifies the urine independently of ENaC activity. If the voltage hypothesis holds, hydrochlorothiazide (HCT) must acidify the urine. We here tested the acute effect of HCT on urine pH under normal and high ENaC expression. METHODS Mice subjected to a control or a low-Na+ diet were anesthetized and infused (0.5 mL h-1 ) with saline. Catheterization of the urinary bladder allowed real-time measurement of diuresis and urine pH. Mice received either HCT (1 mg mL-1 ) or vehicle. Urinary Na+ and K+ excretions were determined by flame photometry. ENaC expression levels were measured by semi-quantitative Western blotting. RESULTS (1) HCT increased diuresis and natriuresis in both diet groups. (2) K+ excretion rates increased after HCT administration from 18.6 ± 1.3 to 31.7 ± 2.5 μmol h-1 in the control diet group and from 23.0 ± 1.3 to 48.7 ± 3.0 μmol h-1 in the low-Na+ diet group. (3) Mice fed a low-Na+ diet showed a marked upregulation of ENaC. (4) Importantly, no acute changes in urine pH were observed after the administration of HCT in either group. CONCLUSION Acute administration of HCT has no effect on urine pH. Similarly, substantial functional and molecular upregulation of ENaC did not cause HCT to acutely change urine pH. Thus, an increased Na+ load to the CD does not alter urine pH. This supports our previous finding and likely falsifies the voltage hypothesis of H+ secretion.
Collapse
Affiliation(s)
- N. Ayasse
- Department of Biomedicine, Physiology and Biophysics; Aarhus University; Aarhus C Denmark
| | - P. I. A. de Bruijn
- Department of Biomedicine, Physiology and Biophysics; Aarhus University; Aarhus C Denmark
| | - P. Berg
- Department of Biomedicine, Physiology and Biophysics; Aarhus University; Aarhus C Denmark
| | - M. V. Sørensen
- Department of Biomedicine, Physiology and Biophysics; Aarhus University; Aarhus C Denmark
- Aarhus Institute of Advanced Studies; Aarhus University; Aarhus C Denmark
| | - J. Leipziger
- Department of Biomedicine, Physiology and Biophysics; Aarhus University; Aarhus C Denmark
| |
Collapse
|
35
|
Wang MX, Cuevas CA, Su XT, Wu P, Gao ZX, Lin DH, McCormick JA, Yang CL, Wang WH, Ellison DH. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int 2018; 93:893-902. [PMID: 29310825 PMCID: PMC6481177 DOI: 10.1016/j.kint.2017.10.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis.
Collapse
MESH Headings
- Alkalosis/genetics
- Alkalosis/metabolism
- Alkalosis/physiopathology
- Animals
- Disease Models, Animal
- Female
- Homeostasis
- Hydrochlorothiazide/pharmacology
- Hypokalemia/genetics
- Hypokalemia/metabolism
- Hypokalemia/physiopathology
- Kidney Tubules, Distal/drug effects
- Kidney Tubules, Distal/metabolism
- Kidney Tubules, Distal/physiopathology
- Male
- Membrane Potentials
- Mice, Knockout
- Natriuresis
- Potassium Channels, Inwardly Rectifying/deficiency
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium, Dietary/metabolism
- Renal Elimination
- Sodium/urine
- Sodium Chloride Symporter Inhibitors/pharmacology
- Solute Carrier Family 12, Member 3/genetics
- Solute Carrier Family 12, Member 3/metabolism
- Kir5.1 Channel
Collapse
Affiliation(s)
- Ming-Xiao Wang
- Department of Physiology, Zunyi Medical College, Zunyi, China; Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Catherina A Cuevas
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - James A McCormick
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Chao-Ling Yang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA.
| | - David H Ellison
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
36
|
Ferdaus MZ, Miller LN, Agbor LN, Saritas T, Singer JD, Sigmund CD, McCormick JA. Mutant Cullin 3 causes familial hyperkalemic hypertension via dominant effects. JCI Insight 2017; 2:96700. [PMID: 29263298 DOI: 10.1172/jci.insight.96700] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine [K] Kinase 4 (WNK4), with excessive activation of the downstream Sterile 20 (STE20)/SPS-1-related proline/alanine-rich kinase (SPAK) increasing phosphorylation of the Na+-Cl- cotransporter (NCC). CUL3-Δ9 promotes its own degradation via autoubiquitination, leading to the hypothesis that Cul3 haploinsufficiency causes FHHt. To directly test this, we generated Cul3 heterozygous mice (CUL3-Het), and Cul3 heterozygotes also expressing CUL3-Δ9 (CUL3-Het/Δ9), using an inducible renal epithelial-specific system. Endogenous CUL3 was reduced to 50% in both models, and consistent with autoubiquitination, CUL3-Δ9 protein was undetectable in CUL3-Het/Δ9 kidneys unless primary renal epithelia cells were cultured. Abundances of WNK4 and phosphorylated NCC did not differ between control and CUL3-Het mice, but they were elevated in CUL3-Het/Δ9 mice, which also displayed higher plasma [K+] and blood pressure. Abundance of phosphorylated Na+-K+-2Cl- cotransporter (NKCC2) was also increased, which may contribute to the severity of CUL3-Δ9-mediated FHHt. WNK4 and SPAK localized to puncta in NCC-positive segments but not in NKCC2-positive segments, suggesting differential effects of CUL3-Δ9. These results indicate that Cul3 haploinsufficiency does not cause FHHt, but dominant effects of CUL3-Δ9 are required.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Lauren N Miller
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Larry N Agbor
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Turgay Saritas
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey D Singer
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James A McCormick
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
37
|
Boyd-Shiwarski CR, Shiwarski DJ, Roy A, Namboodiri HN, Nkashama LJ, Xie J, McClain KL, Marciszyn A, Kleyman TR, Tan RJ, Stolz DB, Puthenveedu MA, Huang CL, Subramanya AR. Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. Mol Biol Cell 2017; 29:499-509. [PMID: 29237822 PMCID: PMC6014176 DOI: 10.1091/mbc.e17-08-0529] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/18/2023] Open
Abstract
WNK bodies are large punctate membraneless cytosolic signaling foci that sequester WNK serine–threonine kinases and form in renal distal tubular epithelial cells during shifts in total body potassium balance. The assembly of these structures requires KS-WNK1, a truncated isoform of the WNK1 gene that is exclusively expressed in the distal tubule. With-no-lysine (WNK) kinases coordinate volume and potassium homeostasis by regulating renal tubular electrolyte transport. In the distal convoluted tubule (DCT), potassium imbalance causes WNK signaling complexes to concentrate into large discrete foci, which we call “WNK bodies.” Although these structures have been reported previously, the mechanisms that drive their assembly remain obscure. Here, we show that kidney-specific WNK1 (KS-WNK1), a truncated kinase-defective WNK1 isoform that is highly expressed in the DCT, is critical for WNK body formation. While morphologically distinct WNK bodies were evident in the distal tubules of mice subjected to dietary potassium loading and restriction, KS-WNK1 knockout mice were deficient in these structures under identical conditions. Combining in vivo observations in kidney with reconstitution studies in cell culture, we found that WNK bodies are dynamic membraneless foci that are distinct from conventional organelles, colocalize with the ribosomal protein L22, and cluster the WNK signaling pathway. The formation of WNK bodies requires an evolutionarily conserved cysteine-rich hydrophobic motif harbored within a unique N-terminal exon of KS-WNK1. We propose that WNK bodies are not pathological aggregates, but rather are KS-WNK1–dependent microdomains of the DCT cytosol that modulate WNK signaling during physiological shifts in potassium balance.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Daniel J Shiwarski
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Ankita Roy
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Hima N Namboodiri
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Lubika J Nkashama
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jian Xie
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Kara L McClain
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Allison Marciszyn
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Thomas R Kleyman
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Roderick J Tan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Arohan R Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 .,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.,VA Pittsburgh Healthcare System, Pittsburgh, PA 15240
| |
Collapse
|
38
|
|
39
|
McCormick JA, Ellison DH. Nephron Remodeling Underlies Hyperkalemia in Familial Hyperkalemic Hypertension. J Am Soc Nephrol 2017; 28:2555-2557. [PMID: 28705920 DOI: 10.1681/asn.2017060660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- James A McCormick
- Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - David H Ellison
- Department of Medicine, Oregon Health and Science University, Portland, Oregon; and .,Renal Section, Veterans Admininstration Portland Health Care System, Portland, Oregon
| |
Collapse
|
40
|
Grimm PR, Coleman R, Delpire E, Welling PA. Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules. J Am Soc Nephrol 2017; 28:2597-2606. [PMID: 28442491 DOI: 10.1681/asn.2016090948] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/27/2017] [Indexed: 01/06/2023] Open
Abstract
Aberrant activation of with no lysine (WNK) kinases causes familial hyperkalemic hypertension (FHHt). Thiazide diuretics treat the disease, fostering the view that hyperactivation of the thiazide-sensitive sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT) is solely responsible. However, aberrant signaling in the aldosterone-sensitive distal nephron (ASDN) and inhibition of the potassium-excretory renal outer medullary potassium (ROMK) channel have also been implicated. To test these ideas, we introduced kinase-activating mutations after Lox-P sites in the mouse Stk39 gene, which encodes the terminal kinase in the WNK signaling pathway, Ste20-related proline-alanine-rich kinase (SPAK). Renal expression of the constitutively active (CA)-SPAK mutant was specifically targeted to the early DCT using a DCT-driven Cre recombinase. CA-SPAK mice displayed thiazide-treatable hypertension and hyperkalemia, concurrent with NCC hyperphosphorylation. However, thiazide-mediated inhibition of NCC and consequent restoration of sodium excretion did not immediately restore urinary potassium excretion in CA-SPAK mice. Notably, CA-SPAK mice exhibited ASDN remodeling, involving a reduction in connecting tubule mass and attenuation of epithelial sodium channel (ENaC) and ROMK expression and apical localization. Blocking hyperactive NCC in the DCT gradually restored ASDN structure and ENaC and ROMK expression, concurrent with the restoration of urinary potassium excretion. These findings verify that NCC hyperactivity underlies FHHt but also reveal that NCC-dependent changes in the driving force for potassium secretion are not sufficient to explain hyperkalemia. Instead, a DCT-ASDN coupling process controls potassium balance in health and becomes aberrantly activated in FHHt.
Collapse
Affiliation(s)
- P Richard Grimm
- Department of Physiology, Maryland Kidney Discovery Center, University of Maryland Medical School, Baltimore, Maryland; and
| | - Richard Coleman
- Department of Physiology, Maryland Kidney Discovery Center, University of Maryland Medical School, Baltimore, Maryland; and
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee
| | - Paul A Welling
- Department of Physiology, Maryland Kidney Discovery Center, University of Maryland Medical School, Baltimore, Maryland; and
| |
Collapse
|
41
|
Frindt G, Yang L, Uchida S, Weinstein AM, Palmer LG. Responses of distal nephron Na + transporters to acute volume depletion and hyperkalemia. Am J Physiol Renal Physiol 2017; 313:F62-F73. [PMID: 28356292 DOI: 10.1152/ajprenal.00668.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 01/01/2023] Open
Abstract
We assessed effects of acute volume reductions induced by administration of diuretics in rats. Direct block of Na+ transport produced changes in urinary electrolyte excretion. Adaptations to these effects appeared as alterations in the expression of protein for the distal nephron Na+ transporters NCC and ENaC. Two hours after a single injection of furosemide (6 mg/kg) or hydrochlorothiazide (HCTZ; 30 mg/kg) Na+ and K+ excretion increased but no changes in the content of activated forms of NCC (phosphorylated on residue T53) or ENaC (cleaved γ-subunit) were detected. In contrast, amiloride (0.6 mg/kg) evoked a similar natriuresis that coincided with decreased pT53NCC and increased cleaved γENaC. Alterations in posttranslational membrane protein processing correlated with an increase in plasma K+ of 0.6-0.8 mM. Decreased pT53NCC occurred within 1 h after amiloride injection, whereas changes in γENaC were slower and were blocked by the mineralocorticoid receptor antagonist spironolactone. Increased γENaC cleavage correlated with elevation of the surface expression of the subunit as assessed by in situ biotinylation. Na depletion induced by 2 h of furosemide or HCTZ treatment increases total NCC expression without affecting ENaC protein. However, restriction of Na intake for 10 h (during the day) or 18 h (overnight) increased the abundance of both total NCC and of cleaved α- and γENaC. We conclude that the kidneys respond acutely to hyperkalemic challenges by decreasing the activity of NCC while increasing that of ENaC. They respond to hypovolemia more slowly, increasing Na+ reabsorptive capacities of both of these transporters.
Collapse
Affiliation(s)
- Gustavo Frindt
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York
| | - Lei Yang
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York.,Department of Physiology, Harbin University School of Medicine, Harbin, China; and
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York;
| |
Collapse
|
42
|
McDonough AA, Youn JH. Potassium Homeostasis: The Knowns, the Unknowns, and the Health Benefits. Physiology (Bethesda) 2017; 32:100-111. [PMID: 28202621 PMCID: PMC5337831 DOI: 10.1152/physiol.00022.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Potassium homeostasis has a very high priority because of its importance for membrane potential. Although extracellular K+ is only 2% of total body K+, our physiology was evolutionarily tuned for a high-K+, low-Na+ diet. We review how multiple systems interface to accomplish fine K+ balance and the consequences for health and disease.
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Jang H Youn
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
43
|
Jones FE, Bailey MA, Murray LS, Lu Y, McNeilly S, Schlötzer-Schrehardt U, Lennon R, Sado Y, Brownstein DG, Mullins JJ, Kadler KE, Van Agtmael T. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice. Dis Model Mech 2016; 9:165-76. [PMID: 26839400 PMCID: PMC4770143 DOI: 10.1242/dmm.021741] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies. Summary: Structural and compositional basement membrane defects and ER stress due to Col4a1 mutations cause glomerular and tubular kidney disease, and indicate cell-type-specific disease mechanisms for collagen diseases.
Collapse
Affiliation(s)
- Frances E Jones
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Lydia S Murray
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Sarah McNeilly
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Yoshikazu Sado
- Division of Immunology, Shigei Medical Research Institute, Okayama 701-02, Japan
| | - David G Brownstein
- Division of Pathology, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - John J Mullins
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Karl E Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
44
|
The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate. Biochem J 2016; 473:3237-52. [PMID: 27422782 DOI: 10.1042/bcj20160312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule.
Collapse
|
45
|
Cornelius RJ, Wang B, Wang-France J, Sansom SC. Maintaining K + balance on the low-Na +, high-K + diet. Am J Physiol Renal Physiol 2016; 310:F581-F595. [PMID: 26739887 DOI: 10.1152/ajprenal.00330.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
A low-Na+, high-K+ diet (LNaHK) is considered a healthier alternative to the "Western" high-Na+ diet. Because the mechanism for K+ secretion involves Na+ reabsorptive exchange for secreted K+ in the distal nephron, it is not understood how K+ is eliminated with such low Na+ intake. Animals on a LNaHK diet produce an alkaline load, high urinary flows, and markedly elevated plasma ANG II and aldosterone levels to maintain their K+ balance. Recent studies have revealed a potential mechanism involving the actions of alkalosis, urinary flow, elevated ANG II, and aldosterone on two types of K+ channels, renal outer medullary K+ and large-conductance K+ channels, located in principal and intercalated cells. Here, we review these recent advances.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Bangchen Wang
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jun Wang-France
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven C Sansom
- Department of Cellular/Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
46
|
Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, Park HJ, McCormick JA, Yang CL, Ellison DH. Direct and Indirect Mineralocorticoid Effects Determine Distal Salt Transport. J Am Soc Nephrol 2015; 27:2436-45. [PMID: 26712527 DOI: 10.1681/asn.2015070815] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/17/2015] [Indexed: 11/03/2022] Open
Abstract
Excess aldosterone is an important contributor to hypertension and cardiovascular disease. Conversely, low circulating aldosterone causes salt wasting and hypotension. Aldosterone activates mineralocorticoid receptors (MRs) to increase epithelial sodium channel (ENaC) activity. However, aldosterone may also stimulate the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC). Here, we generated mice in which MRs could be deleted along the nephron to test this hypothesis. These kidney-specific MR-knockout mice exhibited salt wasting, low BP, and hyperkalemia. Notably, we found evidence of deficient apical orientation and cleavage of ENaC, despite the salt wasting. Although these mice also exhibited deficient NCC activity, NCC could be stimulated by restricting dietary potassium, which also returned BP to control levels. Together, these results indicate that MRs regulate ENaC directly, but modulation of NCC is mediated by secondary changes in plasma potassium concentration. Electrolyte balance and BP seem to be determined, therefore, by a delicate interplay between direct and indirect mineralocorticoid actions in the distal nephron.
Collapse
Affiliation(s)
- Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Bethzaida Yarbrough
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Mohammed Z Ferdaus
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Rebecca A Lazelle
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Kayla J Erspamer
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Nicholas P Meermeier
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Hae J Park
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and Renal Section, Veterans Affairs Portland Health Care System, Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon; and Renal Section, Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
47
|
|
48
|
Christensen TH, Bailey MA, Kenyon CJ, Jensen BL, Hunter RW. Sodium homeostasis is preserved in a global 11β-hydroxysteroid dehydrogenase type 1 knockout mouse model. Exp Physiol 2015; 100:1362-78. [PMID: 26337786 DOI: 10.1113/ep085177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/27/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Glucocorticoids act in the kidney to promote salt and water retention. Renal 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1), by increasing local concentrations of glucocorticoids, may exert an antinatriuretic effect. We hypothesized that global deletion of 11βHSD1 in the mouse would give rise to a salt-wasting renal phenotype. What is the main finding and its importance? We subjected a mouse model of global 11βHSD1 deletion to studies of water and electrolyte balance, renal clearance, urinary steroid excretion, renin-angiotensin system activation and renal sodium transporter expression. We found no significant effects on renal sodium or water excretion. Any effect of renal 11βHSD1 on sodium homeostasis is subtle. Glucocorticoids act in the kidney to regulate glomerular haemodynamics and tubular sodium transport; the net effect favours sodium retention. 11β-Hydroxysteroid dehydrogenase type 1 (11βHSD1) is expressed in the renal tubules and the interstitial cells of the medulla, where it is likely to regenerate active glucocorticoids from inert 11-keto forms. The physiological function of renal 11βHSD1 is largely unknown. We hypothesized that loss of renal 11βHSD1 would result in salt wasting and tested this in a knockout mouse model in which 11βHSD1 was deleted in all body tissues. In balance studies, 11βHSD1 deletion had no effect on water, sodium or potassium metabolism; transition to a low-sodium diet did not reveal a natriuretic phenotype. Renal clearance studies demonstrated identical haemodynamic parameters (arterial blood pressure, renal blood flow and glomerular filtration rate) in knockout and wild-type mice, but revealed an augmented kaliuretic response to thiazides in 11βHSD1 knockout animals. There was no effect on the natriuretic response to the amiloride analogue benzamil. Urinary excretion of deoxycorticosterone was higher in 11βHSD1 knockout mice, and there was hypertrophy of cells in the zona fasciculata of the adrenal cortex. There was no difference in the activity of the renin-angiotensin and nitric oxide systems, no difference in renal histology and no difference in the abundance of key tubular transporter proteins. We conclude that any effect of 11βHSD1 on renal sodium excretion is subtle.
Collapse
Affiliation(s)
- Thorbjørn H Christensen
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Matthew A Bailey
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Christopher J Kenyon
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Robert W Hunter
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
49
|
Wyrwoll C, Keith M, Noble J, Stevenson PL, Bombail V, Crombie S, Evans LC, Bailey MA, Wood E, Seckl JR, Holmes MC. Fetal brain 11β-hydroxysteroid dehydrogenase type 2 selectively determines programming of adult depressive-like behaviors and cognitive function, but not anxiety behaviors in male mice. Psychoneuroendocrinology 2015; 59:59-70. [PMID: 26036451 PMCID: PMC4510145 DOI: 10.1016/j.psyneuen.2015.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 10/26/2022]
Abstract
Stress or elevated glucocorticoids during sensitive windows of fetal development increase the risk of neuropsychiatric disorders in adult rodents and humans, a phenomenon known as glucocorticoid programming. 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2), which catalyses rapid inactivation of glucocorticoids in the placenta, controls access of maternal glucocorticoids to the fetal compartment, placing it in a key position to modulate glucocorticoid programming of behavior. However, the importance of the high expression of 11β-HSD2 within the midgestational fetal brain is unknown. To examine this, a brain-specific knockout of 11β-HSD2 (HSD2BKO) was generated and compared to wild-type littermates. HSD2BKO have markedly diminished fetal brain 11β-HSD2, but intact fetal body and placental 11β-HSD2 and normal fetal and placental growth. Despite normal fetal plasma corticosterone, HSD2BKO exhibit elevated fetal brain corticosterone levels at midgestation. As adults, HSD2BKO show depressive-like behavior and have cognitive impairments. However, unlike complete feto-placental deficiency, HSD2BKO show no anxiety-like behavioral deficits. The clear mechanistic separation of the programmed components of depression and cognition from anxiety implies distinct mechanisms of pathogenesis, affording potential opportunities for stratified interventions.
Collapse
Affiliation(s)
- Caitlin Wyrwoll
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,School of Anatomy, Physiology & Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Marianne Keith
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - June Noble
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Paula L. Stevenson
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Vincent Bombail
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Sandra Crombie
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Louise C. Evans
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Matthew A. Bailey
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Emma Wood
- Centre for Cognitive and Neural Systems, University of Edinburgh, EH8 9JZ, United Kingdom
| | - Jonathan R. Seckl
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Megan C. Holmes
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Corresponding author at: Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom. Tel.: +44 131 242 6737.
| |
Collapse
|
50
|
Jensen JM, Mose FH, Kulik AEO, Bech JN, Fenton RA, Pedersen EB. Changes in urinary excretion of water and sodium transporters during amiloride and bendroflumethiazide treatment. World J Nephrol 2015; 4:423-437. [PMID: 26167467 PMCID: PMC4491934 DOI: 10.5527/wjn.v4.i3.423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/08/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To quantify changes in urinary excretion of aquaporin2 water channels (u-AQP2), the sodium-potassium-chloride co-transporter (u-NKCC2) and the epithelial sodium channels (u-ENaC) during treatment with bendroflumethiazide (BFTZ), amiloride and placebo.
METHODS: In a randomized, double-blinded, placebo-controlled, 3-way crossover study we examined 23 healthy subjects on a standardized diet and fluid intake. The subjects were treated with amiloride 5 mg, BFTZ 1.25 mg or placebo twice a day for 4.5 d before each examination day. On the examination day, glomerular filtration rate was measured by the constant infusion clearance technique with 51Cr-EDTA as reference substance. To estimate the changes in water transport via AQP2 and sodium transport via NKCC2 and ENaC, u-NKCC2, the gamma fraction of ENaC (u-ENaCγ), and u-AQP2 were measured at baseline and after infusion with 3% hypertonic saline. U-NKCC2, u-ENaCγ, u-AQP2 and plasma concentrations of vasopressin (p-AVP), renin (PRC), angiotensin II (p-ANG II) and aldosterone (p-Aldo) were measured, by radioimmunoassay. Central blood pressure was estimated by applanation tonometry and body fluid volumes were estimated by bio-impedance spectroscopy. General linear model with repeated measures or related samples Friedman’s two-way analysis was used to compare differences. Post hoc Bonferroni correction was used for multiple comparisons of post infusion periods to baseline within each treatment group.
RESULTS: At baseline there were no differences in u-NKCC2, u-ENaCγ and u-AQP2. PRC, p-Ang II and p-Aldo were increased during active treatments (P < 0.001). After hypertonic saline, u-NKCC2 increased during amiloride (6% ± 34%; P = 0.081) and increased significantly during placebo (17% ± 24%; P = 0.010). U-AQP2 increased significantly during amiloride (31% ± 22%; P < 0.001) and placebo (34% ± 27%; P < 0.001), while u-NKCC2 and u-AQP2 did not change significantly during BFTZ (-7% ± 28%; P = 0.257 and 5% ± 16%; P = 0.261). U- ENaCγ increased in all three groups (P < 0.050). PRC, AngII and p-Aldo decreased to the same extent, while AVP increased, but to a smaller degree during BFTZ (P = 0.048). cDBP decreased significantly during BFTZ (P < 0.001), but not during amiloride or placebo. There were no significant differences in body fluid volumes.
CONCLUSION: After hypertonic saline, u-NKCC2 and u-AQP2 increased during amiloride, but not during BFTZ. Lower p-AVP during BFTZ potentially caused less stimulation of NKCC2 and AQP2 and subsequent lower reabsorption of water and sodium.
Collapse
|