1
|
Himmerkus N, Quintanova C, Bhullar H, van Megen WH, Deluque AL, Skjødt K, Bogdanovic M, Bleich M, Alexander RT, Dimke H. Calcium-Sensing Receptor in the Thick Ascending Limb and Renal Response to Hypercalcemia. J Am Soc Nephrol 2025:00001751-990000000-00534. [PMID: 39836479 DOI: 10.1681/asn.0000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Background:
The parathyroid calcium-sensing receptor (CASR) controls the release of parathyroid hormone (PTH) in response to changes in serum calcium levels. Activation of the renal CASR increases urinary calcium excretion and is particularly important when CASR-dependent reductions in PTH fail to lower serum calcium. However, the role of the renal CASR in protecting against hypercalcemia and the direct effects of chronic CASR activation on tubular calcium handling remains to be fully elucidated.
Methods:
Experimental hypercalcemia was induced using the Vitamin D analog (Dihydrotachysterol, DHT) in mice with Ksp-Cre dependent deletion of the Casr (Ksp-Casr) in kidney with Cre negative littermates (WT) serving as controls. Urinary and fecal electrolyte determinations, dual-energy x-ray absorptiometry, molecular and biochemical evaluation, and in vitro tubule microperfusion were performed in both sexes.
Results:
Ksp-Cre-driven Casr deletion strongly reduced CASR abundance in the thick ascending limb (TAL). At baseline, no marked differences were detected in electrolyte handling and tubular permeability characteristics across the TAL. 3 days of DHT administration induced hypercalcemia in both WT and Ksp-Casr mice. However, while WT mice developed hypercalciuria, this response was absent in Ksp-Casr mice. Urinary excretion of magnesium and other electrolytes did not differ between hypercalcemic WT and Ksp-Casr mice. Intestinal electrolyte absorption was comparable between the two groups. Microperfusion of isolated cortical TALs revealed no baseline differences in the transepithelial voltage, resistance, or ion permeabilities. Following hypercalcemia, transepithelial resistance increased and calcium permeability markedly decreased in WT mice, but not in Ksp-Casr mice, with only minor alterations in magnesium permeability and no changes in transepithelial voltage.
Conclusions:
In hypercalcemic mice, absence of the CASR in TAL prevented the increase in urinary calcium excretion. The CASR specifically regulated the paracellular permeability of the TAL, especially for calcium.
Collapse
Affiliation(s)
- Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | | | - Harneet Bhullar
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | | | - Amanda Lima Deluque
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| | - Karsten Skjødt
- Department of Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Milos Bogdanovic
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
| | - R Todd Alexander
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Pérez‐Rodríguez M, García‐Verdugo A, Sánchez‐Mendoza LM, Muñoz‐Martín A, Bolaños N, Pérez‐Sánchez C, Moreno JA, Burón MI, de Cabo R, González‐Reyes JA, Villalba JM. Cytochrome b 5 reductase 3 overexpression and dietary nicotinamide riboside supplementation promote distinctive mitochondrial alterations in distal convoluted tubules of mouse kidneys during aging. Aging Cell 2024; 23:e14273. [PMID: 39001573 PMCID: PMC11561664 DOI: 10.1111/acel.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 11/15/2024] Open
Abstract
The kidney undergoes structural and physiological changes with age, predominantly studied in glomeruli and proximal tubules. However, limited knowledge is available about the impact of aging and anti-aging interventions on distal tubules. In this study, we investigated the effects of cytochrome b5 reductase 3 (CYB5R3) overexpression and/or dietary nicotinamide riboside (NR) supplementation on distal tubule mitochondria. Initially, transcriptomic data were analyzed to evaluate key genes related with distal tubules, CYB5R3, and NAD+ metabolism, showing significant differences between males and females in adult and old mice. Subsequently, our emphasis focused on assessing how these interventions, that have demonstrated the anti-aging potential, influenced structural parameters of distal tubule mitochondria, such as morphology and mass, as well as abundance, distance, and length of mitochondria-endoplasmic reticulum contact sites, employing an electron microscopy approach. Our findings indicate that both interventions have differential effects depending on the age and sex of the mice. Aging resulted in an increase in mitochondrial size and a decrease in mitochondrial abundance in males, while a reduction in abundance, size, and mitochondrial mass was observed in old females when compared with their adult counterparts. Combining both the interventions, CYB5R3 overexpression and dietary NR supplementation mitigated age-related changes; however, these effects were mainly accounted by NR in males and by transgenesis in females. In conclusion, the influence of CYB5R3 overexpression and dietary NR supplementation on distal tubule mitochondria depends on sex, genotype, and diet. This underscores the importance of incorporating these variables in subsequent studies to comprehensively address the multifaceted aspects of aging.
Collapse
Affiliation(s)
- M. Pérez‐Rodríguez
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - A. García‐Verdugo
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
- Experimental Gerontology Section, Translational Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - L. M. Sánchez‐Mendoza
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - A. Muñoz‐Martín
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - N. Bolaños
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - C. Pérez‐Sánchez
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina SofíaCórdobaSpain
| | - J. A. Moreno
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina SofíaCórdobaSpain
| | - M. I. Burón
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - R. de Cabo
- Experimental Gerontology Section, Translational Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - J. A. González‐Reyes
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - J. M. Villalba
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| |
Collapse
|
3
|
Kolodecik TR, Guo X, Shugrue CA, Guo X, Desir GV, Wen L, Gorelick F. Renalase peptides reduce pancreatitis severity in mice. Am J Physiol Gastrointest Liver Physiol 2024; 327:G466-G480. [PMID: 39010833 PMCID: PMC11427088 DOI: 10.1152/ajpgi.00143.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Acute pancreatitis, an acute inflammatory injury of the pancreas, lacks a specific treatment. The circulatory protein renalase is produced by the kidney and other tissues and has potent anti-inflammatory and prosurvival properties. Recombinant renalase can reduce the severity of mild cerulein pancreatitis; the activity is contained in a conserved 20 aa renalase site (RP220). Here, we investigated the therapeutic effects of renalase on pancreatitis using two clinically relevant models of acute pancreatitis. The ability of peptides containing the RP220 site to reduce injury in a 1-day post-endoscopic retrograde cholangiopancreatography (ERCP) and a 2-day severe cerulein induced in mice was examined. The initial dose of renalase peptides was given either prophylactically (before) or therapeutically (after) the initiation of the disease. Samples were collected to determine early pancreatitis responses (tissue edema, plasma amylase, active zymogens) and later histologic tissue injury and inflammatory changes. In both preclinical models, renalase peptides significantly reduced histologic damage associated with pancreatitis, especially inflammation, necrosis, and overall injury. Quantifying inflammation using specific immunohistochemical markers demonstrated that renalase peptides significantly reduced overall bone marrow-derived inflammation and neutrophils and macrophage populations in both models. In the severe cerulein model, administering a renalase peptide with or without pretreatment significantly reduced injury. Pancreatitis and renalase peptide effects appeared to be the same in female and male mice. These studies suggest renalase peptides that retain the anti-inflammatory and prosurvival properties of recombinant renalase can reduce the severity of acute pancreatitis and might be attractive candidates for therapeutic development.NEW & NOTEWORTHY Renalase is a secretory protein. The prosurvival and anti-inflammatory effects of the whole molecule are contained in a 20 aa renalase site (RP220). Systemic treatment with peptides containing this renalase site reduced the severity of post-endoscopic retrograde cholangiopancreatography (ERCP) and severe cerulein pancreatitis in mouse models.
Collapse
Affiliation(s)
- Thomas R Kolodecik
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Xiaoyu Guo
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
- Center for Biomarker Discovery and Validation, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
| | - Christine A Shugrue
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Xiaojia Guo
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Gary V Desir
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| | - Li Wen
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
- Center for Biomarker Discovery and Validation, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, People's Republic of China
| | - Fred Gorelick
- Veterans Affairs Health Care System, Yale University, New Haven, Connecticut, United States
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
4
|
Staruschenko A, Alexander RT, Caplan MJ, Ilatovskaya DV. Calcium signalling and transport in the kidney. Nat Rev Nephrol 2024; 20:541-555. [PMID: 38641658 DOI: 10.1038/s41581-024-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans Hospital, Tampa, FL, USA.
| | - R Todd Alexander
- Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
- Women's and Children's Health Institute, Edmonton, AB, Canada
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
5
|
Beggs MR, Young K, Plain A, O'Neill DD, Raza A, Flockerzi V, Dimke H, Alexander RT. Maternal Epidermal Growth Factor Promotes Neonatal Claudin-2 Dependent Increases in Small Intestinal Calcium Permeability. FUNCTION 2023; 4:zqad033. [PMID: 37575484 PMCID: PMC10413934 DOI: 10.1093/function/zqad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
A higher concentration of calcium in breast milk than blood favors paracellular calcium absorption enabling growth during postnatal development. We aimed to determine whether suckling animals have greater intestinal calcium permeability to maximize absorption and to identify the underlying molecular mechanism. We examined intestinal claudin expression at different ages in mice and in human intestinal epithelial (Caco-2) cells in response to hormones or human milk. We also measured intestinal calcium permeability in wildtype, Cldn2 and Cldn12 KO mice and Caco-2 cells in response to hormones or human milk. Bone mineralization in mice was assessed by μCT. Calcium permeability across the jejunum and ileum of mice were 2-fold greater at 2 wk than 2 mo postnatal age. At 2 wk, Cldn2 and Cldn12 expression were greater, but only Cldn2 KO mice had decreased calcium permeability compared to wildtype. This translated to decreased bone volume, cross-sectional thickness, and tissue mineral density of femurs. Weaning from breast milk led to a 50% decrease in Cldn2 expression in the jejunum and ileum. Epidermal growth factor (EGF) in breast milk specifically increased only CLDN2 expression and calcium permeability in Caco-2 cells. These data support intestinal permeability to calcium, conferred by claudin-2, being greater in suckling mice and being driven by EGF in breast milk. Loss of the CLDN2 pathway leads to suboptimal bone mineralization at 2 wk of life. Overall, EGF-mediated control of intestinal claudin-2 expression contributes to maximal intestinal calcium absorption in suckling animals.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allen Plain
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Debbie D O'Neill
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, 66421 Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Demark
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Women's & Children's Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
6
|
The importance of kidney calcium handling in the homeostasis of extracellular fluid calcium. Pflugers Arch 2022; 474:885-900. [PMID: 35842482 DOI: 10.1007/s00424-022-02725-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Extracellular fluid calcium concentration must be maintained within a narrow range in order to sustain many biological functions, encompassing muscle contraction, blood coagulation, and bone and tooth mineralization. Blood calcium value is critically dependent on the ability of the renal tubule to reabsorb the adequate amount of filtered calcium. Tubular calcium reabsorption is carried out by various and complex mechanisms in 3 distinct segments: the proximal tubule, the cortical thick ascending limb of the loop of Henle, and the late distal convoluted/connecting tubule. In addition, calcium reabsorption is tightly controlled by many endocrine, paracrine, and autocrine factors, as well as by non-hormonal factors, in order to adapt the tubular handling of calcium to the metabolic requirements. The present review summarizes the current knowledge of the mechanisms and factors involved in calcium handling by the kidney and, ultimately, in extracellular calcium homeostasis. The review also highlights some of our gaps in understanding that need to be addressed in the future.
Collapse
|
7
|
Beggs MR, Bhullar H, Dimke H, Alexander RT. The contribution of regulated colonic calcium absorption to the maintenance of calcium homeostasis. J Steroid Biochem Mol Biol 2022; 220:106098. [PMID: 35339651 DOI: 10.1016/j.jsbmb.2022.106098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
Abstract
Calcium absorption and secretion can occur along the length of the small and large intestine. To date, the focus of research into intestinal calcium absorption has been the small intestine, the site contributing the majority of intestinal calcium absorption. However, evidence that the colon contributes as much as 10% of enteral calcium transport has been available for decades. Transcellular calcium absorption and bidirectional paracellular calcium flux contributing to either net absorption or secretion have been observed in the colon, depending on the physiological state. Moreover, the calcium transport pathways contributing to colonic absorption or secretion are regulated by a variety of hormones, including calcitriol, plasma calcium and dietary factors, including prebiotics. Herein we review historical and recent research highlighting the role of colonic calcium transport in overall maintenance of calcium balance, and suggest these data are consistent with the colon being a site of significant regulated transepithelial calcium transport.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark; Department of Nephrology, Odense University Hospital, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada; Department of Paediatrics, University of Alberta, Canada.
| |
Collapse
|
8
|
van Megen WH, Tan RSG, Alexander RT, Dimke H. Differential parathyroid and kidney Ca 2+-sensing receptor activation in autosomal dominant hypocalcemia 1. EBioMedicine 2022; 78:103947. [PMID: 35313217 PMCID: PMC8935519 DOI: 10.1016/j.ebiom.2022.103947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Parathyroid Ca2+-sensing receptor (CaSR) activation inhibits parathyroid hormone (PTH) release, while activation of renal CaSRs attenuates Ca2+ transport and increases expression of the pore-blocking claudin-14. Patients with autosomal dominant hypocalcemia 1 (ADH1), due to activating CASR mutations, exhibit hypocalcemia but not always hypercalciuria (elevated Ca2+ in urine). The latter promotes nephrocalcinosis and renal insufficiency. Although CaSRs throughout the body including the kidney harbor activating CASR mutations, it is not understood why only some ADH1 patients display hypercalciuria. Methods Activation of the CaSR was studied in mouse models and a ADH1 patient. In vitro CaSR activation was studied in HEK293 cells. Findings Cldn14 showed blood Ca2+ concentration-dependent regulation, which was absent in mice with kidney-specific Casr deletion, indicating Cldn14 is a suitable marker for chronic CaSR activation in the kidney. Mice with a gain-of-function mutation in the Casr (Nuf) were hypocalcemic with low plasma PTH levels. However, renal CaSRs were not activated at baseline but only after normalizing blood Ca2+ levels. Similarly, significant hypercalciuria was not observed in a ADH1 patient until blood Ca2+ was normalized. In vitro experiments indicate that increased CaSR expression in the parathyroid relative to the kidney could contribute to tissue-specific CaSR activation thresholds. Interpretation Our findings suggest that parathyroid CaSR overactivity can reduce plasma Ca2+ to levels insufficient to activate renal CaSRs, even when an activating mutation is present. These findings identify a conceptually new mechanism of CaSR-dependent Ca2+ balance regulation that aid in explaining the spectrum of hypercalciuria in ADH1 patients. Funding Erasmus+ 2018/E+/4458087, the Canadian Institutes for Health research, the Novo Nordisk Foundation, the Beckett Foundation, the Carlsberg Foundation and Independent Research Fund Denmark.
Collapse
Affiliation(s)
- Wouter H van Megen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 3rd floor, 5000 Odense C, Denmark; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebecca Siu Ga Tan
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada; The Women's and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - R Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada; The Women's and Children's Health Research Institute, Edmonton, Alberta, Canada; Department of Pediatrics, 4-585 Edmonton Clinic Health Academy, University of Alberta, 11405 87th Avenue, Edmonton, Alberta T6G 2R7, Canada.
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 3rd floor, 5000 Odense C, Denmark; Department of Nephrology, Odense University Hospital, Denmark.
| |
Collapse
|
9
|
van Megen WH, Beggs MR, An SW, Ferreira PG, Lee JJ, Wolf MT, Alexander RT, Dimke H. Gentamicin Inhibits Ca 2+ Channel TRPV5 and Induces Calciuresis Independent of the Calcium-Sensing Receptor-Claudin-14 Pathway. J Am Soc Nephrol 2022; 33:547-564. [PMID: 35022312 PMCID: PMC8975070 DOI: 10.1681/asn.2021030392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Treatment with the aminoglycoside antibiotic gentamicin can be associated with severe adverse effects, including renal Ca2+ wasting. The underlying mechanism is unknown but it has been proposed to involve activation of the Ca2+-sensing receptor (CaSR) in the thick ascending limb, which would increase expression of claudin-14 (CLDN14) and limit Ca2+ reabsorption. However, no direct evidence for this hypothesis has been presented. METHODS We studied the effect of gentamicin in vivo using mouse models with impaired Ca2+ reabsorption in the proximal tubule and the thick ascending limb. We used a Cldn14 promoter luciferase reporter assay to study CaSR activation and investigated the effect of gentamicin on activity of the distal nephron Ca2+ channel transient receptor potential vanilloid 5 (TRPV5), as determined by patch clamp in HEK293 cells. RESULTS Gentamicin increased urinary Ca2+ excretion in wild-type mice after acute and chronic administration. This calciuretic effect was unaltered in mice with genetic CaSR overactivation and was present in furosemide-treated animals, whereas the calciuretic effect in Cldn14-/- mice and mice with impaired proximal tubular Ca2+ reabsorption (claudin-2 [CLDN2]-deficient Cldn2-/- mice) was equivalent to that of wild-type mice. In vitro, gentamicin failed to activate the CaSR. In contrast, patch clamp analysis revealed that gentamicin strongly inhibited rabbit and human TRPV5 activity and chronic gentamicin administration downregulated distal nephron Ca2+ transporters. CONCLUSIONS Gentamicin does not cause hypercalciuria via activation of the CaSR-CLDN14 pathway or by interfering with proximal tubular CLDN2-dependent Ca2+ reabsorption. Instead, gentamicin blocks distal Ca2+ reabsorption by direct inhibition of the Ca2+ channel TRPV5. These findings offer new insights into Ca2+ wasting in patients treated with gentamicin.
Collapse
Affiliation(s)
- Wouter H. van Megen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Megan R. Beggs
- Department of Physiology, University of Alberta, Canada,Women and Children's Health Institute, Alberta, Canada
| | - Sung-Wan An
- Department of Pediatrics, Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Patrícia G. Ferreira
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Justin J. Lee
- Department of Physiology, University of Alberta, Canada
| | - Matthias T. Wolf
- Department of Pediatrics, Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Canada,Women and Children's Health Institute, Alberta, Canada,Department of Pediatrics, University of Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark .,Department of Nephrology, Odense University Hospital, Denmark
| |
Collapse
|
10
|
Marcoux AA, Tremblay LE, Slimani S, Fiola MJ, Mac-Way F, Haydock L, Garneau AP, Isenring P. Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb. Compr Physiol 2021; 12:3119-3139. [PMID: 34964111 DOI: 10.1002/cphy.c210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loop of Henle plays a variety of important physiological roles through the concerted actions of ion transport systems in both its apical and basolateral membranes. It is involved most notably in extracellular fluid volume and blood pressure regulation as well as Ca2+ , Mg2+ , and acid-base homeostasis because of its ability to reclaim a large fraction of the ultrafiltered solute load. This nephron segment is also involved in urinary concentration by energizing several of the steps that are required to generate a gradient of increasing osmolality from cortex to medulla. Another important role of the loop of Henle is to sustain a process known as tubuloglomerular feedback through the presence of specialized renal tubular cells that lie next to the juxtaglomerular arterioles. This article aims at describing these physiological roles and at discussing a number of the molecular mechanisms involved. It will also report on novel findings and uncertainties regarding the realization of certain processes and on the pathophysiological consequences of perturbed salt handling by the thick ascending limb of the loop of Henle. Since its discovery 150 years ago, the loop of Henle has remained in the spotlight and is now generating further interest because of its role in the renal-sparing effect of SGLT2 inhibitors. © 2022 American Physiological Society. Compr Physiol 12:1-21, 2022.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Laurence E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Samira Slimani
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Marie-Jeanne Fiola
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Fabrice Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Ludwig Haydock
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
11
|
Beggs MR, Young K, Pan W, O'Neill DD, Saurette M, Plain A, Rievaj J, Doschak MR, Cordat E, Dimke H, Alexander RT. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc Natl Acad Sci U S A 2021; 118:e2111247118. [PMID: 34810264 PMCID: PMC8694054 DOI: 10.1073/pnas.2111247118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
Calcium (Ca2+) homeostasis is maintained through coordination between intestinal absorption, renal reabsorption, and bone remodeling. Intestinal and renal (re)absorption occurs via transcellular and paracellular pathways. The latter contributes the bulk of (re)absorption under conditions of adequate intake. Epithelial paracellular permeability is conferred by tight-junction proteins called claudins. However, the molecular identity of the paracellular Ca2+ pore remains to be delineated. Claudins (Cldn)-2 and -12 confer Ca2+ permeability, but deletion of either claudin does not result in a negative Ca2+ balance or increased calciotropic hormone levels, suggesting the existence of additional transport pathways or parallel roles for the two claudins. To test this, we generated a Cldn2/12 double knockout mouse (DKO). These animals have reduced intestinal Ca2+ absorption. Colonic Ca2+ permeability is also reduced in DKO mice and significantly lower than single-null animals, while small intestine Ca2+ permeability is unaltered. The DKO mice display significantly greater urinary Ca2+ wasting than Cldn2 null animals. These perturbations lead to hypocalcemia and reduced bone mineral density, which was not observed in single-KO animals. Both claudins were localized to colonic epithelial crypts and renal proximal tubule cells, but they do not physically interact in vitro. Overexpression of either claudin increased Ca2+ permeability in cell models with endogenous expression of the other claudin. We find claudin-2 and claudin-12 form partially redundant, independent Ca2+ permeable pores in renal and colonic epithelia that enable paracellular Ca2+ (re)absorption in these segments, with either one sufficient to maintain Ca2+ balance.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women's and Children's Health Research Institute, Edmonton, AB, T6G 1C9, Canada
| | - Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Wanling Pan
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Debbie D O'Neill
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Matthew Saurette
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Allein Plain
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Juraj Rievaj
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H5, Canada
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada;
- Women's and Children's Health Research Institute, Edmonton, AB, T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| |
Collapse
|
12
|
Abstract
Nephrolithiasis is a worldwide problem with increasing prevalence, enormous costs, and significant morbidity. Calcium-containing kidney stones are by far the most common kidney stones encountered in clinical practice. Consequently, hypercalciuria is the greatest risk factor for kidney stone formation. Hypercalciuria can result from enhanced intestinal absorption, increased bone resorption, or altered renal tubular transport. Kidney stone formation is complex and driven by high concentrations of calcium-oxalate or calcium-phosphate in the urine. After discussing the mechanism mediating renal calcium salt precipitation, we review recent discoveries in renal tubular calcium transport from the proximal tubule, thick ascending limb, and distal convolution. Furthermore, we address how calcium is absorbed from the intestine and mobilized from bone. The effect of acidosis on bone calcium resorption and urinary calcium excretion is also considered. Although recent discoveries provide insight into these processes, much remains to be understood in order to provide improved therapies for hypercalciuria and prevent kidney stone formation. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- R T Alexander
- Departments of Physiology and Pediatrics, University of Alberta, Edmonton, Canada; .,Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada
| | - D G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - H Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
13
|
Lee JJ, Alzamil J, Rehman S, Pan W, Dimke H, Alexander RT. Activation of the calcium sensing receptor increases claudin-14 expression via a PLC -p38-Sp1 pathway. FASEB J 2021; 35:e21982. [PMID: 34694654 PMCID: PMC9297942 DOI: 10.1096/fj.202002137rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022]
Abstract
Activation of the basolateral calcium sensing receptor (CaSR) in the renal tubular thick ascending limb (TAL) increases claudin‐14 expression, which reduces paracellular calcium (Ca2+) permeability, thus increasing urinary Ca2+ excretion. However, the upstream signaling pathway contributing to altered CLDN14 gene expression is unknown. To delineate this pathway, we identified and then cloned the CaSR responsive region including the promoter of mouse Cldn14 into a luciferase reporter vector. This 1500 bp sequence upstream of the 5′ UTR of Cldn14 variant 1, conferred increased reporter activity in the presence of high extracellular Ca2+ (5 mM) relative to a lower (0.5 mM) concentration. Assessment of Cldn14 reporter activity in response to increased extracellular Ca2+ in the presence or absence of specific inhibitors confirmed signaling through PLC and p38, but not JNK. Overexpression of SP1 attenuated Cldn14 reporter activity in response to CasR signaling. SP1 is expressed in the TAL and phosphorylation was attenuated by CaSR signaling. Finally, activating mutations in the CaSR increased Cldn14 reporter activity while a dominant negative mutation in the CaSR inhibited it. Together, these studies suggest that basolateral activation of the CASR leads to increased Cldn14 expression via a PLC‐ stimulated p38 pathway that prevents Sp1 mediated repression.
Collapse
Affiliation(s)
- Justin J Lee
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,The Women's & Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Jawad Alzamil
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Saba Rehman
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Wanling Pan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,The Women's & Children's Health Research Institute, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Wartenberg P, Lux F, Busch K, Fecher-Trost C, Flockerzi V, Krasteva-Christ G, Boehm U, Weissgerber P. A TRPV6 expression atlas for the mouse. Cell Calcium 2021; 100:102481. [PMID: 34628109 DOI: 10.1016/j.ceca.2021.102481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023]
Abstract
The transient receptor potential vanilloid 6 (TRPV6) channel is highly Ca2+-selective and has been implicated in mediating transcellular Ca2+ transport and thus maintaining the Ca2+ balance in the body. To characterize its physiological function(s), a detailed expression profile of the TRPV6 channel throughout the body is essential. Capitalizing on a recently established murine Trpv6-reporter strain, we identified primary TRPV6 channel-expressing cells in an organism-wide manner. In a complementary experimental approach, we characterized TRPV6 expression in different tissues of wild-type mice by TRPV6 immunoprecipitation (IP) followed by mass spectrometry analysis and correlated these data with the reporter gene expression. Taken together, we present a TRPV6 expression atlas throughout the entire body of juvenile and adult mice, providing a novel resource to investigate the role of TRPV6 channels in vivo.
Collapse
Affiliation(s)
- Philipp Wartenberg
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Femke Lux
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Kai Busch
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | | | - Ulrich Boehm
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Petra Weissgerber
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.
| |
Collapse
|
15
|
Prot-Bertoye C, Griveau C, Skjødt K, Cheval L, Brideau G, Lievre L, Ferriere E, Arbaretaz F, Garbin K, Zamani R, Marcussen N, Figueres L, Breiderhoff T, Muller D, Bruneval P, Houillier P, Dimke H. Differential localization patterns of claudin 10, 16, and 19 in human, mouse, and rat renal tubular epithelia. Am J Physiol Renal Physiol 2021; 321:F207-F224. [PMID: 34151590 DOI: 10.1152/ajprenal.00579.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional properties of the paracellular pathway depend critically on the set of claudins (CLDN) expressed at the tight junction. Two syndromes are causally linked to loss-of-function mutations of claudins: hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX) syndrome caused by genetic variations in the CLDN10 gene and familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by genetic variations in the CLDN16 or CLDN19 genes. All three genes are expressed in the kidney, particularly in the thick ascending limb (TAL). However, localization of these claudins in humans and rodents remains to be delineated in detail. We studied the segmental and subcellular expression of CLDN10, CLDN16, and CLDN19 in both paraffin-embedded and frozen kidney sections from the adult human, mouse, and rat using immunohistochemistry and immunofluorescence, respectively. Here, CLDN10 was present in a subset of medullary and cortical TAL cells, localizing to basolateral domains and tight junctions in human and rodent kidneys. Weak expression was detected at the tight junction of proximal tubular cells. CLDN16 was primarily expressed in a subset of TAL cells in the cortex and outer stripe of outer medulla, restricted to basolateral domains and tight junctional structures in both human and rodent kidneys. CLDN19 predominantly colocalized with CLDN16 in tight junctions and basolateral domains of the TAL but was also found in basolateral and junctional domains in more distal sites. CLDN10 expression at tight junctions almost never overlapped with that of CLND16 and CLDN19, consistent with distinct junctional pathways with different permeation profiles in both human and rodent kidneys.NEW & NOTEWORTHY This study used immunohistochemistry and immunofluorescence to investigate the distribution of claudin 10, 16, and 19 in the human, mouse, and rat kidney. The findings showed distinct junctional pathways in both human and rodent kidneys, supporting the existence of different permeation profiles in all species investigated.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Camille Griveau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Gaëlle Brideau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Elsa Ferriere
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Floriane Arbaretaz
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Kevin Garbin
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Reza Zamani
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Lucile Figueres
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Tilman Breiderhoff
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Muller
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Bruneval
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Anatomopathologie, Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Ikewuchi CC, Ifeanacho MO, Ikewuchi JC. Moderation of doxorubicin-induced nephrotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. Porto Biomed J 2021; 6:e129. [PMID: 33884325 PMCID: PMC8055491 DOI: 10.1097/j.pbj.0000000000000129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The major draw-back of doxorubicin's use in chemotherapy is its toxicity on various organs including the kidneys. This study investigated the potential protective role of aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens against nephrotoxicity induced by doxorubicin. METHODS To this end, their impact on plasma biomarkers of kidney function, as well as renal lipid profile, biomarkers of oxidative stress, electrolyte profile and activities of renal ATPases was monitored in doxorubicin treated rats. Metformin (250 mg/kg body weight, orally) and the extracts (50, 75 and 100 mg/kg, orally) were daily administered for 14 days; while nephrotoxicity was induced with doxorubicin (15 mg/kg, intra-peritioneally), once on the 12th day of study. RESULTS The plasma concentrations of creatinine, and urea; as well as the renal malondialdehyde, cholesterol, calcium and sodium concentrations in the Test control, were significantly (P < .05) higher than those of all the other groups. However, the renal concentrations of ascorbic acid, chloride, magnesium and potassium, and the renal activities of catalase, glutathione peroxidase superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase and Na+,K+-ATPase in the Test control were significantly (P < .05) lower than those of all the other groups. CONCLUSIONS Pre-treatment with the extracts and metformin boosted endogenous antioxidants, and prevented doxorubicin-induced renal damage, as indicated by the attenuation of doxorubicin-induced renal oxidative stress, as well as the attenuation of doxorubicin-induced adverse alterations in renal cholesterol, ATPases and electrolyte balance, and plasma biomarkers of kidney function, and keeping them at near-normal values.
Collapse
Affiliation(s)
| | - Mercy O Ifeanacho
- Department of Food Science, Faculty of Agriculture, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Nigeria
| | | |
Collapse
|
17
|
Frische S, Alexander RT, Ferreira P, Tan RSG, Wang W, Svenningsen P, Skjødt K, Dimke H. Localization and regulation of claudin-14 in experimental models of hypercalcemia. Am J Physiol Renal Physiol 2021; 320:F74-F86. [PMID: 33283646 DOI: 10.1152/ajprenal.00397.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Variations in the claudin-14 (CLDN14) gene have been linked to increased risk of hypercalciuria and kidney stone formation. However, the exact cellular localization of CLDN14 and its regulation remain to be fully delineated. To this end, we generated a novel antibody that allowed the detection of CLDN14 in paraffin-embedded renal sections. This showed CLDN14 to be detectable in the kidney only after induction of hypercalcemia in rodent models. Protein expression in the kidney is localized exclusively to the thick ascending limbs (TALs), mainly restricted to the cortical and upper medullary portion of the kidney. However, not all cells in the TALs expressed the tight junction protein. In fact, CLDN14 was primarily expressed in cells also expressing CLDN16 but devoid of CLDN10. CLDN14 appeared in very superficial apical cell domains and near cell junctions in a belt-like formation along the apical cell periphery. In transgenic mice, Cldn14 promotor-driven LacZ activity did not show complete colocalization with CLDN14 protein nor was it increased by hypercalcemia, suggesting that LacZ activity cannot be used as a marker for CLDN14 localization and regulation in this model. In conclusion, CLDN14 showed a restricted localization pattern in the apical domain of select cells of the TAL.
Collapse
Affiliation(s)
| | - R Todd Alexander
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Patrícia Ferreira
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rebecca Siu Ga Tan
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Weidong Wang
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
18
|
Beggs MR, Lee JJ, Busch K, Raza A, Dimke H, Weissgerber P, Engel J, Flockerzi V, Alexander RT. TRPV6 and Ca v1.3 Mediate Distal Small Intestine Calcium Absorption Before Weaning. Cell Mol Gastroenterol Hepatol 2019; 8:625-642. [PMID: 31398491 PMCID: PMC6889763 DOI: 10.1016/j.jcmgh.2019.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Intestinal Ca2+ absorption early in life is vital to achieving optimal bone mineralization. The molecular details of intestinal Ca2+ absorption have been defined in adults after peak bone mass is obtained, but they are largely unexplored during development. We sought to delineate the molecular details of transcellular Ca2+ absorption during this critical period. METHODS Expression of small intestinal and renal calcium transport genes was assessed by using quantitative polymerase chain reaction. Net calcium flux across small intestinal segments was measured in Ussing chambers, including after pharmacologic inhibition or genetic manipulation of TRPV6 or Cav1.3 calcium channels. Femurs were analyzed by using micro-computed tomography and histology. RESULTS Net TRPV6-mediated Ca2+ flux across the duodenum was absent in pre-weaned (P14) mice but present after weaning. In contrast, we found significant transcellular Ca2+ absorption in the jejunum at 2 weeks but not 2 months of age. Net jejunal Ca2+ absorption observed at P14 was not present in either Trpv6 mutant (D541A) mice or Cav1.3 knockout mice. We observed significant nifedipine-sensitive transcellular absorption across the ileum at P14 but not 2 months. Cav1.3 knockout pups exhibited delayed bone mineral accrual, compensatory nifedipine-insensitive Ca2+ absorption in the ileum, and increased expression of renal Ca2+ reabsorption mediators at P14. Moreover, weaning pups at 2 weeks reduced jejunal and ileal Cav1.3 expression. CONCLUSIONS We have detailed novel pathways contributing to transcellular Ca2+ transport across the distal small intestine of mice during development, highlighting the complexity of the multiple mechanisms involved in achieving a positive Ca2+ balance early in life.
Collapse
Affiliation(s)
- Megan R. Beggs
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada
| | - Justin J. Lee
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada
| | - Kai Busch
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Ahsan Raza
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Petra Weissgerber
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, School of Medicine, Homburg, Germany
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Saarland University, Homburg, Germany
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada,The Women’s & Children’s Health Research Institute, Edmonton, Alberta, Canada,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,Correspondence Address correspondence to: R. Todd Alexander, MD, PhD, Department of Pediatrics, 4-585 Edmonton Clinic Health Academy, 11405 – 87 Avenue, University of Alberta, Edmonton, Alberta T6G 2R7, Canada. fax: (780) 248-5556.
| |
Collapse
|
19
|
The kidney anion exchanger 1 affects tight junction properties via claudin-4. Sci Rep 2019; 9:3099. [PMID: 30816203 PMCID: PMC6395713 DOI: 10.1038/s41598-019-39430-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
In the renal collecting duct, intercalated cells regulate acid-base balance by effluxing protons through the v-H+-ATPase, and bicarbonate via apical pendrin or the basolateral kidney anion exchanger 1 (kAE1). Additionally, collecting duct cells play an essential role in transepithelial absorption of sodium and chloride. Expression of kAE1 in polarized MDCK I cells was previously shown to decrease trans-epithelial electrical resistance (TEER), suggesting a novel role for kAE1 in paracellular permeability. In our study, we not only confirmed that inducible expression of kAE1 in mIMCD3 cells decreased TEER but we also observed (i) increased epithelial absolute permeability to both sodium and chloride, and (ii) that this effect was dependent on kAE1 activity. Further, kAE1 regulated tight junction properties through the tight junction protein claudin-4, a protein with which it physically interacts and colocalizes. These findings unveil a novel interaction between the junctional protein claudin-4 and the kidney anion exchanger, which may be relevant to ion and/or pH homeostasis.
Collapse
|
20
|
Marcher AB, Bendixen SM, Terkelsen MK, Hohmann SS, Hansen MH, Larsen BD, Mandrup S, Dimke H, Detlefsen S, Ravnskjaer K. Transcriptional regulation of Hepatic Stellate Cell activation in NASH. Sci Rep 2019; 9:2324. [PMID: 30787418 PMCID: PMC6382845 DOI: 10.1038/s41598-019-39112-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) signified by hepatic steatosis, inflammation, hepatocellular injury, and fibrosis is a growing cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma. Hepatic fibrosis resulting from accumulation of extracellular matrix proteins secreted by hepatic myofibroblasts plays an important role in disease progression. Activated hepatic stellate cells (HSCs) have been identified as the primary source of myofibroblasts in animal models of hepatotoxic liver injury; however, so far HSC activation and plasticity have not been thoroughly investigated in the context of NASH-related fibrogenesis. Here we have determined the time-resolved changes in the HSC transcriptome during development of Western diet- and fructose-induced NASH in mice, a NASH model recapitulating human disease. Intriguingly, HSC transcriptional dynamics are highly similar across disease models pointing to HSC activation as a point of convergence in the development of fibrotic liver disease. Bioinformatic interrogation of the promoter sequences of activated genes combined with loss-of-function experiments indicates that the transcriptional regulators ETS1 and RUNX1 act as drivers of NASH-associated HSC plasticity. Taken together, our results implicate HSC activation and transcriptional plasticity as key aspects of NASH pathophysiology.
Collapse
Affiliation(s)
- Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Sofie M Bendixen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Mike K Terkelsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Sonja S Hohmann
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Maria H Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Bjørk D Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, 5000, Odense C, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
21
|
Frische S, Chambrey R, Trepiccione F, Zamani R, Marcussen N, Alexander RT, Skjødt K, Svenningsen P, Dimke H. H +-ATPase B1 subunit localizes to thick ascending limb and distal convoluted tubule of rodent and human kidney. Am J Physiol Renal Physiol 2018; 315:F429-F444. [PMID: 29993276 DOI: 10.1152/ajprenal.00539.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The vacuolar-type H+-ATPase B1 subunit is heavily expressed in the intercalated cells of the collecting system, where it contributes to H+ transport, but has also been described in other segments of the renal tubule. This study aimed to determine the localization of the B1 subunit of the vacuolar-type H+-ATPase in the early distal nephron, encompassing thick ascending limbs (TAL) and distal convoluted tubules (DCT), in human kidney and determine whether the localization differs between rodents and humans. Antibodies directed against the H+-ATPase B1 subunit were used to determine its localization in paraffin-embedded formalin-fixed mouse, rat, and human kidneys by light microscopy and in sections of Lowicryl-embedded rat kidneys by electron microscopy. Abundant H+-ATPase B1 subunit immunoreactivity was observed in the human kidney. As expected, intercalated cells showed the strongest signal, but significant signal was also observed in apical membrane domains of the distal nephron, including TAL, macula densa, and DCT. In mouse and rat, H+-ATPase B1 subunit expression could also be detected in apical membrane domains of these segments. In rat, electron microscopy revealed that the H+-ATPase B1 subunit was located in the apical membrane. Furthermore, the H+-ATPase B1 subunit colocalized with other H+-ATPase subunits in the TAL and DCT. In conclusion, the B1 subunit is expressed in the early distal nephron. The physiological importance of H+-ATPase expression in these segments remains to be delineated in detail. The phenotype of disease-causing mutations in the B1 subunit may also relate to its presence in the TAL and DCT.
Collapse
Affiliation(s)
| | - Régine Chambrey
- INSERM 1188-Université de La Réunion, Sainte Clotilde, La Réunion, France
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Reza Zamani
- Department of Urology, Odense University Hospital , Odense , Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital , Odense , Denmark
| | - R Todd Alexander
- Department of Pediatrics, University of Alberta , Edmonton, Alberta , Canada.,Membrane Protein Disease Research Group, University of Alberta , Edmonton, Alberta , Canada
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| |
Collapse
|
22
|
Laursen SB, Finsen S, Marcussen N, Quaggin SE, Hansen PBL, Dimke H. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility. PLoS One 2018; 13:e0193032. [PMID: 29466427 PMCID: PMC5821352 DOI: 10.1371/journal.pone.0193032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion was similar between groups. No differences in contraction and relaxation were observed between WT and EC-MR KO in isolated renal arteries during baseline or following 2 or 4 weeks of AngII infusion. The constriction or dilatations of afferent arterioles between genotypes were not different. No changes were found between the groups with respect to urinary excretion of sodium after 4 weeks of AngII infusion, or in urinary albumin excretion and kidney morphology. In conclusion, deletion of the EC-MR does not confer protection towards the development of hypertension, endothelial dysfunction of renal arteries or renal function following prolonged AngII-infusion.
Collapse
Affiliation(s)
- Sidsel B. Laursen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stine Finsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Susan E. Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, IL, United States of America
| | - Pernille B. L. Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Cardiovascular and Metabolic Disease, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
23
|
Krishnan D, Pan W, Beggs MR, Trepiccione F, Chambrey R, Eladari D, Cordat E, Dimke H, Alexander RT. Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect. Front Physiol 2018; 8:1108. [PMID: 29354070 PMCID: PMC5760551 DOI: 10.3389/fphys.2017.01108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 01/23/2023] Open
Abstract
Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice.
Collapse
Affiliation(s)
- Devishree Krishnan
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,The Women's and Children's Health Research Institute, Edmonton, AB, Canada
| | - Wanling Pan
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,The Women's and Children's Health Research Institute, Edmonton, AB, Canada
| | - Francesco Trepiccione
- Department of Cardio-Thoracic and Respiratory Science, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Régine Chambrey
- Institut National de la Santé et de la Recherche Médicale Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Université de La Réunion, CYROI, La Réunion, France.,Centre National de la Recherche Scientifique, Délégation Paris Michel-Ange, Sainte-Clotilde, France
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Université de La Réunion, CYROI, La Réunion, France.,Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, Centre Hospitalier Universitaire de la Réunion, La Réunion, France
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,The Women's and Children's Health Research Institute, Edmonton, AB, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,The Women's and Children's Health Research Institute, Edmonton, AB, Canada.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Kolodecik TR, Reed AM, Date K, Shugrue CA, Patel V, Chung SL, Desir GV, Gorelick FS. The serum protein renalase reduces injury in experimental pancreatitis. J Biol Chem 2017; 292:21047-21059. [PMID: 29042438 DOI: 10.1074/jbc.m117.789776] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis is a disease associated with inflammation and tissue damage. One protein that protects against acute injury, including ischemic injury to both the kidney and heart, is renalase, which is secreted into the blood by the kidney and other tissues. However, whether renalase reduces acute injury associated with pancreatitis is unknown. Here, we used both in vitro and in vivo murine models of acute pancreatitis to study renalase's effects on this condition. In isolated pancreatic lobules, pretreatment with recombinant human renalase (rRNLS) blocked zymogen activation caused by cerulein, carbachol, and a bile acid. Renalase also blocked cerulein-induced cell injury and histological changes. In the in vivo cerulein model of pancreatitis, genetic deletion of renalase resulted in more severe disease, and administering rRNLS to cerulein-exposed WT mice after pancreatitis onset was protective. Because pathological increases in acinar cell cytosolic calcium levels are central to the initiation of acute pancreatitis, we also investigated whether rRNLS could function through its binding protein, plasma membrane calcium ATPase 4b (PMCA4b), which excretes calcium from cells. We found that PMCA4b is expressed in both murine and human acinar cells and that a PMCA4b-selective inhibitor worsens pancreatitis-induced injury and blocks the protective effects of rRNLS. These findings suggest that renalase is a protective plasma protein that reduces acinar cell injury through a plasma membrane calcium ATPase. Because exogenous rRNLS reduces the severity of acute pancreatitis, it has potential as a therapeutic agent.
Collapse
Affiliation(s)
- Thomas R Kolodecik
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Anamika M Reed
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Kimie Date
- Ochanomizu University, Tokyo 112-8610, Japan
| | - Christine A Shugrue
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Vikhil Patel
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Shang-Lin Chung
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Gary V Desir
- From the Yale University School of Medicine, New Haven, Connecticut 06510.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| | - Fred S Gorelick
- From the Yale University School of Medicine, New Haven, Connecticut 06510, .,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516, and
| |
Collapse
|
25
|
Beggs MR, Appel I, Svenningsen P, Skjødt K, Alexander RT, Dimke H. Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation. Am J Physiol Renal Physiol 2017; 313:F629-F640. [DOI: 10.1152/ajprenal.00680.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 05/17/2017] [Indexed: 01/25/2023] Open
Abstract
Significant alterations in maternal calcium (Ca2+) and magnesium (Mg2+) balance occur during lactation. Ca2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca2+ transport. Mg2+ is also concentrated in breast milk, but the underlying mechanisms are not well understood. To determine the molecular alterations in Ca2+ and Mg2+ transport in the intestine and kidney during lactation, three groups of female mice consisting of either nonpregnant controls, lactating mice, or mice undergoing involution were examined. The fractional excretion of Ca2+, but not Mg2+, rose significantly during lactation. Renal 1-α hydroxylase and 24-OHase mRNA levels increased markedly, as did plasma 1,25 dihydroxyvitamin D levels. This was accompanied by significant increases in intestinal expression of Trpv6 and S100g in lactating mice. However, no alterations in the expression of cation-permeable claudin-2, claudin-12, or claudins-15 were found in the intestine. In the kidney, increased expression of Trpv5 and Calb1 was observed during lactation, while no changes in claudins involved in Ca2+ and Mg2+ transport (claudin-2, claudin-14, claudin-16, or claudin-19) were found. Consistent with the mRNA expression, expression of both calbindin-D28K and transient receptor potential vanilloid 5 (TRPV5) proteins increased. Colonic Trpm6 expression increased during lactation, while renal Trpm6 remained unaltered. In conclusion, proteins involved in transcellular Ca2+ and Mg2+ transport pathways increase during lactation, while expression of paracellular transport proteins remained unchanged. Increased fractional Ca2+ excretion can be explained by vitamin D-dependent intestinal hyperabsorption and bone demineralization, despite enhanced transcellular Ca2+ uptake by the kidney.
Collapse
Affiliation(s)
- Megan R. Beggs
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Ida Appel
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; and
| | - R. Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
26
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
27
|
Alexander RT, Dimke H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am J Physiol Renal Physiol 2017; 312:F998-F1015. [DOI: 10.1152/ajprenal.00032.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023] Open
Abstract
Calcium (Ca2+) and Magnesium (Mg2+) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca2+ and Mg2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport. Acetazolamide, osmotic diuretics, Na+/H+ exchanger (NHE3) inhibitors, and antidiabetic Na+/glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop diuretics and renal outer medullary K+ (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na+ transport at distal sites, can also affect divalent cation transport.
Collapse
Affiliation(s)
- R. Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada; and
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Beggs MR, Alexander RT. Intestinal absorption and renal reabsorption of calcium throughout postnatal development. Exp Biol Med (Maywood) 2017; 242:840-849. [PMID: 28346014 DOI: 10.1177/1535370217699536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis.
Collapse
Affiliation(s)
- Megan R Beggs
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - R Todd Alexander
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
29
|
Li J, Zhang L, Li B. Correlative study on the JAK-STAT/PSMβ3 signal transduction pathway in asthenozoospermia. Exp Ther Med 2017; 13:127-130. [PMID: 28123480 PMCID: PMC5245151 DOI: 10.3892/etm.2016.3959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the possible mechanism of Janus kinase (JAK)-signal transduction and activator of transcription (STAT)/PSMβ3 signaling in the occurrence of asthenozoospermia. We examined seminal fluid samples from 30 cases of asthenozoospermia and 30 healthy controls. Sperm was collected using the Percoll density gradient centrifugation method. The expression of JAK, STAT and PSMβ3 mRNA was assessed by reverse-transcription quantitative PCR and the protein levels of p-JAK, p-STAT and PSMβ3 were measured by western blot analysis. The PSMβ3 mRNA and protein expression levels were also measured after application of a JAK inhibitor, AG-490, to the control group, with a FITC-labeled monoclonal rabbit anti-human PSMβ3 primary antibody. The cells were observed under a laser confocal microscope. The mRNA levels of JAK, STAT and PSMβ3 in asthenozoospermia were decreased significantly (P<0.05). The protein levels of p-JAK, p-STAT and PSMβ3 in asthenozoospermia were also reduced and the differences were statistically significant (P<0.05). The PSMβ3 mRNA and protein expression levels were decreased in the control group after treatment with the JAK inhibitor, and levels were approximately equal to those of the asthenozoospermia group. PSMβ3 was mainly expressed in round-headed sperm, and less in asthenozoospermia. In conclusion, the JAK-STAT/PSMβ3 signaling transduction pathway may be involved in the pathogenic mechanism of asthenozoospermia.
Collapse
Affiliation(s)
- Junguo Li
- Reproductive Medicine Center, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| | - Li Zhang
- Department of Information, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| | - Bing Li
- Department of Obstetrics and Gynecology, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| |
Collapse
|
30
|
Alexander RT, Cordat E, Chambrey R, Dimke H, Eladari D. Acidosis and Urinary Calcium Excretion: Insights from Genetic Disorders. J Am Soc Nephrol 2016; 27:3511-3520. [PMID: 27468975 DOI: 10.1681/asn.2016030305] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport in the renal tubule and then discuss why not all gene defects that cause renal tubular acidosis are associated with hypercalciuria and nephrocalcinosis.
Collapse
Affiliation(s)
- R Todd Alexander
- Departments of Pediatrics and .,Physiology, University of Alberta, Edmonton, Canada
| | | | - Régine Chambrey
- Institut National de la Santé et de la Recherche Médicale U970, Paris Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark; and
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale U970, Paris Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
31
|
van Loon EPM, Little R, Prehar S, Bindels RJM, Cartwright EJ, Hoenderop JGJ. Calcium Extrusion Pump PMCA4: A New Player in Renal Calcium Handling? PLoS One 2016; 11:e0153483. [PMID: 27101128 PMCID: PMC4839660 DOI: 10.1371/journal.pone.0153483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
Calcium (Ca2+) is vital for multiple processes in the body, and maintenance of the electrolyte concentration is required for everyday physiological function. In the kidney, and more specifically, in the late distal convoluted tubule and connecting tubule, the fine-tuning of Ca2+ reabsorption from the pro-urine takes place. Here, Ca2+ enters the epithelial cell via the transient receptor potential vanilloid receptor type 5 (TRPV5) channel, diffuses to the basolateral side bound to calbindin-D28k and is extruded to the blood compartment via the Na+/Ca2+ exchanger 1 (NCX1) and the plasma membrane Ca2+ ATPase (PMCA). Traditionally, PMCA1 was considered to be the primary Ca2+ pump in this process. However, in recent studies TRPV5-expressing tubules were shown to highly express PMCA4. Therefore, PMCA4 may have a predominant role in renal Ca2+ handling. This study aimed to elucidate the role of PMCA4 in Ca2+ homeostasis by characterizing the Ca2+ balance, and renal and duodenal Ca2+-related gene expression in PMCA4 knockout mice. The daily water intake of PMCA4 knockout mice was significantly lower compared to wild type littermates. There was no significant difference in serum Ca2+ level or urinary Ca2+ excretion between groups. In addition, renal and duodenal mRNA expression levels of Ca2+-related genes, including TRPV5, TRPV6, calbindin-D28k, calbindin-D9k, NCX1 and PMCA1 were similar in wild type and knockout mice. Serum FGF23 levels were significantly increased in PMCA4 knockout mice. In conclusion, PMCA4 has no discernible role in normal renal Ca2+ handling as no urinary Ca2+ wasting was observed. Further investigation of the exact role of PMCA4 in the distal convoluted tubule and connecting tubule is required.
Collapse
Affiliation(s)
- Ellen P. M. van Loon
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Robert Little
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Sukhpal Prehar
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - René J. M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Elizabeth J. Cartwright
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
32
|
Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1351-63. [PMID: 26707182 DOI: 10.1016/j.bbamcr.2015.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
|