1
|
Fogo AB, Harris RC. Crosstalk between glomeruli and tubules. Nat Rev Nephrol 2025; 21:189-199. [PMID: 39643696 DOI: 10.1038/s41581-024-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Models of kidney injury have classically concentrated on glomeruli as the primary site of injury leading to glomerulosclerosis or on tubules as the primary site of injury leading to tubulointerstitial fibrosis. However, current evidence on the mechanisms of progression of chronic kidney disease indicates that a complex interplay between glomeruli and tubules underlies progressive kidney injury. Primary glomerular injury can clearly lead to subsequent tubule injury. For example, damage to the glomerular filtration barrier can expose tubular cells to serum proteins, including complement and cytokines, that would not be present in physiological conditions and can promote the development of tubulointerstitial fibrosis and progressive decline in kidney function. In addition, although less well-studied, increasing evidence suggests that tubule injury, whether primary or secondary, can also promote glomerular damage. This feedback from the tubule to the glomerulus might be mediated by changes in the reabsorptive capacity of the tubule, which can affect the glomerular filtration rate, or by mediators released by injured proximal tubular cells that can induce damage in both podocytes and parietal epithelial cells. Examining the crosstalk between the various compartments of the kidney is important for understanding the mechanisms underlying kidney pathology and identifying potential therapeutic interventions.
Collapse
Affiliation(s)
- Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Tennessee Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
2
|
Amioka N, Franklin MK, Kukida M, Zhu L, Moorleghen JJ, Howatt DA, Katsumata Y, Mullick AE, Yanagita M, Martinez-Irizarry MM, Sandoval RM, Dunn KW, Sawada H, Daugherty A, Lu HS. Renal Proximal Tubule Cell-Specific Megalin Deletion Does Not Affect Atherosclerosis But Induces Tubulointerstitial Nephritis in Mice Fed a Western Diet. Arterioscler Thromb Vasc Biol 2025; 45:74-89. [PMID: 39569521 PMCID: PMC11668626 DOI: 10.1161/atvbaha.124.321366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Pharmacological inhibition of megalin (also known as LRP2 [low-density lipoprotein receptor-related protein-2]) attenuates atherosclerosis in hypercholesterolemic mice. Since megalin is abundant in renal proximal tubule cells (PTCs), the purpose of this study was to determine whether PTC-specific deletion of megalin reduces hypercholesterolemia-induced atherosclerosis in mice. METHODS Female Lrp2 f/f mice were bred with male Ndrg1-Cre ERT2 +/0 mice to develop PTC-LRP2 +/+ and PTC-LRP2 -/- littermates. To study atherosclerosis, all mice were bred to an LDL (low-density lipoprotein) receptor -/- background and fed a Western diet to induce atherosclerosis. RESULTS PTC-specific megalin deletion did not attenuate atherosclerosis in LDL receptor -/- mice in either sex. Serendipitously, we discovered that PTC-specific megalin deletion led to interstitial infiltration of CD68+ cells and tubular atrophy. The pathology was only evident in male PTC-LRP2 -/- mice fed a Western diet but not in mice fed a normal laboratory diet. Renal pathologies were also observed in male PTC-LRP2 -/- mice in an LDL receptor +/+ background fed the same Western diet, demonstrating that the renal pathologies were dependent on diet and not on hypercholesterolemia. In contrast, female PTC-LRP2 -/- mice had no apparent renal pathologies. In vivo multiphoton microscopy demonstrated that PTC-specific megalin deletion dramatically diminished ALB (albumin) accumulation in PTCs within 10 days of Western diet feeding. RNA-sequencing analyses demonstrated the upregulation of inflammation-related pathways in the kidney. CONCLUSIONS PTC-specific megalin deletion does not affect atherosclerosis but leads to tubulointerstitial nephritis in mice fed a Western diet, with severe pathologies in male mice.
Collapse
MESH Headings
- Animals
- Low Density Lipoprotein Receptor-Related Protein-2/genetics
- Low Density Lipoprotein Receptor-Related Protein-2/metabolism
- Low Density Lipoprotein Receptor-Related Protein-2/deficiency
- Diet, Western/adverse effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Female
- Male
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- Mice, Knockout
- Disease Models, Animal
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/pathology
- Nephritis, Interstitial/metabolism
- Mice
- Mice, Inbred C57BL
- Hypercholesterolemia/genetics
- Hypercholesterolemia/complications
- Hypercholesterolemia/metabolism
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Plaque, Atherosclerotic
- CD68 Molecule
Collapse
Affiliation(s)
- Naofumi Amioka
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Michael K. Franklin
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Masayoshi Kukida
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Liyuan Zhu
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Jessica J. Moorleghen
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | | | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | | | - Ruben M. Sandoval
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Kenneth W. Dunn
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Moreira FD, Reis CEG, Gallassi AD, Moreira DC, Welker AF. Suppression of the postprandial hyperglycemia in patients with type 2 diabetes by a raw medicinal herb powder is weakened when consumed in ordinary hard gelatin capsules: A randomized crossover clinical trial. PLoS One 2024; 19:e0311501. [PMID: 39383145 PMCID: PMC11463819 DOI: 10.1371/journal.pone.0311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Contradictory claims about the efficacy of several medicinal plants to promote glycemic control in patients with type 2 diabetes mellitus (T2DM) have been explained by divergences in the administration form and by extrapolation of data obtained from healthy individuals. It is not known whether the antidiabetic effects of traditional herbal medicines are influenced by gelatin capsules. This randomized crossover trial aimed to evaluate the acute effect of a single dose of raw cinnamon consumed orally either dissolved in water as a beverage or as ordinary hard gelatin capsules on postprandial hyperglycemia (>140 mg/dL; >7.8 mmol/L) in T2DM patients elicited by a nutritionally-balanced meal providing 50 g of complex carbohydrates. METHODS Fasting T2DM patients (n = 19) randomly ingested a standardized meal in five experimental sessions, one alone (Control) and the other after prior intake of 3 or 6 g of crude cinnamon in the form of hard gelatin capsules or powder dissolved in water. Blood glucose was measured at fasting and at 0.25, 0.5, 0.75, 1, 1.5 and 2 hours postprandially. After each breakfast, its palatability scores for visual appeal, smell and pleasantness of taste were assessed, as well as the taste intensity sweetness, saltiness, bitterness, sourness and creaminess. RESULTS The intake of raw cinnamon dissolved in water, independently of the dose, decreased the meal-induced large glucose spike (peak-rise of +87 mg/dL and Δ1-hour glycemia of +79 mg/dL) and the hyperglycemic blood glucose peak. When cinnamon was taken as capsules, these anti-hyperglycemic effects were lost or significantly diminished. Raw cinnamon intake did not change time-to-peak or the 2-h post-meal glycaemia, but flattened the glycemic curve (lower iAUC) without changing the shape that is typical of T2DM patients. CONCLUSIONS This cinnamon's antihyperglycemic action confirms its acarbose-like property to inhibit the activities of the carbohydrate-digesting enzymes α-amylases/α-glucosidases, which is in accordance with its exceptionally high content of raw insoluble fiber. The efficacy of using raw cinnamon as a diabetes treatment strategy seems to require its intake at a specific time before/concomitantly the main hyperglycemic daily meals. Trial registration: Registro Brasileiro de Ensaios Clínicos (ReBEC), number RBR-98tx28b.
Collapse
Affiliation(s)
- Fernanda Duarte Moreira
- Ministério da Saúde, Brasília, Brazil
- Secretaria de Estado de Saúde do Distrito Federal, Brasília, Brazil
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Andrea Donatti Gallassi
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Alexis Fonseca Welker
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
4
|
Amioka N, Franklin MK, Kukida M, Zhu L, Moorleghen JJ, Howatt DA, Katsumata Y, Mullick AE, Yanagita M, Martinez-Irizarry MM, Sandoval RM, Dunn KW, Sawada H, Daugherty A, Lu HS. Renal Proximal Tubule Cell-specific Megalin Deletion Does Not Affect Atherosclerosis But Induces Tubulointerstitial Nephritis in Mice Fed Western Diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592234. [PMID: 38798535 PMCID: PMC11118422 DOI: 10.1101/2024.05.11.592234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Pharmacological inhibition of megalin (also known as low-density lipoprotein receptor-related protein 2: LRP2) attenuates atherosclerosis in hypercholesterolemic mice. Since megalin is abundant in renal proximal tubule cells (PTCs), the purpose of this study was to determine whether PTC-specific deletion of megalin reduces hypercholesterolemia-induced atherosclerosis in mice. Methods Female Lrp2 f/f mice were bred with male Ndrg1-Cre ERT2 +/0 mice to develop PTC-LRP2 +/+ and -/- littermates. To study atherosclerosis, all mice were bred to an LDL receptor -/- background and fed a Western diet to induce atherosclerosis. Results PTC-specific megalin deletion did not attenuate atherosclerosis in LDL receptor -/- mice in either sex. Serendipitously, we discovered that PTC-specific megalin deletion led to interstitial infiltration of CD68+ cells and tubular atrophy. The pathology was only evident in male PTC-LRP2 -/- mice fed the Western diet, but not in mice fed a normal laboratory diet. Renal pathologies were also observed in male PTC-LRP2 -/- mice in an LDL receptor +/+ background fed the same Western diet, demonstrating that the renal pathologies were dependent on diet and not hypercholesterolemia. In contrast, female PTC-LRP2 -/- mice had no apparent renal pathologies. In vivo multiphoton microscopy demonstrated that PTC-specific megalin deletion dramatically diminished albumin accumulation in PTCs within 10 days of Western diet feeding. RNA sequencing analyses demonstrated the upregulation of inflammation-related pathways in kidney. Conclusions PTC-specific megalin deletion does not affect atherosclerosis, but leads to tubulointerstitial nephritis in mice fed Western diet, with severe pathologies in male mice.
Collapse
Affiliation(s)
- Naofumi Amioka
- Saha Cardiovascular Research Center and Saha Aortic Center
| | | | | | - Liyuan Zhu
- Saha Cardiovascular Research Center and Saha Aortic Center
| | | | | | | | | | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | | | - Ruben M. Sandoval
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Kenneth W. Dunn
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center and Saha Aortic Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Schulz Pauly JA, Kalvass JC. How predictive are isolated perfused liver data of in vivo hepatic clearance? A meta-analysis of isolated perfused rat liver data. Xenobiotica 2024; 54:658-669. [PMID: 39279675 DOI: 10.1080/00498254.2024.2404170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Isolated perfused rat liver (IPRL) experiments have been used to answer clearance-related questions, including evaluating the impact of pathological and physiological processes on hepatic clearance (CLH). However, to date, IPRL data has not been evaluated for in vivo CLH prediction accuracy.In addition to a detailed overview of available IPRL literature, we present an in-depth analysis of the performance of IPRL in CLH prediction.While the entire dataset poorly predicted CLH (GAFE = 3.2; 64% within 3-fold), IPRL conducted under optimal experimental conditions, such as in the presence of plasma proteins and with a perfusion rate within 2-fold of physiological liver blood flow and corrected for unbound fraction in the presence of red blood cells, can accurately predict rat CLH (GAFE = 2.0; 78% within 3-fold). Careful consideration of experimental conditions is needed to allow proper data analysis.Further, isolated perfused liver experiments in other species, including human livers, may allow us to address the current in vitro-in vivo disconnects of hepatic metabolic clearance and improve our methodology for CLH predictions.
Collapse
Affiliation(s)
- Julia A Schulz Pauly
- Quantitative, Translational, & ADME Sciences (QTAS), Abbvie Inc., North Chicago, IL, USA
| | - J Cory Kalvass
- Quantitative, Translational, & ADME Sciences (QTAS), Abbvie Inc., North Chicago, IL, USA
| |
Collapse
|
6
|
Molitoris BA, Dunn KW, Sandoval RM. Proximal tubule role in albumin homeostasis: controversy, species differences, and the contributions of intravital microscopy. Kidney Int 2023; 104:1065-1069. [PMID: 37981429 DOI: 10.1016/j.kint.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 11/21/2023]
Affiliation(s)
- Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Kenneth W Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Wagner MC, Sandoval RM, Yadav SPS, Campos SB, Rhodes GJ, Phillips CL, Molitoris BA. Lrpap1 (RAP) Inhibits Proximal Tubule Clathrin Mediated and Clathrin Independent Endocytosis, Ameliorating Renal Aminoglycoside Nephrotoxicity. KIDNEY360 2023; 4:591-605. [PMID: 36848531 PMCID: PMC10278819 DOI: 10.34067/kid.0000000000000094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
Key Points Proximal tubule endocytosis of toxins often leads to nephrotoxicity. Inhibition of endocytosis with receptor-associated protein may serve as a clinical approach to reduce or eliminate kidney damage from a potential nephrotoxin. Background Proximal tubules (PTs) are exposed to many exogenous and endogenous nephrotoxins that pass through the glomerular filter. This includes many small molecules, such as aminoglycoside and myeloma light chains. These filtered molecules are rapidly endocytosed by the PTs and lead to nephrotoxicity. Methods To investigate whether inhibition of PT uptake of filtered toxins can reduce toxicity, we evaluated the ability of Lrpap1 or receptor-associated protein (RAP) to prevent PT endocytosis. Munich Wistar Frömter rats were used since both glomerular filtration and PT uptake can be visualized and quantified. The injury model chosen was the well-established gentamicin-induced toxicity, which leads to significant reductions in GFR and serum creatinine increases. CKD was induced with a right uninephrectomy and left 40-minute pedicle clamp. Rats had 8 weeks to recover and to stabilize GFR and proteinuria. Multiphoton microscopy was used to evaluate endocytosis in vivo and serum creatinine, and 24-hour creatinine clearances were used to evaluate kidney functional changes. Results Studies showed that preadministration of RAP significantly inhibited both albumin and dextran endocytosis in outer cortical PTs. Importantly, this inhibition was found to be rapidly reversible with time. RAP was also found to be an excellent inhibitor of PT gentamicin endocytosis. Finally, gentamicin administration for 6 days resulted in significant elevation of serum creatinine in vehicle-treated rats, but not in those receiving daily infusion of RAP before gentamicin. Conclusions This study provides a model for the potential use of RAP to prevent, in a reversible manner, PT endocytosis of potential nephrotoxins, thus protecting the kidney from damage.
Collapse
Affiliation(s)
- Mark C Wagner
- Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | |
Collapse
|
8
|
Chen J, Liu J, Wang Z, Xu J, Tao J, Li H. High expression level of homocitrulline is correlated with seborrheic keratosis and skin aging. An Bras Dermatol 2023; 98:324-330. [PMID: 36610814 PMCID: PMC10173058 DOI: 10.1016/j.abd.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/18/2022] [Accepted: 07/16/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUD Homocitrulline (Hcit), is involved in the pathological processes of some diseases. However, the role and function of Hcit (CBL) in human skin remains largely obscure. OBJECTIVE To investigate the correlation of the level of Hcit in seborrheic keratosis, skin aging, and its clinical significance. METHODS Immunohistochemistry was used to analyze the level of Hcit in skin lesions of seborrheic keratosis (SK), unaffected skin (distant 0.5 centimeters from SK lesion), and normal skin of healthy subjects in the control group. ELISA test was used to detect the serum level of CBL in SK patients and healthy subjects of different ages. RESULTS Hcit was mainly localized in the nucleus of epidermal cells. In healthy control skin, the expression of Hcit increased with age and showed a positive correlation with age (the correlation coefficient was 0.806, p = 0.0002). The expressional level of Hcit in SK lesions was higher than that in healthy control skin (Z = -3.703, p = 0.0002). The serum level of CBL in healthy subjects and in SK patients increased with age (the correlation coefficient were 0.5763, p = 0.0032; 0.682, p = 0.004. respectively). The serum level of CBL in SK patients was higher than that in healthy subjects (Z = -2.19, p = 0.030). STUDY LIMITATIONS The small serum sample size in the study. CONCLUSION The high expressional level of Hcit is correlated with seborrheic keratosis and skin aging. Hcit may be one of the potential biomarkers of skin aging.
Collapse
Affiliation(s)
- Juping Chen
- Department of Dermatology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China
| | - Jun Liu
- Department of Dermatology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Zheng Wang
- Department of Dermatology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China; Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Jiandan Xu
- Department of Dermatology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Jia Tao
- Department of Dermatology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Hualing Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China; Jiangsu Key laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China.
| |
Collapse
|
9
|
Yadav SPS, Yu A, Zhao J, Singh J, Kakkar S, Chakraborty S, Mechref Y, Molitoris B, Wagner MC. Glycosylation of a key cubilin Asn residue results in reduced binding to albumin. J Biol Chem 2022; 298:102371. [PMID: 35970386 PMCID: PMC9485058 DOI: 10.1016/j.jbc.2022.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/28/2022] Open
Abstract
Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.
Collapse
Affiliation(s)
- Shiv Pratap Singh Yadav
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Saloni Kakkar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Bruce Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark C Wagner
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
10
|
Schindler L, Wohlfahrt K, Gluhacevic von Krüchten L, Prante O, Keller M, Maschauer S. Neurotensin analogs by fluoroglycosylation at N ω-carbamoylated arginines for PET imaging of NTS1-positive tumors. Sci Rep 2022; 12:15028. [PMID: 36056076 PMCID: PMC9440028 DOI: 10.1038/s41598-022-19296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Since neurotensin (NT) receptors of subtype-1 (NTS1) are expressed by different types of malignant tumors, such as pancreatic adenocarcinoma, colorectal and prostate carcinoma, they represent an interesting target for tumor imaging by positron emission tomography (PET) and endoradiotherapy. Previously reported neurotensin-derived NTS1 ligands for PET were radiolabeled by modification and prelongation of the N-terminus of NT(8-13) peptide analogs. In this study, we demonstrate that modifying Arg8 or Arg9 by Nω-carbamoylation and subsequent fluoroglycosylation provides a suitable approach for the development of NT(8-13) analogs as PET imaging agents. The Nω-carbamoylated and fluoroglycosylated NT(8-13) analogs retained high NTS1 affinity in the one-digit nanomolar range as well as high metabolic stability in vitro. In vivo, the radioligand [18F]21 demonstrated favorable biokinetics in HT-29 tumor-bearing mice with high tumor uptake and high retention, predominantly renal clearance, and fast wash-out from blood and other non-target tissues. Therefore, [18F]21 has the potential to be used as molecular probe for the imaging of NTS1-expressing tumors by PET.
Collapse
Affiliation(s)
- Lisa Schindler
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Katrin Wohlfahrt
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
- Hennig Arzneimittel GmbH & Co KG, Liebigstr. 1-2, 65439, Flörsheim am Main, Germany
| | - Lara Gluhacevic von Krüchten
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany
| | - Max Keller
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054, Erlangen, Germany.
| |
Collapse
|
11
|
Hu H, Quintana J, Weissleder R, Parangi S, Miller M. Deciphering albumin-directed drug delivery by imaging. Adv Drug Deliv Rev 2022; 185:114237. [PMID: 35364124 PMCID: PMC9117484 DOI: 10.1016/j.addr.2022.114237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
Albumin is the most abundant plasma protein, exhibits extended circulating half-life, and its properties have long been exploited for diagnostics and therapies. Many drugs intrinsically bind albumin or have been designed to do so, yet questions remain about true rate limiting factors that govern albumin-based transport and their pharmacological impacts, particularly in advanced solid cancers. Imaging techniques have been central to quantifying - at a molecular and single-cell level - the impact of mechanisms such as phagocytic immune cell signaling, FcRn-mediated recycling, oncogene-driven macropinocytosis, and albumin-drug interactions on spatial albumin deposition and related pharmacology. Macroscopic imaging of albumin-binding probes quantifies vessel structure, permeability, and supports efficiently targeted molecular imaging. Albumin-based imaging in patients and animal disease models thus offers a strategy to understand mechanisms, guide drug development and personalize treatments.
Collapse
Affiliation(s)
- Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States; Department of General Surgery, Xiangya Hospital, Central South University, China
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States; Department of Systems Biology, Harvard Medical School, United States
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Miles Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
12
|
Lidberg KA, Muthusamy S, Adil M, Mahadeo A, Yang J, Patel RS, Wang L, Bammler TK, Reichel J, Yeung CK, Himmelfarb J, Kelly EJ, Akilesh S. Serum Protein Exposure Activates a Core Regulatory Program Driving Human Proximal Tubule Injury. J Am Soc Nephrol 2022; 33:949-965. [PMID: 35197326 PMCID: PMC9063895 DOI: 10.1681/asn.2021060751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The kidneys efficiently filter waste products while retaining serum proteins in the circulation. However, numerous diseases compromise this barrier function, resulting in spillage of serum proteins into the urine (proteinuria). Some studies of glomerular filtration suggest that tubules may be physiologically exposed to nephrotic-range protein levels. Therefore, whether serum components can directly injure the downstream tubular portions of the kidney, which in turn can lead to inflammation and fibrosis, remains controversial. METHODS We tested the effects of serum protein exposure in human kidney tubule microphysiologic systems and with orthogonal epigenomic approaches since animal models cannot directly assess the effect of serum components on tubules. RESULTS Serum, but not its major protein component albumin, induced tubular injury and secretion of proinflammatory cytokines. Epigenomic comparison of serum-injured tubules and intact kidney tissue revealed canonical stress-inducible regulation of injury-induced genes. Concordant transcriptional changes in microdissected tubulointerstitium were also observed in an independent cohort of patients with proteinuric kidney disease. CONCLUSIONS Our results demonstrate a causal role for serum proteins in tubular injury and identify regulatory mechanisms and novel pathways for intervention.
Collapse
Affiliation(s)
- Kevin A. Lidberg
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Selvaraj Muthusamy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Mohamed Adil
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Anish Mahadeo
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jade Yang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Jonathan Reichel
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Catherine K. Yeung
- Department of Pharmacy, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Jonathan Himmelfarb
- Kidney Research Institute, Seattle, Washington
- Nephrology Division, Department of Medicine, University of Washington, Seattle, Washington
| | - Edward J. Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
13
|
Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol Rev 2022; 102:1625-1667. [PMID: 35378997 PMCID: PMC9255719 DOI: 10.1152/physrev.00014.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Dept.of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shiv Pratap S. Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Mark C. Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
14
|
Molitoris BA, Sandoval RM, Wagner MC. Intravital Multiphoton Microscopy as a Tool for Studying Renal Physiology, Pathophysiology and Therapeutics. Front Physiol 2022; 13:827280. [PMID: 35399274 PMCID: PMC8988037 DOI: 10.3389/fphys.2022.827280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Intravital multiphoton microscopy has empowered investigators to study dynamic cell and subcellular processes in vivo within normal and disease organs. Advances in hardware, software, optics, transgenics and fluorescent probe design and development have enabled new quantitative approaches to create a disruptive technology pioneering advances in understanding of normal biology, disease pathophysiology and therapies. Offering superior spatial and temporal resolution with high sensitivity, investigators can follow multiple processes simultaneously and observe complex interactions between different cell types, intracellular organelles, proteins and track molecules for cellular uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique has been utilized in the kidney to quantify multiple dynamic processes including capillary flow, permeability, glomerular function, proximal tubule processes and determine the effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue clearing technology has virtually eliminated penetration issues for fixed tissue studies. Use of multiphoton microscopy in preclinical animal models offers distinct advantages resulting in new insights into physiologic processes and the pathophysiology and treatment of diseases.
Collapse
|
15
|
Coppola A, Zorzetto G, Piacentino F, Bettoni V, Pastore I, Marra P, Perani L, Esposito A, De Cobelli F, Carcano G, Fontana F, Fiorina P, Venturini M. Imaging in experimental models of diabetes. Acta Diabetol 2022; 59:147-161. [PMID: 34779949 DOI: 10.1007/s00592-021-01826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
Abstract
Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy.
| | | | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Valeria Bettoni
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Marra
- Department of Diagnostic Radiology, Giovanni XXIII Hospital, Milano-Bicocca University, Bergamo, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Francesco De Cobelli
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Giulio Carcano
- Insubria University, Varese, Italy
- General, Emergency, and Transplant Surgery Unit, ASST Settelaghi, Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| |
Collapse
|