1
|
He T, Zhang M, Qin J, Wang Y, Li S, Du C, Jiao J, Ji F. Endothelial PD-1 Regulates Vascular Homeostasis and Oligodendrogenesis during Brain Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417410. [PMID: 40013943 PMCID: PMC12021089 DOI: 10.1002/advs.202417410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Appropriate vascular and neural development is essential for central nervous system (CNS). Although programmed cell death receptor 1 (PD-1) mediates neurogenesis, its role in cerebrovascular development remains poorly understood. Here, a correlation between cerebral vessels and oligodendrocyte precursor cells (OPCs) is revealed during brain development. The ablation of endothelial PD-1 triggers cortical hypervascularization through excessive angiogenic sprouting, concomitantly driving OPC differentiation. These alterations disrupt blood brain barrier (BBB) maturation, induce dysmyelination, and ultimately result in abnormal behavior in mice. Mechanistically, the loss of endothelial PD-1 suppresses the activity of the Wnt/β-catenin signaling pathway, thereby disrupting normal angiogenesis. Concurrently, it activates the MEK1/2-ERK1/2-GLI1 pathway, leading to increased GREMLIN1 (GREM1) expression. Elevated GREM1 secretion inhibits the BMP/SMAD1/5/SMAD4 signaling cascade in OPCs, which inhibits oligodendrogenesis and myelination. These findings indicate the importance of endothelial cell-intrinsic PD-1 in regulating the oligovascular niche, and suggest potential therapeutic implications for neurological disorders associated with disrupted vascular development.
Collapse
Affiliation(s)
- Tingting He
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100190China
| | - Mengtian Zhang
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Qin
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanyan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Sihan Li
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chaoyi Du
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jianwei Jiao
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Fen Ji
- State Key Laboratory of Organ Regeneration and Reconstruction,Institute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
2
|
Kumar V, Wahane A, Tham MS, Somlo S, Gupta A, Bahal R. Efficient and selective kidney targeting by chemically modified carbohydrate conjugates. Mol Ther 2024; 32:4383-4400. [PMID: 39532098 PMCID: PMC11638880 DOI: 10.1016/j.ymthe.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
We investigated a renal tubule-targeting carbohydrate (RENTAC) that can selectively deliver small-molecule and nucleic acid analogs to the proximal convoluted tubules of the kidney following systemic delivery in mice. We comprehensively evaluated anti-miR-21-peptide nucleic acid-RENTAC, and fluorophore-RENTAC conjugates in cell culture and in vivo. We established that RENTAC conjugates showed megalin- and cubilin-dependent endocytic uptake in the immortalized kidney cell line. In vivo biodistribution studies confirmed the retention of RENTAC conjugates in the kidneys for several days compared with other organs. Immunofluorescence staining confirmed the selective distribution of the RENTAC conjugates in proximal convoluted tubules. We further demonstrated proximal convoluted tubule targeting features of RENTAC conjugates in a folic acid-induced kidney fibrosis mouse model. As a biological readout, we targeted miR-33 using antisense peptide nucleic acid (PNA) 33-RENTAC conjugates in the fibrotic kidney disease model. The targeted delivery of PNA 33-RENTAC resulted in slower fibrosis progression and decreased collagen deposition. We also confirmed that the RENTAC ligand did not exert any adverse reactions. Thus, we established that the RENTAC ligand can be used for broad clinical applications targeting the kidneys selectively.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ming Shen Tham
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Anisha Gupta
- School of Pharmacy, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
3
|
Jung J, Kim NH, Park J, Lim D, Kwon M, Gil W, Jung S, Go M, Kim C, Cheong YH, Lee MH, Park HS, Eom YB, Park SA. Gremlin-2 is a novel tumor suppressor that negatively regulates ID1 in breast cancer. Breast Cancer Res 2024; 26:174. [PMID: 39614338 DOI: 10.1186/s13058-024-01935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common cancers in women and is closely associated with obesity. Gremlin-2 (GREM2), an antagonist for bone morphogenetic proteins (BMPs), has been considered an inhibitor of adipogenic differentiation in adipose-derived stromal/stem cells. However, the role of GREM2 in breast cancer cells remains largely unknown, and its signaling mechanism has yet to be clarified. METHODS Bioinformatics analysis was conducted using public databases. Breast cancer cells overexpressing mock or GREM2 were used for in vitro and in vivo studies. Cell viability, colony formation, migration, and animal studies were performed to investigate the role of GREM2 in breast cancer cells. Screening of target genes affected by GREM2 overexpression in breast cancer cells was performed through RNA sequencing (RNA-seq) analysis. RESULTS The expression level of GREM2 mRNA was significantly reduced in both breast cancer tissues and cell lines. Kaplan-Meier analysis showed that low expression of GREM2 and high methylation of the GREM2 promoter were each associated with poor patient survival. The low mRNA expression of GREM2 in breast cancer cells was increased by the demethylating agent decitabine. Breast cancer cells overexpressing GREM2 decreased cell proliferation when compared to control cells, both in vitro and in vivo. Through comparison of RNA-seq analysis between cell lines and tissue samples, gene ontologies that were consistently upregulated or downregulated by GREM2 in breast cancer were identified. In particular, the expression of inhibitor of DNA-binding-1 (ID1) was repressed by GREM2. BMP2 is one of the upstream regulators that increases the expression of ID1, and the expression of ID1 reduced by GREM2 was restored by overexpression of BMP2. Also, the migration ability of breast cancer cells, which had been suppressed by GREM2, was restored by BMP2 or ID1. CONCLUSIONS Low expression of GREM2 in breast cancer cells is associated with hypermethylation of the GREM2 promoter, which may ultimately contribute to poor patient survival. GREM2 participates in regulating the expression of various genes, including ID1, and is involved in suppressing the proliferation of breast cancer cells. This suggests that GREM2 has the potential to act as a novel tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Jiwoo Jung
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Na Hui Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jayeon Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Dayeon Lim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minji Kwon
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - World Gil
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Suyeon Jung
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minjeong Go
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Chaeeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Ye Hwang Cheong
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd, Yongin, 17073, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sin-Aye Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
4
|
Horn P, Norlin J, Almholt K, Viuff BM, Galsgaard ED, Hald A, Zosel F, Demuth H, Poulsen S, Norby PL, Rasch MG, Vyberg M, Fleckner J, Werge MP, Gluud LL, Rink MR, Shepherd E, Northall E, Lalor PF, Weston CJ, Fog-Tonnesen M, Newsome PN. Evaluation of Gremlin-1 as a therapeutic target in metabolic dysfunction-associated steatohepatitis. eLife 2024; 13:RP95185. [PMID: 39361025 PMCID: PMC11449483 DOI: 10.7554/elife.95185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Gremlin-1 has been implicated in liver fibrosis in metabolic dysfunction-associated steatohepatitis (MASH) via inhibition of bone morphogenetic protein (BMP) signalling and has thereby been identified as a potential therapeutic target. Using rat in vivo and human in vitro and ex vivo model systems of MASH fibrosis, we show that neutralisation of Gremlin-1 activity with monoclonal therapeutic antibodies does not reduce liver inflammation or liver fibrosis. Still, Gremlin-1 was upregulated in human and rat MASH fibrosis, but expression was restricted to a small subpopulation of COL3A1/THY1+ myofibroblasts. Lentiviral overexpression of Gremlin-1 in LX-2 cells and primary hepatic stellate cells led to changes in BMP-related gene expression, which did not translate to increased fibrogenesis. Furthermore, we show that Gremlin-1 binds to heparin with high affinity, which prevents Gremlin-1 from entering systemic circulation, prohibiting Gremlin-1-mediated organ crosstalk. Overall, our findings suggest a redundant role for Gremlin-1 in the pathogenesis of liver fibrosis, which is unamenable to therapeutic targeting.
Collapse
Affiliation(s)
- Paul Horn
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of BirminghamBirminghamUnited Kingdom
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
- Department of Hepatology & Gastroenterology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité MitteBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist ProgramBerlinGermany
| | - Jenny Norlin
- Global Drug Discovery, Novo Nordisk A/SMaaloevDenmark
| | | | | | | | - Andreas Hald
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Franziska Zosel
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Helle Demuth
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Svend Poulsen
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Peder L Norby
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Morten G Rasch
- Global Research Technologies, Novo Nordisk A/SMaaloevDenmark
| | - Mogens Vyberg
- Department of Pathology, Copenhagen University Hospital Hvidovre, and Centre for RNA Medicine, Aalborg University CopenhagenCopenhagenDenmark
| | - Jan Fleckner
- Global Translation, Novo Nordisk A/SMaaloevDenmark
| | | | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital HvidovreHvidovreDenmark
| | - Marco R Rink
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Emma Shepherd
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Ellie Northall
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Patricia F Lalor
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Chris J Weston
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of BirminghamBirminghamUnited Kingdom
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | | | - Philip N Newsome
- Roger Williams Institute of Liver Studies, Faculty of Life Sciences and Medicine, King’s College London and King’s College HospitalLondonUnited Kingdom
| |
Collapse
|
5
|
Pang S, Xie B, Feng B, Xu G, Ye Q, Chen X, Ruan L, Chen H, Pan SL, Xue C, Li W. miR-542-5p targets GREM1 to affect the progression of renal fibrosis. J Biochem Mol Toxicol 2024; 38:e23818. [PMID: 39180371 DOI: 10.1002/jbt.23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Renal fibrosis (RF) is a typical pathological presentation of end-stage chronic kidney disease (CKD) and autosomal dominant polycystic kidney disease (ADPKD). However, the precise regulatory mechanisms governing this re-expression process remain unclear. Differentially expressed microRNAs (miRNAs) associated with RF were screened by microarray analysis using the Gene Expression Omnibus (GEO) database. The miRNAs upstream of the genes in question were predicted using the miRWalk database. The miRNAs involved in the two GEO data sets were intersected to identify key miRNAs; their regulatory pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the effects and the underlying mechanisms of target miRNA on RF were examined in a unilateral ureteral obstruction (UUO)-induced mice renal fibrotic model and a transforming growth factor-β1 (TGF-β1)-induced tubular epithelium (HK-2) fibrotic cell model. In total, 109 and 32 differentially expressed miRNAs were identified in the GSE133530 and GSE80247 data sets, respectively. GREM1 was identified as a hub gene, where its 2196 upstream miRNAs were predicted; miR-574-5p was found to be downregulated and closely related to fibrosis after data set intersection and enrichment analyses, thus was selected for further investigation. A differential expression heatmap (GSE162794) showed that miR-542-5p was downregulated. The expression of GREM1 mRNA was upregulated, whereas that of miR-542-5p was downregulated in UUO mice and fibrotic HK-2 cells as compared with the relevant controls. The binding site of miR-542-5p was predicted at the 3'UTR region of GREM1 and was confirmed by subsequent dual luciferase reporter gene assay. Western blot analysis showed that Gremlin-1 and Fibronectin were significantly upregulated after induction of TGF-β1; when miR-542-5p was overexpressed or GREM1 mRNA was interfered, the upregulations of Gremlin-1 and Fibronectin were significantly reduced. Our research demonstrates that miR-542-5p plays a critical role in the progression of RF, and thus may be a promising therapeutic target for CKD and ADPKD.
Collapse
Affiliation(s)
- Shuting Pang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Boji Xie
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bingmei Feng
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guiling Xu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinglin Ye
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xuesong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liangping Ruan
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
6
|
Dai S, Xu F, Xu X, Huang T, Wang Y, Wang H, Xie Y, Yue L, Zhao W, Xia Y, Gu J, Qian X. miR-455/GREM1 axis promotes colorectal cancer progression and liver metastasis by affecting PI3K/AKT pathway and inducing M2 macrophage polarization. Cancer Cell Int 2024; 24:235. [PMID: 38970064 PMCID: PMC11225248 DOI: 10.1186/s12935-024-03422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Colorectal cancer is among the most common malignant tumors affecting the gastrointestinal tract. Liver metastases, a complication present in approximately 50% of colorectal cancer patients, are a considerable concern. Recently, studies have revealed the crucial role of miR-455 in tumor pathogenesis. However, the effect of miR-455 on the progression of liver metastases in colorectal cancer remains controversial. As an antagonist of bone morphogenetic protein(BMP), Gremlin 1 (GREM1) may impact organogenesis, body patterning, and tissue differentiation. Nevertheless, the role of miR-455 in regulating GREM1 in colorectal cancer liver metastases and how miR-455/GREM1 axis influences tumour immune microenvironment is unclear. METHODS Bioinformatics analysis shows that miR-455/GREM1 axis plays crucial role in liver metastasis of intestinal cancer and predicts its possible mechanism. To investigate the impact of miR-455/GREM1 axis on the proliferation, invasion, and migration of colorectal cancer cells, colony formation assay, wound healing and transwell assay were examined in vitro. The Dual-Luciferase reporter gene assay and RNA pull-down assay confirmed a possible regulatory effect between miR-455 and GREM1. In vivo, colorectal cancer liver metastasis(CRLM) model mice was established to inquiry the effect of miR-455/GREM1 axis on tumor growth and macrophage polarization. The marker of macrophage polarization was tested using immunofluorescence(IF) and quantitative real-time polymerase chain reaction(qRT-PCR). By enzyme-linked immunosorbent assay (ELISA), cytokines were detected in culture medium supernatants. RESULTS We found that miR-455 and BMP6 expression was increased and GREM1 expression was decreased in liver metastase compared with primary tumor. miR-455/GREM1 axis promotes colorectal cancer cells proliferation, migration, invasion via affected PI3K/AKT pathway. Moreover, downregulating GREM1 augmented BMP6 expression in MC38 cell lines, inducing M2 polarization of macrophages, and promoting liver metastasis growth in CRLM model mice. CONCLUSION These data suggest that miR-455/GREM1 axis promotes colorectal cancer progression and liver metastasis by affecting PI3K/AKT pathway and inducing M2 macrophage polarization. These results offer valuable insights and direction for future research and treatment of CRLM.
Collapse
Affiliation(s)
- Shipeng Dai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Fan Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiaozhang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Tian Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yiming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Hongyu Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yucheng Xie
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Lei Yue
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenhu Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiaofeng Qian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| |
Collapse
|
7
|
Elshoff D, Mehta P, Ziouzenkova O. Chronic Kidney Disease Diets for Kidney Failure Prevention: Insights from the IL-11 Paradigm. Nutrients 2024; 16:1342. [PMID: 38732588 PMCID: PMC11085624 DOI: 10.3390/nu16091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Nearly every fifth adult in the United States and many older adults worldwide are affected by chronic kidney disease (CKD), which can progress to kidney failure requiring invasive kidney replacement therapy. In this review, we briefly examine the pathophysiology of CKD and discuss emerging mechanisms involving the physiological resolution of kidney injury by transforming growth factor beta 1 (TGFβ1) and interleukin-11 (IL-11), as well as the pathological consequences of IL-11 overproduction, which misguides repair processes, ultimately culminating in CKD. Taking these mechanisms into account, we offer an overview of the efficacy of plant-dominant dietary patterns in preventing and managing CKD, while also addressing their limitations in terms of restoring kidney function or preventing kidney failure. In conclusion, this paper outlines novel regeneration strategies aimed at developing a reno-regenerative diet to inhibit IL-11 and promote repair mechanisms in kidneys affected by CKD.
Collapse
Affiliation(s)
- Denise Elshoff
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA;
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Priyanka Mehta
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
8
|
Kobayashi H, Satake E, Murata Y, Otsuka H, Tsunemi A, Azuma M, Nakamura Y, Saito T, Abe M. Neuroblastoma suppressor of tumorigenicity 1 is associated with the severity of interstitial fibrosis and kidney function decline in IgA nephropathy. J Nephrol 2023; 36:2245-2256. [PMID: 37436574 DOI: 10.1007/s40620-023-01704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
INTRODUCTION Recently, circulating neuroblastoma suppressor of tumorigenicity 1 (NBL1) was shown to be strongly associated with kidney disease progression and histological lesions in patients with diabetic kidney disease. This study aimed to examine whether serum NBL1 level was also associated with kidney function and renal histological findings in patients with IgA nephropathy. METHODS We evaluated the levels of NBL1 in 109 patients with newly diagnosed biopsy-proven primary IgAN, between 2009 and 2018, at the Nihon University School of Medicine Itabashi Hospital, Tokyo, Japan, using serum obtained immediately before the renal biopsy, and examined the relationship between serum NBL1, renal function and renal histological findings assessed using the Oxford Classification (MEST score). Furthermore, we analyzed the association of serum NBL1 with kidney function decline over time in patients with IgA nephropathy who had follow-up data on the estimated glomerular filtration rate (n = 76). RESULTS Serum NBL1 levels in patients with newly diagnosed IgA nephropathy were elevated, as compared to those in healthy individuals (n = 93). Logistic regression analysis demonstrated that the serum NBL1 level was independently and significantly associated with tubular atrophy/interstitial fibrosis. Immunohistochemical staining revealed that NBL1 was highly expressed in the tubulointerstitium. Furthermore, Spearman's rank correlation identified a significant correlation between serum NBL1 level and estimated glomerular filtration rate slope. CONCLUSIONS The serum NBL1 level was significantly associated with the severity of renal interstitial fibrosis and kidney disease progression in patients with newly diagnosed IgA nephropathy. Thus, circulating NBL1 may serve as a good biomarker for evaluating renal interstitial fibrosis and the risk of kidney disease progression.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yusuke Murata
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hiromasa Otsuka
- Department of Emergency Room and General Medicine, Ageo Central General Hospital, Saitama, Japan
- Department of Internal Medicine, Hatogaya Hospital, Saitama, Japan
| | - Akiko Tsunemi
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Masaki Azuma
- Department of Internal Medicine, Hatogaya Hospital, Saitama, Japan
| | - Yoshihiro Nakamura
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Tomoyuki Saito
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Masanori Abe
- Department of Internal Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, 30-1 Oyaguchi Kami-chou, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
9
|
Jung J, Kim NH, Kwon M, Park J, Lim D, Kim Y, Gil W, Cheong YH, Park SA. The inhibitory effect of Gremlin-2 on adipogenesis suppresses breast cancer cell growth and metastasis. Breast Cancer Res 2023; 25:128. [PMID: 37880751 PMCID: PMC10599028 DOI: 10.1186/s13058-023-01732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Gremlin-1 (GREM1) and Gremlin-2 (GREM2) are bone morphogenetic protein antagonists that play important roles in organogenesis, tissue differentiation, and tissue homeostasis. Although GREM1 has been reported to be involved in promoting various cancers, little has been reported about effects of GREM2 on cancer. Recently, it has been reported that GREM2 can inhibit adipogenesis in adipose-derived stromal/stem cells. However, as an inhibitor of adipogenesis, the role of GREM2 in cancer progression is not well understood yet. METHODS Pre-adipocyte 3T3-L1 cells overexpressing mock or Grem2 were established using a lentiviral transduction system and differentiated into adipocytes-mock and adipocytes-Grem2, respectively. To investigate the effect of adipocyte-Grem2 on breast cancer cells, we analyzed the proliferative and invasion abilities of spheroids using a 3D co-culture system of breast cancer cells and adipocytes or conditioned medium (CM) of adipocytes. An orthotopic breast cancer mouse model was used to examine the role of adipocytes-Grem2 in breast cancer progression. RESULTS Grem2 overexpression suppressed adipogenesis of 3T3-L1 cells. Proliferative and invasion abilities of spheroids formed by co-culturing MTV/TM-011 breast cancer cells and adipocytes-Grem2 were significantly reduced compared to those of spheroids formed by co-culturing MTV/TM-011 cells and adipocytes-mock. Compared to adipocytes-mock, adipocytes-Grem2 showed decreased mRNA expression of several adipokines, notably IL-6. The concentration of IL-6 in the CM of these cells was also decreased. Proliferative and invasive abilities of breast cancer cells reduced by adipocytes-Grem2 were restored by IL-6 treatment. Expression levels of vimentin, slug, and twist1 in breast cancer cells were decreased by treatment with CM of adipocytes-Grem2 but increased by IL-6 treatment. In orthotopic breast cancer mouse model, mice injected with both MTV/TM-011 cells and adipocytes-Grem2 showed smaller primary tumors and lower lung metastasis than controls. However, IL-6 administration increased both the size of primary tumor and the number of metastatic lung lesions, which were reduced by adipocytes-Grem2. CONCLUSIONS Our study suggests that GREM2 overexpression in adipocytes can inhibit adipogenesis, reduce the expression and secretion of several adipokines, including IL-6, and ultimately inhibit breast cancer progression.
Collapse
Affiliation(s)
- Jiwoo Jung
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Na Hui Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minji Kwon
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jayeon Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Dayeon Lim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Youjin Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - World Gil
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Ye Hwang Cheong
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin, 17073, Republic of Korea
| | - Sin-Aye Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
10
|
Jiang PC, Xu LZ, Ning JZ, Cheng F. GREM1 is a potential biomarker for the progression and prognosis of bladder cancer. World J Surg Oncol 2023; 21:255. [PMID: 37605239 PMCID: PMC10463405 DOI: 10.1186/s12957-023-03128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Gremlin-1 (GREM1) is a protein closely related to tumor growth, although its function in bladder cancer (BCa) is currently unknown. Our first objective was to study the GREM1 treatment potential in BCa. METHODS BCa tissue samples were collected for the detection of GREM1 expression using Western blot analysis and Immunofluorescence staining. Association of GREM1 expression with clinicopathology and prognosis as detected by TCGA (The Cancer Genome Atlas) database. The functional investigation was tested by qRT-PCR, western blot analysis, CCK-8, cell apoptosis, wound healing, and transwell assays. The interaction between GREM1 and the downstream PI3K/AKT signaling pathway was assessed by Western blot analysis. RESULTS GREM1 exhibited high expression in BCa tissues and was linked to poor prognosis. Stable knockdown of GREM1 significantly inhibited BCa cell (T24 and 5637) proliferation, apoptosis, migratory, invasive, as well as epithelial-mesenchymal transition (EMT) abilities. GREM1 promotes the progression in BCa via PI3K/AKT signaling pathway. CONCLUSION Findings demonstrate that the progression-promoting effect of GREM1 in BCa, providing a novel biomarker for BCa-targeted therapy.
Collapse
Affiliation(s)
- Peng-Cheng Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Li-Zhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
11
|
Grillo E, Ravelli C, Colleluori G, D'Agostino F, Domenichini M, Giordano A, Mitola S. Role of gremlin-1 in the pathophysiology of the adipose tissues. Cytokine Growth Factor Rev 2023; 69:51-60. [PMID: 36155165 DOI: 10.1016/j.cytogfr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Gremlin-1 is a secreted bone morphogenetic protein (BMP) antagonist playing a pivotal role in the regulation of tissue formation and embryonic development. Since its first identification in 1997, gremlin-1 has been shown to be a multifunctional factor involved in wound healing, inflammation, cancer and tissue fibrosis. Among others, the activity of gremlin-1 is mediated by its interaction with BMPs or with membrane receptors such as the vascular endothelial growth factor receptor 2 (VEGFR2) or heparan sulfate proteoglycans (HSPGs). Growing evidence has highlighted a central role of gremlin-1 in the homeostasis of the adipose tissue (AT). Of note, gremlin-1 is involved in AT dysfunction during type 2 diabetes, obesity and non-alcoholic fatty liver disease (NAFLD) metabolic disorders. In this review we discuss recent findings on gremlin-1 involvement in AT biology, with particular attention to its role in metabolic diseases, to highlight its potential as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Francesco D'Agostino
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Domenichini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
12
|
Tziastoudi M, Theoharides TC, Nikolaou E, Efthymiadi M, Eleftheriadis T, Stefanidis I. Key Genetic Components of Fibrosis in Diabetic Nephropathy: An Updated Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:15331. [PMID: 36499658 PMCID: PMC9736240 DOI: 10.3390/ijms232315331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Renal fibrosis (RF) constitutes the common end-point of all kinds of chronic kidney disease (CKD), regardless of the initial cause of disease. The aim of the present study was to identify the key players of fibrosis in the context of diabetic nephropathy (DN). A systematic review and meta-analysis of all available genetic association studies regarding the genes that are included in signaling pathways related to RF were performed. The evaluated studies were published in English and they were included in PubMed and the GWAS Catalog. After an extensive literature review and search of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, eight signaling pathways related to RF were selected and all available genetic association studies of these genes were meta-analyzed. ACE, AGT, EDN1, EPO, FLT4, GREM1, IL1B, IL6, IL10, IL12RB1, NOS3, TGFB1, IGF2/INS/TH cluster, and VEGFA were highlighted as the key genetic components driving the fibrosis process in DN. The present systematic review and meta-analysis indicate, as key players of fibrosis in DN, sixteen genes. However, the results should be interpreted with caution because the number of studies was relatively small.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02155, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02155, USA
- Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02155, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33314, USA
| | - Evdokia Nikolaou
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Maria Efthymiadi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
13
|
Zhang C, Wang S, Casal Moura M, Yi ES, Bowen AJ, Specks U, Warrington KJ, Bayan SL, Ekbom DC, Luo F, Edell ES, Kasperbauer JL, Vassallo R. RNA Sequencing of Idiopathic Subglottic Stenosis Tissues Uncovers Putative Profibrotic Mechanisms and Identifies a Prognostic Biomarker. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1506-1530. [PMID: 35948078 DOI: 10.1016/j.ajpath.2022.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Idiopathic subglottic stenosis (iSGS) is a localized airway disease that almost exclusively affects females. Understanding the molecular mechanisms involved may provide insights leading to therapeutic interventions. Next-generation sequencing was performed on tissue sections from patients with iSGS (n = 22), antineutrophil cytoplasmic antibody-associated vasculitis (AAV; n = 5), and matched controls (n = 9) to explore candidate genes and mechanisms of disease. Gene expression changes were validated, and selected markers were identified by immunofluorescence staining. Epithelial-mesenchymal transition (EMT) and leukocyte extravasation pathways were the biological mechanisms most relevant to iSGS pathogenesis. Alternatively activated macrophages (M2) were abundant in the subepithelium and perisubmucosal glands of the airway in iSGS and AAV. Increased expression of the mesenchymal marker S100A4 and decreased expression of the epithelial marker epithelial cell adhesion molecule (EPCAM) further supported a role for EMT, but to different extents, in iSGS and antineutrophil cytoplasmic antibody-associated subglottic stenosis. In patients with iSGS, high expression of prostate transmembrane protein, androgen induced 1 (PMEPA1), an EMT regulator, was associated with a shorter recurrence interval (25 versus 116 months: hazard ratio = 4.16; P = 0.041; 95% CI, 1.056-15.60). Thus, EMT is a key pathogenetic mechanism of subglottic stenosis in iSGS and AAV. M2 macrophages contribute to the pathogenesis of both diseases, suggesting a shared profibrotic mechanism, and PMEPA1 may be a biomarker for predicting disease recurrence in iSGS.
Collapse
Affiliation(s)
- Chujie Zhang
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Marta Casal Moura
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Eunhee S Yi
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Bowen
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ulrich Specks
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | | | - Semirra L Bayan
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Dale C Ekbom
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Eric S Edell
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Jan L Kasperbauer
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
14
|
Kobayashi H, Looker HC, Satake E, D’Addio F, Wilson JM, Saulnier PJ, Md Dom ZI, O’Neil K, Ihara K, Krolewski B, Badger HS, Petrazzuolo A, Corradi D, Galecki A, Wilson P, Najafian B, Mauer M, Niewczas MA, Doria A, Humphreys B, Duffin KL, Fiorina P, Nelson RG, Krolewski AS. Neuroblastoma suppressor of tumorigenicity 1 is a circulating protein associated with progression to end-stage kidney disease in diabetes. Sci Transl Med 2022; 14:eabj2109. [PMID: 35947673 PMCID: PMC9531292 DOI: 10.1126/scitranslmed.abj2109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Circulating proteins associated with transforming growth factor-β (TGF-β) signaling are implicated in the development of diabetic kidney disease (DKD). It remains to be comprehensively examined which of these proteins are involved in the pathogenesis of DKD and its progression to end-stage kidney disease (ESKD) in humans. Using the SOMAscan proteomic platform, we measured concentrations of 25 TGF-β signaling family proteins in four different cohorts composed in total of 754 Caucasian or Pima Indian individuals with type 1 or type 2 diabetes. Of these 25 circulating proteins, we identified neuroblastoma suppressor of tumorigenicity 1 (NBL1, aliases DAN and DAND1), a small secreted protein known to inhibit members of the bone morphogenic protein family, to be most strongly and independently associated with progression to ESKD during 10-year follow-up in all cohorts. The extent of damage to podocytes and other glomerular structures measured morphometrically in 105 research kidney biopsies correlated strongly with circulating NBL1 concentrations. Also, in vitro exposure to NBL1 induced apoptosis in podocytes. In conclusion, circulating NBL1 may be involved in the disease process underlying progression to ESKD, and its concentration in circulation may identify subjects with diabetes at increased risk of progression to ESKD.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, Tokyo, Japan
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francesca D’Addio
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università di Milano and Endocrinology Division ASST Sacco-FBF, Milan, Italy
| | - Jonathan M. Wilson
- Diabetes and Complications Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Pierre Jean. Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
- CHU Poitiers, University of Poitiers, Inserm, Clinical Investigation Center CIC1402, Poitiers, France
| | - Zaipul I. Md Dom
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kristina O’Neil
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Katsuhito Ihara
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bozena Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hannah S. Badger
- Diabetes and Complications Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Adriana Petrazzuolo
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università di Milano and Endocrinology Division ASST Sacco-FBF, Milan, Italy
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | - Andrzej Galecki
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Parker Wilson
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, USA
| | - Behzad Najafian
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Michael Mauer
- Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Monika A. Niewczas
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin Humphreys
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Kevin L. Duffin
- Diabetes and Complications Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Paolo Fiorina
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC L. Sacco, Università di Milano and Endocrinology Division ASST Sacco-FBF, Milan, Italy
- Nephrology Division, Boston Children’s Hospital, Boston, MA, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Andrzej S. Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Gremlin-1 Promotes Colorectal Cancer Cell Metastasis by Activating ATF6 and Inhibiting ATF4 Pathways. Cells 2022; 11:cells11142136. [PMID: 35883579 PMCID: PMC9324664 DOI: 10.3390/cells11142136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cell survival, function and fate strongly depend on endoplasmic reticulum (ER) proteostasis. Although previous studies have implicated the ER stress signaling network in all stages of cancer development, its role in cancer metastasis remains to be elucidated. In this study, we investigated the role of Gremlin-1 (GREM1), a secreted protein, in the invasion and metastasis of colorectal cancer (CRC) cells in vitro and in vivo. Firstly, public datasets showed a positive correlation between high expression of GREM1 and a poor prognosis for CRC. Secondly, GREM1 enhanced motility and invasion of CRC cells by epithelial–mesenchymal transition (EMT). Thirdly, GREM1 upregulated expression of activating transcription factor 6 (ATF6) and downregulated that of ATF4, and modulation of the two key players of the unfolded protein response (UPR) was possibly through activation of PI3K/AKT/mTOR and antagonization of BMP2 signaling pathways, respectively. Taken together, our results demonstrate that GREM1 is an invasion-promoting factor via regulation of ATF6 and ATF4 expression in CRC cells, suggesting GREM1 may be a potential pharmacological target for colorectal cancer treatment.
Collapse
|
16
|
Lin Z, Wang R, Huang C, He H, Ouyang C, Li H, Zhong Z, Guo J, Chen X, Yang C, Yang X. Identification of an Immune-Related Prognostic Risk Model in Glioblastoma. Front Genet 2022; 13:926122. [PMID: 35783263 PMCID: PMC9247349 DOI: 10.3389/fgene.2022.926122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most common and malignant type of brain tumor. A large number of studies have shown that the immunotherapy of tumors is effective, but the immunotherapy effect of GBM is not poor. Thus, further research on the immune-related hub genes of GBM is extremely important. Methods: The GBM highly correlated gene clusters were screened out by differential expression, mutation analysis, and weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and proportional hazards model (COX) regressions were implemented to construct prognostic risk models. Survival, receiver operating characteristic (ROC) curve, and compound difference analyses of tumor mutation burden were used to further verify the prognostic risk model. Then, we predicted GBM patient responses to immunotherapy using the ESTIMATE algorithm, GSEA, and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Results: A total of 834 immune-related differentially expressed genes (DEGs) were identified. The five hub genes (STAT3, SEMA4F, GREM2, MDK, and SREBF1) were identified as the prognostic risk model (PRM) screened out by WGCNA and LASSO analysis of DEGs. In addition, the PRM has a significant positive correlation with immune cell infiltration of the tumor microenvironment (TME) and expression of critical immune checkpoints, indicating that the poor prognosis of patients is due to TIDE. Conclusion: We constructed the PRM composed of five hub genes, which provided a new strategy for developing tumor immunotherapy.
Collapse
|
17
|
Agonists of prostaglandin E 2 receptors as potential first in class treatment for nephronophthisis and related ciliopathies. Proc Natl Acad Sci U S A 2022; 119:e2115960119. [PMID: 35482924 PMCID: PMC9170064 DOI: 10.1073/pnas.2115960119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceJuvenile nephronophthisis (NPH) is a renal ciliopathy due to a dysfunction of primary cilia for which no curative treatment is available. This paper describes the identification of agonists of prostaglandin E2 receptors as a potential therapeutic approach for the most common NPHP1-associated ciliopathies. We demonstrated that prostaglandin E1 rescues defective ciliogenesis and ciliary composition in NPHP1 patient urine-derived renal tubular cells and improves ciliary and kidney phenotypes in our NPH zebrafish and Nphp1-/- mouse models. In addition, Taprenepag alleviates the severe retinopathy observed in Nphp1-/- mice. Finally, transcriptomic analyses pointed out several pathways downstream the prostaglandin receptors as cell cycle progression, extracellular matrix, or actin cytoskeleton organization. Altogether, our findings provide an alternative for treatment of NPH.
Collapse
|
18
|
Grem1 accelerates nucleus pulposus cell apoptosis and intervertebral disc degeneration by inhibiting TGF-β-mediated Smad2/3 phosphorylation. Exp Mol Med 2022; 54:518-530. [PMID: 35440754 PMCID: PMC9076866 DOI: 10.1038/s12276-022-00753-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/09/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of low back pain, and inflammatory factors play key roles in its pathogenesis. Gremlin-1 (Grem1) was reported to induce an inflammatory response in other fields. This study aimed to investigate the mechanisms of Grem1 in the degenerative process of intervertebral discs. Dysregulated genes were determined by analyzing microarray profiles. The expression of Grem1 in 17 human disc samples (male:female = 9:8) and rat models (n = 5 each group) was measured by western blotting (WB), real-time quantitative PCR (RT-qPCR), and immunohistochemistry (IHC). The regulatory effects of Grem1 on apoptosis were examined using siRNAs, flow cytometry, immunofluorescence (IF), and WB. The therapeutic effect was evaluated by locally injecting specific Grem1 siRNA into IVDD rats. The expression of Grem1 was significantly increased in human degenerative intervertebral discs; furthermore, the expression of Grem1 positively correlated with the level of intervertebral disc degeneration. Grem1 was significantly overexpressed in tumor necrosis factor (TNF)-α-induced degenerative NP cells. Apoptosis in degenerative NP cells transfected with siRNA targeting Grem1 was significantly lower than that in the control group. Specific Grem1 siRNA markedly repressed the development of IVDD in surgery-induced IVDD rats. These results indicated that the expression of Grem1 was positively correlated with the severity of intervertebral disc degeneration, and Grem1 siRNA could inhibit Grem1-induced apoptosis and extracellular matrix alterations by mediating the TGF-β/Smad signaling pathway. This study may provide a therapeutic strategy for alleviating inflammation-induced apoptosis associated with intervertebral disc degeneration.
Collapse
|
19
|
Epigenetic Modulation of Gremlin-1/NOTCH Pathway in Experimental Crescentic Immune-Mediated Glomerulonephritis. Pharmaceuticals (Basel) 2022; 15:ph15020121. [PMID: 35215234 PMCID: PMC8876310 DOI: 10.3390/ph15020121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treatment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.
Collapse
|
20
|
O'Reilly S. Gremlin: a complex molecule regulating wound healing and fibrosis. Cell Mol Life Sci 2021; 78:7917-7923. [PMID: 34731251 PMCID: PMC11071963 DOI: 10.1007/s00018-021-03964-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Gremlin-1 is part of the TGF-β superfamily and is a BMP antagonist that blocks BMP signalling to precisely control BMP gradients. Gremlin-1 is primarily involved in organogenesis and limb patterning however, has recently been described as being involved in fibrotic diseases. Initially described as a key factor involved in diabetic kidney fibrosis due to being induced by high glucose, it has now been described as being associated with lung, liver, eye, and skin fibrosis. This suggests that it is a key conserved molecule mediating fibrotic events irrespective of organ. It appears that Gremlin-1 may have effects mediated by BMP-dependent and independent pathways. The aim of this review is to evaluate the role of Gremlin-1 in fibrosis, its mechanisms and if this can be targeted therapeutically in fibrotic diseases, which currently have very limited treatment options and are highly prevalent.
Collapse
|
21
|
Ruiqi L, Ming P, Qihang S, Yangyang L, Junli C, Wei L, Chao G, Xinyue L, Kang Y, Hongtao Y. Saikosaponin D Inhibits Peritoneal Fibrosis in Rats With Renal Failure by Regulation of TGFβ1/ BMP7 / Gremlin1/ Smad Pathway. Front Pharmacol 2021; 12:628671. [PMID: 34721005 PMCID: PMC8555629 DOI: 10.3389/fphar.2021.628671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Peritoneal dialysis (PD) can improve the quality of life of patients with kidney disease and prolong survival. However, peritoneal fibrosis can often occur and lead to PD withdrawal. Therefore, it is imperative to better understand how to inhibit and slow down progression of peritoneal fibrosis. This study aimed to investigate the regulatory effect of Saikosaponin d (SSD), a monomer extracted from the plant Bupleurum, on peritoneal fibrosis and the contribution of TGFβ1/BMP7/Gremlin1 pathway cross-talk in this process. To this aim, we used a model 5/6 nephrectomy and peritoneal fibrosis in rats. Rats were divided into four groups, namely a control group (saline administration); a model group (dialysate administration; group M); a SSD group (dialysate and SSD administration); and a positive drug group (dialysate and Benazepril Hydrochloride administration; group M + A). Histological analysis indicated that peritoneal fibrosis occurred in all groups. WB, ELISA, and PCR essays suggested that TGFβ1 and Gremlin1 levels in group M were significantly higher than those in group C, whereas BMP7 expression was significantly lower. TGFβ1, Gremlin1 and BMP7 levels were significantly lower in the group where SSD was administered than in the other groups. The expression of BMP7 in SSD group was significantly increased. In addition, levels of Smad1/5/8 as assessed by PCR, and levels of p-Smad1/5/8 expression as assessed by WB were also significantly higher in the SSD group than in the M group. Expression of vimentin and α-SMA, two important markers of fibrosis, was also significantly decreased. Our study suggests a role for the TGFβ1/BMP7/Gremlin1/Smad pathway in peritoneal fibrosis with potential therapeutic implications. Finally, our results also suggest that the monomer SSD may be able to reverse peritoneal fibrosis via regulation of the TGFβ1/BMP7/Gremlin1/Smad pathway.
Collapse
Affiliation(s)
- Liu Ruiqi
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Pei Ming
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Su Qihang
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Yangyang
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chen Junli
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lin Wei
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Gao Chao
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Liu Xinyue
- Renal Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Kang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Hongtao
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
22
|
Tate M, Perera N, Prakoso D, Willis AM, Deo M, Oseghale O, Qian H, Donner DG, Kiriazis H, De Blasio MJ, Gregorevic P, Ritchie RH. Bone Morphogenetic Protein 7 Gene Delivery Improves Cardiac Structure and Function in a Murine Model of Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:719290. [PMID: 34690762 PMCID: PMC8532155 DOI: 10.3389/fphar.2021.719290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a major contributor to the increasing burden of heart failure prevalence globally, at least in part due to a disease process termed diabetic cardiomyopathy. Diabetic cardiomyopathy is characterised by cardiac structural changes that are caused by chronic exposure to the diabetic milieu. These structural changes are a major cause of left ventricular (LV) wall stiffness and the development of LV dysfunction. In the current study, we investigated the therapeutic potential of a cardiac-targeted bone morphogenetic protein 7 (BMP7) gene therapy, administered once diastolic dysfunction was present, mimicking the timeframe in which clinical management of the cardiomyopathy would likely be desired. Following 18 weeks of untreated diabetes, mice were administered with a single tail-vein injection of recombinant adeno-associated viral vector (AAV), containing the BMP7 gene, or null vector. Our data demonstrated, after 8 weeks of treatment, that rAAV6-BMP7 treatment exerted beneficial effects on LV functional and structural changes. Importantly, diabetes-induced LV dysfunction was significantly attenuated by a single administration of rAAV6-BMP7. This was associated with a reduction in cardiac fibrosis, cardiomyocyte hypertrophy and cardiomyocyte apoptosis. In conclusion, BMP7 gene therapy limited pathological remodelling in the diabetic heart, conferring an improvement in cardiac function. These findings provide insight for the potential development of treatment strategies urgently needed to delay or reverse LV pathological remodelling in the diabetic heart.
Collapse
Affiliation(s)
- Mitchel Tate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nimna Perera
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Darnel Prakoso
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Willis
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Osezua Oseghale
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hongwei Qian
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel G Donner
- Preclinical Microsurgery and Imaging, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Microsurgery and Imaging, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Miles J De Blasio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, The University of Washington, Seattle, WA, United States
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
Gao X, Han L, Yao X, Ma L. Gremlin1 and TGF-β1 protect kidney tubular epithelial cells from ischemia-reperfusion injury through different pathways. Int Urol Nephrol 2021; 54:1311-1321. [PMID: 34633599 DOI: 10.1007/s11255-021-03010-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/04/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Gremlin1 belongs to the superfamily members of transforming growth factor (TGF)-β1, playing a profibrotic role in chronic kidney diseases (CKD) and the transition from the late stage of acute kidney injury (AKI) to CKD, but the effect it plays in the early stage of AKI is unclear. This study aimed to investigate the role of Gremlin1on apoptosis in renal tubular epithelial cells under ischemia-reperfusion (I/R) induction. METHODS We detected Gremlin1 and TGF-β1 expression in the kidneys of mice undergoing renal ischemia-reperfusion injury bilaterally. We induced apoptosis through depletion and reperfusion of oxygen and serum in human kidney tubular epithelial cells (HKCs), mimicking I/R injury in vivo, and detected the role and pathways of Gremlin1 and TGF-β1on HKCs injury. RESULTS Mice undergoing bilateral I/R surgery presented AKI with a significant increase in serum creatinine, obvious renal tubular injuries, and increased macrophage cell and T-cell infiltration in interstitial areas. Gremlin1 expression was significantly increased along with TGF-β1 in the kidneys of AKI mice compared to sham mice. Exogenous Gremlin1 inhibited I/R-induced caspase3 expression in HKCs, which was blocked by a VEGFR2 kinase inhibitor III (SU5416). TGF-β1 also inhibited I/R-induced cell apoptosis in HKCs but had no synergic effect with Gremlin1. The TGF-β1's inhibitory effect could be blocked by the TGF-β1 type I receptor (activin receptor-like kinase 5, and ALK5)-specific inhibitor SB431542. CONCLUSIONS Gremlin1 and TGF- β1 protect kidney tubular epithelial cells from ischemia-reperfusion-induced apoptosis through VEGFR2 and Smad2 signaling pathways.
Collapse
Affiliation(s)
- Xuxia Gao
- Department of General Internal Medicine, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China.
| | - Liyuan Han
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinbao Yao
- Department of Pharmaceutical Affairs, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liping Ma
- Department of General Internal Medicine, Beijing Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
24
|
Huan C, Xu W, Liu Y, Ruan K, Shi Y, Cheng H, Zhang X, Ke Y, Zhou J. Gremlin2 Activates Fibroblasts to Promote Pulmonary Fibrosis Through the Bone Morphogenic Protein Pathway. Front Mol Biosci 2021; 8:683267. [PMID: 34422900 PMCID: PMC8377751 DOI: 10.3389/fmolb.2021.683267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease causing unremitting extracellular matrix deposition. Transforming growth factor-β (TGF-β) superfamily involves bone morphogenetic proteins (BMPs) and TGF-β, and the balance between the activation of TGF-β-dependent SMADs (Smad2/3) and BMP-dependent SMADs (Smad1/5/8) is essential for fibrosis process. GREM2, initially identified as a TGF-β-inducible gene, encodes a small secreted glycoprotein belonging to a group of matricellular proteins, its role in lung fibrosis is not clear. Here, we identified Gremlin2 as a key regulator of fibroblast activation. Gremlin2 was highly expressed in the serum and lung tissues in IPF patients. Bleomycin-induced lung fibrosis model exhibited high expression of Gremlin2 in the bronchoalveolar lavage fluid (BALF) and lung tissue. Isolation of primary cells from bleomycin-induced fibrosis lung showed a good correlation of Gremlin2 and Acta2 (α-SMA) expressions. Overexpression of Gremlin2 in human fetal lung fibroblast 1 (HFL-1) cells increased its invasion and migration. Furthermore, Gremlin2 regulates fibrosis functions through mediating TGF-β/BMP signaling, in which Gremlin2 may activate TGF-β signaling and inhibit BMP signaling. Therefore, we provided in vivo and in vitro evidence to demonstrate that Gremlin2 may be a potential therapeutic target for the treatment of IPF.
Collapse
Affiliation(s)
- Caijuan Huan
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangting Xu
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaru Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Ruan
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Chan K, Li X. Current Epigenetic Insights in Kidney Development. Genes (Basel) 2021; 12:genes12081281. [PMID: 34440455 PMCID: PMC8391601 DOI: 10.3390/genes12081281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
The kidney is among the best characterized developing tissues, with the genes and signaling pathways that regulate embryonic and adult kidney patterning and development having been extensively identified. It is now widely understood that DNA methylation and histone modification patterns are imprinted during embryonic development and must be maintained in adult cells for appropriate gene transcription and phenotypic stability. A compelling question then is how these epigenetic mechanisms play a role in kidney development. In this review, we describe the major genes and pathways that have been linked to epigenetic mechanisms in kidney development. We also discuss recent applications of single-cell RNA sequencing (scRNA-seq) techniques in the study of kidney development. Additionally, we summarize the techniques of single-cell epigenomics, which can potentially be used to characterize epigenomes at single-cell resolution in embryonic and adult kidneys. The combination of scRNA-seq and single-cell epigenomics will help facilitate the further understanding of early cell lineage specification at the level of epigenetic modifications in embryonic and adult kidney development, which may also be used to investigate epigenetic mechanisms in kidney diseases.
Collapse
Affiliation(s)
- Katrina Chan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
| | - Xiaogang Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-0110
| |
Collapse
|
26
|
George NS, Bell R, Paredes JJ, Taub PJ, Andarawis-Puri N. Superior mechanical recovery in male and female MRL/MpJ tendons is associated with a unique genetic profile. J Orthop Res 2021; 39:1344-1354. [PMID: 32352601 PMCID: PMC7606617 DOI: 10.1002/jor.24705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/04/2023]
Abstract
Tendon ruptures heal by forming a mechanically inferior scar. We have shown that male Murphy Roths large (MRL/MpJ) mice exhibit improved tendon healing, suggesting that they can inform biological mechanisms that lead to effective tendon healing. As sex impacts healing, we assessed the effect of sex on tendon healing in MRL/MpJ and normal healer C57BL/6 (B6) mice and compared the associated biological environment with identify genes that may be integral to the improved healing outcome. We hypothesized that (a) male MRL/MpJ mice will heal with improved mechanical properties compared to females; and (b) that regenerative tendon healing will be associated with decreased fibrotic pathways, decreased inflammation, and increased activity of matrix metalloproteinases (MMPs). A midsubstance punch was introduced, and tendons were harvested after (a) 1 or 7 days for profiling of 84 genes; (b) 7 or 14 days for the assessment of MMP-2 and MMP-9 activity; and (c) 6 weeks for mechanical assessment. MRL/MpJ tendons healed with the better restoration of mechanical properties than B6 tendons. Sex did not affect the mechanical properties of healing B6 or MRL/MpJ tendons. Comparison of the gene expression profiles in the context of the mechanical outcome revealed several differences between MRL/MpJ and B6 tendon healing, including, lower inflammation, an earlier higher expression of TGF-β-related genes that diminish by 7 days, and genes associated with enhanced cell migration in MRL/MpJ in comparison to B6 tendons. We expect that the timecourse and expression levels of these genes in scarless MRL/MpJ tendon healing represent the balanced environment that leads to improved tendon healing.
Collapse
Affiliation(s)
- Nisha S. George
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - J. J. Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Peter J. Taub
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
- Hospital for Special Surgery Research Division, New York, New York
| |
Collapse
|
27
|
Deng F, Zhao J, Jia W, Fu K, Zuo X, Huang L, Wang N, Xia H, Zhang Y, Fu W, Liu G. Increased hypospadias risk by GREM1 rs3743104[G] in the southern Han Chinese population. Aging (Albany NY) 2021; 13:13898-13908. [PMID: 33962391 PMCID: PMC8202882 DOI: 10.18632/aging.202983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Hypospadias is a common congenital genitourinary malformation characterized by ventral opening of the urethral meatus. As a member of the bone morphogenic protein antagonist family, GREM1 has been identified as associated with susceptibility to hypospadias in the European population. The present study was designed to elaborate on the mutual relationship between replicated single-nucleotide polymorphisms (SNPs) and hypospadias in Asia's largest case-control study in the Southern Han Chinese population involving 577 patients and 654 controls. Our results demonstrate that the GREM1 risk allele rs3743104[G] markedly increases the risk of mild/moderate and severe hypospadias (P<0.01, 0.28≤OR≤0.66). GTEx expression quantitative trait locus data revealed that the eQTL SNP rs3743104 has more associations of eQTL SNP rs3743104 and GREM1 targets in pituitary tissues. Additionally, Bioinformatics and Luciferase Assays show that miR-182 is identified as a suppressor for GREM1 expression, likely through regulation of its binding affinity to rs3743104 locus. In conclusion, the GREM1 risk allele rs3743104[G] increases hypospadias susceptibility in mild/moderate and severe cases among the southern Han population. rs3743104 regulates GREM1 expression by altering the binding affinity of miR-182 to their locus. Collectively, this study provides new evidence that GREM1 rs3743104 is associated with an increased risk of hypospadias. These findings provide a promising biomarker and merit further exploration.
Collapse
Affiliation(s)
- Fuming Deng
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Kai Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lihua Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ning Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiming Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
28
|
Joosten SC, Odeh SNO, Koch A, Buekers N, Aarts MJB, Baldewijns MMLL, Van Neste L, van Kuijk S, Schouten LJ, van den Brandt PA, Tjan-Heijnen VC, van Engeland M, Smits KM. Development of a prognostic risk model for clear cell renal cell carcinoma by systematic evaluation of DNA methylation markers. Clin Epigenetics 2021; 13:103. [PMID: 33947447 PMCID: PMC8094610 DOI: 10.1186/s13148-021-01084-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Current risk models for renal cell carcinoma (RCC) based on clinicopathological factors are sub-optimal in accurately identifying high-risk patients. Here, we perform a head-to-head comparison of previously published DNA methylation markers and propose a potential prognostic model for clear cell RCC (ccRCC). PATIENTS AND METHODS Promoter methylation of PCDH8, BNC1, SCUBE3, GREM1, LAD1, NEFH, RASSF1A, GATA5, SFRP1, CDO1, and NEURL was determined by nested methylation-specific PCR. To identify clinically relevant methylated regions, The Cancer Genome Atlas (TCGA) was used to guide primer design. Formalin-fixed paraffin-embedded (FFPE) tissue samples from 336 non-metastatic ccRCC patients from the prospective Netherlands Cohort Study (NLCS) were used to develop a Cox proportional hazards model using stepwise backward elimination and bootstrapping to correct for optimism. For validation purposes, FFPE ccRCC tissue of 64 patients from the University Hospitals Leuven and a series of 232 cases from The Cancer Genome Atlas (TCGA) were used. RESULTS Methylation of GREM1, GATA5, LAD1, NEFH, NEURL, and SFRP1 was associated with poor ccRCC-specific survival, independent of age, sex, tumor size, TNM stage or tumor grade. Moreover, the association between GREM1, NEFH, and NEURL methylation and outcome was shown to be dependent on the genomic region. A prognostic biomarker model containing GREM1, GATA5, LAD1, NEFH and NEURL methylation in combination with clinicopathological characteristics, performed better compared to the model with clinicopathological characteristics only (clinical model), in both the NLCS and the validation population with a c-statistic of 0.71 versus 0.65 and a c-statistic of 0.95 versus 0.86 consecutively. However, the biomarker model had limited added prognostic value in the TCGA series with a c-statistic of 0.76 versus 0.75 for the clinical model. CONCLUSION In this study we performed a head-to-head comparison of potential prognostic methylation markers for ccRCC using a novel approach to guide primers design which utilizes the optimal location for measuring DNA methylation. Using this approach, we identified five methylation markers that potentially show prognostic value in addition to currently known clinicopathological factors.
Collapse
Affiliation(s)
- S C Joosten
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S N O Odeh
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - A Koch
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - N Buekers
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - M J B Aarts
- Department of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - L Van Neste
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - S van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L J Schouten
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P A van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - V C Tjan-Heijnen
- Department of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M van Engeland
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - K M Smits
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
29
|
Lu Y, Fog-Poulsen K, Nørregaard R, Djurhuus JC, Olsen LH. Gender-dependent bladder response to one-day bladder outlet obstruction. J Pediatr Urol 2021; 17:170.e1-170.e10. [PMID: 33487568 DOI: 10.1016/j.jpurol.2020.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/22/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Development of bladder fibrosis, loss of compliance, and voiding dysfunction are among the severe consequences of various lower urinary conditions, for example, bladder outlet obstruction (BOO), neurogenic bladder, and radiotherapy to the pelvic area. The bladder remodelling results in significant changes in bladder function and architecture, and may ultimately be deleterious for kidney function. The molecular signals underlying pathologic bladder remodelling, as well as the impact of gender, remain poorly understood. OBJECTIVE To investigate the bladder remodelling after one day BOO, whether the remodelling is different between different bladder sections, and whether genders may affect the remodelling. STUDY DESIGN Thirty male and 30 female C57BL/6NRj mice were randomly divided into Control, Sham and BOO groups with ten mice per group. A 24-h total urethral obstruction was performed at the proximal urethra. Histological changes were observed via H&E, trichrome and immunohistochemistry staining. Harvested bladders were divided into upper and lower sections for analysis. Protein and gene expression were detected by Western blotting and qPCR. RESULTS No significant changes in bladder wall thickness were observed following BOO, while increased bladder mass after BOO was found in female mice only. We detected FN and ⍺-SMA upregulation in the male upper bladder segment. Female BOO mice bladders showed increased α-SMA expression in both bladder segments, but no difference of FN was observed in either bladder segments. BOO-induced upregulation of TGF-β and Gremlin were detected in both male and female bladders, while downregulation of BMP-7 was detected only in male bladders. Furthermore, phosphorylation of both SMAD2/3 and SMAD1/5/9 were increased in male bladders following BOO, whereas female mice exhibited increased pSMAD2/3 in the upper and increased pSMAD1/5/9 in the lower bladder segment. CONCLUSIONS Our data indicate that some specific proteins and growth factors were detected as early alterations of tissue which may lead to fibrosis. In addition, the males tended to have more pronounced response than females. However, the causes and consequences of the findings need to be further investigated.
Collapse
Affiliation(s)
- Yutao Lu
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
| | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - L Henning Olsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark; Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
30
|
DHA inhibits Gremlin-1-induced epithelial-to-mesenchymal transition via ERK suppression in human breast cancer cells. Biosci Rep 2021; 40:222308. [PMID: 32141512 PMCID: PMC7087330 DOI: 10.1042/bsr20200164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid abundant in fish oils. It is known to have an inhibitory effect on various diseases such as inflammation, diabetes, and cancer. Epithelial-to-mesenchymal transition (EMT) is a process that epithelial cells gain migratory property to become mesenchymal cells involved in wound healing, organ fibrosis, and cancer progression. Gremlin-1 (GREM1) is a bone morphogenetic protein antagonist known to play a role in EMT. However, the role of GREM1 in the induction of EMT in human breast cancer cells and the effect of DHA on GREM1-induced EMT remain unclear. Establishment of GREM1 knockdown cell lines was performed using lentiviral shRNAs. Expression of EMT markers was determined by qRT-PCR and Western blotting. Effect of GREM1 and/or DHA on cell migration was investigated using wound healing assay. The level of GREM1 expression in human breast cancer tissues was determined by Oncomine database mining. GREM1 induced the expression of genes including N-cadherin, vimentin, and Slug. GREM1 promoted the migration of human breast cancer cells. GREM1 enhanced the expression of phosphorylated extracellular signal-regulated kinase (p-ERK) and the ERK activation was involved in EMT. Interestingly, DHA reduced the expression of GREM1. DHA also inhibited the expression of mesenchymal cell-associated genes and cell migration induced by GREM1. Furthermore, DHA suppressed the expression of p-ERK induced by GREM1. These results indicate that GREM1–ERK axis plays a role in EMT in human breast cancer cells and DHA is a putative compound that can inhibit EMT by inhibiting GREM1 signal transduction.
Collapse
|
31
|
Khatib Shahidi R, M Hoffmann J, Hedjazifar S, Bonnet L, K Baboota R, Heasman S, Church C, Elias I, Bosch F, Boucher J, Hammarstedt A, Smith U. Adult mice are unresponsive to AAV8-Gremlin1 gene therapy targeting the liver. PLoS One 2021; 16:e0247300. [PMID: 33606810 PMCID: PMC7895349 DOI: 10.1371/journal.pone.0247300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/05/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Gremlin 1 (GREM1) is a secreted BMP2/4 inhibitor which regulates commitment and differentiation of human adipose precursor cells and prevents the browning effect of BMP4. GREM1 is an insulin antagonist and serum levels are high in type 2 diabetes (T2D). We here examined in vivo effects of AAV8 (Adeno-Associated Viral vectors of serotype eight) GREM 1 targeting the liver in mature mice to increase its systemic secretion and also, in a separate study, injected recombinant GREM 1 intraperitoneally. The objective was to characterize systemic effects of GREM 1 on insulin sensitivity, glucose tolerance, body weight, adipose cell browning and other local tissue effects. Methods Adult mice were injected with AAV8 vectors expressing GREM1 in the liver or receiving regular intra-peritoneal injections of recombinant GREM1 protein. The mice were fed with a low fat or high fat diet (HFD) and followed over time. Results Liver-targeted AAV8-GREM1 did not alter body weight, whole-body glucose and insulin tolerance, or adipose tissue gene expression. Although GREM1 protein accumulated in liver cells, GREM1 serum levels were not increased suggesting that it may not have been normally processed for secretion. Hepatic lipid accumulation, inflammation and fibrosis were also not changed. Repeated intraperitoneal rec-GREM1 injections for 5 weeks were also without effects on body weight and insulin sensitivity. UCP1 was slightly but significantly reduced in both white and brown adipose tissue but this was not of sufficient magnitude to alter body weight. We validated that recombinant GREM1 inhibited BMP4-induced pSMAD1/5/9 in murine cells in vitro, but saw no direct inhibitory effect on insulin signalling and pAkt (ser 473 and thr 308) activation. Conclusion GREM1 accumulates intracellularly when overexpressed in the liver cells of mature mice and is apparently not normally processed/secreted. However, also repeated intraperitoneal injections were without effects on body weight and insulin sensitivity and adipose tissue UCP1 levels were only marginally reduced. These results suggest that mature mice do not readily respond to GREMLIN 1 but treatment of murine cells with GREMLIN 1 protein in vitro validated its inhibitory effect on BMP4 signalling while insulin signalling was not altered.
Collapse
Affiliation(s)
- Roxana Khatib Shahidi
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny M Hoffmann
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shahram Hedjazifar
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Laurianne Bonnet
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ritesh K Baboota
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie Heasman
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Christopher Church
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ivet Elias
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
| | - Jeremie Boucher
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ann Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Sung NJ, Kim NH, Surh YJ, Park SA. Gremlin-1 Promotes Metastasis of Breast Cancer Cells by Activating STAT3-MMP13 Signaling Pathway. Int J Mol Sci 2020; 21:ijms21239227. [PMID: 33287358 PMCID: PMC7730512 DOI: 10.3390/ijms21239227] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Gremlin-1 (GREM1), one of the bone morphogenetic protein (BMP) antagonists, can directly bind to BMPs. GREM1 is involved in organogenesis, tissue differentiation, and organ fibrosis. Recently, numerous studies have reported the oncogenic role of GREM1 in cancer. However, the role of GREM1 in metastasis of breast cancer cells and its underlying mechanisms remain poorly understood. The role of GREM1 in breast cancer progression was assessed by measuring growth, migration, and invasion of breast cancer cells. An orthotopic breast cancer mouse model was used to investigate the role of GREM1 in lung metastasis of breast cancer cells. GREM1 knockdown suppressed the proliferation of breast cancer cells, while its overexpression increased their growth, migration, and invasion. Cells with Grem1-knockdown showed much lower tumor growth rates and lung metastasis than control cells. GREM1 enhanced the expression of matrix metalloproteinase 13 (MMP13). A positive correlation between GREM1 and MMP13 expression was observed in breast cancer patients. GREM1 activated signal transducer and activator of transcription 3 (STAT3) transcription factor involved in the expression of MMP13. Our study suggests that GREM1 can promote lung metastasis of breast cancer cells through the STAT3-MMP13 pathway. In addition, GREM1 might be a promising therapeutic target for breast cancer metastasis.
Collapse
Affiliation(s)
- Nam Ji Sung
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si 31538, Korea; (N.J.S.); (N.H.K.)
| | - Na Hui Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si 31538, Korea; (N.J.S.); (N.H.K.)
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Sin-Aye Park
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si 31538, Korea; (N.J.S.); (N.H.K.)
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si 31538, Korea
- Correspondence: ; Tel.: +82-41-530-4990
| |
Collapse
|
33
|
Wang Y, Jiang Y, Chen L. Role of miR-218-GREM1 axis in epithelial-mesenchymal transition of oral squamous cell carcinoma: An in vivo and vitro study based on microarray data. J Cell Mol Med 2020; 24:13824-13836. [PMID: 33107676 PMCID: PMC7754042 DOI: 10.1111/jcmm.15972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent cancer that develops in the head and neck area and has high annual mortality despite optimal treatment. microRNA‐218 (miR‐218) is a tumour inhibiting non‐coding RNA that has been reported to suppress the cell proliferation and invasion in various cancers. Thus, our study aims to determine the mechanism underlying the inhibitory role of miR‐218 in OSCC. We conducted a bioinformatics analysis to screen differentially expressed genes in OSCC and their potential upstream miRNAs. After collection of surgical OSCC tissues, we detected GREM1 expression by immunohistochemistry, RT‐qPCR and Western blot analysis, and miR‐218 expression by RT‐qPCR. The target relationship between miR‐218 and GREM1 was assessed by dual‐luciferase reporter gene assay. After loss‐ and gain‐of‐function experiments, OSCC cell proliferation, migration and invasion were determined by MTT assay, scratch test and Transwell assay, respectively. Expression of TGF‐β1, Smad4, p21, E‐cadherin, Vimentin and Snail was measured by RT‐qPCR and Western blot analysis. Finally, effects of miR‐218 and GREM1 on tumour formation and liver metastasis were evaluated in xenograft tumour‐bearing nude mice. GREM1 was up‐regulated, and miR‐218 was down‐regulated in OSCC tissues, and GREM1 was confirmed to be the target gene of miR‐218. Furthermore, after up‐regulating miR‐218 or silencing GREM1, OSCC cell proliferation, migration and invasion were reduced. In addition, expression of TGF‐β signalling pathway‐related genes was diminished by overexpressing miR‐218 or down‐regulating GREM1. Finally, up‐regulated miR‐218 or down‐regulated GREM1 reduced tumour growth and liver metastasis in vivo. Taken together, our findings suggest that the overexpression of miR‐218 may inhibit OSCC progression by inactivating the GREM1‐dependent TGF‐β signalling pathway.
Collapse
Affiliation(s)
- Yanpeng Wang
- Department of E.N.T., Linyi People's Hospital, Linyi, China
| | - Yifeng Jiang
- Department of Stomatology, Shandong Medical College, Linyi, China
| | - Long Chen
- Department of Stomatology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
34
|
Park SA, Sung NJ, Choi BJ, Kim W, Kim SH, Surh YJ. Gremlin-1 augments the oestrogen-related receptor α signalling through EGFR activation: implications for the progression of breast cancer. Br J Cancer 2020; 123:988-999. [PMID: 32572171 PMCID: PMC7493948 DOI: 10.1038/s41416-020-0945-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/04/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gremlin-1 (GREM1), one of the bone morphogenetic protein antagonists, is involved in organogenesis, tissue differentiation and kidney development. However, the role of GREM1 in cancer progression and its underlying mechanisms remain poorly understood. METHODS The role of GREM1 in breast cancer progression was assessed by measuring cell viability, colony formation, 3D tumour spheroid formation/invasion and xenograft tumour formation. Chromatin immunoprecipitation, a luciferase reporter assay and flow cytometry were performed to investigate the molecular events in which GREM1 is involved. RESULTS GREM1 expression was elevated in breast cancer cells and tissues obtained from breast cancer patients. Its overexpression was associated with poor prognosis in breast cancer patients, especially those with oestrogen receptor (ER)-negative tumours. GREM1 knockdown inhibited the proliferation of breast cancer cells and xenograft mammary tumour growth, while its overexpression enhanced their viability, growth and invasiveness. Oestrogen-related receptor α (ERRα), an orphan nuclear hormone receptor, directly interacted with the GREM1 promoter and increased the expression of GREM1. GREM1 also enhanced the promoter activity of ESRRA encoding ERRα, comprising a positive feedback loop. Notably, GREM1 bound to and activated EGFR, a well-known upstream regulator of ERRα. CONCLUSIONS Our study suggests that the GREM1-ERRα axis can serve as a potential therapeutic target in the management of cancer, especially ER-negative tumour.
Collapse
Affiliation(s)
- Sin-Aye Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Nam Ji Sung
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Bae-Jung Choi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Wonki Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seung Hyeon Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
35
|
Qin N, Tyasi TL, Sun X, Chen X, Zhu H, Zhao J, Xu R. Determination of the roles of GREM1 gene in granulosa cell proliferation and steroidogenesis of hen ovarian prehierarchical follicles. Theriogenology 2020; 151:28-40. [PMID: 32251937 DOI: 10.1016/j.theriogenology.2020.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Gremlin genes are known members of the DAN family of bone morphogenetic protein (BMP) antagonists, but their functions and regulatory mechanisms in ovarian follicular development of chicken remain unknown. The current study was designed to investigate the mRNA expression patterns of gremlin1 gene (GREM1) and its protein location in the follicles sampled, and to explore the biological effect of GREM1 on the prehierarchical follicular development. This work revealed that chicken GREM1 mRNA exhibits a constant expression level across all the prehierarchical follicles (PFs) from 1-4 mm to 7-8 mm in diameter, and the preovulatory follicles (from F6 to F1) by using RT-qPCR (P > 0.05). The GREM1 protein is predominantly expressed in the oocytes and granulosa cells (GCs) of the PFs by immunohistochemistry. Furthermore, our data demonstrated that siRNA-mediated knockdown of GREM1 in the GCs resulted in a significant reduction in cell proliferation (P < 0.001); conversely, overexpression of GREM1 in the GCs led to a remarkable increase in cell proliferation (P < 0.001). Interestingly, the expression levels of proliferating cell nuclear antigen (PCNA) and cyclin D2 (CCND2) mRNA and proteins were notably increased when GREM1 expression was upregulated in the GCs (P < 0.01), however, the expression levels of CYP11A1 and StAR were markedly downregulated (P < 0.01). The current results showed that GREM1 gene plays a stimulatory role in GC proliferation during growth and development of the prehierarchical follicles in vitro but an inhibitory role in GC differentiation and steroidogenesis of the hen ovary follicles.
Collapse
Affiliation(s)
- Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Thobela Louis Tyasi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyan Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
36
|
Down-regulation of Gremlin1 inhibits inflammatory response and vascular permeability in chronic idiopathic urticaria through suppression of TGF-β signaling pathway. Gene 2020; 756:144916. [PMID: 32580008 DOI: 10.1016/j.gene.2020.144916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Chronic idiopathic urticaria (CIU) is an unfavorable skin condition which could be maintained for six weeks or longer time. Gremlin1 (GREM1) was recently applied in treatments of many diseases. However, the possible regulatory mechanism of GREM1 in CIU remained unclear. This study aimed to explore the regulatory effects of GREM1 on the inflammatory response and vascular permeability mediated by mast cells of CIU via TGF-β signaling pathway. Initially, microarray analysis was used to identify CIU-related differentially expressed genes and the potential mechanism of this gene. A mouse model of CIU was established. To explore the functional role of GREM1 in CIU, the modeled mice were then injected with GREM1-siRNA, SRI-011381 (the activator of TGF-β signaling pathway), or both, followed by serum test, and immunoglobulin detection. The levels of inflammatory factors and tryptase, β-hexosaminase, histamine in the serum were detected. Besides, vascular endothelial cell permeability and the target relation between GREM1 and TGF-β were also examined. Mice injected with SRI-011381 exhibited higher levels of tryptase, β-hexosaminase, histamine, inflammation-related factors and increased vascular endothelial cell permeability, while GREM1-silenced mice yet expressed opposite tendency. Silencing of GREM1 was demonstrated to inhibit the TGF-β signaling pathway. Taken together, our results demonstrated that down-regulation of GREM1 could potentially impede inflammatory response and vascular permeability by suppressing TGF-β signaling pathway. GREM1 may promote the development of prognosis management and therapeutic treatment in CIU.
Collapse
|
37
|
Shihan MH, Kanwar M, Wang Y, Jackson EE, Faranda AP, Duncan MK. Fibronectin has multifunctional roles in posterior capsular opacification (PCO). Matrix Biol 2020; 90:79-108. [PMID: 32173580 DOI: 10.1016/j.matbio.2020.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Fibrotic posterior capsular opacification (PCO), one of the major complications of cataract surgery, occurs when lens epithelial cells (LCs) left behind post cataract surgery (PCS) undergo epithelial to mesenchymal transition, migrate into the optical axis and produce opaque scar tissue. LCs left behind PCS robustly produce fibronectin, although its roles in fibrotic PCO are not known. In order to determine the function of fibronectin in PCO pathogenesis, we created mice lacking the fibronectin gene (FN conditional knock out -FNcKO) from the lens. While animals from this line have normal lenses, upon lens fiber cell removal which models cataract surgery, FNcKO LCs exhibit a greatly attenuated fibrotic response from 3 days PCS onward as assessed by a reduction in surgery-induced cell proliferation, and fibrotic extracellular matrix (ECM) production and deposition. This is correlated with less upregulation of Transforming Growth Factor β (TGFβ) and integrin signaling in FNcKO LCs PCS concomitant with sustained Bone Morphogenetic Protein (BMP) signaling and elevation of the epithelial cell marker E cadherin. Although the initial fibrotic response of FNcKO LCs was qualitatively normal at 48 h PCS as measured by the upregulation of fibrotic marker protein αSMA, RNA sequencing revealed that the fibrotic response was already quantitatively attenuated at this time, as measured by the upregulation of mRNAs encoding molecules that control, and are controlled by, TGFβ signaling, including many known markers of fibrosis. Most notably, gremlin-1, a known regulator of TGFβ superfamily signaling, was upregulated sharply in WT LCs PCS, while this response was attenuated in FNcKO LCs. As exogenous administration of either active TGFβ1 or gremlin-1 to FNcKO lens capsular bags rescued the attenuated fibrotic response of fibronectin null LCs PCS including the loss of SMAD2/3 phosphorylation, this suggests that fibronectin plays multifunctional roles in fibrotic PCO development.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mallika Kanwar
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin E Jackson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
38
|
Caselli E, Soffritti I, D’Accolti M, Bortolotti D, Rizzo R, Sighinolfi G, Giuggioli D, Ferri C. HHV-6A Infection and Systemic Sclerosis: Clues of a Possible Association. Microorganisms 2019; 8:microorganisms8010039. [PMID: 31878218 PMCID: PMC7022325 DOI: 10.3390/microorganisms8010039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, excessive extracellular matrix deposition, and fibrosis of the skin and internal organs. Several infectious agents, including human herpesvirus-6 (HHV-6), have been suggested as possible triggering factors, but a direct association is still missing. We characterized 26 SSc patients for the presence of HHV-6 in tissues and blood, the anti-HHV-6 response, HLA-G plasma levels, and KIR typing. Given the prominent role of endothelial cells (EC) in SSc pathogenesis, along with HHV-6 tropism for EC, we also investigated the expression of pro-fibrosis factors in HHV-6 infected EC. Results showed the presence of HHV-6A in skin biopsies, and an increased virus load was associated with disease severity and poor natural killer (NK) response against the virus, particularly in subjects exhibiting a KIR2 phenotype. HLA-G plasma levels were significantly higher in HHV-6A/B-KIR2 positive SSc patients and in vitro HHV-6A infection-induced pro-fibrosis factors expression in EC, supporting its role in the development of the fibrosing process. Our data suggest an association between virus infection/reactivation and disease, opening the way to future studies to understand the mechanisms by which HHV-6A might contribute to the multifactorial pathogenesis of SSc.
Collapse
Affiliation(s)
- Elisabetta Caselli
- Section of Microbiology and Medical Genetics, Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455387
| | - Irene Soffritti
- Section of Microbiology and Medical Genetics, Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria D’Accolti
- Section of Microbiology and Medical Genetics, Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Gianluca Sighinolfi
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy
| | - Dilia Giuggioli
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy
| | - Clodoveo Ferri
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy
| |
Collapse
|
39
|
Perera N, Ritchie RH, Tate M. The Role of Bone Morphogenetic Proteins in Diabetic Complications. ACS Pharmacol Transl Sci 2019; 3:11-20. [PMID: 32259084 DOI: 10.1021/acsptsci.9b00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/22/2022]
Abstract
The prevalence of diabetes has reached epidemic proportions and is placing a significant burden on healthcare systems globally. Diabetes has a detrimental impact on many organs in the human body, including accelerating the development of micro- and macrovascular complications. Current therapeutic options to treat diabetic complications have their limitations. Importantly, many slow but fail to reverse the progression of diabetic complications. Bone morphogenetic proteins (BMPs) are a highly conserved subgroup of the transforming growth factor β (TGFβ) superfamily, signaling via serine/threonine kinase receptors, that have recently been implicated in glucose homeostasis and insulin resistance in the setting of diabetes. Downstream of the receptors, the signal can be transduced via the canonical Smad-dependent pathway or the noncanonical Smad-independent pathways. BMPs are essential in organ development, tissue homeostasis, and, as expected, disease pathogenesis. In fact, deletion of BMPs can be embryonically lethal or result in severe organ abnormalities. This review outlines the BMP signaling pathway and its relevance to diabetic complications, namely, diabetic nephropathy, diabetes-associated cardiovascular diseases, and diabetic retinopathy. Understanding the complexities of BMP signaling and particularly its tissue-, cellular-, and time-dependent actions will help delineate the underlying pathogenesis of the disease and may ultimately be harnessed in the treatment of diabetes-induced complications. This would replicate progress made in numerous other diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Nimna Perera
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Department of Diabetes, Monash University, Melbourne, Victoria 3800, Australia.,Department of Pharmacology and Department of Diabetes, Monash University, Melbourne, Victoria 3800, Australia
| | - Mitchel Tate
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Department of Diabetes, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
40
|
Dutton LR, O'Neill CL, Medina RJ, Brazil DP. No evidence of Gremlin1-mediated activation of VEGFR2 signaling in endothelial cells. J Biol Chem 2019; 294:18041-18045. [PMID: 31604823 DOI: 10.1074/jbc.ac119.010148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/20/2019] [Indexed: 01/10/2023] Open
Abstract
Canonical Gremlin1 (GREM1) signaling involves binding to and sequestering bone morphogenetic proteins (BMPs) in the extracellular matrix, preventing the activation of cognate BMP receptor. Exquisite temporospatial control of the GREM1-BMP interaction is required during development, and perturbation of this balance leads to abnormal limb formation and defective kidney development. In addition to inhibition of BMP signaling, several other noncanonical signaling modalities of GREM1 have been postulated. Some literature reports have suggested that GREM1 can bind to and activate vascular endothelial growth factor receptor-2 (VEGFR2) in endothelial cells, human kidney epithelial cells, and others. These reports suggest that the GREM1 → VEGFR2 signaling can drive angiogenesis both in vitro and in vivo We report here that, despite exhaustive attempts, we did not observe GREM1 activation of VEGFR2 in any of the cell lines reported by the above-mentioned studies. Incubation of endothelial colony-forming cells (ECFCs) or human umbilical vein endothelial cells (HUVECs) with recombinant VEGF triggered a robust increase in VEGFR2 tyrosine phosphorylation. In contrast, no VEGFR2 phosphorylation was detected when cells were incubated with recombinant GREM1 over a range of time points and concentrations. We also show that GREM1 does not interfere with VEGF-mediated VEGFR2 activation, suggesting that GREM1 does not bind with any great affinity to VEGFR2. Measurements of ECFC barrier integrity revealed that VEGF induces barrier function disruption, but recombinant human GREM1 had no effect in this assay. We believe that these results provide an important clarification of the potential interaction between GREM1 and VEGFR2 in mammalian cells.
Collapse
Affiliation(s)
- Louise R Dutton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Christina L O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Reinhold J Medina
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
41
|
Hartung F, Patil A, Meshram RJ, Weber GF. Gene expression signatures of site-specificity in cancer metastases. Clin Exp Metastasis 2019; 37:159-171. [PMID: 31555944 DOI: 10.1007/s10585-019-09995-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/19/2019] [Indexed: 11/26/2022]
Abstract
We have previously shown that metastases are generally characterized by a core program of gene expression that induces the oxidative energy metabolism, activates vascularization/tissue remodeling, silences extracellular matrix interactions, and alters ion homeostasis. This core program distinguishes metastases from their originating primary tumors as well as from their target host tissues. We hypothesized that organ preference is reflected in additional, site-selective components within the metastatic gene expression programs. Expanding our prior analysis of 653 human gene expression profiles plus data from a murine model, we find that the release from the primary tumor is associated with a suppression of functions that are important for the identity of the organ of origin, such as a down-regulation of steroid hormone responsiveness in the disseminated foci derived from prostate cancer. Metastases adjust to their target microenvironment by up-regulating-even overexpressing-genes and genetic programs that are characteristic of that organ. Finally, alterations in RNA and protein processing as well as immune deviation are common. In the clinic, metastases are mostly treated with the chemotherapy protocols devised for their primary tumors. Adjustments that account for the gene expression differences between primary and metastatic cancers have the potential to improve the currently dismal success rates.
Collapse
Affiliation(s)
- Franz Hartung
- University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Aditya Patil
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Georg F Weber
- University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0514, USA.
| |
Collapse
|
42
|
Gu Q, Luo Y, Chen C, Jiang D, Huang Q, Wang X. GREM1 overexpression inhibits proliferation, migration and angiogenesis of osteosarcoma. Exp Cell Res 2019; 384:111619. [PMID: 31525341 DOI: 10.1016/j.yexcr.2019.111619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is the most common malignancy of bone that occurs in young adults and children, with a five-year survival rate of 60-70%. Metastasis of osteosarcoma maintains an even poorer prognosis. GREM1 plays an important role in regulating organogenesis, body patterning, and tissue differentiation. However, there are limited studies on GREM1 in osteosarcomas. This study was carried out to characterize the expression and function of GREM1 in osteosarcoma cells, thus extending our understanding of osteosarcoma metastasis. GREM1 expression was detected in hBMSC, hFOB1.19, Saos-2, MG63 and U2OS cell lines using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Gain- and loss-of-function approaches were used to assess the biological function of GREM1 in U2OS cells. The effects of GREM1 on U2OS cell proliferation were examined using the CCK-8 and colony formation assay. Migration and invasion ability were confirmed by the wound healing and Transwell assay, respectively. Flow cytometry was used to analyse the effect of GREM1 on the cell cycle and apoptosis. The expression of GREM1 targets was evaluated by qRT-PCR and western blotting. The expression of GREM1 was significantly downregulated in osteosarcoma. GREM1 overexpression inhibited the proliferation, migration and invasion of U2OS cells. GREM1 overexpression suppressed tumour cell-induced endothelial cell migration and invasion ability. The effect of GREM1 may be transduced through regulation of the BMP target transcription factor inhibitor of MMP-2 and -9 as well as Id1. GREM1 overexpression and knockdown regulates the tumorigenesis of osteosarcoma in vivo. In conclusion, GREM1 is downregulated in osteosarcoma cells, and overexpression of GREM1 inhibits the proliferation, migration, invasion and angiogenesis abilities of osteosarcoma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Qingguo Gu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Yibin Luo
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Cheng Chen
- Department of Orthopedics, Shanghai University of Medicine &health Sciences Affiliated Zhoupu Hospital, China
| | - Dongjie Jiang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Xinwei Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
43
|
Mezzano S, Droguett A, Lavoz C, Krall P, Egido J, Ruiz-Ortega M. Gremlin and renal diseases: ready to jump the fence to clinical utility? Nephrol Dial Transplant 2019; 33:735-741. [PMID: 28992340 DOI: 10.1093/ndt/gfx194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
The current therapeutic strategy for the treatment of chronic kidney diseases only ameliorates disease progression. During renal injury, developmental genes are re-expressed and could be potential therapeutic targets. Among those genes reactivated in the adult damaged kidney, Gremlin is of particular relevance since recent data suggest that it could be a mediator of diabetic nephropathy and other progressive renal diseases. Earlier studies have shown that Gremlin is upregulated in trans-differentiated renal proximal tubular cells and in several chronic kidney diseases associated with fibrosis. However, not much was known about the mechanisms by which Gremlin acts in renal pathophysiology. The role of Gremlin as a bone morphogenetic protein antagonist has clearly been demonstrated in organogenesis and in fibrotic-related disorders. Gremlin binds to vascular endothelial growth factor receptor 2 (VEGFR2) in endothelial and tubular epithelial cells. Activation of the Gremlin-VEGFR2 axis was found in several human nephropathies. We have recently described that Gremlin activates the VEGFR2 signaling pathway in the kidney, eliciting a downstream mechanism linked to renal inflammatory response. Gremlin deletion improves experimental renal damage, diminishing fibrosis. Overall, the available data identify the Gremlin-VEGFR2 axis as a novel therapeutic target for kidney inflammation and fibrosis and provide a rationale for unveiling new concepts to investigate in several clinical conditions.
Collapse
Affiliation(s)
- Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Droguett
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Jesús Egido
- Division of Nephrology and Hypertension, University Hospital, Fundación Jiménez Díaz-Universidad Autónoma, CIBERDEM, Instituto Renal Reina Sofía, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, IIS-Fundación Jiménez Díaz, RedinRen, Madrid, Spain
| |
Collapse
|
44
|
Dutton LR, Hoare OP, McCorry AMB, Redmond KL, Adam NE, Canamara S, Bingham V, Mullan PB, Lawler M, Dunne PD, Brazil DP. Fibroblast-derived Gremlin1 localises to epithelial cells at the base of the intestinal crypt. Oncotarget 2019; 10:4630-4639. [PMID: 31384391 PMCID: PMC6659803 DOI: 10.18632/oncotarget.27050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/19/2019] [Indexed: 01/15/2023] Open
Abstract
Gremlin1 (GREM1) is a secreted glycoprotein member of the differential screening-selected gene in aberrant neuroblastoma (DAN) family of bone morphogenetic protein (BMP) antagonists, which binds to BMPs preventing their receptor engagement. Previous studies have identified that stage II colorectal cancer (CRC) patients with high levels of GREM1 gene expression in their tumour tissue have a poorer prognosis. Using a series of in silico and in situ methodologies, we demonstrate that GREM1 gene expression is significantly higher (p < 0.0001) in CRC consensus molecular subtype 4 (CMS4), compared to the other CMS subtypes and correlates (p < 0.0001) with levels of cancer-associated fibroblasts (CAFs) within the CRC tumour microenvironment (TME). Our optimised immunohistochemistry protocol identified endogenous GREM1 protein expression in both the muscularis mucosa and adjacent colonic crypt bases in mouse intestine, in contrast to RNA expression which was shown to localise specifically to the muscularis mucosa, as determined by in situ hybridisation. Importantly, we demonstrate that cells with high levels of GREM1 expression display low levels of phospho-Smad1/5, consistent with reduced BMP signalling. Taken together, these data highlight a novel paracrine signalling circuit, which involves uptake of mature GREM1 protein by colonic crypt cells following secretion from neighbouring fibroblasts in the TME.
Collapse
Affiliation(s)
- Louise R Dutton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.,These authors contributed equally to this work
| | - Owen P Hoare
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK.,These authors contributed equally to this work
| | - Amy M B McCorry
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK.,These authors contributed equally to this work
| | - Keara L Redmond
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Noor Eisa Adam
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.,Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, United Arab Emirates
| | - Shannon Canamara
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.,Indonesia International Institute for Life-Sciences, University of East Jakarta, Jakarta Timur, Indonesia
| | - Victoria Bingham
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Paul B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK.,Co-senior authors
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.,Co-senior authors
| |
Collapse
|
45
|
Ma B, Jing R, Liu J, Qi T, Pei C. Gremlin is a potential target for posterior capsular opacification. Cell Cycle 2019; 18:1714-1726. [PMID: 31234714 DOI: 10.1080/15384101.2019.1632125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective: The present study was conducted to determine the role of gremlin during the development of posterior capsular opacification (PCO) via in vitro and in vivo experiments. Methods: The activation, roles and relationships of the BMPs/Smad1/5, MAPK, FAK and AKT signaling pathways in human lens epithelial cells (HLECs) after gremlin induction were detected by western blotting and real-time PCR. Wound-healing, transwell, capsular bag models and rat PCO models assays were used to test the effects of gremlin on HLECs' migration, proliferation, EMT-specific protein α-smooth muscle actin(α-SMA)and development of PCO in rats. Results: Our data showed that knockdown of the gremlin inhibited the development of PCO and reduced expression of α-SMA in rats. While gremlin did not alter the migration of HLECs, it increased the expression of p-ERK and p-AKT. Knockout of Smad2 or Smad3 inhibited the expression of p-ERK and p-AKT proteins induced by gremlin. Gremlin also reduced BMP4-induced expression of the p-Smad1/5 protein. Finally, knockout of Smad1/5 increased gremlin-induced expression of α-SMA, fibronectin and type I collagen (COL-1) in HLECs. Conclusion: These results suggested that gremlin contributed to the development of PCO by promoting LEC proliferation, activation of TGF-β/Smad, ERK and AKT signaling and inhibition of BMPs/Smad1/5 signaling. Furthermore, inhibiting gremlin effectively impaired both PCO development in rats and EMT in the lens capsule. Thus, our data suggest that gremlin might be a potential target for PCO.
Collapse
Affiliation(s)
- Bo Ma
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Ruihua Jing
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Jie Liu
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Tiantian Qi
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Cheng Pei
- a Department of Ophthalmology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| |
Collapse
|
46
|
Droguett A, Valderrama G, Burgos ME, Carpio D, Saka C, Egido J, Ruiz-Ortega M, Mezzano S. Gremlin, A Potential Urinary Biomarker of Anca-Associated Crescentic Glomerulonephritis. Sci Rep 2019; 9:6867. [PMID: 31053735 PMCID: PMC6499786 DOI: 10.1038/s41598-019-43358-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/23/2019] [Indexed: 01/08/2023] Open
Abstract
Gremlin renal overexpression has been reported in diabetic nephropathy, pauci-immune crescentic glomerulonephritis and chronic allograft nephropathy and has been implicated in the pathophysiology of the progression of renal damage. However, it is unknown whether urinary Gremlin can be associated with renal functional status, renal biopsy findings and outcome. To examine these associations we studied 20 patients with ANCA+ renal vasculitis and very high urinary Gremlin (354 ± 76 ug/gCr), 86 patients with other glomerular diseases and moderately elevated urinary Gremlin (83 ± 14 ug/gCr) and 11 healthy controls (urinary Gremlin 11.3 ± 2.4 ug/gCr). Urinary Gremlin was significantly correlated with renal expression of Gremlin (r = 0.64, p = 0.013) observed in cellular glomerular crescents, tubular epithelial cells and interstitial inflammatory cells. Moreover, urinary Gremlin levels were correlated with the number of glomerular crescents (r = 0.53; p < 0.001), renal CD68 positive cells (r = 0.71; p < 0.005), tubulointerstitial fibrosis (r = 0.50; p < 0.05), and serum creatinine levels (r = 0.60; p < 0.001). Interestingly, Gremlin expression was colocalized with CD68, CD163 (monocyte/macrophage markers) and CCL18 positive cells. ROC curve analysis showed that the cutoff value of urinary Gremlin in glomerular diseases as 43 ug/gCr with 72% of sensitivity and 100% of specificity [AUC: 0.96 (CI 95% 0.92–0.99] (p < 0.001). For ANCA+ renal vasculitis the value of urinary Gremlin of 241 ug/gCr had 55% of sensitivity and 100% of specificity [AUC: 0.81 (CI 95% 0.68–0.94) (p < 0.001]. Based on these results we propose that urinary Gremlin represents a non-invasive biomarker in ANCA+ renal vasculitis, and suggest a role of Gremlin in the formation of crescents.
Collapse
Affiliation(s)
- Alejandra Droguett
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Graciela Valderrama
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - María E Burgos
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Carpio
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Constanza Saka
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Jesús Egido
- Cellular Biology in Renal Disease Laboratory, Universidad Autónoma. IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Disease Laboratory, Universidad Autónoma. IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Sergio Mezzano
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
47
|
Wen H, Kumar V, Mishra A, Song S, Aslam R, Hussain A, Wang H, Zhou X, He X, Wu G, Luo H, Lan X, Malhotra A, Singhal PC. Grem2 mediates podocyte apoptosis in high glucose milieu. Biochimie 2019; 160:113-121. [PMID: 30831151 DOI: 10.1016/j.biochi.2019.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Increased DAN protein (Grem1, Grem2, Grem3, Cerberus, NBL1, SOST, and USAG1) levels are often associated with severe disease-states in adult kidneys. Grem1, SOST, and USAG1 have been demonstrated to be upregulated and play a critical role in the progression of diabetic nephropathy (DN); however, the expression and the role of other DAN family members in DN have not been reported yet. In this study, we investigated the expression and the role of Grem2 in the development of renal lesions in mice with type 2 DN. METHODS Fourteen-week-old BTBRob/ob (a mouse model of type 2 diabetes mellitus) and control (BTBR, wild type) mice were evaluated for renal functional and structural biomarkers. Urine was collected for protein content assay, and renal tissues were harvested for molecular analysis with real-time PCR, Western blotting, and immunohistochemistry. In vitro studies, human podocytes were transfected with Grem2 plasmid and were evaluated for apoptosis (morphologic assay and Western blotting). To evaluate the Grem2-mediated downstream signaling, the phosphorylation status of Smad2/3 and Smad1/5/8 was assessed. To establish a causal relationship, the effect of SIS3 (an inhibitor for Samd2/3) and BMP-7 (an agonist for Smad1/5/8) was evaluated on Germ2-induced podocyte apoptosis. RESULTS BTBRob/ob mice showed elevated urinary protein levels. Renal tissues of BTBRob/ob mice showed an increased expression of Grem2; both glomerular and tubular cells displayed enhanced Grem2 expression. In vitro studies, high glucose increased Grem2 expression in cultured human podocytes, whereas, Grem2 silencing partially protected podocyte from high glucose-induced apoptosis. Overexpression of Grem2 in podocytes not only increased Bax/Bcl2 expression ratio but also promoted podocyte apoptosis; moreover, an overexpression of Grem2 increased the phosphorylation of Smad2/3 and decreased the phosphorylation of Smad1/5/8; furthermore, SIS3 and BMP-7 attenuated Grem2-induced podocyte apoptosis. CONCLUSIONS High glucose increases Grem2 expression in kidney cells. Grem2 mediates podocyte apoptosis through Smads.
Collapse
Affiliation(s)
- Hongxiu Wen
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Vinod Kumar
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Abheepsa Mishra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Su Song
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Rukhsana Aslam
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ali Hussain
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Haichao Wang
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States; Department of Emergency Medicine, North Shore University Hospital, Manhasset, NY, United States
| | - Xiaogang Zhou
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoming He
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Guisheng Wu
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Huairong Luo
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiqian Lan
- Key Laboratory for Aging and Regenerative Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Pravin C Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.
| |
Collapse
|
48
|
Ghuman MS, Al-Masri M, Xavier G, Cobourne MT, McKay IJ, Hughes FJ. Gingival fibroblasts prevent BMP-mediated osteoblastic differentiation. J Periodontal Res 2018; 54:300-309. [PMID: 30511378 PMCID: PMC6492095 DOI: 10.1111/jre.12631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 10/04/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023]
Abstract
Objectives The inhibitory action of the superficial gingival connective tissues may limit the regenerative potential of alveolar bone in periodontal therapy or dental implant applications. The aims of this study were to investigate the hypothesis that gingival fibroblasts (GF) can inhibit bone morphogenetic protein (BMP)‐induced osteoblastic differentiation, to determine their expression of BMP inhibitors, and finally to determine whether reduction of these inhibitors can relieve suppression of osteoblastic differentiation. Methods Gingival fibroblasts were co‐cultured either directly or indirectly with calvarial osteoblasts to assess alkaline phosphatase inhibitory activity, a marker of osteoblastic differentiation. To test total BMP‐inhibitory activity of rat GF, conditioned media (GFCM) were collected from cultures. ROS 17/2.8 osteoblastic cells were stimulated with BMP2, together with GFCM. Inhibitor expression was tested using RT‐qPCR, Western blotting and in situ hybridization. Removal of inhibitors was carried out using immunoprecipitation beads. Results Co‐culture experiments showed GF‐secreted factors that inhibit BMP‐stimulated ALP activity. 10 ng/ml BMP2 increased alkaline phosphatase expression in ROS cells by 41%. GFCM blocked BMP activity which was equivalent to the activity of 100 ng/ml Noggin, a well‐described BMP inhibitor. Cultured gingival fibroblasts constitutively expressed BMP antagonist genes from the same subfamily, Grem1, Grem2 and Nbl1 and the Wnt inhibitor Sfrp1. Gremlin1 (6.7 × reference gene expression) had highest levels of basal expression. ISH analysis showed Gremlin1 expression was restricted to the inner half of the gingival lamina propria and the PDL. Removal of Gremlin1 protein from GFCM eliminated the inhibitory effect of GFCM on ALP activity in ROS cells. Subsequent addition of recombinant Gremlin1 restored the inhibitory activity. Conclusions Factors secreted by gingival fibroblasts inhibit BMP‐induced bone formation and a range of BMP inhibitors are constitutively expressed in gingival connective tissues. These inhibitors, particularly Gremlin1, may limit coronal alveolar bone regenerative potential during oral and periodontal surgery.
Collapse
Affiliation(s)
- Mandeep S Ghuman
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, London, UK
| | | | - Guilherme Xavier
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, Guy's Hospital, London, UK
| | - Martyn T Cobourne
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, Guy's Hospital, London, UK
| | - Ian J McKay
- Department of Adult Oral Health, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francis J Hughes
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, London, UK
| |
Collapse
|
49
|
Liu Y, Li Y, Hou R, Shu Z. Knockdown GREM1 suppresses cell growth, angiogenesis, and epithelial-mesenchymal transition in colon cancer. J Cell Biochem 2018; 120:5583-5596. [PMID: 30426548 DOI: 10.1002/jcb.27842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/14/2018] [Indexed: 01/05/2023]
Abstract
Gremlin 1 (GREM1), as a bone morphogenetic protein (BMP) antagonist and vascular endothelial growth factor receptor-2 (VEGFR2) novel agonist, has been confirmed as overexpressed in colorectal cancer (CRC) tissues but its role in carcinogenesis remains unclear. Here we reported that the GREM1 expression in mesenchymal-like colon cancer cells (SW620 and SW480) was significantly higher than that of epithelial-like colon cancer cells (Caco-2, HTC116, and HT29) and normal colon cell. Simultaneously, we analyzed two series of CRC transcriptomes from Gene Expression Omnibus (GEO) databases and found the great majority of primary CRC tissues expressed high level of GREM1 messenger RNA (mRNA) compared with adjacent normal tissues, and that the GREM1 mRNA expression is correlated with low histological grade development and stage 2 to 3 metastatic recurrence in CRC based on a data analysis of 104 different stage CRC tissue from the GEO databases. Functional studies showed that GREM1 silencing by short hairpin RNA (shRNA) significantly inhibited CRC cells proliferation, migration, the formation of vascular endothelial growth factor (VEGF)-induced capillary structure of human umbilical vein endothelial cells (HUVECs), and epithelial-mesenchymal transition in colon cancer cells by repressing phosphorylation levels of BMP downstream signal Smad1, vascular endothelial growth factor (VEGF) downstream signal matrix metallopeptidase 2 (MMP2), and metastasis-related factor C-X-C motif chemokine ligand 12 (CXCL12) expression. In addition, shGREM1 combined with VEGF inhibitor BAW2881 displayed more effective antiangiogenesis to inhibit the tube formation of HUVEC. Hence, these experiments demonstrated that GREM1 is involved in CRC development and procession and provide a new idea for CRC diagnosis, resistance therapy, and prognosis.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ultrasonography, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yongchao Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ruizhe Hou
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China.,Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhenbo Shu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China.,Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
50
|
Viena CS, Machado RA, Persuhn DC, Martelli-Júnior H, Medrado AP, Coletta RD, Reis SRA. Understanding the participation of GREM1 polymorphisms in nonsyndromic cleft lip with or without cleft palate in the Brazilian population. Birth Defects Res 2018; 111:16-25. [PMID: 30402937 DOI: 10.1002/bdr2.1405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND GREM1, which encodes Gremlin 1, an antagonist of bone morphogenic proteins with effects on proliferation and apoptosis, has been considered a candidate gene for nonsyndromic cleft lip with or without cleft palate (NSCL±P). In this study, we investigated potential associations of single nucleotide polymorphisms (SNP) in GREM1 and NSCL±P risk in the Brazilian population. Additionally, SNP-SNP interactions of GREM1 with previously reported rs1880646 variant in NTN1 (netrin 1), a gene also responsible for apoptotic phenotypes were verified. METHODS Applying Taqman allelic discrimination assays, we evaluated the variants rs16969681, rs16969816, rs16969862, and rs1258763 in 325 case-parent trios and in 1,588 isolated samples in a case-control study. Allelic and genotypic analyses, as well as interaction tests assessing gene-environmental factor (GxE) and SNP-SNP interaction with rs1880646 variant in NTN1, were performed based on logistic regression analysis adjusted for the effects of gender and genomic ancestry proportions. RESULTS The risk alleles of all SNP were undertransmitted in NSCL±P trios, though the case-control analysis confirmed only the association with rs16969862 alleles (OR: 0.78, 95% CI: 0.63-0.96, p = .02). The GxE interaction analysis revealed a significant interaction between maternal environmental contact with agrotoxics and rs16969816 (OR: 0.25, 95% CI: 0.08-0.74, p = .01), and pairwise interaction test with NTN1 rs1880646 yielded significant p values in the 1,000 permutation test for rs16969681, rs16969816, and rs16969862. CONCLUSION The GREM1 is involved in the etiology of NSCL±P in the Brazilian population and reveal that the interaction between GREM1 and NTN1 may be related with the pathogenesis of this common craniofacial malformation.
Collapse
Affiliation(s)
- Camila Sane Viena
- Basic Science Department, Area of Oral Pathology, Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Renato Assis Machado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Darlene Camati Persuhn
- Molecular Biology Department, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Hercílio Martelli-Júnior
- Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil.,Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of José Rosário Vellano, Minas Gerais, Brazil
| | - Alena Peixoto Medrado
- Basic Science Department, Area of Oral Pathology, Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Silvia R A Reis
- Basic Science Department, Area of Oral Pathology, Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| |
Collapse
|