1
|
Borri M, Jacobs ME, Carmeliet P, Rabelink TJ, Dumas SJ. Endothelial dysfunction in the aging kidney. Am J Physiol Renal Physiol 2025; 328:F542-F562. [PMID: 39933752 DOI: 10.1152/ajprenal.00287.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Global population aging is an escalating challenge in modern society, especially as it impairs the function of multiple organs and increases the burden of age-related diseases. The kidneys, in particular, experience function decline, reduced regenerative capacity, and increased susceptibility to injury as they age. As a result, the prevalence of chronic kidney disease (CKD) rises with aging, further contributing to the growing health burden in older populations. One of the key factors in this process is the dysfunction of specialized renal endothelial cells (RECs), which are essential for maintaining kidney health by regulating blood flow and supporting filtration, solute and water reabsorption, and vascular integrity. As the kidneys age, REC dysfunction drives vascular and microenvironmental changes, contributing to the overall decline in kidney function. In this review, we outline the structural and functional effects of aging on the kidney's macrovascular and microvascular compartments and provide a phenotypic description of the aged endothelium. We particularly focus on the molecular and metabolic rewiring driving and sustaining growth-arrested EC senescence phenotype. We finally give an overview of senotherapies acting on ECs, especially of those modulating metabolism. Given that the pathophysiological processes underlying kidney aging largely overlap with those observed in CKD, REC rejuvenation could also benefit patients with CKD. Moreover, such interventions may hold promise in improving the outcomes of aged kidney transplants. Hence, advancing our understanding of REC and kidney aging will create opportunities for innovations that could improve outcomes for both elderly individuals and patients with CKD.
Collapse
Affiliation(s)
- Mila Borri
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien J Dumas
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Jeon YH, Oh EJ, Oh SH, Lim JH, Jung HY, Choi JY, Cho JH, Park SH, Kim YL, Kim CD. Is Hemopexin a Nephrotoxin or a Marker of Kidney Injury in Renal Ischemia-Reperfusion? Biomolecules 2024; 14:1522. [PMID: 39766229 PMCID: PMC11673696 DOI: 10.3390/biom14121522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Destabilization of heme proteins is recognized to play a role in acute kidney injury (AKI). Hemopexin (Hpx), known for its role in binding heme, mitigates free heme toxicity. Despite this, the potential adverse effects of Hpx deposition in kidney tissues and its impact on kidney function are not fully understood. Deferoxamine (DFO) chelates iron released from heme and mitigates associated kidney damage. Therefore, this study aimed to evaluate whether Hpx contributes to kidney injury in an ischemia-reperfusion injury (IRI) induced AKI model and to investigate if DFO could alleviate this damage. Mice were categorized into five groups: Sham-Vehicle, Sham-Hpx, IRI-Vehicle, IRI-Hpx, and IRI-Hpx-DFO. Decline in kidney function was observed exclusively in the IRI group, independent of Hpx injection. Serum Hpx levels remained comparable across all groups, and administration of Hpx did not alter serum Hpx levels or kidney function after 24 hours. Although increased Hpx deposition in kidneys was noted in both the IRI and Hpx groups, this accumulation did not correlate with impaired kidney function. Additionally, DFO did not exhibit a protective effect against kidney injury. In summary, Hpx does not directly induce kidney injury and cannot be considered a biomarker for kidney damage caused by IRI.
Collapse
Affiliation(s)
- You Hyun Jeon
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Eun-Joo Oh
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Se-Hyun Oh
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jeong-Hoon Lim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hee-Yeon Jung
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Ji-Young Choi
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Jang-Hee Cho
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sun-Hee Park
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Yong-Lim Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Munoz CJ, Lucas D, Muller CR, Breton A, Jani V, Savla C, Palmer AF, Cabrales P. Degree of PEGylatation of Lumbricus terrestris Hemoglobin Improves Microcirculatory Blood Flow but Increases the Rate of Auto-Oxidation. ACS APPLIED BIO MATERIALS 2024; 7:5188-5200. [PMID: 38970152 DOI: 10.1021/acsabm.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
INTRODUCTION The demand for red blood cells (RBCs) is on the rise due to the increasing diagnosis of chronic diseases such as sickle cell anemia, malaria, and thalassemia. Despite many commercial attempts, there are no U.S. FDA-approved artificial RBCs for use in humans. Existing RBC substitutes have employed various strategies to transport oxygen, extend the circulation time, and reduce organ toxicity, but none have replicated the natural protective mechanisms of RBCs, which prevent hemoglobin (Hb) dimerization and heme iron oxidation. Lumbricus terrestris (earthworm) erythrocruorin (LtEc) is a naturally occurring extracellular hemoglobin (Hb) with promising attributes: large molecular diameter (30 nm), high molecular weight (3.6 MDa), low auto-oxidation rate, and limited nitric oxide-scavenging properties. These characteristics make LtEc an ideal candidate as an RBC substitute. However, LtEc has a significant drawback, its short circulatory half-life. To address this issue, we explored thiol-mediated surface PEGylation of LtEc (PEG-LtEc) at varying polyethylene glycol (PEG) surface coverages. Increasing PEG surface coverage beyond 40% destabilizes LtEc into smaller subunits that are 1/12th the size of LtEc. Therefore, we evaluated two PEG surface coverage options: PEG-LtEc-0.2 (20% PEGylation) and PEG-LtEc-1.0 (100% PEGylation). METHODS We conducted experiments using golden Syrian hamsters with dorsal window chambers and catheters to assess the efficacy of these solutions. We measured microvascular parameters, organ function, cerebral blood flow, circulation time, mean arterial pressure, heart rate, and blood gases and performed histology to screen for toxicity. CONCLUSION Our findings indicate that both PEG-LtEc molecules offer significant benefits in restoring microvascular parameters, organ function, cerebral blood flow, and circulation time compared to LtEc alone. Notably, PEG-LtEc-1.0 showed superior microvascular perfusion, although it exhibited a higher rate of auto-oxidation compared to PEG-LtEc-0.2. These results underscore the advantages of PEGylation in terms of tissue perfusion and organ health while highlighting its limitations.
Collapse
Affiliation(s)
- Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Daniela Lucas
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Cynthia R Muller
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Amanda Breton
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Vinay Jani
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Jin J, Yang X, Gong H, Li X. Time- and Gender-Dependent Alterations in Mice during the Aging Process. Int J Mol Sci 2023; 24:12790. [PMID: 37628974 PMCID: PMC10454612 DOI: 10.3390/ijms241612790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Compared to young people and adults, there are differences in the ability of elderly people to resist diseases or injuries, with some noticeable features being gender-dependent. However, gender differences in age-related viscera alterations are not clear. To evaluate a potential possibility of gender differences during the natural aging process, we used three age groups to investigate the impact on spleens, kidneys, and adrenal glands. The immunofluorescence results showed that male-specific p21 proteins were concentrated in the renal tubule epithelial cells of the kidney. Histological staining revealed an increase in the frequencies of fat vacuoles located in the renal tubule epithelial cells of the cortex, under the renal capsule in the kidneys of male mice with age. In female mice, we found that the width of the globular zone in the adrenal gland cortex was unchanged with age. On the contrary, the male displayed a reduction in width. Compared to females, the content of epinephrine in adrenal gland tissue according to ELISA analysis was higher in adults, and a greater decline was observed in aged males particularly. These data confirmed the age-dependent differences between female and male mice; therefore, gender should be considered one of the major factors for personalized treatment in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Jin
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Williams MC, Zhang X, Baek JH, D’Agnillo F. Renal glomerular and tubular responses to glutaraldehyde- polymerized human hemoglobin. Front Med (Lausanne) 2023; 10:1158359. [PMID: 37384048 PMCID: PMC10293615 DOI: 10.3389/fmed.2023.1158359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Hemoglobin-based oxygen carriers (HBOCs) are being developed as oxygen and volume replacement therapeutics, however, their molecular and cellular effects on the vasculature and different organ systems are not fully defined. Using a guinea pig transfusion model, we examined the renal glomerular and tubular responses to PolyHeme, a highly characterized glutaraldehyde-polymerized human hemoglobin with low tetrameric hemoglobin content. PolyHeme-infused animals showed no major changes in glomerular histology or loss of specific markers of glomerular podocytes (Wilms tumor 1 protein, podocin, and podocalyxin) or endothelial cells (ETS-related gene and claudin-5) after 4, 24, and 72 h. Relative to sham controls, PolyHeme-infused animals also showed similar expression and subcellular distribution of N-cadherin and E-cadherin, two key epithelial junctional proteins of proximal and distal tubules, respectively. In terms of heme catabolism and iron-handling responses, PolyHeme induced a moderate but transient expression of heme oxygenase-1 in proximal tubular epithelium and tubulointerstitial macrophages that was accompanied by increased iron deposition in tubular epithelium. Contrary to previous findings with other modified or acellular hemoglobins, the present data show that PolyHeme does not disrupt the junctional integrity of the renal glomerulus and tubular epithelium, and triggers moderate activation of heme catabolic and iron sequestration systems likely as part of a renal adaptive response.
Collapse
|
6
|
Nath KA, Singh RD, Croatt AJ, Adams CM. Heme Proteins and Kidney Injury: Beyond Rhabdomyolysis. KIDNEY360 2022; 3:1969-1979. [PMID: 36514409 PMCID: PMC9717624 DOI: 10.34067/kid.0005442022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Heme proteins, the stuff of life, represent an ingenious biologic strategy that capitalizes on the biochemical versatility of heme, and yet is one that avoids the inherent risks to cellular vitality posed by unfettered and promiscuously reactive heme. Heme proteins, however, may be a double-edged sword because they can damage the kidney in certain settings. Although such injury is often viewed mainly within the context of rhabdomyolysis and the nephrotoxicity of myoglobin, an increasing literature now attests to the fact that involvement of heme proteins in renal injury ranges well beyond the confines of this single disease (and its analog, hemolysis); indeed, through the release of the defining heme motif, destabilization of intracellular heme proteins may be a common pathway for acute kidney injury, in general, and irrespective of the underlying insult. This brief review outlines current understanding regarding processes underlying such heme protein-induced acute kidney injury (AKI) and chronic kidney disease (CKD). Topics covered include, among others, the basis for renal injury after the exposure of the kidney to and its incorporation of myoglobin and hemoglobin; auto-oxidation of myoglobin and hemoglobin; destabilization of heme proteins and the release of heme; heme/iron/oxidant pathways of renal injury; generation of reactive oxygen species and reactive nitrogen species by NOX, iNOS, and myeloperoxidase; and the role of circulating cell-free hemoglobin in AKI and CKD. Also covered are the characteristics of the kidney that render this organ uniquely vulnerable to injury after myolysis and hemolysis, and pathobiologic effects emanating from free, labile heme. Mechanisms that defend against the toxicity of heme proteins are discussed, and the review concludes by outlining the therapeutic strategies that have arisen from current understanding of mechanisms of renal injury caused by heme proteins and how such mechanisms may be interrupted.
Collapse
Affiliation(s)
- Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher M. Adams
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
7
|
Li J, Li X, Hutchinson J, Asad M, Liu Y, Wang Y, Wang E. An ensemble prediction model for COVID-19 mortality risk. Biol Methods Protoc 2022; 7:bpac029. [PMID: 36438173 PMCID: PMC9685565 DOI: 10.1093/biomethods/bpac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND It's critical to identify COVID-19 patients with a higher death risk at early stage to give them better hospitalization or intensive care. However, thus far, none of the machine learning models has been shown to be successful in an independent cohort. We aim to develop a machine learning model which could accurately predict death risk of COVID-19 patients at an early stage in other independent cohorts. METHODS We used a cohort containing 4711 patients whose clinical features associated with patient physiological conditions or lab test data associated with inflammation, hepatorenal function, cardiovascular function, and so on to identify key features. To do so, we first developed a novel data preprocessing approach to clean up clinical features and then developed an ensemble machine learning method to identify key features. RESULTS Finally, we identified 14 key clinical features whose combination reached a good predictive performance of area under the receiver operating characteristic curve 0.907. Most importantly, we successfully validated these key features in a large independent cohort containing 15 790 patients. CONCLUSIONS Our study shows that 14 key features are robust and useful in predicting the risk of death in patients confirmed SARS-CoV-2 infection at an early stage, and potentially useful in clinical settings to help in making clinical decisions.
Collapse
Affiliation(s)
- Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang 150006, China
| | - Xin Li
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang 150006, China
| | - John Hutchinson
- Department of Medical Genetics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Mohammad Asad
- Department of Medical Genetics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Yinghui Liu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang 150006, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang 150006, China
| | - Edwin Wang
- Department of Medical Genetics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Department of Medicine, McGill University, 845 Sherbrooke Street West, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
8
|
In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms. J Biol Chem 2022; 298:101823. [PMID: 35283192 PMCID: PMC9052147 DOI: 10.1016/j.jbc.2022.101823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus lugdunensis has increasingly been recognized as a pathogen that can cause serious infection indicating this bacterium overcomes host nutritional immunity. Despite this, there exists a significant knowledge gap regarding the iron acquisition mechanisms employed by S. lugdunensis, especially during infection of the mammalian host. Here we show that S. lugdunensis can usurp hydroxamate siderophores and staphyloferrin A and B from Staphylococcus aureus. These transport activities all required a functional FhuC ATPase. Moreover, we show that the acquisition of catechol siderophores and catecholamine stress hormones by S. lugdunensis required the presence of the sst-1 transporter-encoding locus, but not the sst-2 locus. Iron-dependent growth in acidic culture conditions necessitated the ferrous iron transport system encoded by feoAB. Heme iron was acquired via expression of the iron-regulated surface determinant (isd) locus. During systemic infection of mice, we demonstrated that while S. lugdunensis does not cause overt illness, it does colonize and proliferate to high numbers in the kidneys. By combining mutations in the various iron acquisition loci (isd, fhuC, sst-1, and feo), we demonstrate that only a strain deficient for all of these systems was attenuated in its ability to proliferate to high numbers in the murine kidney. We propose the concerted action of heme and non-heme iron acquisition systems also enable S. lugdunensis to cause human infection.
Collapse
|
9
|
Fan X, Zhang X, Liu LC, Kim AY, Curley SP, Chen X, Dworkin LD, Cooper CJ, Gupta R. Interleukin-10 attenuates renal injury after myocardial infarction in diabetes. J Investig Med 2022; 70:1233-1242. [PMID: 35140126 DOI: 10.1136/jim-2021-002008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 01/06/2023]
Abstract
Acute kidney injury (AKI) is a common complication after myocardial infarction (MI) and associated with significant morbidity and mortality. AKI after MI occurs more frequently in patients with diabetes, however, the underlying mechanisms are poorly understood, and specific treatments are lacking. Using the murine MI model, we show that diabetic mice had higher expression of the kidney injury marker, neutrophil gelatinase-associated lipocalin (NGAL), 3 days after MI compared with control mice. This higher expression of NGAL was still significant after controlling for differences in myocardial infarct size between diabetic and control mice. Prior data demonstrate increased cell-free hemoglobin after MI in diabetic mice. Therefore, we investigated heme clearance components, including heme oxygenase 1 (HO-1) and CD163, in the kidneys and found that both HO-1 and CD163 were dysregulated in diabetic mice pre-MI and post-MI. Significantly higher levels of urine iron were also observed in diabetic mice compared with control mice after MI. Next, the renal protective effect of interleukin 10 (IL-10) after MI was tested in diabetic MI. IL-10 treatment demonstrated multiple protective effects after diabetic MI including reduction in acute renal inflammation, upregulation of renal heme clearance pathways, attenuation of chronic renal fibrosis, and reduction in albuminuria after diabetic MI. In vitro, IL-10 potentiated hemoglobin-induced HO-1 expression in mouse bone marrow-derived macrophages and renal proximal tubule (HK-2) cells. Furthermore, IL-10 reduced hemoglobin-induced reactive oxygen species in HK-2 cells and collagen synthesis in mouse embryonic fibroblast cells. We conclude that impaired renal heme clearance pathways in diabetes contribute to AKI after MI, and IL-10 attenuates renal injury after diabetic MI.
Collapse
Affiliation(s)
- Xiaoming Fan
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Xiaolu Zhang
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Lijun C Liu
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Annes Y Kim
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Sean P Curley
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Xiaohuan Chen
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Lance D Dworkin
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Christopher J Cooper
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Rajesh Gupta
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| |
Collapse
|
10
|
Marquez-Exposito L, Tejedor-Santamaria L, Valentijn FA, Tejera-Muñoz A, Rayego-Mateos S, Marchant V, Rodrigues-Diez RR, Rubio-Soto I, Knoppert SN, Ortiz A, Ramos AM, Goldschmeding R, Ruiz-Ortega M. Oxidative Stress and Cellular Senescence Are Involved in the Aging Kidney. Antioxidants (Basel) 2022; 11:301. [PMID: 35204184 PMCID: PMC8868560 DOI: 10.3390/antiox11020301] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) can be considered as a clinical model for premature aging. However, non-invasive biomarkers to detect early kidney damage and the onset of a senescent phenotype are lacking. Most of the preclinical senescence studies in aging have been done in very old mice. Furthermore, the precise characterization and over-time development of age-related senescence in the kidney remain unclear. To address these limitations, the age-related activation of cellular senescence-associated mechanisms and their correlation with early structural changes in the kidney were investigated in 3- to 18-month-old C57BL6 mice. Inflammatory cell infiltration was observed by 12 months, whereas tubular damage and collagen accumulation occurred later. Early activation of cellular-senescence-associated mechanisms was found in 12-month-old mice, characterized by activation of the DNA-damage-response (DDR), mainly in tubular cells; activation of the antioxidant NRF2 pathway; and klotho downregulation. However, induction of tubular-cell-cycle-arrest (CCA) and overexpression of renal senescent-associated secretory phenotype (SASP) components was only found in 18-month-old mice. In aging mice, both inflammation and oxidative stress (marked by elevated lipid peroxidation and NRF2 inactivation) remained increased. These findings support the hypothesis that prolonged DDR and CCA, loss of nephroprotective factors (klotho), and dysfunctional redox regulatory mechanisms (NRF2/antioxidant defense) can be early drivers of age-related kidney-damage progression.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Floris A. Valentijn
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (F.A.V.); (S.N.K.); (R.G.)
| | - Antonio Tejera-Muñoz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Raul R. Rodrigues-Diez
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Av. Roma, s/n, 33011 Oviedo, Spain
| | - Irene Rubio-Soto
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| | - Sebastiaan N. Knoppert
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (F.A.V.); (S.N.K.); (R.G.)
| | - Alberto Ortiz
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Adrian M. Ramos
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (F.A.V.); (S.N.K.); (R.G.)
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (L.M.-E.); (L.T.-S.); (A.T.-M.); (S.R.-M.); (V.M.); (I.R.-S.)
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III, 28040 Madrid, Spain; (R.R.R.-D.); (A.O.); (A.M.R.)
| |
Collapse
|
11
|
Liu Q, Cheng A, Wang Y, Lv Y, Chen Z. Carbon Monoxide in Renal Physiology, Pathogenesis and Treatment of Renal Disease. Curr Pharm Des 2021; 27:4253-4260. [PMID: 34779366 DOI: 10.2174/1381612827666210706161207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Carbon monoxide (CO) is one of the endogenous gaseous messengers or gasotransmitters, and is a paramount mediator in physiological and disease conditions. In this review, we focus on the functions of CO in normal and pathological renal physiology. We discuss endogenous renal CO production and signaling in the normal kidney, the characteristic of CO-releasing molecules (CORMs) modalities, and outline its regulatory functions in renal physiology. This article summarizes the mechanisms as well as the effect of CO in the evolving field of renal diseases. We predict numerous innovative CO applications forevolvingcutting-edge scholarly work in the future.
Collapse
Affiliation(s)
- Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anying Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiru Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongman Lv
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
12
|
Zhao S, Wang X, Zheng X, Liang X, Wang Z, Zhang J, Zhao X, Zhuang S, Pan Q, Sun F, Shang W, Barasch J, Qiu A. Iron deficiency exacerbates cisplatin- or rhabdomyolysis-induced acute kidney injury through promoting iron-catalyzed oxidative damage. Free Radic Biol Med 2021; 173:81-96. [PMID: 34298093 PMCID: PMC9482792 DOI: 10.1016/j.freeradbiomed.2021.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Abstract
Iron deficiency is the most common micronutrient deficiency worldwide. While iron deficiency is known to suppress embryonic organogenesis, its effect on the adult organ in the context of clinically relevant damage has not been considered. Here we report that iron deficiency is a risk factor for nephrotoxic intrinsic acute kidney injury of the nephron (iAKI). Iron deficiency exacerbated cisplatin-induced iAKI by markedly increasing non-heme catalytic iron and Nox4 protein which together catalyze production of hydroxyl radicals followed by protein and DNA oxidation, apoptosis and ferroptosis. Crosstalk between non-heme catalytic iron/Nox4 and downstream oxidative damage generated a mutual amplification cycle that facilitated rapid progression of cisplatin-induced iAKI. Iron deficiency also exacerbated a second model of iAKI, rhabdomyolysis, via increasing catalytic heme-iron. Heme-iron induced lipid peroxidation and DNA oxidation by interacting with Nox4-independent mechanisms, promoting p53/p21 activity and cellular senescence. Our data suggests that correcting iron deficiency and/or targeting specific catalytic iron species are strategies to mitigate iAKI in a wide range of patients with diverse forms of kidney injury.
Collapse
Affiliation(s)
- Shifeng Zhao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xueqiao Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoqing Zheng
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiu Liang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanlian Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Zhao
- Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shougang Zhuang
- Division of Nephrology, Department of Medicine, Brown University, Providence, USA
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA.
| | - Andong Qiu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Abstract
BACKGROUND Hemoglobin (Hb)-based oxygen carriers (HBOCs) have been proposed as alternatives to blood for decades. Previous studies demonstrated that large molecular diameter HBOCs based on polymerized bovine Hb (PolybHb) attenuate Hb side-effects and toxicity. The objective of this study was to test the safety and efficacy of tense state PolybHb after long-term storage. METHODS AND RESULTS PolybHb was subjected to diafiltration to remove low molecular weight (< 500 kDa) species and stored for 2 years. PolybHb was studied in parallel with blood, collected from rats and stored leukodepleted under blood bank conditions for 3 weeks. Rats were hemorrhaged and resuscitated to 90% of the blood pressure before the hemorrhage with fresh blood, stored blood, fresh PolybHb, or 2-year-stored PolybHb. Hemorrhagic shock impaired oxygen delivery and cardiac function. Resuscitation restored blood pressure and cardiac function, but stored blood required a significantly larger transfusion volume to recover from shock compared with fresh blood and PolybHb (fresh and stored). Stored blood transfusion elevated markers of organ damage compared with all other groups. CONCLUSIONS These studies indicate that large molecular diameter PolybHb is as efficacious as fresh blood in restoring cardiac function and confirm the lack of degradation of PolybHb's safety or efficacy during long-term storage.
Collapse
|
14
|
Marquez-Exposito L, Tejedor-Santamaria L, Santos-Sanchez L, Valentijn FA, Cantero-Navarro E, Rayego-Mateos S, Rodrigues-Diez RR, Tejera-Muñoz A, Marchant V, Sanz AB, Ortiz A, Goldschmeding R, Ruiz-Ortega M. Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes. Front Pharmacol 2021; 12:662020. [PMID: 34239439 PMCID: PMC8258347 DOI: 10.3389/fphar.2021.662020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is more frequent in elderly patients. Mechanisms contributing to AKI (tubular cell death, inflammatory cell infiltration, impaired mitochondrial function, and prolonged cell-cycle arrest) have been linked to cellular senescence, a process implicated in regeneration failure and progression to fibrosis. However, the molecular and pathological basis of the age-related increase in AKI incidence is not completely understood. To explore these mechanisms, experimental AKI was induced by folic acid (FA) administration in young (3-months-old) and old (1-year-old) mice, and kidneys were evaluated in the early phase of AKI, at 48 h. Tubular damage score, KIM-1 expression, the recruitment of infiltrating immune cells (mainly neutrophils and macrophages) and proinflammatory gene expression were higher in AKI kidneys of old than of young mice. Tubular cell death in FA-AKI involves several pathways, such as regulated necrosis and apoptosis. Ferroptosis and necroptosis cell-death pathways were upregulated in old AKI kidneys. In contrast, caspase-3 activation was only found in young but not in old mice. Moreover, the antiapoptotic factor BCL-xL was significantly overexpressed in old, injured kidneys, suggesting an age-related apoptosis suppression. AKI kidneys displayed evidence of cellular senescence, such as increased levels of cyclin dependent kinase inhibitors p16ink4a and p21cip1, and of the DNA damage response marker γH2AX. Furthermore, p21cip1 mRNA expression and nuclear staining for p21cip1 and γH2AX were higher in old than in young FA-AKI mice, as well as the expression of senescence-associated secretory phenotype (SASP) components (Il-6, Tgfb1, Ctgf, and Serpine1). Interestingly, some infiltrating immune cells were p21 or γH2AX positive, suggesting that molecular senescence in the immune cells (“immunosenescence”) are involved in the increased severity of AKI in old mice. In contrast, expression of renal protective factors was dramatically downregulated in old AKI mice, including the antiaging factor Klotho and the mitochondrial biogenesis driver PGC-1α. In conclusion, aging resulted in more severe AKI after the exposure to toxic compounds. This increased toxicity may be related to magnification of proinflammatory-related pathways in older mice, including a switch to a proinflammatory cell death (necroptosis) instead of apoptosis, and overactivation of cellular senescence of resident renal cells and infiltrating inflammatory cells.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elena Cantero-Navarro
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Raul R Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|
15
|
Nath M, Agarwal A. New insights into the role of heme oxygenase-1 in acute kidney injury. Kidney Res Clin Pract 2020; 39:387-401. [PMID: 33184238 PMCID: PMC7770992 DOI: 10.23876/j.krcp.20.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Acute kidney injury (AKI) is attended by injury-related biomarkers appearing in the urine and serum, decreased urine output, and impaired glomerular filtration rate. AKI causes increased morbidity and mortality and can progress to chronic kidney disease and end-stage kidney failure. AKI is without specific therapies and is managed by supported care. Heme oxygenase-1 (HO-1) is a cytoprotective, inducible enzyme that degrades toxic free heme released from destabilized heme proteins and, during this process, releases beneficial by-products such as carbon monoxide and biliverdin/bilirubin and promotes ferritin synthesis. HO-1 induction protects against assorted renal insults as demonstrated by in vitro and preclinical models. This review summarizes the advances in understanding of the protection conferred by HO-1 in AKI, how HO-1 can be induced including via its transcription factor Nrf2, and HO-1 induction as a therapeutic strategy.
Collapse
Affiliation(s)
- Meryl Nath
- Deparment of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anupam Agarwal
- Deparment of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Veterans Affairs, Birmingham Veterans Administration Medical Center, Birmingham, AL, USA
| |
Collapse
|
16
|
Bednarz A, Lipiński P, Starzyński RR, Tomczyk M, Kraszewska I, Herman S, Kowalski K, Gruca E, Jończy A, Mazgaj R, Szudzik M, Rajfur Z, Baster Z, Józkowicz A, Lenartowicz M. Exacerbation of Neonatal Hemolysis and Impaired Renal Iron Handling in Heme Oxygenase 1-Deficient Mice. Int J Mol Sci 2020; 21:ijms21207754. [PMID: 33092142 PMCID: PMC7589678 DOI: 10.3390/ijms21207754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023] Open
Abstract
In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.
Collapse
Affiliation(s)
- Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (I.K.); (A.J.)
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (I.K.); (A.J.)
| | - Sylwia Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Kacper Kowalski
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Ewelina Gruca
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland; (P.L.); (R.R.S.); (A.J.); (R.M.); (M.S.)
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (Z.R.); (Z.B.)
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (Z.R.); (Z.B.)
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.T.); (I.K.); (A.J.)
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (A.B.); (S.H.); (K.K.); (E.G.)
- Correspondence:
| |
Collapse
|
17
|
Wood J, Yasmin-Karim S, Moreau M, Kumar R, Akwanwi J, Derek A, Atoneche F, Kress J, Ngwa W. Characterization of Isolated Extracts from Justicia Plant Leaves used as Remedy for Anemia. Molecules 2020; 25:E534. [PMID: 31991819 PMCID: PMC7037932 DOI: 10.3390/molecules25030534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
Indigenous populations use plants as an important healthcare resource or remedy for different diseases. Here, isolated extracts from Justicia (family Acanthanceae) plant leaves used in Africa as remedy for anemia are characterized by different methods to assess composition and potential nutritional or therapeutic value. Extracts from Justicia leaves were obtained by aqueous extraction, with further isolation by centrifuging and high-performance liquid chromatography. Extracts and isolated compounds were characterized by ultraviolet-visible (UV-Vis) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). Hemoglobin activity was assessed using different hemoglobin assays (Cayman Chemical, and Sigma-Aldrich), as well as ELISA. In addition, the safety of the isolated samples was assessed in vitro and in vivo in mice. ICP-MS study results revealed many essential metabolites found in blood plasma. The UV-Vis spectroscopy results highlighted the presence of hemoglobin, with assays showing levels over 4 times higher than that of similar mass of lyophilized human hemoglobin. Meanwhile, in vivo studies showed faster recovery from anemia in mice administered with the isolated extracts compared to untreated mice. Moreover, in vitro and in vivo studies highlighted safety of the extracts. This study reveals the presence of high levels of elements essential for blood health in the isolated extracts from Justicia plant leaves. The findings inspire further research with the potential applications in food fortification, and as remedy for blood disorders like anemia, which disproportionally affects cancer patients, pregnant women, and populations in low- and middle-income countries.
Collapse
Affiliation(s)
- Jana Wood
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (J.W.); (S.Y.-K.); (M.M.)
| | - Sayeda Yasmin-Karim
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (J.W.); (S.Y.-K.); (M.M.)
| | - Michele Moreau
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (J.W.); (S.Y.-K.); (M.M.)
- Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Rajiv Kumar
- College of Science, Northeastern University, Boston, MA 02115, USA;
| | - Janet Akwanwi
- Sts Stephen and Paul’s Foundation, Bafut 2060, Cameroon;
| | | | - Fred Atoneche
- Department of Physics, University of Buea, Buea, Cameroon;
| | - John Kress
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian, Institution, Washington, DC 20560, USA;
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (J.W.); (S.Y.-K.); (M.M.)
- Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- College of Science, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
18
|
Nath KA, Garovic VD, Grande JP, Croatt AJ, Ackerman AW, Farrugia G, Katusic ZS, Belcher JD, Vercellotti GM. Heme oxygenase-2 protects against ischemic acute kidney injury: influence of age and sex. Am J Physiol Renal Physiol 2019; 317:F695-F704. [PMID: 31215802 PMCID: PMC6842883 DOI: 10.1152/ajprenal.00085.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Heme oxygenase (HO) activity is exhibited by inducible (HO-1) and constitutive (HO-2) proteins. HO-1 protects against ischemic and nephrotoxic acute kidney injury (AKI). We have previously demonstrated that HO-2 protects against heme protein-induced AKI. The present study examined whether HO-2 is protective in ischemic AKI. Renal ischemia was imposed on young and aged HO-2+/+ and HO-2-/- mice. On days 1 and 2 after renal ischemia, there were no significant differences in renal function between young male HO-2+/+ and HO-2-/- mice, between young female HO-2+/+ and HO-2-/- mice, or between aged female HO-2+/+ and HO-2-/- mice. However, in aged male mice, HO-2 deficiency worsened renal function on days 1 and 2 after ischemic AKI, and, on day 2 after ischemia, such deficiency augmented upregulation of injury-related genes and worsened histological injury. Renal HO activity was markedly decreased in unstressed aged male HO-2-/- mice and remained so after ischemia, despite exaggerated HO-1 induction in HO-2-/- mice after ischemia. Such exacerbation of deficiency of HO-2 protein and HO activity may reflect phosphorylated STAT3, as activation of this proinflammatory transcription factor was accentuated early after ischemia in aged male HO-2-/- mice. This exacerbation may not reflect impaired induction of nephroprotectant genes, since the induction of HO-1, sirtuin 1, and β-catenin was accentuated in aged male HO-2-/- mice after ischemia. We conclude that aged male mice are hypersensitive to ischemic AKI and that HO-2 mitigates such sensitivity. We speculate that this protective effect of HO-2 may be mediated, at least in part, by suppression of phosphorylated STAT3-dependent signaling.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Allan W Ackerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - John D Belcher
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Gregory M Vercellotti
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
19
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Noh SA, Kim SM, Park SH, Kim DJ, Lee JW, Kim YG, Moon JY, Lim SJ, Lee SH, Kim KP. Alterations in Lipid Profile of the Aging Kidney Identified by MALDI Imaging Mass Spectrometry. J Proteome Res 2019; 18:2803-2812. [PMID: 31244212 DOI: 10.1021/acs.jproteome.9b00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During aging, the kidney undergoes functional and physiological changes that are closely affiliated with chronic kidney disease (CKD). There is increasing evidence supporting the role of lipid or lipid-derived mediators in the pathogenesis of CKD and other aging-related diseases. To understand the role of lipids in various metabolic processes during kidney aging, we conducted matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) analysis in kidneys harvested from young (2 months old, n = 3) and old mice (24 months old, n = 3). MALDI-IMS analysis showed an increase in ceramide level and a decrease in sphingomyelin (SM) and phosphatidylcholine (PC) levels in kidneys of old mice. The increased expression of cPLA2 and SMPD1 protein in aged kidney was confirmed by immunohistochemistry and Western blot analysis. Our MALDI-IMS data showed the altered distribution of lipids in aged kidney as indicative of aging-related functional changes of the kidney. Combined analysis of MALDI-IMS and IHC confirmed lipidomic changes and expression levels of responsible enzymes as well as morphological changes.
Collapse
Affiliation(s)
- Sue Ah Noh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials , Kyung Hee University , Yongin , Republic of Korea
| | - Su-Mi Kim
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Seon Hwa Park
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Dong-Jin Kim
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Joon Won Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials , Kyung Hee University , Yongin , Republic of Korea
| | - Yang Gyun Kim
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Ju-Young Moon
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Sung-Jig Lim
- Department of Pathology , Kyung Hee University Hospital at Gangdong , Seoul , Republic of Korea
| | - Sang-Ho Lee
- Department of Nephrology, School of Medicine , Kyung Hee University , Seoul , Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials , Kyung Hee University , Yongin , Republic of Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute , Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
21
|
Zhang X, Williams MC, Rentsendorj O, D’Agnillo F. Reversible renal glomerular dysfunction in guinea pigs exposed to glutaraldehyde-polymerized cell-free hemoglobin. Toxicology 2018; 402-403:37-49. [DOI: 10.1016/j.tox.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 01/17/2023]
|
22
|
Boddu R, Fan C, Rangarajan S, Sunil B, Bolisetty S, Curtis LM. Unique sex- and age-dependent effects in protective pathways in acute kidney injury. Am J Physiol Renal Physiol 2017; 313:F740-F755. [PMID: 28679590 PMCID: PMC5625098 DOI: 10.1152/ajprenal.00049.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/06/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
Sex and age influence susceptibility to acute kidney injury (AKI), with young females exhibiting lowest incidence. In these studies, we investigated mechanisms which may underlie the sex/age-based dissimilarities. Cisplatin (Cp)-induced AKI resulted in morphological evidence of injury in all groups. A minimal rise in plasma creatinine (PCr) was seen in Young Females, whereas in Aged Females, PCr rose precipitously. Relative to Young Males, Aged Males showed significantly, but temporally, comparably elevated PCr. Notably, Aged Females showed significantly greater mortality, whereas Young Females exhibited none. Tissue KIM-1 and plasma NGAL were significantly lower in Young Females than all others. IGFBP7 levels were modestly increased in both Young groups. IGFBP7 levels in Aged Females were significantly elevated at baseline relative to Aged Males, and increased linearly through day 3, when these levels were comparable in both Aged groups. Plasma cytokine levels similarly showed a pattern of protective effects preferentially in Young Females. Expression of the drug transporter MATE2 did not explain the sex/age distinctions. Heme oxygenase-1 (HO-1) levels (~28-kDa species) showed elevation at day 1 in all groups with highest levels seen in Young Males. Exclusively in Young Females, these levels returned to baseline on day 3, suggestive of a more efficient recovery. In aggregate, we demonstrate, for the first time, a distinctive pattern of response to AKI in Young Females relative to males which appears to be significantly altered in aging. These distinctions may offer novel targets to exploit therapeutically in both females and males in the treatment of AKI.
Collapse
Affiliation(s)
- Ravindra Boddu
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Chunlan Fan
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sunil Rangarajan
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Bhuvana Sunil
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Subhashini Bolisetty
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lisa M Curtis
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and .,Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
23
|
El Assar M, Angulo J, Carnicero JA, Walter S, García-García FJ, López-Hernández E, Sánchez-Puelles JM, Rodríguez-Mañas L. Frailty Is Associated With Lower Expression of Genes Involved in Cellular Response to Stress: Results From the Toledo Study for Healthy Aging. J Am Med Dir Assoc 2017. [PMID: 28647579 DOI: 10.1016/j.jamda.2017.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Specific mechanisms underlying frailty syndrome are not well known. Frailty can be viewed as a loss of functional reserve resulting in increased vulnerability to stressors. We hypothesize that pathways regulating cellular response to stress are potential players in the development of frailty. The aim of this study was to evaluate the association of the expression of certain genes related to cellular response to stress with the presence of frailty in older patients. METHODS A sample of 350 individuals aged 65 years or older (22% frail) was selected from the Toledo Study of Healthy Aging. RNA was extracted from blood and retro-transcribed into complementary DNA. TaqMan Low density Arrays were used for the measurement of expression of genes implicated in cellular response to oxidative stress, genes implicated in inflammation, genes implicated in vascular physiology, and genes related to hypoxia. For data analysis, a logistic regression model was used to assess the relationship of gene expression and frailty. RESULTS Among the analyzed genes, lower expression of genes related to cellular response to hypoxia (hypoxia inducible factor-1α) or to cellular response to oxidative stress (nuclear factor erythroid 2-related factor 2 and its target genes heme oxygenase-2, thioredoxin reductase-1, and superoxide dismutase-2), but not to those related to inflammation or vascular physiology, were significantly associated with the presence of frailty after adjustment for age and sex. These associations remained significant after adjustment by type 2 diabetes and Charlson index of comorbidities. Lower expressions of genes involved in cellular response to stress were also associated with increased risk of functional impairment. CONCLUSIONS Reduced expression of several genes implicated in cellular response to oxidative stress or hypoxia is significantly associated with the presence of frailty. These results help to fill the gap of knowledge of this evolving field and provide targets for intervention to promote health and independence in the elderly.
Collapse
Affiliation(s)
- Mariam El Assar
- Instituto de Investigación Sanitaria del Hospital Universitario de Getafe, Getafe, Spain
| | - Javier Angulo
- Servicio de Histología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | | | - Stefan Walter
- Instituto de Investigación Sanitaria del Hospital Universitario de Getafe, Getafe, Spain; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | | | - Eva López-Hernández
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José-María Sánchez-Puelles
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Instituto de Investigación Sanitaria del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain.
| |
Collapse
|
24
|
Eshbach ML, Kaur A, Rbaibi Y, Tejero J, Weisz OA. Hemoglobin inhibits albumin uptake by proximal tubule cells: implications for sickle cell disease. Am J Physiol Cell Physiol 2017; 312:C733-C740. [PMID: 28356267 PMCID: PMC5494590 DOI: 10.1152/ajpcell.00021.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 11/22/2022]
Abstract
Proximal tubule (PT) dysfunction, including tubular proteinuria, is a significant complication in young sickle cell disease (SCD) that can eventually lead to chronic kidney disease. Hemoglobin (Hb) dimers released from red blood cells upon hemolysis are filtered into the kidney and internalized by megalin/cubilin receptors into PT cells. The PT is especially sensitive to heme toxicity, and tubular dysfunction in SCD is thought to result from prolonged exposure to filtered Hb. Here we show that concentrations of Hb predicted to enter the tubule lumen during hemolytic crisis competitively inhibit the uptake of another megalin/cubilin ligand (albumin) by PT cells. These effects were independent of heme reduction state. The Glu7Val mutant of Hb that causes SCD was equally effective at inhibiting albumin uptake compared with wild-type Hb. Addition of the Hb scavenger haptoglobin (Hpt) restored albumin uptake in the presence of Hb, suggesting that Hpt binding to the Hb αβ dimer-dimer interface interferes with Hb binding to megalin/cubilin. BLAST searches and structural modeling analyses revealed regions of similarity between Hb and albumin that map to this region and may represent sites of Hb interaction with megalin/cubilin. Our studies suggest that impaired endocytosis of megalin/cubilin ligands, rather than heme toxicity, may be the cause of tubular proteinuria in SCD patients. Additionally, loss of these filtered proteins into the urine may contribute to the extra-renal pathogenesis of SCD.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Amandeep Kaur
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Jesús Tejero
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| |
Collapse
|
25
|
Patel A, Prowle JR, Ackland GL. Postoperative goal-directed therapy and development of acute kidney injury following major elective noncardiac surgery: post-hoc analysis of POM-O randomized controlled trial. Clin Kidney J 2017; 10:348-356. [PMID: 28616213 PMCID: PMC5466093 DOI: 10.1093/ckj/sfw118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022] Open
Abstract
Background: The role of goal-directed therapy (GDT) in preventing creatinine rise following noncardiac surgery is unclear. We performed a post-hoc analysis of a randomized controlled trial to assess the relationship between postoperative optimization of oxygen delivery and development of acute kidney injury (AKI)/creatinine rise following noncardiac surgery. Methods: Patients were randomly assigned immediately postoperatively to receive either fluid and/or dobutamine therapy to maintain/restore their preoperative oxygen delivery, or protocolized standard care (oxygen delivery only recorded). Primary end point was serial changes in postoperative creatinine within 48 h postoperatively. Secondary outcomes were development of AKI (KDIGO criteria) and minimal creatinine rise (MCR; no decline from preoperative creatinine), related to all-cause morbidity and length of stay. Results: Postoperative reductions in serum creatinine were similar (P = 0.76) in patients randomized to GDT [10 µmol/L (95% confidence interval, CI: 17 to −1); n = 95] or protocolized care [8 µmol/L (95% CI: 17 to −6); n = 92]. Postoperative haemodynamic management was not associated with the development of MCR [78/187 (41.7%)] or AKI [13/187; (7.0%)]. Intraoperative requirement for norepinephrine was more likely in patients who developed postoperative rises in creatinine [relative risk (RR): 1.66 (95% CI: 1.04–2.67); P = 0.04], despite similar volumes of intraoperative fluid being administered. Persistently higher lactate during the intervention period was associated with AKI (mean difference: 1.15 mmol/L (95% CI: 0.48–1.81); P = 0.01]. Prolonged hospital stay was associated with AKI but not MCR [RR: 2.71 (95% CI: 1.51–4.87); P = 0.0008]. Conclusion: These data provide further insights into how perioperative haemodynamic alterations relate to postoperative increases in creatinine once systemic inflammation is established.
Collapse
Affiliation(s)
- Amour Patel
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - John R Prowle
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Gareth L Ackland
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | | |
Collapse
|
26
|
Abstract
Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis-age-associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom;
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and.,Renal and.,Biomedical Engineering Divisions, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE Acute kidney injury (AKI) and chronic kidney disease (CKD) represent a considerable burden in healthcare. The heme oxygenase (HO) system plays an important role in regulating oxidative stress and is protective in a variety of human and animal models of kidney disease. Preclinical studies of the HO system have led to the development of several clinical trials targeting the enzyme or its products. RECENT ADVANCES Connection of HO, ferritin, and other proteins involved in iron regulation has provided important insight into mechanisms of damage in AKI. Also, HO-1 expression is important in the pathogenesis of hypertension, diabetic kidney disease, and progression to end-stage renal disease. CRITICAL ISSUES Despite intriguing discoveries, no drugs targeting the HO system have been translated to the clinic. Meanwhile, treatments for AKI and CKD are urgently needed. Many factors have likely contributed to challenges in clinical translation, including variation in animal models, difficulties in obtaining human tissue, and complexity of the disease processes being studied. FUTURE DIRECTIONS The HO system represents a promising avenue of investigation that may lead to targeted therapeutics. Tissue-specific gene modulation, widening the scope of animal studies, and continued clinical research will provide valuable insight into the role HO plays in kidney homeostasis and disease. Antioxid. Redox Signal. 25, 165-183.
Collapse
Affiliation(s)
- Jeremie M Lever
- 1 Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Ravindra Boddu
- 1 Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - James F George
- 2 Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Anupam Agarwal
- 1 Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama.,3 Birmingham Veterans Administration Medical Center , Birmingham, Alabama
| |
Collapse
|
28
|
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88:314-336. [PMID: 26066302 PMCID: PMC4628850 DOI: 10.1016/j.freeradbiomed.2015.05.036] [Citation(s) in RCA: 615] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/20/2022]
Abstract
Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; School of Natural Science, University of California at Merced, Merced, CA 95344, USA.
| |
Collapse
|
29
|
VanderJagt TA, Neugebauer MH, Morgan M, Bowden DW, Shah VO. Epigenetic profiles of pre-diabetes transitioning to type 2 diabetes and nephropathy. World J Diabetes 2015; 6:1113-1121. [PMID: 26265998 PMCID: PMC4530325 DOI: 10.4239/wjd.v6.i9.1113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/04/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To examine DNA methylation profiles in a longitudinal comparison of pre-diabetes mellitus (Pre-DM) subjects who transitioned to type 2 diabetes mellitus (T2DM).
METHODS: We performed DNA methylation study in bisulphite converted DNA from Pre-DM (n = 11) at baseline and at their transition to T2DM using Illumina Infinium HumanMethylation27 BeadChip, that enables the query of 27578 individual cytosines at CpG loci throughout the genome, which are focused on the promoter regions of 14495 genes.
RESULTS: There were 694 CpG sites hypomethylated and 174 CpG sites hypermethylated in progression from Pre-DM to T2DM, representing putative genes involved in glucose and fructose metabolism, inflammation, oxidative and mitochondrial stress, and fatty acid metabolism. These results suggest that this high throughput platform is able to identify hundreds of prospective CpG sites associated with diverse genes that may reflect differences in Pre-DM compared with T2DM. In addition, there were CpG hypomethylation changes associated with a number of genes that may be associated with development of complications of diabetes, such as nephropathy. These hypomethylation changes were observed in all of the subjects.
CONCLUSION: These data suggest that some epigenomic changes that may be involved in the progression of diabetes and/or the development of complications may be apparent at the Pre-DM state or during the transition to diabetes. Hypomethylation of a number of genes related to kidney function may be an early marker for developing diabetic nephropathy.
Collapse
|
30
|
Kang L, Hillestad ML, Grande JP, Croatt AJ, Barry MA, Farrugia G, Katusic ZS, Nath KA. Induction and functional significance of the heme oxygenase system in pathological shear stress in vivo. Am J Physiol Heart Circ Physiol 2015; 308:H1402-13. [PMID: 25820397 DOI: 10.1152/ajpheart.00882.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/19/2015] [Indexed: 11/22/2022]
Abstract
The present study examined the heme oxygenase (HO) system in an in vivo murine model of pathological shear stress induced by partial carotid artery ligation. In this model, along with upregulation of vasculopathic genes, HO-1 is induced in the endothelium and adventitia, whereas HO-2 is mainly upregulated in the endothelium. Within minutes of ligation, NF-κB, a transcription factor that upregulates vasculopathic genes and HO-1, is activated. Failure to express either HO-1 or HO-2 exaggerates the reduction in carotid blood flow and exacerbates vascular injury. After artery ligation, comparable induction of HO-2 occurred in HO-1(+/+) and HO-1(-/-) mice, whereas HO-1 induction was exaggerated in HO-2(-/-) mice compared with HO-2(+/+) mice. Upregulation of HO-1 by an adeno-associated viral vector increased vascular HO-1 expression and HO activity and augmented blood flow in both ligated and contralateral carotid arteries. Acute inhibition of HO activity decreased flow in the ligated carotid artery, whereas a product of HO, carbon monoxide (CO), delivered by CO-releasing molecule-3, increased carotid blood flow. In conclusion, in the partial carotid artery ligation model of pathological shear stress, this study provides the first demonstration of 1) upregulation and vasoprotective effects of HO-1 and HO-2 and the vasorelaxant effects of CO as well as 2) vascular upregulation of HO-1 in vivo by an adeno-associated viral vector that is attended by a salutary vascular response. Induction of HO-1 may reside in NF-κB activation, and, along with induced HO-2, such upregulation of HO-1 provides a countervailing vasoprotective response in pathological shear stress in vivo.
Collapse
Affiliation(s)
- Lu Kang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Michael A Barry
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
31
|
Abstract
Sickle cell disease (SCD) substantially alters renal structure and function, and causes various renal syndromes and diseases. Such diverse renal outcomes reflect the uniquely complex vascular pathobiology of SCD and the propensity of red blood cells to sickle in the renal medulla because of its hypoxic, acidotic, and hyperosmolar conditions. Renal complications and involvement in sickle cell nephropathy (SCN) include altered haemodynamics, hypertrophy, assorted glomerulopathies, chronic kidney disease, acute kidney injury, impaired urinary concentrating ability, distal nephron dysfunction, haematuria, and increased risks of urinary tract infections and renal medullary carcinoma. SCN largely reflects an underlying vasculopathy characterized by cortical hyperperfusion, medullary hypoperfusion, and an increased, stress-induced vasoconstrictive response. Renal involvement is usually more severe in homozygous disease (sickle cell anaemia, HbSS) than in compound heterozygous types of SCD (for example HbSC and HbSβ(+)-thalassaemia), and is typically mild, albeit prevalent, in the heterozygous state (sickle cell trait, HbAS). Renal involvement contributes substantially to the diminished life expectancy of patients with SCD, accounting for 16-18% of mortality. As improved clinical care promotes survival into adulthood, SCN imposes a growing burden on both individual health and health system costs. This Review addresses the renal manifestations of SCD and focuses on their underlying mechanisms.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street S. W., Rochester, MN 55905, USA
| | - Robert P Hebbel
- Division of Haematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Mayo Mail Code 480, 420 Delaware Street S. E., Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Heme oxygenase activity, possessed by an inducible heme oxygenase-1 (HO-1) and a constitutive isoform (HO-2), catalyzes the conversion of heme to biliverdin, liberates iron, and generates carbon monoxide. First shown in acute kidney injury (AKI), HO-1 is now recognized as a protectant against diverse insults in assorted tissues. This review summarizes recent contributions to the field of HO-1 and AKI. RECENT FINDINGS Recent findings elucidate the following: the transcriptional regulation and significance of human HO-1 in AKI; the protective effects of HO-1 in age-dependent and sepsis-related AKI, cardiorenal syndromes, and acute vascular rejection in renal xenografts; the role of heme oxygenase in tubuloglomerular feedback and renal resistance to injury; the basis for cytoprotection by HO-1; the protective properties of ferritin and carbon monoxide; HO-1 and the AKI-chronic kidney disease transition; HO-1 as a biomarker in AKI; the role of HO-1 in mediating the protective effects of specific cytokines, stem cells, and therapeutic agents in AKI; and HO-2 as a protectant in AKI. SUMMARY Recent contributions support, and elucidate the basis for, the induction of HO-1 as a protectant against AKI. Translating such therapeutic potential into a therapeutic reality requires well tolerated and effective modalities for upregulating HO-1 and/or administering its products, which, optimally, should be salutary even when AKI is already established.
Collapse
|
33
|
Chen YH, Kuo KL, Hung SC, Hsu CC, Chen YH, Tarng DC. Length polymorphism in heme oxygenase-1 and risk of CKD among patients with coronary artery disease. J Am Soc Nephrol 2014; 25:2669-77. [PMID: 24762402 DOI: 10.1681/asn.2013111205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The length polymorphism of guanosine thymidine dinucleotide repeats in the heme oxygenase-1 gene promoter is associated with cardiovascular events and mortality in high-risk populations. Experimental data suggest that heme oxygenase-1 protects against kidney disease. However, the association between this polymorphism and long-term risk of CKD in high-risk patients is unknown. We analyzed the allelic frequencies of guanosine thymidine dinucleotide repeats in the heme oxygenase-1 gene promoter in 386 patients with coronary artery disease recruited from January 1999 to July 2001 and followed until August 31, 2012. The S allele represents short repeats (<27), and the L allele represents long repeats (≥27). The primary renal end points consisted of sustained serum creatinine doubling and/or ESRD requiring long-term RRT. The secondary end points were major adverse cardiovascular events and mortality. At the end of study, the adjusted hazard ratios (95% confidence intervals) for each L allele in the additive model were 1.99 (1.27 to 3.14; P=0.003) for the renal end points, 1.70 (1.27 to 2.27; P<0.001) for major adverse cardiovascular events, and 1.36 (1.04 to 1.79; P=0.03) for mortality. With cardiac events as time-dependent covariates, the adjusted hazard ratio for each L allele in the additive model was 1.91 (1.20 to 3.06; P=0.01) for the renal end points. In conclusion, a greater number of guanosine thymidine dinucleotide repeats in the heme oxygenase-1 gene promoter is associated with higher risk for CKD, cardiovascular events, and mortality among patients with coronary artery disease.
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Faculty of Medicine, Division of Nephrology, Department of Internal Medicine, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan
| | - Ko-Lin Kuo
- Division of Nephrology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taipei, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taipei, Taiwan
| | - Chih-Cheng Hsu
- Division of Geriatrics and Gerontology, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan; and
| | | | - Der-Cherng Tarng
- Faculty of Medicine, Institute of Clinical Medicine, and Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Nephrology, Department of Medicine and Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Chao CT, Tsai HB, Lin YF, Ko WJ. Acute kidney injury in the elderly: Only the tip of the iceberg. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.jcgg.2013.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Li Z, Wang Y, Man RYK, Vanhoutte PM. Upregulation of heme oxygenase-1 potentiates EDH-type relaxations in the mesenteric artery of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2013; 305:H1471-83. [PMID: 24014672 DOI: 10.1152/ajpheart.00962.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heme oxygenase (HO) converts heme to carbon monoxide, bilirubin, and free iron. The present study investigated whether or not HO-1 induction improves vascular relaxations attributable to endothelium-dependent hyperpolarization (EDH). Thirty-six-week-old spontaneously hypertensive rats were treated with the HO-1 inducer hemin, the HO inhibitor zinc protoporphyrin IX (II) (ZnPP), the antioxidant apocynin, or combinations of these compounds. Isolated mesenteric arteries were prepared for measurement of isometric tension, protein presence, and production of reactive oxygen species (ROS). Hemin potentiated acetylcholine-evoked EDH-type relaxations in the presence of N(ω)-nitro-L-arginine methyl ester (l-NAME) and indomethacin, while the combined treatment with ZnPP plus hemin prevented these improvements. The intermediate conductance Ca(2+)-activated K(+) channel (IKCa) blocker TRAM-34 and the Na(+)-K(+)-ATPase blocker ouabain significantly impaired these hemin-potentiated relaxations. NS309-induced TRAM-34- and ouabain-sensitive relaxations were enhanced by hemin. K(+)-induced ouabain-sensitive relaxations and the expression of Na(+)-K(+)-ATPase were increased by hemin. Thus HO-1 induction improves EDH-type relaxations by augmented activation of IKCa and the downstream Na(+)-K(+)-ATPase. Treatment with apocynin showed a similar effect as hemin in impairing ROS production, enhancing K(+)-induced relaxations, and increasing Na(+)-K(+)-ATPase expression, without affecting the expression of HO-1. The effects of hemin and apocynin were not additive. These observations suggest that the effect of HO-1 induction on EDH-type relaxations is possibly due to its antioxidant properties. In vitro treatment with bilirubin, but not carbon monoxide, enhanced EDH-type relaxations and K(+)-induced ouabain-sensitive relaxations, suggesting that the production of bilirubin may be also involved. The present findings reveal that HO-1 may be a potential vascular-specific therapeutic strategy for endothelial dysfunction in hypertension.
Collapse
Affiliation(s)
- Zhuoming Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, China; and
| | | | | | | |
Collapse
|
36
|
Vasculotoxic and Proinflammatory Effects of Plasma Heme: Cell Signaling and Cytoprotective Responses. ACTA ACUST UNITED AC 2013; 2013. [PMID: 25506596 PMCID: PMC4261193 DOI: 10.1155/2013/831596] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proinfammatory vasculotoxic effects of intravascular hemolysis are modulated by plasma hemoglobin and heme clearance via the haptoglobin/CD163 system and the hemopexin/CD91 system, respectively, and detoxification through the heme oxygenase/ferritin system. However, sudden or excessive hemolysis can overwhelm these protective systems leading to heme interacting with cells of the vasculature. Heme presents a damage-associated molecular pattern to the innate immune system. Heme is an extracellular inflammatory signaling molecule with strict binding specificity for TLR4 on monocyte/macrophages, endothelial, and other cells. The resulting TLR4 signaling cascade rapidly leads to intracellular oxidative stress and an inflammatory response. Heme also induces a cytoprotective response that includes Nrf2 responsive genes such as heme oxygenase-1, ferritin, haptoglobin, hemopexin, and other antioxidant response genes. It is the balance between the pro-inflammatory/vasculotoxic effects of plasma hemoglobin/heme and the cytoprotective responses that ultimately determines the pathophysiologic outcome in patients.
Collapse
|
37
|
Renal Cortical Lactate Dehydrogenase: A Useful, Accurate, Quantitative Marker of In Vivo Tubular Injury and Acute Renal Failure. PLoS One 2013; 8:e66776. [PMID: 23825563 PMCID: PMC3689004 DOI: 10.1371/journal.pone.0066776] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/10/2013] [Indexed: 01/02/2023] Open
Abstract
Studies of experimental acute kidney injury (AKI) are critically dependent on having precise methods for assessing the extent of tubular cell death. However, the most widely used techniques either provide indirect assessments (e.g., BUN, creatinine), suffer from the need for semi-quantitative grading (renal histology), or reflect the status of residual viable, not the number of lost, renal tubular cells (e.g., NGAL content). Lactate dehydrogenase (LDH) release is a highly reliable test for assessing degrees of in vitro cell death. However, its utility as an in vivo AKI marker has not been defined. Towards this end, CD-1 mice were subjected to graded renal ischemia (0, 15, 22, 30, 40, or 60 min) or to nephrotoxic (glycerol; maleate) AKI. Sham operated mice, or mice with AKI in the absence of acute tubular necrosis (ureteral obstruction; endotoxemia), served as negative controls. Renal cortical LDH or NGAL levels were assayed 2 or 24 hrs later. Ischemic, glycerol, and maleate-induced AKI were each associated with striking, steep, inverse correlations (r, −0.89) between renal injury severity and renal LDH content. With severe AKI, >65% LDH declines were observed. Corresponding prompt plasma and urinary LDH increases were observed. These observations, coupled with the maintenance of normal cortical LDH mRNA levels, indicated the renal LDH efflux, not decreased LDH synthesis, caused the falling cortical LDH levels. Renal LDH content was well maintained with sham surgery, ureteral obstruction or endotoxemic AKI. In contrast to LDH, renal cortical NGAL levels did not correlate with AKI severity. In sum, the above results indicate that renal cortical LDH assay is a highly accurate quantitative technique for gauging the extent of experimental acute ischemic and toxic renal injury. That it avoids the limitations of more traditional AKI markers implies great potential utility in experimental studies that require precise quantitation of tubule cell death.
Collapse
|
38
|
Kang L, Grande JP, Farrugia G, Croatt AJ, Katusic ZS, Nath KA. Functioning of an arteriovenous fistula requires heme oxygenase-2. Am J Physiol Renal Physiol 2013; 305:F545-52. [PMID: 23678042 DOI: 10.1152/ajprenal.00234.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heme oxygenase-2 (HO-2), the constitutive isoform of the heme-degrading enzyme heme oxygenase, may serve as an anti-inflammatory vasorelaxant, in part, by generating carbon monoxide. Arteriovenous fistulas (AVFs) are employed as hemodialysis vascular accesses because they provide an accessible, high-blood-flow vascular segment. We examined the role of vascular expression of HO-2 in AVF function. An AVF was created in mice by anastomosing the carotid artery to the jugular vein. HO-2 expression was detected by immunohistochemistry in the intact carotid artery, mainly in endothelial cells and smooth muscle cells; expression of HO-2 protein and mRNA was modestly increased in the artery of the AVF. Creating an AVF in HO-2(-/-) mice compared with an AVF in HO-2(+/+) mice led to markedly reduced AVF blood flow and increased numbers of nonfunctioning AVFs. The impairment of AVF function in the setting of HO-2 deficiency could not be ascribed to either preexisting intrinsic abnormalities in endothelium-dependent and endothelium-independent relaxation of the carotid artery in HO-2-deficient mice or to impaired vasorelaxant responses in the intact carotid artery in vivo. HO-1 mRNA was comparably induced in the AVF in HO-2(+/+) and HO-2(-/-) mice, whereas the AVF in HO-2(-/-) mice compared with that in HO-2(+/+) mice exhibited exaggerated induction of matrix metalloproteinase (MMP)-9 but similar induction of MMP-2. HO-2 deficiency also led to lower AVF blood flow when AVFs were created in uremia, the latter induced by subtotal nephrectomy. We conclude that HO-2 critically contributes to the adequacy of AVF blood flow and function.
Collapse
Affiliation(s)
- Lu Kang
- Mayo Clinic, Guggenheim 542, 200 First St. SW, Rochester, MN 55905.
| | | | | | | | | | | |
Collapse
|
39
|
|