1
|
Pouyiourou I, Fromm A, Piontek J, Rosenthal R, Furuse M, Günzel D. Ion permeability profiles of renal paracellular channel-forming claudins. Acta Physiol (Oxf) 2025; 241:e14264. [PMID: 39821681 PMCID: PMC11740656 DOI: 10.1111/apha.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
AIM Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins. METHODS MDCK II cells, in which the five major claudins had been knocked out (claudin quintupleKO), were stably transfected with individual mouse Cldn2, -4, -8, -10a, -10b, or -15, or with dog Cldn16 or -19, or with a combination of mouse Cldn4 and Cldn8, or dog Cldn16 and Cldn19. Permeation properties were investigated in the Ussing chamber and claudin interactions by FRET assays. RESULTS Claudin-4 and -19 formed barriers against solute permeation. However, at low pH values and in the absence of HCO3 -, claudin-4 conveyed a weak chloride and nitrate permeability. Claudin-8 needed claudin-4 for assembly into TJ strands and abolished this anion preference. Claudin-2, -10a, -10b, -15, -16+19 formed highly permeable channels with distinctive permeation profiles for different monovalent and divalent anions or cations, but barriers against the permeation of ions of opposite charge and of the paracellular tracer fluorescein. CONCLUSION Paracellular ion permeabilities along the nephron are strictly determined by claudin expression patterns. Paracellular channel-forming claudins are specific for certain ions and thus lower transepithelial resistance, yet form barriers against the transport of other solutes.
Collapse
Affiliation(s)
- Ioanna Pouyiourou
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Anja Fromm
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Mikio Furuse
- Division of Cell StructureNational Institute for Physiological SciencesOkazakiJapan
- Physiological Sciences ProgramGraduate Institute for Advanced Studies, SOKENDAIOkazakiJapan
- Nagoya University Graduate School of MedicineNagoyaJapan
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
2
|
Poulsen SB, Murali SK, Thomas L, Assmus A, Rosenbæk LL, Nielsen R, Dimke H, Rieg T, Fenton RA. Genetic deletion of the kidney sodium/proton exchanger-3 (NHE3) does not alter calcium and phosphate balance due to compensatory responses. Kidney Int 2025; 107:280-295. [PMID: 39089578 DOI: 10.1016/j.kint.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lena L Rosenbæk
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Himmerkus N, Quintanova C, Bhullar H, van Megen WH, Deluque AL, Skjødt K, Bogdanovic M, Bleich M, Alexander RT, Dimke H. Calcium-Sensing Receptor in the Thick Ascending Limb and Renal Response to Hypercalcemia. J Am Soc Nephrol 2025:00001751-990000000-00534. [PMID: 39836479 DOI: 10.1681/asn.0000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Background:
The parathyroid calcium-sensing receptor (CASR) controls the release of parathyroid hormone (PTH) in response to changes in serum calcium levels. Activation of the renal CASR increases urinary calcium excretion and is particularly important when CASR-dependent reductions in PTH fail to lower serum calcium. However, the role of the renal CASR in protecting against hypercalcemia and the direct effects of chronic CASR activation on tubular calcium handling remains to be fully elucidated.
Methods:
Experimental hypercalcemia was induced using the Vitamin D analog (Dihydrotachysterol, DHT) in mice with Ksp-Cre dependent deletion of the Casr (Ksp-Casr) in kidney with Cre negative littermates (WT) serving as controls. Urinary and fecal electrolyte determinations, dual-energy x-ray absorptiometry, molecular and biochemical evaluation, and in vitro tubule microperfusion were performed in both sexes.
Results:
Ksp-Cre-driven Casr deletion strongly reduced CASR abundance in the thick ascending limb (TAL). At baseline, no marked differences were detected in electrolyte handling and tubular permeability characteristics across the TAL. 3 days of DHT administration induced hypercalcemia in both WT and Ksp-Casr mice. However, while WT mice developed hypercalciuria, this response was absent in Ksp-Casr mice. Urinary excretion of magnesium and other electrolytes did not differ between hypercalcemic WT and Ksp-Casr mice. Intestinal electrolyte absorption was comparable between the two groups. Microperfusion of isolated cortical TALs revealed no baseline differences in the transepithelial voltage, resistance, or ion permeabilities. Following hypercalcemia, transepithelial resistance increased and calcium permeability markedly decreased in WT mice, but not in Ksp-Casr mice, with only minor alterations in magnesium permeability and no changes in transepithelial voltage.
Conclusions:
In hypercalcemic mice, absence of the CASR in TAL prevented the increase in urinary calcium excretion. The CASR specifically regulated the paracellular permeability of the TAL, especially for calcium.
Collapse
Affiliation(s)
- Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | | | - Harneet Bhullar
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | | | - Amanda Lima Deluque
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| | - Karsten Skjødt
- Department of Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Milos Bogdanovic
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - R Todd Alexander
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
4
|
Onagi A, Sugimoto K, Kobayashi M, Sato Y, Kobayashi Y, Yaginuma K, Meguro S, Hoshi S, Hata J, Hashimoto Y, Kojima Y, Chiba H. Extrajunctional CLDN10 cooperates with LAT1 and accelerates clear cell renal cell carcinoma progression. Cell Commun Signal 2024; 22:588. [PMID: 39639312 PMCID: PMC11619122 DOI: 10.1186/s12964-024-01964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND & AIMS In addition to their adhesive properties, cell adhesion molecules such as claudins (CLDNs) exhibit signaling ability to organize diverse cellular events. Although the CLDN-adhesion signaling stimulates or inhibits cancer progression, the underlying mechanism remains poorly established. Here, we verified whether and how CLDN10 promotes intracellular signals and malignant phenotypes in clear cell renal cell carcinoma (ccRCC). METHODS We developed a novel monoclonal antibody that specifically recognizes CLDN10. By immunohistochemistry using this antibody, the clinicopathological significance of aberrant CLDN10 expression in 165 ccRCC patients was determined. We next generated the ccRCC cells (786-O, ACHN, and OS-RC-2) expressing CLDN10, and compared their phenotypes with those of control cells. Immunoprecipitation-mass spectrometry was used to identify a CLDN10-interacting protein, followed by evaluation of its association with CLDN10 and loss-of-functions in ccRCC cells. RESULTS High CLDN10 expression predicted poor outcome in ccRCC patients and represented an independent prognostic marker for cancer-specific survival. Cell surface CLDN10 promoted cell viability, proliferation, and migration of ccRCC cells, as well as their tumor growth. CLDN10 also activated mTOR signaling and expression of downstream targets, including MYC target genes. Notably, we found that CLDN10 forms a complex with an amino acid transporter, LAT1, and that CLDN10-LAT1 signaling facilitates malignant phenotypes in ccRCC cells. Structural prediction and immunoprecipitation analysis results strongly suggest an interaction between CLDN10-TM1 (transmembrane domain 1) and LAT1-TM4. CONCLUSIONS We conclude that CLDN10-LAT1 signaling drives ccRCC progression. Taken together with our previous findings on CLDN-Src-family kinases signaling, CLDNs propagate distinct intracellular signals depending on their association with different binding partners.
Collapse
Affiliation(s)
- Akifumi Onagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yumi Sato
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yasuyuki Kobayashi
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kei Yaginuma
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Satoru Meguro
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Seiji Hoshi
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Jyunya Hata
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
5
|
Dimke H. New insights into renal calcium-sensing receptor activation. Curr Opin Nephrol Hypertens 2024; 33:433-440. [PMID: 38690798 DOI: 10.1097/mnh.0000000000000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE OF REVIEW Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.
Collapse
Affiliation(s)
- Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Daci D, Altrichter S, Grillet FM, Dib S, Mouna A, Suresh Kumar S, Terhorst-Molawi D, Maurer M, Günzel D, Scheffel J. Altered Sweat Composition Due to Changes in Tight Junction Expression of Sweat Glands in Cholinergic Urticaria Patients. Int J Mol Sci 2024; 25:4658. [PMID: 38731882 PMCID: PMC11083780 DOI: 10.3390/ijms25094658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
In cholinergic urticaria (CholU), small, itchy wheals are induced by exercise or passive warming and reduced sweating has been reported. Despite the described reduced muscarinic receptor expression, sweat duct obstruction, or sweat allergy, the underlying pathomechanisms are not well understood. To gain further insights, we collected skin biopsies before and after pulse-controlled ergometry and sweat after sauna provocation from CholU patients as well as healthy controls. CholU patients displayed partially severely reduced local sweating, yet total sweat volume was unaltered. However, sweat electrolyte composition was altered, with increased K+ concentration in CholU patients. Formalin-fixed, paraffin-embedded biopsies were stained to explore sweat leakage and tight junction protein expression. Dermcidin staining was not found outside the sweat glands. In the secretory coils of sweat glands, the distribution of claudin-3 and -10b as well as occludin was altered, but the zonula occludens-1 location was unchanged. In all, dermcidin and tight junction protein staining suggests an intact barrier with reduced sweat production capability in CholU patients. For future studies, an ex vivo skin model for quantification of sweat secretion was established, in which sweat secretion could be pharmacologically stimulated or blocked. This ex vivo model will be used to further investigate sweat gland function in CholU patients and decipher the underlying pathomechanism(s).
Collapse
Affiliation(s)
- Denisa Daci
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Sabine Altrichter
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Departement of Dermatology and Venerology, Kepler University Hospital, 4020 Linz, Austria
- Center for Medical Research, Johannes Kepler University, 4021 Linz, Austria
| | - François Marie Grillet
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Selma Dib
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Ahmad Mouna
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Sukashree Suresh Kumar
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Dorothea Terhorst-Molawi
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Jörg Scheffel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| |
Collapse
|
7
|
Brideau G, Cheval L, Griveau C, Ling WME, Lievre L, Crambert G, Müller D, Broćić J, Cherchame E, Houillier P, Prot-Bertoye C. Claudin-10 Expression and the Gene Expression Pattern of Thick Ascending Limb Cells. Int J Mol Sci 2024; 25:4008. [PMID: 38612818 PMCID: PMC11011785 DOI: 10.3390/ijms25074008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Many genomic, anatomical and functional differences exist between the medullary (MTAL) and the cortical thick ascending limb of the loop of Henle (CTAL), including a higher expression of claudin-10 (CLDN10) in the MTAL than in the CTAL. Therefore, we assessed to what extent the Cldn10 gene expression is a determinant of differential gene expression between MTAL and CTAL. RNAs extracted from CTAL and MTAL microdissected from wild type (WT) and Cldn10 knock out mice (cKO) were analyzed by RNAseq. Differential and enrichment analyses (GSEA) were performed with interactive R Shiny software. Between WT and cKO MTAL, 637 genes were differentially expressed, whereas only 76 were differentially expressed between WT and cKO CTAL. Gene expression patterns and GSEA analyses in all replicates showed that WT MTAL did not cluster with the other replicates; no hierarchical clustering could be found between WT CTAL, cKO CTAL and cKO MTAL. Compared to WT replicates, cKO replicates were enriched in Cldn16, Cldn19, Pth1r, (parathyroid hormone receptor type 1), Casr (calcium sensing receptor) and Vdr (Vitamin D Receptor) mRNA in both the cortex and medulla. Cldn10 is associated with gene expression patterns, including genes specifically involved in divalent cations reabsorption in the TAL.
Collapse
Affiliation(s)
- Gaelle Brideau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Camille Griveau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Wung-Man Evelyne Ling
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Dominik Müller
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, DE-13353 Berlin, Germany;
| | - Jovana Broćić
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Data Analysis Core Platform, F-75013 Paris, France; (J.B.); (E.C.)
| | - Emeline Cherchame
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Data Analysis Core Platform, F-75013 Paris, France; (J.B.); (E.C.)
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), The European Rare Kidney Disease Reference Network (ERKNet), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, The European Reference Network on Rare Endocrine Conditions (Endo-ERN), F-75015 Paris, France
- Faculté de Médecine, Université Paris Cité, F-75006 Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), The European Rare Kidney Disease Reference Network (ERKNet), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, The European Reference Network on Rare Endocrine Conditions (Endo-ERN), F-75015 Paris, France
| |
Collapse
|
8
|
Abstract
Sequential expression of claudins, a family of tight junction proteins, along the nephron mirrors the sequential expression of ion channels and transporters. Only by the interplay of transcellular and paracellular transport can the kidney efficiently maintain electrolyte and water homeostasis in an organism. Although channel and transporter defects have long been known to perturb homeostasis, the contribution of individual tight junction proteins has been less clear. Over the past two decades, the regulation and dysregulation of claudins have been intensively studied in the gastrointestinal tract. Claudin expression patterns have, for instance, been found to be affected in infection and inflammation, or in cancer. In the kidney, a deeper understanding of the causes as well as the effects of claudin expression alterations is only just emerging. Little is known about hormonal control of the paracellular pathway along the nephron, effects of cytokines on renal claudin expression or relevance of changes in paracellular permeability to the outcome in any of the major kidney diseases. By summarizing current findings on the role of specific claudins in maintaining electrolyte and water homeostasis, this Review aims to stimulate investigations on claudins as prognostic markers or as druggable targets in kidney disease.
Collapse
Affiliation(s)
- Luca Meoli
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Dimke H, Griveau C, Ling WME, Brideau G, Cheval L, Muthan P, Müller D, Al-Shebel A, Houillier P, Prot-Bertoye C. Claudin-19 localizes to the thick ascending limb where its expression is required for junctional claudin-16 localization. Ann N Y Acad Sci 2023; 1526:126-137. [PMID: 37344378 DOI: 10.1111/nyas.15014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The kidney is critical for mineral homeostasis. Calcium and magnesium reabsorption in the renal thick ascending limb (TAL) involves claudin-16 (CLDN16) and claudin-19 (CLDN19) and pathogenic variants in either gene lead to familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) with severe calcium and magnesium wasting. While both CLDN16 and CLDN19 localize to the TAL, varying expression patterns in the renal tubule have been reported using different antibodies. We, therefore, studied the localization of CLDN19 in the kidneys of wild-type and Cldn19-deleted mice using three anti-CLDN19 antibodies and examined the role of Cldn19 deletion on CLDN16 and CLDN10 localization. We find that CLDN19 localizes to basolateral membrane domains of the medullary and cortical TAL but only to the tight junction of TALs in the outer stripe of outer medulla and cortex, where it colocalizes with CLDN16. Furthermore, in TALs from Cldn19-deleted mice, CLDN16 is expressed in basolateral membrane domains but not at the tight junction. In contrast, Cldn19 ablation does not change CLDN10 localization. These findings directly implicate CLDN19 in regulating permeability in the TAL by allowing junctional insertion of CLDN16 and may explain the shared renal phenotypic characteristics in FHHNC patients.
Collapse
Affiliation(s)
- Henrik Dimke
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Camille Griveau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Wung-Man Evelyne Ling
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Gaelle Brideau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Pravina Muthan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Dominik Müller
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Amr Al-Shebel
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
10
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
11
|
Wei W, Li W, Yang L, Weeramantry S, Ma L, Fu P, Zhao Y. Tight junctions and acute kidney injury. J Cell Physiol 2023; 238:727-741. [PMID: 36815285 DOI: 10.1002/jcp.30976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Acute kidney injury (AKI) is characterized by a rapid reduction in kidney function caused by various etiologies. Tubular epithelial cell dysregulation plays a pivotal role in the pathogenesis of AKI. Tight junction (TJ) is the major molecular structure that connects adjacent epithelial cells and is critical in maintaining barrier function and determining the permeability of epithelia. TJ proteins are dysregulated in various types of AKI, and some reno-protective drugs can reverse TJ changes caused by insult. An in-depth understanding of TJ regulation and its causality with AKI will provide more insight to the disease pathogenesis and will shed light on the potential role of TJs to serve as novel therapeutic targets in AKI.
Collapse
Affiliation(s)
- Wei Wei
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiying Li
- Department of Internal Medicine, Florida Hospital/AdventHealth, Orlando, Florida, USA
| | - Letian Yang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Savidya Weeramantry
- Department of Internal Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuliang Zhao
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
The membrane-associated protein 17 (MAP17) is up-regulated in response to empagliflozin on top of RAS blockade in experimental diabetic nephropathy. Clin Sci (Lond) 2023; 137:87-104. [PMID: 36524468 DOI: 10.1042/cs20220447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to delay diabetic kidney disease (DKD) progression on top of the standard of care with the renin-angiotensin system (RAS) blockade. The molecular mechanisms underlying the synergistic effect of SGLT2i and RAS blockers is poorly understood. We gave a SGLT2i (empagliflozin), an angiotensin-converting enzyme inhibitor (ramipril), or a combination of both drugs for 8 weeks to diabetic (db/db) mice. Vehicle-treated db/db and db/m mice were used as controls. At the end of the experiment, mice were killed, and the kidneys were saved to perform a differential high-throughput proteomic analysis by mass spectrometry using isobaric tandem mass tags (TMT labeling) that allow relative quantification of the identified proteins. The differential proteomic analysis revealed 203 proteins differentially expressed in one or more experimental groups (false discovery rate < 0.05 and Log2 fold change ≥ ±1). Fourteen were differentially expressed in the kidneys from the db/db mice treated with empagliflozin with ramipril. Among them, MAP17 was up-regulated. These findings were subsequently validated by Western blot. The combined therapy of empagliflozin and ramipril up-regulated MAP17 in the kidney of a diabetic mice model. MAP17 is a major scaffolding protein of the proximal tubular cells that places transporters together, namely SGLT2 and NHE3. Our results suggest that SGLT2i on top of RAS blockade may protect the kidney by boosting the inactivation of NHE3 via the up-regulation of key scaffolder proteins such as MAP17.
Collapse
|
13
|
Alexander RT, Dimke H. Molecular mechanisms underlying paracellular calcium and magnesium reabsorption in the proximal tubule and thick ascending limb. Ann N Y Acad Sci 2022; 1518:69-83. [PMID: 36200584 DOI: 10.1111/nyas.14909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calcium and magnesium are the most abundant divalent cations in the body. The plasma level is controlled by coordinated interaction between intestinal absorption, reabsorption in the kidney, and, for calcium at least, bone storage and exchange. The kidney adjusts urinary excretion of these ions in response to alterations in their systemic concentration. Free ionized and anion-complexed calcium and magnesium are filtered at the glomerulus. The majority (i.e., >85%) of filtered divalent cations are reabsorbed via paracellular pathways from the proximal tubule and thick ascending limb (TAL) of the loop of Henle. Interestingly, the largest fraction of filtered calcium is reabsorbed from the proximal tubule (65%), while the largest fraction of filtered magnesium is reclaimed from the TAL (60%). The paracellular pathways mediating these fluxes are composed of tight junctional pores formed by claudins. In the proximal tubule, claudin-2 and claudin-12 confer calcium permeability, while the exact identity of the magnesium pore remains to be determined. Claudin-16 and claudin-19 contribute to the calcium and magnesium permeable pathway in the TAL. In this review, we discuss the data supporting these conclusions and speculate as to why there is greater fractional calcium reabsorption from the proximal tubule and greater fractional magnesium reabsorption from the TAL.
Collapse
Affiliation(s)
- R Todd Alexander
- Departments of Physiology & Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women's and Children's Health Institute, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
14
|
Obtel N, Le Cabec A, Nguyen TN, Giabicani E, Van Malderen SJM, Garrevoet J, Percot A, Paris C, Dean C, Hadj‐Rabia S, Houillier P, Breiderhoff T, Bardet C, Coradin T, Ramirez Rozzi F, Chaussain C. Impact of claudin-10 deficiency on amelogenesis: Lesson from a HELIX tooth. Ann N Y Acad Sci 2022; 1516:197-211. [PMID: 35902997 PMCID: PMC9796262 DOI: 10.1111/nyas.14865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In epithelia, claudin proteins are important components of the tight junctions as they determine the permeability and specificity to ions of the paracellular pathway. Mutations in CLDN10 cause the rare autosomal recessive HELIX syndrome (Hypohidrosis, Electrolyte imbalance, Lacrimal gland dysfunction, Ichthyosis, and Xerostomia), in which patients display severe enamel wear. Here, we assess whether this enamel wear is caused by an innate fragility directly related to claudin-10 deficiency in addition to xerostomia. A third molar collected from a female HELIX patient was analyzed by a combination of microanatomical and physicochemical approaches (i.e., electron microscopy, elemental mapping, Raman microspectroscopy, and synchrotron-based X-ray fluorescence). The enamel morphology, formation time, organization, and microstructure appeared to be within the natural variability. However, we identified accentuated strontium variations within the HELIX enamel, with alternating enrichments and depletions following the direction of the periodical striae of Retzius. These markings were also present in dentin. These data suggest that the enamel wear associated with HELIX may not be related to a disruption of enamel microstructure but rather to xerostomia. However, the occurrence of events of strontium variations within dental tissues might indicate repeated episodes of worsening of the renal dysfunction that may require further investigations.
Collapse
Affiliation(s)
- Nicolas Obtel
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199PessacFrance,Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Thè Nghia Nguyen
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Eloise Giabicani
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | | | | | - Aline Percot
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Céline Paris
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Christopher Dean
- Department of Earth Sciences, Centre for Human Evolution ResearchNatural History MuseumLondonUK,Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Smail Hadj‐Rabia
- Université Paris Cité, INSERM1163 Institut Imagine; APHP, Hôpital Necker‐Enfants Malades, Department of Dermatology, Reference Center for Rare Skin DiseasesParisFrance
| | - Pascal Houillier
- Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM, CNRS‐ERL8228ParisFrance,APHP, Service de Physiologie, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Européen Georges PompidouParisFrance
| | - Tilman Breiderhoff
- Charité Universitaetsmedizin Berlin, Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of PediatricsBerlinGermany
| | - Claire Bardet
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de ParisParisFrance
| | - Fernando Ramirez Rozzi
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,Eco‐anthropologie (EA), Muséum national d'Histoire naturelle, CNRSUniversité de ParisParisFrance
| | - Catherine Chaussain
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| |
Collapse
|
15
|
The importance of kidney calcium handling in the homeostasis of extracellular fluid calcium. Pflugers Arch 2022; 474:885-900. [PMID: 35842482 DOI: 10.1007/s00424-022-02725-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Extracellular fluid calcium concentration must be maintained within a narrow range in order to sustain many biological functions, encompassing muscle contraction, blood coagulation, and bone and tooth mineralization. Blood calcium value is critically dependent on the ability of the renal tubule to reabsorb the adequate amount of filtered calcium. Tubular calcium reabsorption is carried out by various and complex mechanisms in 3 distinct segments: the proximal tubule, the cortical thick ascending limb of the loop of Henle, and the late distal convoluted/connecting tubule. In addition, calcium reabsorption is tightly controlled by many endocrine, paracrine, and autocrine factors, as well as by non-hormonal factors, in order to adapt the tubular handling of calcium to the metabolic requirements. The present review summarizes the current knowledge of the mechanisms and factors involved in calcium handling by the kidney and, ultimately, in extracellular calcium homeostasis. The review also highlights some of our gaps in understanding that need to be addressed in the future.
Collapse
|
16
|
Figueres L, Bruneau S, Prot-Bertoye C, Brideau G, Néel M, Griveau C, Cheval L, Bignon Y, Dimitrov J, Dejoie T, Ville S, Kandel-Aznar C, Moreau A, Houillier P, Fakhouri F. Hypomagnesemia, Hypocalcemia, and Tubulointerstitial Nephropathy Caused by Claudin-16 Autoantibodies. J Am Soc Nephrol 2022; 33:1402-1410. [PMID: 35728884 PMCID: PMC9257800 DOI: 10.1681/asn.2022010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chronic hypomagnesemia is commonly due to diarrhea, alcoholism, and drugs. More rarely, it is caused by genetic defects in the effectors of renal magnesium reabsorption. METHODS In an adult patient with acquired severe hypomagnesemia, hypocalcemia, tubulointerstitial nephropathy, and rapidly progressing kidney injury, similarities between the patient's presentation and features of genetic disorders of renal magnesium transport prompted us to investigate whether the patient had an acquired autoimmune cause of renal magnesium wasting. To determine if the patient's condition might be explained by autoantibodies directed against claudin-16 or claudin-19, transmembrane paracellular proteins involved in renal magnesium absorption, we conducted experiments with claudin knockout mice and transfected mouse kidney cells expressing human claudin-16 or claudin-19. We also examined effects on renal magnesium handling in rats given intravenous injections of IgG purified from sera from the patient or controls. RESULTS Experiments with the knockout mice and in vitro transfected cells demonstrated that hypomagnesemia in the patient was causally linked to autoantibodies directed against claudin-16, which controls paracellular magnesium reabsorption in the thick ascending limb of Henle's loop. Intravenous injection of IgG purified from the patient's serum induced a marked urinary waste of magnesium in rats. Immunosuppressive treatment combining plasma exchange and rituximab was associated with improvement in the patient's GFR, but hypomagnesemia persisted. The patient was subsequently diagnosed with a renal carcinoma that expressed a high level of claudin-16 mRNA. CONCLUSIONS Pathogenic claudin-16 autoantibodies represent a novel autoimmune cause of specific renal tubular transport disturbances and tubulointerstitial nephropathy. Screening for autoantibodies targeting claudin-16, and potentially other magnesium transporters or channels in the kidney, may be warranted in patients with acquired unexplained hypomagnesemia.
Collapse
Affiliation(s)
- Lucile Figueres
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sarah Bruneau
- Centre de Recherche en Transplantation et Immunologie, Nantes, France.,Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Caroline Prot-Bertoye
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France.,Department of Physiology, Hôpital Européen Georges Pompidou, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,CNRS, Paris, France
| | - Gaëlle Brideau
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS, Paris, France
| | - Mélanie Néel
- Centre de Recherche en Transplantation et Immunologie, Nantes, France.,Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Camille Griveau
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS, Paris, France
| | - Lydie Cheval
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS, Paris, France
| | - Yohan Bignon
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France.,CNRS, Paris, France
| | - Jordan Dimitrov
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Thomas Dejoie
- Laboratory of Biochemistry, CHU de Nantes, Nantes, France
| | - Simon Ville
- Centre de Recherche en Transplantation et Immunologie, Nantes, France.,Institut de Transplantation Urologie Néphrologie, Nantes, France.,Department of Nephrology, CHU de Nantes, Nantes, France
| | | | - Anne Moreau
- Department of Pathology, CHU de Nantes, Nantes, France
| | - Pascal Houillier
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France .,Department of Physiology, Hôpital Européen Georges Pompidou, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,CNRS, Paris, France
| | - Fadi Fakhouri
- Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|