1
|
Stamellou E, Sterzer V, Alam J, Roumeliotis S, Liakopoulos V, Dounousi E. Sex-Specific Differences in Kidney Function and Blood Pressure Regulation. Int J Mol Sci 2024; 25:8637. [PMID: 39201324 PMCID: PMC11354550 DOI: 10.3390/ijms25168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Premenopausal women generally exhibit lower blood pressure and a lower prevalence of hypertension than men of the same age, but these differences reverse postmenopause due to estrogen withdrawal. Sexual dimorphism has been described in different components of kidney physiology and pathophysiology, including the renin-angiotensin-aldosterone system, endothelin system, and tubular transporters. This review explores the sex-specific differences in kidney function and blood pressure regulation. Understanding these differences provides insights into potential therapeutic targets for managing hypertension and kidney diseases, considering the patient's sex and hormonal status.
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Jessica Alam
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
2
|
Renal sympathetic activity: A key modulator of pressure natriuresis in hypertension. Biochem Pharmacol 2023; 208:115386. [PMID: 36535529 DOI: 10.1016/j.bcp.2022.115386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Hypertension is a complex disorder ensuing necessarily from alterations in the pressure-natriuresis relationship, the main determinant of long-term control of blood pressure. This mechanism sets natriuresis to the level of blood pressure, so that increasing pressure translates into higher osmotically driven diuresis to reduce volemia and control blood pressure. External factors affecting the renal handling of sodium regulate the pressure-natriuresis relationship so that more or less natriuresis is attained for each level of blood pressure. Hypertension can thus only develop following primary alterations in the pressure to natriuresis balance, or by abnormal activity of the regulation network. On the other hand, increased sympathetic tone is a very frequent finding in most forms of hypertension, long regarded as a key element in the pathophysiological scenario. In this article, we critically analyze the interplay of the renal component of the sympathetic nervous system and the pressure-natriuresis mechanism in the development of hypertension. A special focus is placed on discussing recent findings supporting a role of baroreceptors as a component, along with the afference of reno-renal reflex, of the input to the nucleus tractus solitarius, the central structure governing the long-term regulation of renal sympathetic efferent tone.
Collapse
|
3
|
Guthrie GL, Almutlaq RN, Sugahara S, Butt MK, Brooks CR, Pollock DM, Gohar EY. G protein-coupled estrogen receptor 1 regulates renal endothelin-1 signaling system in a sex-specific manner. Front Physiol 2023; 14:1086973. [PMID: 36733911 PMCID: PMC9887121 DOI: 10.3389/fphys.2023.1086973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Demographic studies reveal lower prevalence of hypertension among premenopausal females compared to age-matched males. The kidney plays a central role in the maintenance of sodium (Na+) homeostasis and consequently blood pressure. Renal endothelin-1 (ET-1) is a pro-natriuretic peptide that contributes to sex differences in blood pressure regulation and Na+ homeostasis. We recently showed that activation of renal medullary G protein-coupled estrogen receptor 1 (GPER1) promotes ET-1-dependent natriuresis in female, but not male, rats. We hypothesized that GPER1 upregulates the renal ET-1 signaling system in females, but not males. To test our hypothesis, we determined the effect of GPER1 deletion on ET-1 and its downstream effectors in the renal cortex, outer and inner medulla obtained from 12-16-week-old female and male mice. GPER1 knockout (KO) mice and wildtype (WT) littermates were implanted with telemetry transmitters for blood pressure assessment, and we used metabolic cages to determine urinary Na+ excretion. GPER1 deletion did not significantly affect 24-h mean arterial pressure (MAP) nor urinary Na+ excretion. However, GPER1 deletion decreased urinary ET-1 excretion in females but not males. Of note, female WT mice had greater urinary ET-1 excretion than male WT littermates, whereas no sex differences were observed in GPER1 KO mice. GPER1 deletion increased inner medullary ET-1 peptide content in both sexes but increased outer medullary ET-1 content in females only. Cortical ET-1 content increased in response to GPER1 deletion in both sexes. Furthermore, GPER1 deletion notably increased inner medullary ET receptor A (ETA) and decreased outer medullary ET receptor B (ETB) mRNA expression in male, but not female, mice. We conclude that GPER1 is required for greater ET-1 excretion in females. Our data suggest that GPER1 is an upstream regulator of renal medullary ET-1 production and ET receptor expression in a sex-specific manner. Overall, our study identifies the role of GPER1 as a sex-specific upstream regulator of the renal ET-1 system.
Collapse
Affiliation(s)
- Ginger L. Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rawan N. Almutlaq
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sho Sugahara
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David M. Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Eman Y. Gohar,
| |
Collapse
|
4
|
He D, Ren H, Wang H, Jose PA, Zeng C, Xia T, Yang J. Effect of D4 Dopamine Receptor on Na+-K+-ATPase Activity in Renal Proximal Tubule Cells. CARDIOLOGY DISCOVERY 2022; 3:24-29. [PMID: 36969984 PMCID: PMC10030170 DOI: 10.1097/cd9.0000000000000076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
Dopamine, via its receptors, plays a vital role in the maintenance of blood pressure by modulating renal sodium transport. However, the role of the D4 dopamine receptor (D4 receptor) in renal proximal tubules (PRTs) is still unclear. This study aimed to verify the hypothesis that activation of D4 receptor directly inhibits the activity of the Na+-K+-ATPase (NKA) in RPT cells. Methods NKA activity, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) levels were measured in RPT cells treated with the D4 receptor agonist PD168077 and/or the D4 receptor antagonist L745870, the NO synthase inhibitor NG-nitro-L-arginine-methyl ester (L-NAME) or the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). Total D4 receptor expression and its expression in the plasma membrane were investigated by immunoblotting in RPT cells from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Results Activation of D4 receptors with PD168077, inhibited NKA activity in RPT cells from WKY rats in a concentration- and time-dependent manner. The inhibitory effect of PD168077 on NKA activity was prevented by the addition of the D4 receptor antagonist L745870, which by itself had no effect. The NO synthase inhibitor L-NAME and the soluble guanylyl cyclase inhibitor ODQ, which by themselves had no effect on NKA activity, eliminated the inhibitory effect of PD168077 on NKA activity. Activation of D4 receptors also increased NO levels in the culture medium and cGMP levels in RPT cells. However, the inhibitory effect of D4 receptors on NKA activity was absent in RPT cells from SHRs, which could be related to decreased plasma membrane expression of D4 receptors in SHR RPT cells. Conclusions Activation of D4 receptors directly inhibits NKA activity via the NO/cGMP signaling pathway in RPT cells from WKY rats but not SHRs. Aberrant regulation of NKA activity in RPT cells may be involved in the pathogenesis of hypertension.
Collapse
|
5
|
Pravikova PD, Ivanova LN. Effect of NO Synthesis Blockade on Renal Osmoregulatory Function in Methimazole-Induced Hypothyroid Rats with Different Vasopressin Blood Level. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sedaka R, Hyndman KA, Mironova E, Stockand JD, Pollock JS. High salt intake induces collecting duct HDAC1-dependent NO signaling. Am J Physiol Renal Physiol 2021; 320:F297-F307. [PMID: 33356953 PMCID: PMC7988806 DOI: 10.1152/ajprenal.00323.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
We reported that high salt (HS) intake stimulates renal collecting duct (CD) endothelin (ET) type B receptor (ETBR)/nitric oxide (NO) synthase 1β (NOS1β)-dependent NO production inhibiting the epithelial sodium channel (ENaC) promoting natriuresis. However, the mechanism underlying the HS-induced increase of NO production is unclear. Histone deacetylase 1 (HDAC1) responds to increased fluid flow, as can occur in the CD during HS intake. The renal inner medulla (IM), in particular the IMCD, has the highest NOS1 activity within the kidney. Hence, we hypothesized that HS intake provokes HDAC1 activation of NO production in the IM. HS intake for 1 wk significantly increased HDAC1 abundance in the IM. Ex vivo treatment of dissociated IM from HS-fed mice with a selective HDAC1 inhibitor (MS-275) decreased NO production with no change in ET-1 peptide or mRNA levels. We further investigated the role of the ET-1/ETBR/NOS1β signaling pathway with chronic ETBR blockade (A-192621). Although NO was decreased and ET-1 levels were elevated in the dissociated IM from HS-fed mice treated with A-192621, ex vivo MS-275 did not further change NO or ET-1 levels suggesting that HDAC1-mediated NO production is regulated at the level or downstream of ETBR activation. In split-open CDs from HS-fed mice, patch clamp analysis revealed significantly higher ENaC activity after MS-275 pretreatment, which was abrogated by an exogenous NO donor. Moreover, flow-induced increases in mIMCD-3 cell NO production were blunted by HDAC1 or calcium inhibition. Taken together, these findings indicate that HS intake induces HDAC1-dependent activation of the ETBR/NO pathway contributing to the natriuretic response.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - James D Stockand
- Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Guanylyl Cyclase A in Both Renal Proximal Tubular and Vascular Endothelial Cells Protects the Kidney against Acute Injury in Rodent Experimental Endotoxemia Models. Anesthesiology 2019; 129:296-310. [PMID: 29629958 DOI: 10.1097/aln.0000000000002214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Natriuretic peptides are used, based on empirical observations, in intensive care units as antioliguric treatments. We hypothesized that natriuretic peptides prevent lipopolysaccharide-induced oliguria by activating guanylyl cyclase A, a receptor for natriuretic peptides, in proximal tubules and endothelial cells. METHODS Normal Sprague-Dawley rats and mice lacking guanylyl cyclase A in either endothelial cells or proximal tubular cells were challenged with lipopolysaccharide and assessed for oliguria and intratubular flow rate by intravital imaging with multiphoton microscopy. RESULTS Recombinant atrial natriuretic peptide efficiently improved urine volume without changing blood pressure after lipopolysaccharide challenge in rats (urine volume at 4 h, lipopolysaccharide: 0.6 ± 0.3 ml · kg · h; lipopolysaccharide + fluid resuscitation: 4.6 ± 2.0 ml · kg · h; lipopolysaccharide + fluid resuscitation + atrial natriuretic peptide: 9.0 ± 4.8 ml · kg · h; mean ± SD; n = 5 per group). Lipopolysaccharide decreased glomerular filtration rate and slowed intraproximal tubular flow rate, as measured by in vivo imaging. Fluid resuscitation restored glomerular filtration rate but not tubular flow rate. Adding atrial natriuretic peptide to fluid resuscitation improved both glomerular filtration rate and tubular flow rate. Mice lacking guanylyl cyclase A in either proximal tubules or endothelium demonstrated less improvement of tubular flow rate when treated with atrial natriuretic peptide, compared with control mice. Deletion of endothelial, but not proximal tubular, guanylyl cyclase A augmented the reduction of glomerular filtration rate by lipopolysaccharide. CONCLUSIONS Both endogenous and exogenous natriuretic peptides prevent lipopolysaccharide-induced oliguria by activating guanylyl cyclase A in proximal tubules and endothelial cells.
Collapse
|
8
|
Kittikulsuth W, Hyndman KA, Pollock JS, Pollock DM. Natriuretic response to renal medullary endothelin B receptor activation is impaired in Dahl-salt sensitive rats on a high-fat diet. Physiol Res 2018; 67:S149-S154. [PMID: 29947535 DOI: 10.33549/physiolres.933858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Renal medullary endothelin B receptors (ET(B)) mediate sodium excretion and blood pressure (BP) control. Several animal models of hypertension have impaired renal medullary ET(B) function. We found that 4-week high-caloric diet elevated systolic BP in Dahl salt-sensitive (Dahl S) rats (126+/-2 vs. 143+/-3 mm Hg, p<0.05). We hypothesized that renal medullary ET(B) function is dysfunctional in DS rats fed a high-caloric diet. We compared the diuretic and natriuretic response to intramedullary infusion of ET(B) agonist sarafotoxin 6c (S6c) in DS rats fed either a normal or high-caloric diet for 4 weeks. Urine was collected during intramedullary infusion of saline for baseline collection followed by intramedullary infusion of either saline or S6c. We first examined the ET(B) function in DS rats fed a normal diet. S6c increased urine flow (2.7+/-0.3 microl/min during baseline vs. 5.1+/-0.6 microl/min after S6c; p<0.05; n=5) and sodium excretion (0.28+/-0.05 vs. 0.81+/-0.17 micromol/min; p<0.05), suggesting that DS rats have renal medullary ET(B) function. However, DS rats fed a high-caloric diet displayed a significant increase in urine flow (2.7+/-0.4 vs. 4.2+/-0.4 microl/min, baseline vs. S6c infusion, respectively; p<0.05, n=6), but no significant change in sodium excretion in response to S6c (0.32+/-0.06 vs. 0.45+/-0.10 micromol/min). These data demonstrate that renal medullary ET(B) function is impaired in DS rats fed a high-caloric diet, which may be contributed to the elevation of blood pressure during high-caloric feeding in this model.
Collapse
Affiliation(s)
- W Kittikulsuth
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | |
Collapse
|
9
|
Mouat MA, Coleman JLJ, Smith NJ. GPCRs in context: sexual dimorphism in the cardiovascular system. Br J Pharmacol 2018; 175:4047-4059. [PMID: 29451687 DOI: 10.1111/bph.14160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality worldwide, and there is a clear gender gap in disease occurrence, with men being predisposed to earlier onset of CVD, including atherosclerosis and hypertension, relative to women. Oestrogen may be a driving factor for female-specific cardioprotection, though androgens and sex chromosomes are also likely to contribute to sexual dimorphism in the cardiovascular system (CVS). Many GPCR-mediated processes are involved in cardiovascular homeostasis, and some exhibit clear sex divergence. Here, we focus on the G protein-coupled oestrogen receptor, endothelin receptors ETA and ETB and the eicosanoid G protein-coupled receptors (GPCRs), discussing the evidence and potential mechanisms leading to gender dimorphic responses in the vasculature. The use of animal models and pharmacological tools has been essential to understanding the role of these receptors in the CVS and will be key to further delineating their sex-specific effects. Ultimately, this may illuminate wider sex differences in cardiovascular pathology and physiology. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, Australia
| |
Collapse
|
10
|
Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 2018; 14:185-201. [PMID: 29380817 DOI: 10.1038/nrneph.2017.189] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although intrinsic mechanisms that regulate arterial blood pressure (BP) are similar in men and women, marked variations exist at the molecular, cellular and tissue levels. These physiological disparities between the sexes likely contribute to differences in disease onset, susceptibility, prevalence and treatment responses. Key systems that are important in the development of hypertension and cardiovascular disease (CVD), including the sympathetic nervous system, the renin-angiotensin-aldosterone system and the immune system, are differentially activated in males and females. Biological age also contributes to sexual dimorphism, as premenopausal women experience a higher degree of cardioprotection than men of similar age. Furthermore, sex hormones such as oestrogen and testosterone as well as sex chromosome complement likely contribute to sex differences in BP and CVD. At the cellular level, differences in cell senescence pathways may contribute to increased longevity in women and may also limit organ damage caused by hypertension. In addition, many lifestyle and environmental factors - such as smoking, alcohol consumption and diet - may influence BP and CVD in a sex-specific manner. Evidence suggests that cardioprotection in women is lost under conditions of obesity and type 2 diabetes mellitus. Treatment strategies for hypertension and CVD that are tailored according to sex could lead to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia.,Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Franzén S, Pihl L, Fasching A, Palm F. Intrarenal activation of endothelin type B receptors improves kidney oxygenation in type 1 diabetic rats. Am J Physiol Renal Physiol 2017; 314:F439-F444. [PMID: 29092848 DOI: 10.1152/ajprenal.00498.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
About one-third of patients with type 1 diabetes develops kidney disease. The mechanism is largely unknown, but intrarenal hypoxia has been proposed as a unifying mechanism for chronic kidney disease, including diabetic nephropathy. The endothelin system has recently been demonstrated to regulate oxygen availability in the diabetic kidney via a pathway involving endothelin type A receptors (ETA-R). These receptors mainly mediate vasoconstriction and tubular sodium retention, and inhibition of ETA-R improves intrarenal oxygenation in the diabetic kidney. Endothelin type B receptors (ETB-R) can induce vasodilation of the renal vasculature and also regulate tubular sodium handling. However, the role of ETB-R in kidney oxygen homeostasis is unknown. The effects of acute intrarenal ETB-R activation (sarafotoxin 6c for 30-40 min; 0.78 pmol/h directly into the renal artery) on kidney function and oxygen metabolism were investigated in normoglycemic controls and insulinopenic male Sprague-Dawley rats administered streptozotocin (55 mg/kg) 2 wk before the acute experiments. Intrarenal activation of ETB-R improved oxygenation in the hypoxic diabetic kidney. However, the effects on diabetes-induced increased kidney oxygen consumption could not explain the improved oxygenation. Rather, the improved kidney oxygenation was due to hemodynamic effects increasing oxygen delivery without increasing glomerular filtration or tubular sodium load. In conclusion, increased ETB-R signaling in the diabetic kidney improves intrarenal tissue oxygenation due to increased oxygen delivery secondary to increased renal blood flow.
Collapse
Affiliation(s)
- Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University , Uppsala , Sweden
| | - Liselotte Pihl
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University , Uppsala , Sweden
| | - Angelica Fasching
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University , Uppsala , Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
12
|
Hunter RW, Moorhouse R, Farrah TE, MacIntyre IM, Asai T, Gallacher PJ, Kerr D, Melville V, Czopek A, Morrison EE, Ivy JR, Dear JW, Bailey MA, Goddard J, Webb DJ, Dhaun N. First-in-Man Demonstration of Direct Endothelin-Mediated Natriuresis and Diuresis. Hypertension 2017; 70:192-200. [PMID: 28507171 PMCID: PMC5739104 DOI: 10.1161/hypertensionaha.116.08832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 01/23/2023]
Abstract
Endothelin (ET) receptor antagonists are potentially novel therapeutic agents in chronic kidney disease and resistant hypertension, but their use is complicated by sodium and water retention. In animal studies, this side effect arises from ETB receptor blockade in the renal tubule. Previous attempts to determine whether this mechanism operates in humans have been confounded by the hemodynamic consequences of ET receptor stimulation/blockade. We aimed to determine the effects of ET signaling on salt transport in the human nephron by administering subpressor doses of the ET-1 precursor, big ET-1. We conducted a 2-phase randomized, double-blind, placebo-controlled crossover study in 10 healthy volunteers. After sodium restriction, subjects received either intravenous placebo or big ET-1, in escalating dose (≤300 pmol/min). This increased plasma concentration and urinary excretion of ET-1. Big ET-1 reduced heart rate (≈8 beats/min) but did not otherwise affect systemic hemodynamics or glomerular filtration rate. Big ET-1 increased the fractional excretion of sodium (from 0.5 to 1.0%). It also increased free water clearance and tended to increase the abundance of the sodium-potassium-chloride cotransporter (NKCC2) in urinary extracellular vesicles. Our protocol induced modest increases in circulating and urinary ET-1. Sodium and water excretion increased in the absence of significant hemodynamic perturbation, supporting a direct action of ET-1 on the renal tubule. Our data also suggest that sodium reabsorption is stimulated by ET-1 in the thick ascending limb and suppressed in the distal renal tubule. Fluid retention associated with ET receptor antagonist therapy may be circumvented by coprescribing potassium-sparing diuretics.
Collapse
Affiliation(s)
- Robert W Hunter
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Rebecca Moorhouse
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Tariq E Farrah
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Iain M MacIntyre
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Takae Asai
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Peter J Gallacher
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Debbie Kerr
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Vanessa Melville
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Alicja Czopek
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Emma E Morrison
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Jess R Ivy
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - James W Dear
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Jane Goddard
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - David J Webb
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Neeraj Dhaun
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom.
| |
Collapse
|
13
|
Gohar EY, Speed JS, Kasztan M, Jin C, Pollock DM. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats. Am J Physiol Renal Physiol 2016; 311:F260-7. [PMID: 27226106 PMCID: PMC5008671 DOI: 10.1152/ajprenal.00090.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 11/22/2022] Open
Abstract
Renal endothelin-1 (ET-1) and purinergic signaling systems regulate Na(+) reabsorption in the renal medulla. A link between the renal ET-1 and purinergic systems was demonstrated in vitro, however, the in vivo interaction between these systems has not been defined. To test whether renal medullary activation of purinergic (P2) receptors promotes ET-dependent natriuresis, we determined the effect of increased medullary NaCl loading on Na(+) excretion and inner medullary ET-1 mRNA expression in anesthetized adult male Sprague-Dawley rats in the presence and absence of purinergic receptor antagonism. Isosmotic saline (NaCl; 284 mosmol/kgH2O) was infused into the medullary interstitium (500 μl/h) during a 30-min baseline urine collection period, followed by isosmotic or hyperosmotic saline (1,800 mosmol/kgH2O) for two further 30-min urine collection periods. Na(+) excretion was significantly increased during intramedullary infusion of hyperosmotic saline. Compared with isosmotic saline, hyperosmotic saline infused into the renal medulla caused significant increases in inner medullary ET-1 mRNA expression. Renal intramedullary infusion of the P2 receptor antagonist suramin inhibited the increase in Na(+) excretion and inner medullary ET-1 mRNA expression induced by NaCl loading in the renal medulla. Activation of medullary P2Y2/4 receptors by infusion of UTP increased urinary Na(+) excretion. Combined ETA and ETB receptor blockade abolished the natriuretic response to intramedullary infusion of UTP. These data demonstrate that activation of medullary P2 receptors promotes ET-dependent natriuresis in male rats, suggesting that the renal ET-1 and purinergic signaling systems interact to efficiently facilitate excretion of a NaCl load.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Boels MGS, Avramut MC, Koudijs A, Dane MJC, Lee DH, van der Vlag J, Koster AJ, van Zonneveld AJ, van Faassen E, Gröne HJ, van den Berg BM, Rabelink TJ. Atrasentan Reduces Albuminuria by Restoring the Glomerular Endothelial Glycocalyx Barrier in Diabetic Nephropathy. Diabetes 2016; 65:2429-39. [PMID: 27207530 DOI: 10.2337/db15-1413] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/20/2016] [Indexed: 12/17/2022]
Abstract
Atrasentan, a selective endothelin A receptor antagonist, has been shown to reduce albuminuria in type 2 diabetes. We previously showed that the structural integrity of a glomerular endothelial glycocalyx is required to prevent albuminuria. Therefore we tested the potential of atrasentan to stabilize the endothelial glycocalyx in diabetic apolipoprotein E (apoE)-deficient mice in relation to its antialbuminuric effects. Treatment with atrasentan (7.5 mg/kg/day) for 4 weeks reduced urinary albumin-to-creatinine ratios by 26.0 ± 6.5% (P < 0.01) in apoE knockout (KO) mice with streptozotocin-induced diabetes consuming an atherogenic diet, without changes in gross glomerular morphology, systemic blood pressure, and blood glucose concentration. Endothelial cationic ferritin surface coverage, investigated using large-scale digital transmission electron microscopy, revealed that atrasentan treatment increases glycocalyx coverage in diabetic apoE KO mice from 40.7 ± 3.2% to 81.0 ± 12.5% (P < 0.05). This restoration is accompanied by increased renal nitric oxide concentrations, reduced expression of glomerular heparanase, and a marked shift in the balance of M1 and M2 glomerular macrophages. In vitro experiments with endothelial cells exposed to laminar flow and cocultured with pericytes confirmed that atrasentan reduced endothelial heparanase expression and increased glycocalyx thickness in the presence of a diabetic milieu. Together these data point toward a role for the restoration of endothelial function and tissue homeostasis through the antialbuminuric effects of atrasentan, and they provide a mechanistic explanation for the clinical observations of reduced albuminuria with atrasentan in diabetic nephropathy.
Collapse
Affiliation(s)
- Margien G S Boels
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - M Cristina Avramut
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Angela Koudijs
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn J C Dane
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dae Hyun Lee
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Abraham J Koster
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ernst van Faassen
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Bernard M van den Berg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
15
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 523] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
16
|
Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases. Life Sci 2016; 159:20-29. [PMID: 26939577 DOI: 10.1016/j.lfs.2016.02.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/05/2016] [Accepted: 02/26/2016] [Indexed: 02/08/2023]
Abstract
Epidemiological studies of blood pressure in men and women and in experimental animal models point to substantial sex differences in the occurrence of arterial hypertension as well as in the various manifestations of arterial hypertension, including myocardial infarction, stroke, retinopathy, chronic kidney failure, as well as hypertension-associated diseases (e.g. diabetes mellitus). Increasing evidence demonstrates that the endothelin (ET) system is a major player in the genesis of sex differences in cardiovascular and renal physiology and diseases. Sex differences in the ET system have been described in the vasculature, heart and kidney of humans and experimental animals. In the current review, we briefly describe the role of the ET system in the cardiovascular and renal systems. We also update information on sex differences at different levels of the ET system including synthesis, circulating and tissue levels, receptors, signaling pathways, ET actions, and responses to antagonists in different organs that contribute to blood pressure regulation. Knowledge of the mechanisms underlying sex differences in arterial hypertension can impact therapeutic strategies. Sex-targeted and/or sex-tailored approaches may improve treatment of cardiovascular and renal diseases.
Collapse
|
17
|
Gillis EE, Sasser JM, Sullivan JC. Endothelin, sex, and pregnancy: unique considerations for blood pressure control in females. Am J Physiol Regul Integr Comp Physiol 2016; 310:R691-6. [PMID: 26936781 DOI: 10.1152/ajpregu.00427.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/24/2016] [Indexed: 12/31/2022]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor, and dysregulation of the endothelin (ET) system has been implicated in the development of hypertension. Sex differences in the ET system have been identified in ET receptor expression and activation, levels of ET-1, and downstream mediators of the ET system. More specifically, males have greater ET-1/ETA receptor activation, whereas females exhibit greater ETB receptor activation. These differences have been suggested to contribute to the sex differences observed in blood pressure control, with greater ETB receptor activation in females potentially acting as an important pathway contributing to the lower prevalence of hypertension in young females compared with age-matched males. This hypothesis is further supported by studies in pregnancy; the role of the ET system is enhanced during pregnancy, with dysregulation of the ET system resulting in preeclampsia. Further research is necessary to elucidate the relative roles of the ET system in blood pressure control in both sexes and to further explore the potential benefits of pharmacological ET blockade in women.
Collapse
Affiliation(s)
- Ellen E Gillis
- Department of Physiology, Georgia Regents University, Augusta, Georgia; and
| | - Jennifer M Sasser
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | | |
Collapse
|
18
|
Correia-Costa L, Morato M, Sousa T, Cosme D, Guimarães JT, Guerra A, Schaefer F, Afonso AC, Azevedo A, Albino-Teixeira A. Urinary fibrogenic cytokines ET-1 and TGF-β1 are associated with urinary angiotensinogen levels in obese children. Pediatr Nephrol 2016; 31:455-64. [PMID: 26482255 DOI: 10.1007/s00467-015-3232-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Fibrogenic cytokines are recognized as putative drivers of disease activity and histopathological deterioration in various kidney diseases. We compared urinary transforming growth factor β1 (U-TGF-β1) and endothelin 1 (U-ET-1) levels across body mass index classes and assessed their association with the level of urinary angiotensinogen (U-AGT), a biomarker of intrarenal renin-angiotensin-aldosterone system (RAAS). METHODS The was a cross-sectional evaluation of 302 children aged 8-9 years. Ambulatory blood pressure (BP), insulin resistance (HOMA-IR), aldosterone level and renal function were evaluated. U-ET-1, U-TGF-β1 and U-AGT levels were determined by immunoenzymatic methods. RESULTS Obese children presented with the lowest levels of U-ET-1 and U-TGF-β1, but the difference was only significant for U-ET-1. In obese children, the median levels of both U-ET-1 and U-TGF-β1 tended to increase across tertiles (T1-T3) of U-AGT (U-ET-1: T1, 19.9 (14.2-26.3); T2, 32.5 (23.3-141.6); T3, 24.8 (18.7-51.5) ng/g creatinine, p = 0.007; U-TGF-β1: T1, 2.2 (1.8-4.0); T2, 4.3 (2.7-11.7); T3, 4.9 (3.8-10.1) ng/g creatinine, p = 0.004]. In multivariate models, in the obese group, U-ET-1 was associated with HOMA-IR and aldosterone and U-AGT levels, and U-TGF-β1 was associated with U-AGT levels and 24 h-systolic BP. CONCLUSIONS Whereas the initial hypothesis of higher levels of urinary fibrogenic cytokines in obese children was not confirmed in our study, both TGF-β1 and U-ET-1 levels were associated with U-AGT level, which likely reflects an early interplay between tissue remodeling and RAAS in obesity-related kidney injury.
Collapse
Affiliation(s)
- Liane Correia-Costa
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Rua das Taipas, nº 135, 4050-600, Porto, Portugal.
- Division of Pediatric Nephrology, Integrated Pediatric Hospital, Centro Hospitalar São João, Porto, Portugal.
- Department of Pediatrics, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Manuela Morato
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa Sousa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal
| | - Dina Cosme
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Rua das Taipas, nº 135, 4050-600, Porto, Portugal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Tiago Guimarães
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Rua das Taipas, nº 135, 4050-600, Porto, Portugal
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - António Guerra
- Department of Pediatrics, Faculty of Medicine, University of Porto, Porto, Portugal
- Division of Pediatric Nutrition, Integrated Pediatric Hospital, Centro Hospitalar São João, Porto, Portugal
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Alberto Caldas Afonso
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Rua das Taipas, nº 135, 4050-600, Porto, Portugal
- Division of Pediatric Nephrology, Integrated Pediatric Hospital, Centro Hospitalar São João, Porto, Portugal
- Department of Pediatrics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Azevedo
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Rua das Taipas, nº 135, 4050-600, Porto, Portugal
- Department of Clinical Epidemiology, Predictive Medicine and Public Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | - António Albino-Teixeira
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Abstract
The renal tubular epithelial cells produce more endothelin-1 (ET-1) than any other cell type in the body. Moving down the nephron, the amount of ET-1 produced appears fairly consistent until reaching the inner medullary collecting duct, which produces at least 10 times more ET-1 than any other segment. ET-1 inhibits Na(+) transport in all parts of the nephron through activation of the ETB receptor, and, to a minor extent, the ETA receptor. These effects are most prominent in the collecting duct where ETB-receptor activation inhibits activity of the epithelial Na(+) channel. Effects in other parts of the nephron include inhibition of Na(+)/H(+) exchange in the proximal tubule and the Na(+), K(+), 2Cl(-) co-transporter in the thick ascending limb. In general, the renal epithelial ET-1 system is an integral part of the body's response to a high salt intake to maintain homeostasis and normal blood pressure. Loss of ETB-receptor function results in salt-sensitive hypertension. The role of renal ET-1 and how it affects Na(+) and water transport throughout the nephron is reviewed.
Collapse
Affiliation(s)
- Joshua S Speed
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jermaine G Johnston
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
20
|
Wu P, Gao Z, Ye S, Qi Z. Nitric oxide inhibits basolateral 10-pS Cl - channels through the cGMP/PKG signaling pathway in the thick ascending limb of C57BL/6 mice. Am J Physiol Renal Physiol 2016; 310:F755-F762. [PMID: 26764200 DOI: 10.1152/ajprenal.00270.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022] Open
Abstract
We used patch-clamp techniques to examine whether nitric oxide (NO) decreases NaCl reabsorption by suppressing basolateral 10-pS Cl- channels in the thick ascending limb (TAL). Both the NO synthase substrate l-arginine (l-Arg) and the NO donor S-nitroso-N-acetylpenicillamine significantly inhibited 10-pS Cl- channel activity in the TAL. The inhibitory effect of l-Arg on Cl- channels was completely abolished in the presence of the NO synthase inhibitor or NO scavenger. Moreover, inhibition of soluble guanylyl cyclase abrogated the effect of l-Arg on Cl- channels, whereas the cGMP analog 8-bromo-cGMP (8-BrcGMP) mimicked the effect of l-Arg and significantly decreased 10-pS Cl- channel activity, indicating that NO inhibits basolateral Cl- channels by increasing cGMP production. Furthermore, treatment of the TAL with a PKG inhibitor blocked the effect of l-Arg and 8-BrcGMP on Cl- channels, respectively. In contrast, a phosphodiesterase 2 inhibitor had no significant effect on l-Arg or 8-BrcGMP-induced inhibition of Cl- channels. Therefore, we conclude that NO decreases basolateral 10-pS Cl- channel activity through a cGMP-dependent PKG pathway, which may contribute to the natriuretic and diuretic effects of NO in vivo.
Collapse
Affiliation(s)
- Peng Wu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Zhongxiuzi Gao
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Shiwei Ye
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Cordaro M, Impellizzeri D, Bruschetta G, Siracusa R, Crupi R, Di Paola R, Esposito E, Cuzzocrea S. A novel protective formulation of Palmitoylethanolamide in experimental model of contrast agent induced nephropathy. Toxicol Lett 2016; 240:10-21. [DOI: 10.1016/j.toxlet.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
22
|
Jin C, Speed JS, Pollock DM. High salt intake increases endothelin B receptor function in the renal medulla of rats. Life Sci 2015; 159:144-147. [PMID: 26724217 DOI: 10.1016/j.lfs.2015.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/15/2022]
Abstract
AIMS Endothelin (ET)-1 promotes natriuresis via the endothelin B receptor (ETB) within the renal medulla. In male rats, direct interstitial infusion of ET-1 into the renal medulla has no effect on renal sodium and water excretion but is associated with endothelin A receptor (ETA)-dependent reductions in medullary blood flow. Loss of ETB function leads to salt-sensitive hypertension. We hypothesized that HS intake would increase the natriuretic and diuretic response to renal medullary infusion of ET peptides. MAIN METHODS Male Sprague-Dawley (SD) rats were fed a normal (NS) or high (HS) salt diet for 7days. Rats were anesthetized and a catheter implanted in the renal medulla for interstitial infusion along with a ureteral catheter for urine collection. Medullary infusion of a low dose of ETB receptor agonist, sarafotoxin 6c (S6c; 0.15μg/kg/h), or ET-1 (0.45μg/kg/h) was used to determine changes in sodium excretion (UNaV). KEY FINDINGS In HS fed rats, intramedullary infusion of a low dose of S6c induced a significant increase in UNaV, roughly 2-fold over baseline, compared to no response to this low dose in NS fed rats. In HS fed rats, intramedullary infusion of ET-1 induced a significantly greater increase in UNaV compared to NS fed rats, although this increase was not different from the HS time control studies. SIGNIFICANCE We conclude that high salt intake enhances the diuretic and natriuretic effects of ETB receptor activation in vivo consistent with a role for the ETB receptor in maintaining fluid-electrolyte homeostasis.
Collapse
Affiliation(s)
- Chunhua Jin
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joshua S Speed
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
23
|
Jokar Z, Nematbakhsh M, Moeini M, Talebi A. Role of endothelin-1 antagonist; bosentan, against cisplatin-induced nephrotoxicity in male and female rats. Adv Biomed Res 2015; 4:83. [PMID: 26015909 PMCID: PMC4434484 DOI: 10.4103/2277-9175.156642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Cisplatin (CP) is a chemotherapy drug, with the major side effect of nephrotoxicity. The level of endothelin-1 (ET-1) increases during nephrotoxicity, which is accompanied with vasoconstrictive properties. Bosentan (BOS) is a nonselective ET-1 receptor antagonist, having vasodilatory and anti-hypertension effects. The purpose of this study was to investigate the renoprotective effect of BOS against CP-induced nephrotoxicity in male and female rats. MATERIALS AND METHODS Male and female rats were divided into six groups; groups 1-3 and 4-6 were male and female rats, respectively. Animals in groups 1 and 4 were considered as negative control and groups 2 and 5 considered as positive control groups received BOS (30 mg/kg/day) alone and CP (2.5 mg/kg/day) alone, respectively, for 1-week. The animals in groups 3 and 6 were treated with both CP and BOS. Finally, serum parameters were measured, and the kidney tissue was subjected to staining to evaluate tissue damage. RESULTS The serum levels of blood urea nitrogen and creatinine, kidney tissue damage score and kidney weight elevated, and body weight significantly decreased in both CP alone and in CP plus BOS-treated groups when compared with the control groups (P < 0.05), while BOS did not ameliorate these parameters neither in males nor in females. No significant differences were observed in serum levels of nitrite and malondialdehyde between the groups, but kidney tissue level of nitrite decreased significantly in CP alone and CP plus BOS-treated groups (P < 0.05). CONCLUSION Renoprotective effect of BOS, as ET-1 blocker, was not observed against CP-induced nephrotoxicity neither in male nor in female rats. This is while BOS promoted the severity of injuries in females.
Collapse
Affiliation(s)
- Zahra Jokar
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Physiology, Islamic Azad University, Jahrom Brunch, Jahrom, Iran
| | - Mehdi Nematbakhsh
- Department of Physiology, Islamic Azad University, Jahrom Brunch, Jahrom, Iran ; Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran ; Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan, Iran
| | - Maryam Moeini
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Speed JS, D'Angelo G, Wach PA, Sullivan JC, Pollock JS, Pollock DM. High salt diet increases the pressor response to stress in female, but not male ETB-receptor-deficient rats. Physiol Rep 2015; 3:3/3/e12326. [PMID: 25802361 PMCID: PMC4393160 DOI: 10.14814/phy2.12326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute stress in both rodents and humans causes a transient rise in blood pressure associated with an increase in plasma endothelin-1 (ET-1). High salt (HS) intake also increases ET-1 production, and interestingly, blunts the pressor response to acute air jet stress in rats. We previously reported that female rats lacking functional ETB receptors everywhere except sympathetic nerves (ETB def) had a greater degree of hypertension in response to a HS diet compared to their male counterparts when measured by the tail cuff method. However, we now report that salt-induced hypertension is not different between sexes when measured by telemetry. Therefore, additional experiments were designed to test the hypothesis that female ETB def rats are more sensitive to acute stress when on a HS diet. The pressor response, measured by telemetry, to acute air jet stress was similar between male transgenic control (Tg control) and ETB def rats following chronic HS intake. In contrast, female ETB def rats had a significantly greater pressor response (about twofold higher) than female or male Tg control or male ETB def rats maintained on HS, a finding that cannot be explained by increased vascular reactivity to ET-1 in female rats as we observed that male ETB def rats had a greater pressor response to i.v. infusion of ET-1 compared to females. Furthermore, HS feeding exacerbated the pressor response to ET-1 in both male and female ETB def rats. Given our previous studies demonstrating that the ETA receptor functions to reduce the pressor response to acute stress, these findings further support a role for the ET receptor system in the pressor response to acute stress and that female rats have reduced ETA receptor activity when on a HS diet compared to males.
Collapse
Affiliation(s)
- Joshua S Speed
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gerard D'Angelo
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul A Wach
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer C Sullivan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer S Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
25
|
Puppala B, Awan I, Briyal S, Mbachu O, Leonard M, Gulati A. Ontogeny of endothelin receptors in the brain, heart, and kidneys of neonatal rats. Brain Dev 2015; 37:206-15. [PMID: 24815227 DOI: 10.1016/j.braindev.2014.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Endothelin (ET) plays an important role in many physiological functions. It has been demonstrated that endogenous ET-1 concentration in the central nervous system (CNS) changes with age; however the ontogeny of ETA and ETB receptors in the brain, heart, and kidneys during postnatal development has not been studied. METHODS Brains, hearts and kidneys of rats at postnatal days 1, 7, 14 and 28 were evaluated for the expression of ETA and ETB receptors via Western blot. ETB receptors within the developing brain were further accessed via immunofluorescence. RESULTS The mean organ and body weights increased proportionally with advancing age demonstrating normal growth. The expression of ETA receptors in the brain, heart, and kidneys and ETB receptor expression in the heart and kidneys was similar in these rats at postnatal ages 1, 7, 14 and 28days. However, brain ETB receptor expression significantly (P<0.001) decreased by 72% on day 28 compared to the levels on postnatal day 1. Upon immunofluorescent analysis, the intensity of ETB staining in the cerebral cortex and subventricular zones of the developing rat brain decreased significantly from day 1 to day 7 (P<0.001) and from day 7 to day 14 (P<0.0001). There was no further decrease in ETB intensity noted in the cerebral cortex and subventricular zones between day 14 and day 28 of postnatal age. The intensity of ETB receptor staining within the cerebrovasculature, on the other hand, increased significantly (P<0.05) from days 1 and 7 to day 14. CONCLUSIONS These results demonstrate that expression of ETA receptors does not change with postnatal development. On the other hand ETB receptors in the cerebral cortex and subventricular zones of the brain decrease with age, while ETB receptors in the cerebrovasculature increase with age, implicating ETB receptor involvement in the structural maturity and development of the CNS.
Collapse
Affiliation(s)
- Bhagya Puppala
- Department of Pediatrics, Division of Neonatology, Advocate Lutheran General Children's Hospital, Park Ridge, IL, USA; Advocate Medical Group, Park Ridge, IL, USA.
| | - Imran Awan
- Department of Pediatrics, Division of Neonatology, Advocate Lutheran General Children's Hospital, Park Ridge, IL, USA.
| | - Seema Briyal
- Department of Pharmaceutical Sciences, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA.
| | - Obinna Mbachu
- Department of Pharmaceutical Sciences, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA.
| | - Mary Leonard
- Department of Pharmaceutical Sciences, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA.
| | - Anil Gulati
- Department of Pharmaceutical Sciences, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA.
| |
Collapse
|
26
|
Kittikulsuth W, Looney SW, Pollock DM. Endothelin ET(B) receptors contribute to sex differences in blood pressure elevation in angiotensin II hypertensive rats on a high-salt diet. Clin Exp Pharmacol Physiol 2014; 40:362-70. [PMID: 23713708 DOI: 10.1111/1440-1681.12084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/23/2013] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
Abstract
Female rats are more resistant to blood pressure increases induced by high salt (HS) intake or angiotensin (Ang) II infusion. Because endothelin ET(B) receptors on endothelial and epithelial cells mediate tonic vasodilation and sodium excretion, we hypothesized that ET(B) receptors limit the hypertensive response and renal injury induced by HS diet alone or with chronic AngII infusion (AngII/HS) in female compared with male rats. A 4 week HS diet (4% NaCl) did not significantly change blood pressure (measured by telemetry) in either male or female Sprague-Dawley rats. Administration of the ET(B) receptor antagonist A-192621 (1, 3 and 10 mg/kg per day in food) during HS feeding caused a dose-dependent increase in blood pressure in both sexes. In AngII/HS rats, males had a larger increase in blood pressure than females. The increase in blood pressure produced by ET(B) receptor blockade in male AngII/HS rats was not significant. However, A-192621 treatment resulted in a significant further increase in blood pressure in female AngII/HS rats. Male rats had consistently higher protein excretion rates before and during AngII/HS, but this was not significantly affected by ET(B) receptor blockade in either sex. In conclusion, ET(B) receptors play a significantly greater beneficial role in protecting female compared with male rats against AngII-induced hypertension and may contribute to the sex differences in AngII-induced hypertension.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Section of Experimental Medicine, Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | | | | |
Collapse
|
27
|
Pollock DM. 2013 Dahl Lecture: American Heart Association council for high blood pressure research clarifying the physiology of endothelin. Hypertension 2014; 63:e110-7. [PMID: 24614220 PMCID: PMC4127322 DOI: 10.1161/hypertensionaha.114.02441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
Affiliation(s)
- David M Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35233.
| |
Collapse
|
28
|
Ou M, Dang Y, Mazzuca MQ, Basile R, Khalil RA. Adaptive regulation of endothelin receptor type-A and type-B in vascular smooth muscle cells during pregnancy in rats. J Cell Physiol 2014; 229:489-501. [PMID: 24105843 DOI: 10.1002/jcp.24469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/06/2013] [Indexed: 12/26/2022]
Abstract
Normal pregnancy is associated with systemic vasodilation and decreased vascular contraction, partly due to increased release of endothelium-derived vasodilator substances. Endothelin-1 (ET-1) is an endothelium-derived vasoconstrictor acting via endothelin receptor type A (ETA R) and possibly type B (ETB R) in vascular smooth muscle cells (VSMCs), with additional vasodilator effects via endothelial ETB R. However, the role of ET-1 receptor subtypes in the regulation of vascular function during pregnancy is unclear. We investigated whether the decreased vascular contraction during pregnancy reflects changes in the expression/activity of ETAR and ETBR. Contraction was measured in single aortic VSMCs isolated from virgin, mid-pregnant (mid-Preg, day 12), and late-Preg (day 19) Sprague-Dawley rats, and the mRNA expression, protein amount, tissue and cellular distribution of ETAR and ETBR were examined using RT-PCR, Western blots, immunohistochemistry, and immunofluorescence. Phenylephrine (Phe, 10(-5) M), KCl (51 mM), and ET-1 (10(-6) M) caused VSMC contraction that was in late-Preg < mid-Preg and virgin rats. In VSMCs treated with ETB R antagonist BQ788, ET-1 caused significant contraction that was still in late-Preg < mid-Preg and virgin rats. In VSMCs treated with the ETAR antagonist BQ123, ET-1 caused a small contraction; and the ETBR agonists IRL-1620 and sarafotoxin 6c (S6c) caused similar contraction that was in late-Preg < mid-Preg and virgin rats. RT-PCR revealed similar ETAR, but greater ETBR mRNA expression in pregnant versus virgin rats. Western blots revealed similar ETAR, and greater protein amount of ETBR in endothelium-intact vessels, but reduced ETBR in endothelium-denuded vessels of pregnant versus virgin rats. Immunohistochemistry revealed prominent ETBR staining in the intima, but reduced ETAR and ETBR in the aortic media of pregnant rats. Immunofluorescence signal for ETAR and ETBR was less in VSMCs of pregnant versus virgin rats. The pregnancy-associated decrease in ETAR- and ETBR-mediated VSMC contraction appears to involve downregulation of ETAR and ETBR expression/activity in VSM, and may play a role in the adaptive vasodilation during pregnancy.
Collapse
Affiliation(s)
- Minghui Ou
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
29
|
Abstract
Hypertension is a complex and multifaceted disease, and there are well established sex differences in many aspects of blood pressure (BP) control. The intent of this review is to highlight recent work examining sex differences in the molecular mechanisms of BP control in hypertension to assess whether the "one-size-fits-all" approach to BP control is appropriate with regard to sex.
Collapse
|
30
|
Cunningham MW, Sasser JM, West CA, Milani CJ, Baylis C, Mitchell KD. Renal nitric oxide synthase and antioxidant preservation in Cyp1a1-Ren-2 transgenic rats with inducible malignant hypertension. Am J Hypertens 2013; 26:1242-9. [PMID: 23764378 DOI: 10.1093/ajh/hpt096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dietary administration of 0.30% indole-3-carbinol (I3C) to Cyp1a1-Ren2 transgenic rats (TGRs) generates angiotensin II (ANG II)-dependent malignant hypertension (HTN) and increased renal vascular resistance. However, TGRs with HTN maintain a normal or slightly reduced glomerular filtration rate. We tested the hypothesis that maintenance of renal function in hypertensive Cyp1a1-Ren2 TGRs is due to preservation of the intrarenal nitric oxide (NO) and antioxidant systems. METHODS Kidney cortex, kidney medulla, aortic endothelial (e) and neuronal (n) nitric oxide synthase (NOS), superoxide dismutases (SODs), and p22phox (nicotinamide adenine dinucleotide phosphate-oxidase subunit) protein abundances were measured along with kidney cortex total antioxidant capacity (TAC) and NOx. TGRs were fed a normal diet that contained 0.3% I3C or 0.3% I3C + candesartan (AT1 receptor antagonist; 25mg/L in drinking water) (n = 5-6 per group) for 10 days. RESULTS Blood pressure increased and body weight decreased in I3C-induced TGRs, while candesartan blunted these responses. Abundances of NOS, SOD, and p22phox as well as TAC were maintained in the kidney cortex of I3C-induced TGRs with and without candesartan, while kidney cortex NOx production increased in both groups. Kidney medulla eNOS and extracellular (EC) SOD decreased and nNOS were unchanged in both groups of I3C-induced TGRs. In addition, a compensatory increase occurred in kidney medulla Mn SOD in I3C-induced TGRs + candesartan. Aortic eNOS and nNOS∝ fell and p22phox and Mn SOD increased in hypertensive I3C-induced TGRs; all changes were reversed with candesartan. CONCLUSIONS The preservation of renal cortical NO and antioxidant capacity is associated with preserved renal function in Cyp1a1-Ren2 TGRs with ANG II-dependent malignant HTN.
Collapse
Affiliation(s)
- Mark W Cunningham
- Departments of Physiology and Medicine, University of Florida, Gainesville, Florida
| | | | | | | | | | | |
Collapse
|
31
|
Jin C, Speed JS, Hyndman KA, O'Connor PM, Pollock DM. Sex differences in ET-1 receptor expression and Ca2+ signaling in the IMCD. Am J Physiol Renal Physiol 2013; 305:F1099-104. [PMID: 23946290 DOI: 10.1152/ajprenal.00400.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inner medullary collecting duct (IMCD) is the nephron segment with the highest production of endothelin-1 (ET-1) and the greatest expression of ET-1 receptors that function to adjust Na(+) and water balance. We have reported that male rats have reduced natriuresis in response to direct intramedullary infusion of ET-1 compared with female rats. Our aim was to determine whether alterations of ET-1 receptor expression and downstream intracellular Ca(2+) signaling within the IMCD could account for these sex differences. IMCDs from male and female rats were isolated for radioligand binding or microdissected for intracellular Ca(2+) ([Ca(2+)]i) measurement by fluorescence imaging of fura-2 AM. IMCD from male and female rats had similar ETB expression (655 ± 201 vs. 567 ± 39 fmol/mg protein, respectively), whereas male rats had significantly higher ETA expression (436 ± 162 vs. 47 ± 29 fmol/mg protein, respectively; P < 0.05). The [Ca(2+)]i response to ET-1 was significantly greater in IMCDs from male compared with female rats (288 ± 52 vs. 118 ± 32 AUC, nM × 3 min, respectively; P < 0.05). In IMCDs from male rats, the [Ca(2+)]i response to ET-1 was significantly blunted by the ETA antagonist BQ-123 but not by the ETB antagonist BQ-788 (control: 137 ± 27; BQ-123: 53 ± 11; BQ-788: 84 ± 25 AUC, nM × 3 min; P < 0.05), consistent with greater ETA receptor function in male rats. These data demonstrate a sex difference in ETA receptor expression that results in differences in ET-1 Ca(2+) signaling in IMCD. Since activation of ETA receptors is thought to oppose ETB receptor activation, enhanced ETA function in male rats could limit the natriuretic effects of ETB receptor activation.
Collapse
Affiliation(s)
- Chunhua Jin
- Section of Experimental Medicine, Dept. of Medicine, CB-2200, Georgia Regents Univ., 1459 Laney Walker Blvd., Augusta, GA 30912.
| | | | | | | | | |
Collapse
|
32
|
Kittikulsuth W, Sullivan JC, Pollock DM. ET-1 actions in the kidney: evidence for sex differences. Br J Pharmacol 2013; 168:318-26. [PMID: 22372527 DOI: 10.1111/j.1476-5381.2012.01922.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hypertension and chronic kidney disease are more common in men than in premenopausal women at the same age. In animal models, females are relatively protected against genetic or pharmacological procedures that produce high blood pressure and renal injury. Overactivation or dysfunction of the endothelin (ET) system modulates the progression of hypertension or kidney diseases with the ET(A) receptor primarily mediating vasoconstriction, injury and anti-natriuresis, and ET(B) receptors having opposite effects. The purpose of this review is to examine the role of the ET system in the kidney with a focus on the inequality between the sexes associated with the susceptibility to and progression of hypertension and kidney diseases. In most animal models, males have higher renal ET-1 mRNA expression, greater ET(A) -mediated responses, including renal medullary vasoconstriction, and increased renal injury. These differences are reduced following gonadectomy suggesting a role for sex hormones, mainly testosterone. In contrast, females are relatively protected from high blood pressure and kidney damage via increased ET(B) versus ET(A) receptor function. Furthermore, ET(A) receptors may have a favourable effect on sodium excretion and reducing renal damage in females. In human studies, the genetic polymorphisms of the ET system are more associated with hypertension and renal injury in women. However, the knowledge of sex differences in the efficacy or adverse events of ET(A) antagonists in the treatment of hypertension and kidney disease is poorly described. Increased understanding how the ET system acts differently in the kidneys between sexes, especially with regard to receptor subtype function, could lead to better treatments for hypertension and renal disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- W Kittikulsuth
- Experimental Medicine, Department of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
33
|
Boesen EI. Chronic elevation of IL-1β induces diuresis via a cyclooxygenase 2-mediated mechanism. Am J Physiol Renal Physiol 2013; 305:F189-98. [PMID: 23657858 DOI: 10.1152/ajprenal.00075.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic renal inflammation is an increasingly recognized phenomenon in multiple disease states, but the impact of specific cytokines on renal function is unclear. Previously, we found that 14-day interleukin-1β (IL-1β) infusion increased urine flow in mice. To determine the mechanism by which this occurs, the current study tested the possible involvement of three classical prodiuretic pathways. Chronic IL-1β infusion significantly increased urine flow (6.5 ± 1 ml/day at day 14 vs. 2.3 ± 0.3 ml/day in vehicle group; P < 0.05) and expression of cyclooxygenase (COX)-2, all three nitric oxide synthase (NOS) isoforms, and endothelin (ET)-1 in the kidney (P < 0.05 in all cases). Urinary prostaglandin E metabolite (PGEM) excretion was also significantly increased at day 14 of IL-1β infusion (1.21 ± 0.26 vs. 0.29 ± 0.06 ng/day in vehicle-infused mice; P = 0.001). The selective COX-2 inhibitor celecoxib markedly attenuated urinary PGEM excretion and abolished the diuretic response to chronic IL-1β infusion. In contrast, deletion of NOS3, or inhibition of NOS1 with L-VNIO, did not blunt the diuretic effect of IL-1β, nor did pharmacological blockade of endothelin ETA and ETB receptors with A-182086. Consistent with a primary effect on water transport, IL-1β infusion markedly reduced inner medullary aquaporin-2 expression (P < 0.05) and did not alter urinary Na⁺ or K⁺ excretion. These data indicate a critical role for COX-2 in mediating the effects of chronic IL-1β elevation on the kidney.
Collapse
Affiliation(s)
- E I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
34
|
Hyndman KA, Boesen EI, Elmarakby AA, Brands MW, Huang P, Kohan DE, Pollock DM, Pollock JS. Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure. Hypertension 2013; 62:91-8. [PMID: 23608660 DOI: 10.1161/hypertensionaha.113.01291] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide is a pronatriuretic and prodiuretic factor. The highest renal NO synthase (NOS) activity is found in the inner medullary collecting duct. The collecting duct (CD) is the site of daily fine-tune regulation of sodium balance, and led us to hypothesize that a CD-specific deletion of NOS1 would result in an impaired ability to excrete a sodium load leading to a salt-sensitive blood pressure phenotype. We bred AQP2-CRE mice with NOS1 floxed mice to produce flox control and CD-specific NOS1 knockout (CDNOS1KO) littermates. CDs from CDNOS1KO mice produced 75% less nitrite, and urinary nitrite+nitrate (NOx) excretion was significantly blunted in the knockout genotype. When challenged with high dietary sodium, CDNOS1KO mice showed significantly reduced urine output, sodium, chloride, and NOx excretion, and increased mean arterial pressure relative to flox control mice. In humans, urinary NOx is a newly identified biomarker for the progression of hypertension. These findings reveal that NOS1 in the CD is critical in the regulation of fluid-electrolyte balance, and this new genetic model of CD NOS1 gene deletion will be a valuable tool to study salt-dependent blood pressure mechanisms.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Section of Experimental Medicine, Department of Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Ahmed A Elmarakby
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | | | | | | | | | | |
Collapse
|
35
|
Kittikulsuth W, Pollock JS, Pollock DM. Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II. Am J Physiol Renal Physiol 2012; 303:F659-66. [PMID: 22674027 DOI: 10.1152/ajprenal.00213.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have recently demonstrated that chronic infusion of exogenous ANG II, which induces blood pressure elevation, attenuates renal medullary endothelin B (ET(B)) receptor function in rats. Moreover, this was associated with a reduction of ET(B) receptor expression in the renal inner medulla. The aim of this present work was to investigate the effect of a physiological increase in endogenous ANG II (low-salt diet) on the renal ET system, including ET(B) receptor function. We hypothesized that endogenous ANG II reduces renal medullary ET(B) receptor function during low-salt intake. Rats were placed on a low-salt diet (0.01-0.02% NaCl) for 2 wk to allow an increase in endogenous ANG II. In rats on normal-salt chow, the stimulation of renal medullary ET(B) receptor by ET(B) receptor agonist sarafotoxin 6c (S6c) causes an increase in water (3.6 ± 0.4 from baseline vs. 10.5 ± 1.3 μl/min following S6c infusion; P < 0.05) and sodium excretion (0.38 ± 0.06 vs. 1.23 ± 0.17 μmol/min; P < 0.05). The low-salt diet reduced the ET(B)-dependent diuresis (4.5 ± 0.5 vs. 6.1 ± 0.9 μl/min) and natriuresis (0.40 ± 0.11 vs. 0.46 ± 0.12 μmol/min) in response to acute intramedullary infusion of S6c. Chronic treatment with candesartan restored renal medullary ET(B) receptor function; urine flow was 7.1 ± 0.9 vs. 15.9 ± 1.7 μl/min (P < 0.05), and sodium excretion was 0.4 ± 0.1 vs. 1.1 ± 0.1 μmol/min (P < 0.05) before and after intramedullary S6c infusion, respectively. Receptor binding assays determined that the sodium-depleted diet resulted in a similar level of ET(B) receptor binding in renal inner medulla compared with rats on a normal-salt diet. Candesartan reduced renal inner medullary ET(B) receptor binding (1,414 ± 95 vs. 862 ± 50 fmol/mg; P < 0.05). We conclude that endogenous ANG II attenuates renal medullary ET(B) receptor function to conserve sodium during salt deprivation independently of receptor expression.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Section of Experimental Medicine, Department of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
36
|
Abstract
1. Endothelin (ET)-1, which was originally found to be secreted by the vascular endothelium, is highly expressed in the kidney, particularly in the renal medulla. 2. Recent studies using genetic models have provided significant breakthroughs in the role of ET-1 in the kidney. For example, ET-1 in the medullary collecting duct physiologically regulates water and salt reabsorption, thereby controlling blood pressure. Surprisingly, to explain the blood pressure regulation both ET(A) and ET(B) receptors are necessary in collecting duct. In fact, we recently revealed that ET(A) receptor stimulation in the renal medulla was natriuretic and diuretic. 3. The expression and secretion of ET-1 in the renal medulla are regulated by multiple mechanisms, such as changes in osmolality, exaggerated renin-angiotensin system activity and hypoxia. The changes in the renal medullary ET system are likely to work as compensatory 'protective' natriuretic factors in response to high sodium exposure in the kidney. 4. In the present review, we focus on recent publications that describe our current knowledge of the functional role of renal medullary ET-1, including the recently characterized actions of ET(A) receptors, the second messenger systems, mechanisms of stimulating ET-1 production and how the ET system is involved in the development of hypertension.
Collapse
Affiliation(s)
- Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan.
| | | |
Collapse
|
37
|
Baltatu OC, Iliescu R, Zaugg CE, Reckelhoff JF, Louie P, Schumacher C, Campos LA. Antidiuretic effects of the endothelin receptor antagonist avosentan. Front Physiol 2012; 3:103. [PMID: 22529820 PMCID: PMC3328756 DOI: 10.3389/fphys.2012.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/02/2012] [Indexed: 01/08/2023] Open
Abstract
Several clinical studies have investigated the potential benefits of endothelin receptor antagonism in chronic pathologies such as diabetic kidney disease. However, fluid retention and edema have been identified as major side effects of endothelin receptor antagonists. In the present study we hypothesized that avosentan which was described as a predominant ETA receptor antagonist would produce fluid retention at high concentrations where non-specific blockade of ETB receptors may occur. Incremental doses of the predominant ETA receptor antagonist SPP301 (0.003; 0.03; 3 mg/kg) were administered intravenously to anesthetized Sprague-Dawley rats undergoing saline diuresis. Diuresis, glomerular filtration rate, and blood pressure (BP) were monitored. SPP301 decreased urine output (5.6; 34.8; 58.8% decrease from vehicle) and fractional excretion of water (5.7; 31.7; 56.4% decrease from vehicle) in a concentration-dependent manner. Glomerular filtration rate was unchanged while BP was reduced by 10 mmHg only by the highest dose of SPP301. Administration of the ETB selective receptor antagonist BQ-788 (3 mg/kg) following SPP301 3 mg/kg did not further decrease urine output or water excretion and was without effect on glomerular filtration rate. These data indicate that increasing concentrations of SPP301 may also block ETB receptors and cause antidiuresis. This effect could explain why fluid retention and edema occur during treatment with predominant ETA receptor blockers.
Collapse
|
38
|
|
39
|
|
40
|
Role of 20-hydroxyeicosatetraenoic acid in mediating hypertension in response to chronic renal medullary endothelin type B receptor blockade. PLoS One 2011; 6:e26063. [PMID: 22016812 PMCID: PMC3189228 DOI: 10.1371/journal.pone.0026063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/19/2011] [Indexed: 11/19/2022] Open
Abstract
Background The renal medullary endothelin (ET-1) system plays an important role in the control of sodium excretion and arterial pressure (AP) through the activation of renal medullary ET-B receptors. We have previously shown that blockade of endothelin type B receptors (ET-B) leads to salt-sensitive hypertension through mechanisms that are not fully understood. One possible mechanism is through a reduction in renal medullary production of 20-hydroxyeicosatetraenoic acid (20-HETE). 20-HETE, a metabolite of arachidonic acid, has natriuretic properties similar to ET-B activation. While these findings suggest a possible interaction between ET-B receptor activation and 20-HETE production, it is unknown whether blockade of medullary ET-B receptors in rats maintained on a high sodium intake leads to reductions in 20-HETE production. Methodology/Principal Findings The effect of increasing sodium intake from low (NS = .8%) to high (HS = 8%) on renal medullary production of 20-HETE in the presence and absence of renal medullary ET-B receptor antagonism was examined. Renal medullary blockade of ET-B receptors resulted in salt sensitive hypertension. In control rats, blood pressure rose from 112.8±2.4 mmHg (NS) to 120.7±9.3 mmHg (HS). In contrast, when treated with an ET-B receptor blocker, blood pressure was significantly elevated from 123.7±3.2 (NS) to 164.2±7.1 (HS). Furthermore, increasing sodium intake was associated with elevated medullary 20-HETE (5.6±.8 in NS vs. 14.3±3.7 pg/mg in HS), an effect that was completely abolished by renal medullary ET-B receptor blockade (4.9±.8 for NS and 4.5±.6 pg/mg for HS). Finally, the hypertensive response to intramedullary ET-B receptor blockade was blunted in rats pretreated with a specific 20-HETE synthesis inhibitor. Conclusion These data suggest that increases in renal medullary production of 20-HETE associated with elevating salt intake may be, in part, due to ET-B receptor activation within the renal medulla.
Collapse
|
41
|
Bugaj V, Mironova E, Kohan DE, Stockand JD. Collecting duct-specific endothelin B receptor knockout increases ENaC activity. Am J Physiol Cell Physiol 2011; 302:C188-94. [PMID: 21918182 DOI: 10.1152/ajpcell.00301.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na(+) excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophysiology with CD-specific knockout (KO) of endothelin receptors. We also tested how ET-1 signaling via specific endothelin receptors influences ENaC activity under differing dietary Na(+) regimens. ET-1 significantly decreased ENaC open probability in CD isolated from wild-type (WT) and CD ETA KO mice but not CD ETB KO and CD ETA/B KO mice. ENaC activity in WT and CD ETA but not CD ETB and CD ETA/B KO mice was inversely related to dietary Na(+) intake. ENaC activity in CD ETB and CD ETA/B KO mice tended to be elevated under all dietary Na(+) regimens compared with WT and CD ETA KO mice, reaching significance with high (2%) Na(+) feeding. These results show that the bulk of ET-1 inhibition of ENaC activity is mediated by the ETB receptor. In addition, they could explain the Na(+) retention and elevated blood pressure observed in CD ET-1 KO, CD ETB KO, and CD ETA/B KO mice consistent with ENaC regulation by ET-1 via ETB receptors contributing to the antihypertensive and natriuretic effects of the local endothelin system in the mammalian CD.
Collapse
Affiliation(s)
- Vladislav Bugaj
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
42
|
Fenhammar J, Andersson A, Forestier J, Weitzberg E, Sollevi A, Hjelmqvist H, Frithiof R. Endothelin receptor A antagonism attenuates renal medullary blood flow impairment in endotoxemic pigs. PLoS One 2011; 6:e21534. [PMID: 21760895 PMCID: PMC3132177 DOI: 10.1371/journal.pone.0021534] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/31/2011] [Indexed: 12/30/2022] Open
Abstract
Background Endothelin-1 is a potent endogenous vasoconstrictor that contributes to renal microcirculatory impairment during endotoxemia and sepsis. Here we investigated if the renal circulatory and metabolic effects of endothelin during endotoxemia are mediated through activation of endothelin-A receptors. Methods and Findings A randomized experimental study was performed with anesthetized and mechanically ventilated pigs subjected to Escherichia coli endotoxin infusion for five hours. After two hours the animals were treated with the selective endothelin receptor type A antagonist TBC 3711 (2 mg⋅kg−1, n = 8) or served as endotoxin-treated controls (n = 8). Renal artery blood flow, diuresis and creatinine clearance decreased in response to endotoxemia. Perfusion in the cortex, as measured by laser doppler flowmetry, was reduced in both groups, but TBC 3711 attenuated the decrease in the medulla (p = 0.002). Compared to control, TBC 3711 reduced renal oxygen extraction as well as cortical and medullary lactate/pyruvate ratios (p<0.05) measured by microdialysis. Furthermore, TBC 3711 attenuated the decline in renal cortical interstitial glucose levels (p = 0.02) and increased medullary pyruvate levels (p = 0.03). Decreased creatinine clearance and oliguria were present in both groups without any significant difference. Conclusions These results suggest that endothelin released during endotoxemia acts via endothelin A receptors to impair renal medullary blood flow causing ischemia. Reduced renal oxygen extraction and cortical levels of lactate by TBC 3711, without effects on cortical blood flow, further suggest additional metabolic effects of endothelin type A receptor activation in this model of endotoxin induced acute kidney injury.
Collapse
Affiliation(s)
- Johan Fenhammar
- Department of Anaesthesiology & Intensive Care, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
43
|
Garvin JL, Herrera M, Ortiz PA. Regulation of renal NaCl transport by nitric oxide, endothelin, and ATP: clinical implications. Annu Rev Physiol 2011; 73:359-76. [PMID: 20936940 DOI: 10.1146/annurev-physiol-012110-142247] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NaCl absorption along the nephron is regulated not just by humoral factors but also by factors that do not circulate or act on the cells where they are produced. Generally, nitric oxide (NO) inhibits NaCl absorption along the nephron. However, the effects of NO in the proximal tubule are controversial and may be biphasic. Similarly, the effects of endothelin on proximal tubule transport are biphasic. In more distal segments, endothelin inhibits NaCl absorption and may be mediated by NO. Adenosine triphosphate (ATP) inhibits sodium bicarbonate absorption in the proximal tubule, NaCl absorption in thick ascending limbs via NO, and water reabsorption in collecting ducts. Defects in the effects of NO, endothelin, and ATP increase blood pressure, especially in a NaCl-sensitive manner. In diabetes, disruption of NO-induced inhibition of transport may contribute to increased blood pressure and renal damage. However, our understanding of how NO, endothelin, and ATP work, and of their role in pathology, is rudimentary at best.
Collapse
Affiliation(s)
- Jeffrey L Garvin
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
44
|
O'Connor PM, Cowley AW. Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide. Curr Hypertens Rep 2011; 12:86-92. [PMID: 20424940 DOI: 10.1007/s11906-010-0094-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The renal pressure-natriuresis mechanism is the dominant controller of body fluid balance and long-term arterial pressure. In recent years, it has become clear that the balance of reactive oxygen and nitrogen species within the renal medullary region is a key determinant of the set point of the renal pressure-natriuresis curve. The development of renal medullary oxidative stress causes dysfunction of the pressure-natriuresis mechanism and contributes to the development of hypertension in numerous disease models. The purpose of this review is to point out the known mechanisms within the renal medulla through which reactive oxygen and nitrogen species modulate the pressure-natriuresis response and to update the reader on recent advances in this field.
Collapse
Affiliation(s)
- Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53202, USA.
| | | |
Collapse
|
45
|
Kittikulsuth W, Pollock JS, Pollock DM. Sex differences in renal medullary endothelin receptor function in angiotensin II hypertensive rats. Hypertension 2011; 58:212-8. [PMID: 21646601 DOI: 10.1161/hypertensionaha.111.172734] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We hypothesized that angiotensin (Ang) II hypertensive rats have impaired natriuresis after renal medullary endothelin (ET) B receptor stimulation that would be more evident in male versus female rats. Acute intramedullary infusion of the ET(B) agonist sarafotoxin 6c in normotensive male rats increased sodium excretion from 0.51±0.11 μmol/min during baseline to 1.64±0.19 μmol/min (P<0.05) after S6c. After 2 weeks of Ang II infusion (260 ng/kg per minute SC), male rats had an attenuated natriuretic response to S6c of 0.62±0.16 μmol/min during baseline versus 0.95±0.07 μmol/min after S6c. In contrast, ET(B)-dependent natriuresis was similar in female hypertensive rats (0.48±0.07 versus 1.5±0.18 μmol/min; P<0.05) compared with normotensive controls (1.05±0.07 versus 2.14±0.24 μmol/min; P<0.05). Because ET(A) receptors also mediate natriuresis in normotensive female rats, we examined ET(A) receptor function in female Ang II hypertensive rats. Intramedullary infusion of ET-1 increased sodium excretion in both hypertensive and normotensive female rats, which was partially blocked by the ET(A) antagonist BQ-123. Maximum ET(B) receptor binding in inner medullary membrane preparations was comparable between vehicle and Ang II hypertensive females; however, maximum ET(B) binding was significantly lower in male hypertensive rats (1952±251 versus 985±176 fmol/mg; P<0.05). These results indicate that renal ET(B) function is impaired in male Ang II hypertension attributed, at least in part, to a reduced number of ET(B) binding sites. Furthermore, renal ET receptor function is preserved in female rats during chronic Ang II infusion, suggesting that renal ET receptor function could serve to limit hypertension in females compared with males.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Georgia Health Sciences University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | | | | |
Collapse
|
46
|
Shao D, Park JE, Wort SJ. The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res 2011; 63:504-11. [DOI: 10.1016/j.phrs.2011.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023]
|
47
|
Cabral PD, Garvin JL. Luminal flow regulates NO and O2(-) along the nephron. Am J Physiol Renal Physiol 2011; 300:F1047-53. [PMID: 21345976 PMCID: PMC3094045 DOI: 10.1152/ajprenal.00724.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/22/2011] [Indexed: 11/22/2022] Open
Abstract
Urinary flow is not constant but in fact highly variable, altering the mechanical forces (shear stress, stretch, and pressure) exerted on the epithelial cells of the nephron as well as solute delivery. Nitric oxide (NO) and superoxide (O(2)(-)) play important roles in various processes within the kidney. Reductions in NO and increases in O(2)(-) lead to abnormal NaCl and water absorption and hypertension. In the last few years, luminal flow has been shown to be a regulator of NO and O(2)(-) production along the nephron. Increases in luminal flow enhance fluid, Na, and bicarbonate transport in the proximal tubule. However, we know of no reports directly addressing flow regulation of NO and O(2)(-) in this segment. In the thick ascending limb, flow-stimulated NO and O(2)(-) formation has been extensively studied. Luminal flow stimulates NO production by nitric oxide synthase type 3 and its translocation to the apical membrane in medullary thick ascending limbs. These effects are mediated by flow-induced shear stress. In contrast, flow-induced stretch and NaCl delivery stimulate O(2)(-) production by NADPH oxidase in this segment. The interaction between flow-induced NO and O(2)(-) is complex and involves more than one simply scavenging the other. Flow-induced NO prevents flow from increasing O(2)(-) production via cGMP-dependent protein kinase in thick ascending limbs. In macula densa cells, shear stress increases NO production and this requires that the primary cilia be intact. The role of luminal flow in NO and O(2)(-) production in the distal tubule is not known. In cultured inner medullary collecting duct cells, shear stress enhances nitrite accumulation, a measure of NO production. Although much progress has been made on this subject in the last few years, there are still many unanswered questions.
Collapse
Affiliation(s)
- Pablo D Cabral
- Hypertension and Vascular Research Div., Dept. of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | |
Collapse
|
48
|
Contribution of Nitric Oxide in Big Endothelin-1–induced Cardioprotective Effects on Ischemia/Reperfusion Injury in Rat Hearts. J Cardiovasc Pharmacol 2011; 57:575-8. [DOI: 10.1097/fjc.0b013e31821325ad] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Hyndman KA, Musall JB, Xue J, Pollock JS. Dynamin activates NO production in rat renal inner medullary collecting ducts via protein-protein interaction with NOS1. Am J Physiol Renal Physiol 2011; 301:F118-24. [PMID: 21490139 DOI: 10.1152/ajprenal.00534.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We hypothesized that nitric oxide synthase (NOS) isoforms may be regulated by dynamin (DNM) in the inner medullary collecting duct (IMCD). The aims of this study were to determine which DNM isoforms (DNM1, DNM2, DNM3) are expressed in renal IMCDs, whether DNM interacts with NOS, whether a high-salt diet alters the interaction of DNM and NOS, and whether DNM activates NO production. DNM2 and DNM3 are highly expressed in the rat IMCD, while DNM1 is localized outside of the IMCD. We found that DNM1 interacts with NOS1α, NOS1β, and NOS3 in the inner medulla of male Sprague-Dawley rats on a 0.4% salt diet. DNM2 interacts with NOS1α, while DNM3 interacts with both NOS1α and NOS1β. DNM2 and DNM3 do not interact with NOS3 in the rat inner medulla. We did not observe any change in the DNM/NOS interactions with rats on a 4% salt diet after 7 days. Furthermore, NOS1α interacts with DNM2 in mIMCD3 and COS7 cells transfected with NOS1α and DNM2-GFP constructs and the NOS1 reductase domain is necessary for the interaction. Finally, COS7 cells expressing NOS1α or NOS1α/DNM2-GFP had significantly higher nitrite production compared with DNM2-GFP only. Nitrite production was blocked by the DNM inhibitor dynasore or the dominant negative DNM2K44A. Ionomycin stimulation further increased nitrite production in the NOS1α/DNM2-GFP cells compared with NOS1α only. In conclusion, DNM and NOS1 interact in the rat renal IMCD and this interaction leads to increased NO production, which may influence NO production in the renal medulla.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Vascular Biology Center, CB-3213, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|