1
|
Xiu F, Gai Z, Gehrig P, Wolski WE, Lone MA, Visentin M. The landscape of renal protein S-acylation in mice with lipid-induced nephrotoxicity. Sci Rep 2025; 15:7689. [PMID: 40044913 PMCID: PMC11882957 DOI: 10.1038/s41598-025-92530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/28/2025] [Indexed: 03/09/2025] Open
Abstract
Excess fat intake is associated with kidney toxicity and dysfunction. Because fatty acids can also be reversibly attached onto cysteine residues and modulate the function of several membrane-bound proteins, we studied the effect of high-fat diet (HFD) on the S-acylated proteome of mouse kidneys to uncover novel biochemical changes that might contribute to lipid-induced nephrotoxicity. We compared the S-acylated proteome of kidneys from mice fed a chow diet (CD) or a HFD. HFD caused albuminuria. The HFD intervention induced a large-scale repression of protein S-acylation as well as of the most abundant ceramides and sphingomyelin species, which are highly suggestive of a reduction in acyl-CoA availability. The HFD-induced S-acylation repression mostly affected proteins involved in endocytosis and intracellular transport. Notably, the kidneys of mice fed a HFD displayed a marked decrease in the total amount and in the S-acylated form of megalin, the main tubular protein retrieval system. Further in vitro experiments indicated that S-acylation inhibition results in a reduction of megalin protein level. We conclude that diet-induced derangement of fatty acid metabolism modifies the renal landscape of the S-acylated proteome during the early stages of the kidney injury, which might reduce the efficiency of protein reabsorption by the proximal tubule.
Collapse
Affiliation(s)
- Fangrui Xiu
- Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, 8006, Zurich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, 8006, Zurich, Switzerland
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Peter Gehrig
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland
| | - Witold E Wolski
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland
| | - Museer A Lone
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, 8006, Zurich, Switzerland.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, 8006, Zurich, Switzerland.
| |
Collapse
|
2
|
Lackner EM, Cowan IA, Long KR, Weisz OA, Shipman KE. Fluid shear stress-induced changes in megalin trafficking enhance endocytic capacity in proximal tubule cells. Front Physiol 2024; 15:1404248. [PMID: 38948083 PMCID: PMC11211581 DOI: 10.3389/fphys.2024.1404248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Proximal tubule (PT) cells maintain a high-capacity apical endocytic pathway to recover essentially all proteins that escape the glomerular filtration barrier. The multi ligand receptors megalin and cubilin play pivotal roles in the endocytic uptake of normally filtered proteins in PT cells but also contribute to the uptake of nephrotoxic drugs, including aminoglycosides. We previously demonstrated that opossum kidney (OK) cells cultured under continuous fluid shear stress (FSS) are superior to cells cultured under static conditions in recapitulating essential functional properties of PT cells in vivo. To identify drivers of the high-capacity, efficient endocytic pathway in the PT, we compared FSS-cultured OK cells with less endocytically active static-cultured OK cells. Megalin and cubilin expression are increased, and endocytic uptake of albumin in FSS-cultured cells is > 5-fold higher compared with cells cultured under static conditions. To understand how differences in receptor expression, distribution, and trafficking rates contribute to increased uptake, we used biochemical, morphological, and mathematical modeling approaches to compare megalin traffic in FSS- versus static-cultured OK cells. Our model predicts that culturing cells under FSS increases the rates of all steps in megalin trafficking. Importantly, the model explains why, despite seemingly counterintuitive observations (a reduced fraction of megalin at the cell surface, higher colocalization with lysosomes, and a shorter half-life of surface-tagged megalin in FSS-cultured cells), uptake of albumin is dramatically increased compared with static-grown cells. We also show that FSS-cultured OK cells more accurately exhibit the mechanisms that mediate uptake of nephrotoxic drugs in vivo compared with static-grown cells. This culture model thus provides a useful platform to understand drug uptake mechanisms, with implications for developing interventions in nephrotoxic injury prevention.
Collapse
Affiliation(s)
| | | | | | | | - Katherine E. Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Sarmadian R, Gilani A, Mehrtabar S, Mahrokhi Koushemehr S, Hakimzadeh Z, Yousefichaijan P. The renoprotective potential of montelukast: a scoping review. Ann Med Surg (Lond) 2024; 86:3568-3576. [PMID: 38846849 PMCID: PMC11152873 DOI: 10.1097/ms9.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Kidney damage can result from various factors, leading to structural and functional changes in the kidney. Acute kidney injury (AKI) refers to a sudden decline in kidney function, while chronic kidney disease involves a gradual deterioration lasting more than 3 months. Mechanisms of renal injury include impaired microcirculation, inflammation, and oxidative stress. Cysteinyl-leukotrienes (CysLTs) are inflammatory substances contributing to tissue damage. Montelukast, a leukotriene receptor antagonist, has shown potential renoprotective effects in experimental models of kidney injury. Methods The authors conducted a scoping review using PubMed, Scopus, and Web of Science databases to identify relevant studies investigating the impact of montelukast on renal diseases. Articles published until 2022 were included and evaluated for quality. Data extraction and analysis were performed based on predetermined inclusion criteria. Results The scoping review included 30 studies from 8 countries. Montelukast demonstrated therapeutic effects in various experimental models of nephrotoxicity and AKI induced by agents such as cisplatin, lipopolysaccharide, diclofenac, amikacin, Escherichia coli, cyclosporine, methotrexate, cobalt-60 gamma radiation, doxorubicin, and cadmium. Studies involving human subjects with nephrotic syndrome, pyelonephritis, and other renal diseases also reported positive outcomes with montelukast treatment. Montelukast exhibited anti-inflammatory, anti-apoptotic, antioxidant, and neutrophil-inhibiting properties, leading to improved kidney function and histopathological changes. Conclusions Montelukast shows promise as a renoprotective medication, particularly in early-stage kidney injury. Its ability to mitigate inflammation, oxidative stress, and neutrophil infiltration contributes to its therapeutic effects. Further research is needed to explore the clinical applications and mechanisms underlying the renoprotective action of montelukast.
Collapse
Affiliation(s)
| | | | - Saba Mehrtabar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran
| | | | | | | |
Collapse
|
4
|
Lackner EM, Cowan IA, Long KR, Weisz OA, Shipman KE. Fluid Shear Stress-Induced Changes in Megalin Trafficking Enhance Endocytic Capacity in Proximal Tubule Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581213. [PMID: 38562767 PMCID: PMC10983855 DOI: 10.1101/2024.02.22.581213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Proximal tubule (PT) cells maintain a high-capacity apical endocytic pathway to recover essentially all proteins that escape the glomerular filtration barrier. The multiligand receptors megalin and cubilin play pivotal roles in the endocytic uptake of normally filtered proteins in PT cells but also contribute to the uptake of nephrotoxic drugs, including aminoglycosides. We previously demonstrated that opossum kidney (OK) cells cultured under continuous fluid shear stress (FSS) are superior to cells cultured under static conditions in recapitulating essential functional properties of PT cells in vivo. To identify drivers of the high-capacity, efficient endocytic pathway in the PT, we compared FSS-cultured OK cells with less endocytically active static-cultured OK cells. Megalin and cubilin expression are increased, and endocytic uptake of albumin in FSS-cultured cells is >5-fold higher compared with cells cultured under static conditions. To understand how differences in receptor expression, distribution, and trafficking rates contribute to increased uptake, we used biochemical, morphological, and mathematical modeling approaches to compare megalin traffic in FSS- versus static-cultured OK cells. Our model predicts that culturing cells under FSS increases the rates of all steps in megalin trafficking. Importantly, the model explains why, despite seemingly counterintuitive observations (a reduced fraction of megalin at the cell surface, higher colocalization with lysosomes, and a shorter half-life of surface-tagged megalin in FSS-cultured cells), uptake of albumin is dramatically increased compared with static-grown cells. We also show that FSS-cultured OK cells more accurately exhibit the mechanisms that mediate uptake of nephrotoxic drugs in vivo compared with static-grown cells. This culture model thus provides a useful platform to understand drug uptake mechanisms, with implications for developing interventions in nephrotoxic injury prevention.
Collapse
Affiliation(s)
- Emily M. Lackner
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Isabella A. Cowan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kimberly R. Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ora A. Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine E. Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Ahmed MU, Li J, Zhou Q(T. Tobramycin Reduces Pulmonary Toxicity of Polymyxin B via Inhibiting the Megalin-Mediated Drug Uptake in the Human Lung Epithelial Cells. Pharmaceutics 2024; 16:389. [PMID: 38543283 PMCID: PMC10975719 DOI: 10.3390/pharmaceutics16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Accumulation of polymyxins in the lung epithelial cells can lead to increased mitochondrial oxidative stress and pulmonary toxicity. Aminoglycosides and polymyxins are used, via intravenous and pulmonary delivery, against multidrug-resistant Gram-negative pathogens. Our recent in vitro and animal studies demonstrated that the co-administration of polymyxins with aminoglycosides decreases polymyxin-induced pulmonary toxicity. The aim of this study was to investigate the in vitro transport and uptake of polymyxin B and tobramycin in human lung epithelial Calu-3 cells and the mechanism of reduced pulmonary toxicity resulting from this combination. Transport, intracellular localization, and accumulation of polymyxin B and tobramycin were investigated using doses of 30 mg/L polymyxin B, 70 mg/L tobramycin, and the combination of both. Adding tobramycin significantly (p < 0.05) decreased the polymyxin B-induced cytotoxicity in Calu-3 cells. The combination treatment significantly reduced the transport and uptake of polymyxin B and tobramycin in Calu-3 cells, compared to each drug alone, which supported the reduced pulmonary toxicity. We hypothesized that cellular uptake of polymyxin B and tobramycin shared a common transporter, megalin. We further investigated the megalin expression of Calu-3 cells using confocal microscopy and evaluated megalin activity using a megalin substrate, FITC-BSA, and a megalin inhibitor, sodium maleate. Both polymyxin B and tobramycin significantly inhibited FITC-BSA uptake by Calu-3 cells in a concentration-dependent manner. Sodium maleate substantially inhibited polymyxin B and tobramycin transport and cellular accumulation in the Calu-3 cell monolayer. Our study demonstrated that the significantly reduced uptake of polymyxin B and tobramycin in Calu-3 cells is attributed to the mechanism of action that determines that polymyxin B and tobramycin share a common transporter, megalin.
Collapse
Affiliation(s)
- Maizbha Uddin Ahmed
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Qi (Tony) Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Ioannidis K, Cohen A, Ghosheh M, Ehrlich A, Fischer A, Cohen M, Nahmias Y. Aminoglycoside-induced lipotoxicity and its reversal in kidney on chip. LAB ON A CHIP 2022; 22:4469-4480. [PMID: 36281785 DOI: 10.1039/d2lc00825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aminoglycosides are an important class of antibiotics that play a critical role in the treatment of life-threatening infections, but their use is limited by their toxicity. In fact, gentamicin causes severe nephrotoxicity in 17% of hospitalized patients. The kidney proximal tubule is particularly vulnerable to drug-induced nephrotoxicity due to its role in drug transport. In this work, we developed a perfused vascularized model of human kidney tubuloids integrated with tissue-embedded microsensors that track the metabolic dynamics of aminoglycoside-induced renal toxicity in real time. Our model shows that gentamicin disrupts proximal tubule polarity at concentrations 20-fold below its TC50, leading to a 3.2-fold increase in glucose uptake, and reverse TCA cycle flux culminating in a 40-fold increase in lipid accumulation. Blocking glucose reabsorption using the SGLT2 inhibitor empagliflozin significantly reduced gentamicin toxicity by 10-fold. These results demonstrate the utility of sensor-integrated kidney-on-chip platforms to rapidly identify new metabolic mechanisms that may underly adverse drug reactions. The results should improve our ability to modulate the toxicity of novel aminoglycosides.
Collapse
Affiliation(s)
- Konstantinos Ioannidis
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Aaron Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mohammad Ghosheh
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| | - Amit Fischer
- Department of Biological Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| |
Collapse
|
7
|
Parigoris E, Lee JH, Liu AY, Zhao X, Takayama S. Extended longevity geometrically-inverted proximal tubule organoids. Biomaterials 2022; 290:121828. [PMID: 36215909 PMCID: PMC10693433 DOI: 10.1016/j.biomaterials.2022.121828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 01/22/2023]
Abstract
This study reports the cellular self-organization of primary human renal proximal tubule epithelial cells (RPTECs) around a minimal Matrigel scaffold to produce basal-in and apical-out proximal tubule organoids (tubuloids). These tubuloids are produced and maintained in hanging drop cultures for 90+ days, the longest such culture of any kind reported to date. The tubuloids upregulate maturity markers, such as aquaporin-1 (AQP1) and megalin (LRP2), and exhibit less mesenchymal and proliferation markers, such as vimentin and Ki67, compared to 2D cultures. They also experience changes over time as revealed by a comparison of gene expression patterns of cells in 2D culture and in day 31 and day 67 tubuloids. Gene expression analysis and immunohistochemistry reveal an increase in the expression of megalin, an endocytic receptor that can directly bind and uptake protein or potentially assist protein uptake. The tubuloids, including day 90 tubuloids, uptake fluorescent albumin and reveal punctate fluorescent patterns, suggesting functional endocytic uptake through these receptors. Furthermore, the tubuloids release kidney injury molecule-1 (KIM-1), a common biomarker for kidney injury, when exposed to albumin in both dose- and time-dependent manners. While this study focuses on potential applications for modeling proteinuric kidney disease, the tubuloids may have broad utility for studies where apical proximal tubule cell access is required.
Collapse
Affiliation(s)
- Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Amy Yunfan Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Xueying Zhao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
8
|
Abstract
The burden of acute and chronic kidney diseases to the health care system is exacerbated by the high mortality that this disease carries paired with the still limited availability of comprehensive therapies. A reason partially resides in the complexity of the kidney, with multiple potential target cell types and a complex structural environment that complicate strategies to protect and recover renal function after injury. Management of both acute and chronic renal disease, irrespective of the cause, are mainly focused on supportive treatments and renal replacement strategies when needed. Emerging preclinical evidence supports the feasibility of drug delivery technology for the kidney, and recent studies have contributed to building a robust catalog of peptides, proteins, nanoparticles, liposomes, extracellular vesicles, and other carriers that may be fused to therapeutic peptides, proteins, nucleic acids, or small molecule drugs. These fusions can display a precise renal uptake, an enhanced circulating time, and a directed intraorgan biodistribution while protecting their cargo to improve therapeutic efficacy. However, several hurdles that slow the transition towards clinical applications are still in the way, such as solubility, toxicity, and sub-optimal renal targeting. This review will discuss the feasibility and current limitations of drug delivery technologies for the treatment of renal disease, offering an update on their potential and the future directions of these promising strategies.
Collapse
Affiliation(s)
- Alejandro R. Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
9
|
Sharma I, Liao Y, Zheng X, Kanwar YS. Modulation of gentamicin-induced acute kidney injury by myo-inositol oxygenase via the ROS/ALOX-12/12-HETE/GPR31 signaling pathway. JCI Insight 2022; 7:155487. [PMID: 35315361 PMCID: PMC8986073 DOI: 10.1172/jci.insight.155487] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
In this investigation, a potentially novel signaling pathway in gentamicin-induced acute kidney injury-worsened by overexpression of proximal tubular enzyme, myo-inositol oxygenase (MIOX)-was elucidated. WT, MIOX-transgenic (MIOX-Tg), and MIOX-KO mice were used. Gentamicin was administered to induce tubular injury. MIOX-Tg mice had severe tubular lesions associated with increased serum creatinine and proteinuria. Lesions were relatively mild, with no rise in serum creatinine and no albuminuria in MIOX-KO mice. Transfection of HK-2 cells with MIOX-pcDNA led to increased gentamicin-induced reactive oxygen species (ROS). Marked increase of ROS-mediated lipid hydroperoxidation was noted in MIOX-Tg mice, as assessed by 4-HNE staining. This was associated with increased expression of arachidonate 12-lipoxygenase (ALOX-12) and generation of 12-hydroxyeicosatetraenoic acid (12-HETE). In addition, notable monocyte/macrophage influx, upregulation of NF-κB and inflammatory cytokines, and apoptosis was observed in MIOX-Tg mice. Treatment of cells with ALOX-12 siRNA abolished gentamicin-mediated induction of cytokines and 12-HETE generation. HETE-12 treatment promoted this effect, along with upregulation of various signaling kinases and activation of GPCR31. Similarly, treatment of cells or mice with the ALOX-12 inhibitor ML355 attenuated inflammatory response, kinase signaling cascade, and albuminuria. Collectively, these studies highlight a potentially novel mechanism (i.e., the ROS/ALOX-12/12-HETE/GPR31 signaling axis) relevant to gentamicin-induced nephrotoxicity modulated by MIOX.
Collapse
|
10
|
Abstract
Medications are a common cause of AKI especially for patients admitted to hospital wards and the intensive care unit. Although drug-related kidney injury occurs through different mechanisms, this review will focus on three specific types of tubulointerstitial injury. Direct acute tubular injury develops from several medications, which are toxic to various cellular functions. Their excretory pathways through the proximal tubules contribute further to AKI. Drug-induced AKI may also develop through induction of inflammation within the tubulointerstitium. Medications can elicit a T cell-mediated immune response that promotes the development of acute interstitial nephritis leading to AKI. Although less common, a third pathway to kidney injury results from the insolubility of drugs in the urine leading to their precipitation as crystals within distal tubular lumens, causing a crystalline-related AKI. Intratubular obstruction, direct tubular injury, and localized inflammation lead to AKI. Clinicians should be familiar with the pathogenesis and clinical-pathologic manifestations of these forms of kidney injury. Prevention and treatment of AKI relies on understanding the pathogenesis and judiciously using these agents in settings where AKI risk is high.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut .,Veteran's Affairs Medical Center, West Haven, Connecticut
| | - Mitchell H Rosner
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
11
|
Gupta K, Pandey S, Bagang N, Mehra K, Singh G. Trimetazidine an emerging paradigm in renal therapeutics: Preclinical and clinical insights. Eur J Pharmacol 2021; 913:174624. [PMID: 34774496 DOI: 10.1016/j.ejphar.2021.174624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Trimetazidine (TMZ) is a well-known anti-ischemic agent used for the treatment of angina pectoris. In the past decades, the efficacy of this drug has been tested in a wide range of kidney injuries, including drug-induced nephrotoxicity (DIN), radio-contrast agent-induced nephropathy, and surgically induced renal ischemic injury. TMZhas renoprotective effects by attenuating oxidative stress, inflammatory cytokine release, maintaining oxygen and energy balance. Moreover, TMZ administration prevented kidney graft rejection in the porcine model by suppressing the infiltration of mononuclear cells, preserving mitochondrial functions, and maintaining Ca+ homeostasis. In DIN and diabetic kidney diseases,TMZ treatment prevents renal injury by inactivating immune cells, attenuating renal fibrosis, inflammation, apoptosis, and histological abnormalities. Interestingly, the clinical therapeutic efficacy of TMZ has also been documented in pre-existing kidney disease patients undergoing contrast exposure for diagnostic intervention. However, the mechanistic insights into the TMZ mediated renoprotective effects in other forms of renal injuries, including type-2 diabetes, drug-induced nephrotoxicity, and hypertension-induced chronic kidney diseases, remain uninvestigated and incomplete. Moreover, the clinical utility of TMZ as a renoprotective agent in radio-contrast-induced nephrotoxicity needs to be tested in a large patient population. Nevertheless, the available pieces of evidence suggest that TMZ is a promising and emerging renal therapy for the treatment and management of kidney diseases of variable etiologies. This review discusses the various pre-clinical and clinical findings and provides mechanistic insights into the TMZ mediated beneficial effects in various kidney diseases.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala (Haryana), India
| | - Sneha Pandey
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Newly Bagang
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Kamalpreet Mehra
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala (Haryana), India
| | | |
Collapse
|
12
|
Popadynec M, Baradaran-Heravi A, Alford B, Cameron SA, Clinch K, Mason JM, Rendle PM, Zubkova OV, Gan Z, Liu H, Rebollo O, Whitfield DM, Yan F, Roberge M, Powell DA. Reducing the Toxicity of Designer Aminoglycosides as Nonsense Mutation Readthrough Agents for Therapeutic Targets. ACS Med Chem Lett 2021; 12:1486-1492. [PMID: 34531957 DOI: 10.1021/acsmedchemlett.1c00349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
A significant proportion of genetic disease cases arise from truncation of proteins caused by premature termination codons. In eukaryotic cells some aminoglycosides cause readthrough of premature termination codons during protein translation. Inducing readthrough of these codons can potentially be of therapeutic value in the treatment of numerous genetic diseases. A significant drawback to the repeated use of aminoglycosides as treatments is the lack of balance between their readthrough efficacy and toxicity. The synthesis and biological testing of designer aminoglycoside compounds is documented herein. We disclose the implementation of a strategy to reduce cellular toxicity and maintain readthrough activity of a library of compounds by modification of the overall cationic charge of the aminoglycoside scaffold through ring I modifications.
Collapse
Affiliation(s)
- Michael Popadynec
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Benjamin Alford
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Scott A. Cameron
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jennifer M. Mason
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Phillip M. Rendle
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Olga V. Zubkova
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Zhonghong Gan
- Sussex Research Laboratories, Inc., 100 Sussex Drive, Suite 1120B, Ottawa, Ontario K1A 0R6, Canada
| | - Hui Liu
- Sussex Research Laboratories, Inc., 100 Sussex Drive, Suite 1120B, Ottawa, Ontario K1A 0R6, Canada
| | - Oscar Rebollo
- Sussex Research Laboratories, Inc., 100 Sussex Drive, Suite 1120B, Ottawa, Ontario K1A 0R6, Canada
| | - Dennis M. Whitfield
- Sussex Research Laboratories, Inc., 100 Sussex Drive, Suite 1120B, Ottawa, Ontario K1A 0R6, Canada
| | - Fengyang Yan
- Sussex Research Laboratories, Inc., 100 Sussex Drive, Suite 1120B, Ottawa, Ontario K1A 0R6, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - David A. Powell
- Inception Sciences Canada, 210-887 Great Northern Way, Vancouver, British Columbia, V5T 4T5, Canada
| |
Collapse
|
13
|
Darlow CA, da Costa RMA, Ellis S, Franceschi F, Sharland M, Piddock L, Das S, Hope W. Potential Antibiotics for the Treatment of Neonatal Sepsis Caused by Multidrug-Resistant Bacteria. Paediatr Drugs 2021; 23:465-484. [PMID: 34435316 PMCID: PMC8418595 DOI: 10.1007/s40272-021-00465-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
Neonatal sepsis causes up to an estimated 680,000 deaths annually worldwide, predominantly in low- and middle-income countries (LMICs). A significant and growing proportion of bacteria causing neonatal sepsis are resistant to multiple antibiotics, including the World Health Organization-recommended empiric neonatal sepsis regimen of ampicillin/gentamicin. The Global Antibiotic Research and Development Partnership is aiming to develop alternative empiric antibiotic regimens that fulfil several criteria: (1) affordable in LMIC settings; (2) activity against neonatal bacterial pathogens, including extended-spectrum β-lactamase producers, gentamicin-resistant Gram-negative bacteria, and methicillin-resistant Staphylococcus aureus (MRSA); (3) a licence for neonatal use or extensive experience of use in neonates; and (4) minimal toxicities. In this review, we identify five antibiotics that fulfil these criteria: amikacin, tobramycin, fosfomycin, flomoxef, and cefepime. We describe the available characteristics of each in terms of mechanism of action, resistance mechanisms, clinical pharmacokinetics, pharmacodynamics, and toxicity profile. We also identify some knowledge gaps: (1) the neonatal pharmacokinetics of cefepime is reliant on relatively small and limited datasets, and the pharmacokinetics of flomoxef are also reliant on data from a limited demographic range and (2) for all reviewed agents, the pharmacodynamic index and target has not been definitively established for both bactericidal effect and emergence of resistance, with many assumed to have an identical index/target to similar class molecules. These five agents have the potential to be used in novel combination empiric regimens for neonatal sepsis. However, the data gaps need addressing by pharmacokinetic trials and pharmacodynamic characterisation.
Collapse
Affiliation(s)
- Christopher A Darlow
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool Health Partners, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | | | - Sally Ellis
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | | | - Mike Sharland
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| | - Laura Piddock
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
- Antimicrobials Research Group, Institute for Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Shampa Das
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool Health Partners, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool Health Partners, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
14
|
Nassan MA, Soliman MM, Aldhahrani A, Althobaiti F, Alkhedaide AQ. Ameliorative impacts of Glycyrrhiza glabra root extract against nephrotoxicity induced by gentamicin in mice. Food Sci Nutr 2021; 9:3405-3413. [PMID: 34262702 PMCID: PMC8269671 DOI: 10.1002/fsn3.2183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Gentamicin is an effective antibiotic that has been used worldwide for many years. While considered an essential medicine by the WHO, gentamicin can also lead to severe kidney damage. This study explored the ameliorative effects of Glycyrrhiza glabra root extract on gentamicin-induced renal injury in mice. Four groups of n = 7 mice were used: (a) control; (b) G. glabra-only; (c) gentamicin-only; and (d) gentamicin plus G. glabra. Kidney samples were tested for: antioxidant enzyme activity (superoxide dismutase [SOD] and glutathione peroxidase [Gpx]); expression of HO-1 and nuclear factor erythroid 2-related factor 2 genes; expression of Cox-2 and Bax; cytokine levels (IL-1β, and IL-6); histopathological anomalies; and standard renal functional component levels (creatinine, urea, and blood urea nitrogen). The effects of gentamicin were generally reversed or normalized following treatment with G. glabra root extract. Gentamicin decreased Gpx and SOD parameters and increased IL-1 β and IL-6 levels, but these returned to normal in the G. glabra-treated group. Gentamicin upregulated tissue levels of Cox-2 and Bax, and downregulated HO-1 and Nrf-2 expression but again, and these levels returned to normal in the group treated with G. glabra. Mice that had received gentamicin exhibited acute renal blood vessel congestion, focal interstitial round cell aggregation, and hydropic degeneration of renal tubular epithelium. However, those that had also received G. glabra showed a normal histopathology. Findings from this study indicate that in mouse models, gentamicin-induced kidney damage can be reversed or ameliorated by administering G. glabra, so it can be considered as an effective complimentary therapy.
Collapse
Affiliation(s)
- Mohamed A. Nassan
- Department of Clinical Laboratory SciencesTurabah University CollegeTaif UniversityTaifSaudi Arabia
- Department of PathologyFaculty of Veterinary MedicineZagazig UniversityZagazigEgypt
| | - Mohamed M. Soliman
- Department of Clinical Laboratory SciencesTurabah University CollegeTaif UniversityTaifSaudi Arabia
- Department of BiochemistryFaculty of Veterinary MedicineBenha UniversityBenhaEgypt
| | - Adil Aldhahrani
- Department of Clinical Laboratory SciencesTurabah University CollegeTaif UniversityTaifSaudi Arabia
| | - Fayez Althobaiti
- Biotechnology DepartmentCollege of ScienceTaif UniversityTaifSaudi Arabia
| | - Adel Q. Alkhedaide
- Department of Clinical Laboratory SciencesTurabah University CollegeTaif UniversityTaifSaudi Arabia
| |
Collapse
|
15
|
Tokhmafshan F, Dickinson K, Akpa MM, Brasell E, Huertas P, Goodyer PR. A no-nonsense approach to hereditary kidney disease. Pediatr Nephrol 2020; 35:2031-2042. [PMID: 31807928 DOI: 10.1007/s00467-019-04394-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023]
Abstract
The advent of a new class of aminoglycosides with increased translational readthrough of nonsense mutations and reduced toxicity offers a new therapeutic strategy for a subset of patients with hereditary kidney disease. The renal uptake and retention of aminoglycosides at a high intracellular concentration makes the kidney an ideal target for this approach. In this review, we explore the potential of aminoglycoside readthrough therapy in a number of hereditary kidney diseases and discuss the therapeutic window of opportunity for subclasses of each disease, when caused by nonsense mutations.
Collapse
Affiliation(s)
- Fatima Tokhmafshan
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada
| | - Kyle Dickinson
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada.,Department of Experimental Medicine, McGill University, Montreal, Canada
| | - Murielle M Akpa
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada
| | - Emma Brasell
- Department of Human Genetics, McGill University, Montreal, Canada
| | | | - Paul R Goodyer
- Research Institute of the McGill University Health Center, 1001 Décarie Boulevard, EM1.2232, Montreal, QC, H4A 3J1, Canada. .,Department of Experimental Medicine, McGill University, Montreal, Canada. .,Department of Human Genetics, McGill University, Montreal, Canada. .,Department of Pediatrics, McGill University, Montreal, Canada.
| |
Collapse
|
16
|
Kim CS, Mathew AP, Uthaman S, Moon MJ, Bae EH, Kim SW, Park IK. Glycol chitosan-based renal docking biopolymeric nanomicelles for site-specific delivery of the immunosuppressant. Carbohydr Polym 2020; 241:116255. [DOI: 10.1016/j.carbpol.2020.116255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 01/26/2023]
|
17
|
Garousi J, Vorobyeva A, Altai M. Influence of Several Compounds and Drugs on the Renal Uptake of Radiolabeled Affibody Molecules. Molecules 2020; 25:molecules25112673. [PMID: 32526905 PMCID: PMC7321166 DOI: 10.3390/molecules25112673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Affibody molecules are the most studied class of engineered scaffold proteins (ESPs) in radionuclide molecular imaging. Attempts to use affibody molecules directly labelled with radiometals for targeted radionuclide therapy were hampered by the high uptake and retention of radioactivity in kidneys. Several promising strategies have been implemented to circumvent this problem. Here, we investigated whether a pharmacological approach targeting different components of the reabsorption system could be used to lower the uptake of [99mTc]Tc-ZHER:2395 affibody molecule in kidneys. Pre-injection of probenecid, furosemide, mannitol or colchicine had no influence on activity uptake in kidneys compared to the control group. Mice pre-injected with maleate and fructose had 33% and 51% reduction in the kidney-associated activity, respectively, compared to the control group. Autoradiography images showed that the accumulation of activity after [99mTc]Tc-ZHER2:2395 injection was in the renal cortex and that both maleate and fructose could significantly reduce it. Results from this study demonstrate that pharmacological intervention with maleate and fructose was effective in reducing the kidney uptake of affibody molecules. A presumable mechanism is the disruption of ATP-mediated cellular uptake and endocytosis processes of affibody molecules by tubular cells.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (A.V.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (A.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia
| | - Mohamed Altai
- Division of Oncology and Pathology, Kamprad Lab, Department of Clinical Sciences, Lund University, 222 43 Lund, Sweden
- Correspondence: ; Tel.: +46-704128699
| |
Collapse
|
18
|
Karimi Z, Pakfetrat Z, Roozbeh J, Janfeshan S. Toll‐like receptor‐2 mediates systemic inflammation in gentamicin‐induced rat nephrotoxicity. Clin Exp Pharmacol Physiol 2020; 47:1584-1590. [DOI: 10.1111/1440-1681.13334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Zeinab Karimi
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Zahra Pakfetrat
- Department of Biology Arsanjan Branch Islamic Azad University Arsanjan Iran
| | - Jamshid Roozbeh
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Sahar Janfeshan
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
19
|
Mokhtar MM, Khidr EG, Shaban HM, Allam S, Elsadek BEM, Salama SA, Ali SS. The effect of aryl hydrocarbon receptor ligands on gentamicin-induced nephrotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16189-16202. [PMID: 32112355 DOI: 10.1007/s11356-020-08073-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs)/aryl hydrocarbon receptor (AhR) regulate the expression of target genes, including drug transporter genes which harbor xenobiotic response element (XRE) in their promoter regions. Thus, PAHs/AhR could alter the toxicokinetic profile of many nephrotoxic drugs, including aminoglycosides. In the current study, we investigated the expression and localization of AhR and megalin in rat kidney. Furthermore, we investigated whether AhR and its ligands could modulate the expression of megalin and consequently the gentamicin-induced nephrotoxicity (GN) in rats. Both megalin and AhR receptors are expressed in the proximal tubules of the rat kidney. Treatment with AhR agonist benzo(a)pyrene aggravated GN as indicated by a significant increase in serum creatinine, BUN, KIM1, NAGL, CD-86, and urinary albumin/creatinine ratio. On the other hand, treatment with AhR antagonist resveratrol ameliorated GN as manifested by a pronounced decrease in the aforementioned parameters. The effects of AhR ligands on GN were associated with altered expression of megalin receptor.
Collapse
Affiliation(s)
- Mahmoud Mohamed Mokhtar
- Biochemistry Department-Faculty of Pharmacy (Boys), Al-Azhar University, Almokhayam Aldaem Street, 6th Province, Nasr City, Cairo, 13465, Egypt.
| | - Emad Gamil Khidr
- Biochemistry Department-Faculty of Pharmacy (Boys), Al-Azhar University, Almokhayam Aldaem Street, 6th Province, Nasr City, Cairo, 13465, Egypt
| | - Hesham Mohamed Shaban
- Biochemistry Department-Faculty of Pharmacy (Boys), Al-Azhar University, Almokhayam Aldaem Street, 6th Province, Nasr City, Cairo, 13465, Egypt
| | - Shady Allam
- Pharmacology and Toxicology Department-Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Bakheet E M Elsadek
- Biochemistry Department-Faculty of Pharmacy (Boys), Assuit Branch, Al-Azhar University, Assuit, Egypt
| | - Salama Abdou Salama
- Pharmacology and Toxicology Department-Faculty of Pharmacy (Boys), Al-Azhar University, Almokhayam Aldaem Street, 6th Province, Nasr City, Cairo, 13465, Egypt
| | - Shawkey Saddik Ali
- Biochemistry Department-Faculty of Pharmacy (Boys), Al-Azhar University, Almokhayam Aldaem Street, 6th Province, Nasr City, Cairo, 13465, Egypt
| |
Collapse
|
20
|
Jiang M, Taghizadeh F, Steyger PS. Potential Mechanisms Underlying Inflammation-Enhanced Aminoglycoside-Induced Cochleotoxicity. Front Cell Neurosci 2017; 11:362. [PMID: 29209174 PMCID: PMC5702304 DOI: 10.3389/fncel.2017.00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics remain widely used for urgent clinical treatment of life-threatening infections, despite the well-recognized risk of permanent hearing loss, i.e., cochleotoxicity. Recent studies show that aminoglycoside-induced cochleotoxicity is exacerbated by bacteriogenic-induced inflammation. This implies that those with severe bacterial infections (that induce systemic inflammation), and are treated with bactericidal aminoglycosides are at greater risk of drug-induced hearing loss than previously recognized. Incorporating this novel comorbid factor into cochleotoxicity risk prediction models will better predict which individuals are more predisposed to drug-induced hearing loss. Here, we review the cellular and/or signaling mechanisms by which host-mediated inflammatory responses to infection could enhance the trafficking of systemically administered aminoglycosides into the cochlea to enhance the degree of cochleotoxicity over that in healthy preclinical models. Once verified, these mechanisms will be potential targets for novel pharmacotherapeutics that reduce the risk of drug-induced hearing loss (and acute kidney damage) without compromising the life-saving bactericidal efficacy of aminoglycosides.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
21
|
Selim A, Khalaf MM, Gad AM, Abd El-Raouf OM. Evaluation of the possible nephroprotective effects of vitamin E and rosuvastatin in amikacin-induced renal injury in rats. J Biochem Mol Toxicol 2017; 31. [PMID: 28683192 DOI: 10.1002/jbt.21957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/02/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
Abstract
Amikacin (AMIK) is an aminoglycoside antibiotic that possesses considerable nephrotoxic adverse effects. This study examined the protective effects of vitamin E (VIT. E) or rosuvastatin (ROSU) against AMIK-induced nephrotoxicity. For this purpose, eight groups of rats were used. Two control groups received saline and vehicle, AMIK group (1.2 g/kg, i.p.), VIT. E group (1000 mg/kg; p.o.), ROSU group (10 mg/kg; p.o.), AMIK + VIT. E group, AMIK + ROSU group, and combination group. The results showed that AMIK significantly increased serum levels of urea and creatinine. Meanwhile, serum levels of total protein and albumin were decreased. The kidney content of malondialdehyde was increased, whereas glutathione content and catalase activity were decreased. Tumor necrosis factor-α and nuclear transcriptional factor levels were increased. Conversely, administration of VIT. E and/or ROSU with AMIK ameliorated such damage and reduced DNA fragmentation, apoptosis, and necrosis. In conclusion, co-administration of VIT. E, ROSU, or their combination alleviated AMIK-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ahmed Selim
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ola M Abd El-Raouf
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
22
|
Effects of Aminoglycoside Antibiotics on Human Embryonic Stem Cell Viability during Differentiation In Vitro. Stem Cells Int 2017; 2017:2451927. [PMID: 29147115 PMCID: PMC5632925 DOI: 10.1155/2017/2451927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/30/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022] Open
Abstract
Human embryonic stem cells (hESCs) are being used extensively in array of studies to understand different mechanisms such as early human embryogenesis, drug toxicity testing, disease modeling, and cell replacement therapy. The protocols for the directed differentiation of hESCs towards specific cell types often require long-term cell cultures. To avoid bacterial contamination, these protocols include addition of antibiotics such as pen-strep and gentamicin. Although aminoglycosides, streptomycin, and gentamicin have been shown to cause cytotoxicity in various animal models, the effect of these antibiotics on hESCs is not clear. In this study, we found that antibiotics, pen-strep, and gentamicin did not affect hESC cell viability or expression of pluripotency markers. However, during directed differentiation towards neural and hepatic fate, significant cell death was noted through the activation of caspase cascade. Also, the expression of neural progenitor markers Pax6, Emx2, Otx2, and Pou3f2 was significantly reduced suggesting that gentamicin may adversely affect early embryonic neurogenesis whereas no effect was seen on the expression of endoderm or hepatic markers during differentiation. Our results suggest that the use of antibiotics in cell culture media for the maintenance and differentiation of hESCs needs thorough investigation before use to avoid erroneous results.
Collapse
|
23
|
Oroojalian F, Rezayan AH, Shier WT, Abnous K, Ramezani M. Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl- polyethylenimine -containing nanoplexes. Int J Pharm 2017; 523:102-120. [DOI: 10.1016/j.ijpharm.2017.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 01/09/2023]
|
24
|
Casanova AG, Vicente-Vicente L, Hernández-Sánchez MT, Pescador M, Prieto M, Martínez-Salgado C, Morales AI, López-Hernández FJ. Key role of oxidative stress in animal models of aminoglycoside nephrotoxicity revealed by a systematic analysis of the antioxidant-to-nephroprotective correlation. Toxicology 2017; 385:10-17. [PMID: 28472626 DOI: 10.1016/j.tox.2017.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 12/31/2022]
Abstract
The clinical utility of aminoglycoside antibiotics is partly limited by their nephrotoxicity. Co-administration of a variety of candidate nephroprotectants has been tested at the preclinical level. According to a recent meta-analytic study, antioxidants are the only family of compounds with enough preclinical documentation to draw solid conclusions on their class nephroprotective capacity in animal models. In this study a systematic analysis of the relation between the level of antioxidation and the level of nephroprotection was performed. A regression model is presented which crosses the y-axis (i.e. the axis representing the level of nephroprotection) very nearly the zero value, meaning that maximal prevention of the oxidative stress induced by aminoglycosides results in almost maximal nephroprotection. This indicates that oxidative stress plays a central role in the hierarchy of pathophysiological mechanisms underlying aminoglycoside nephrotoxicity. In addition, this model may potentially serve: i) as a standard to evaluate the role of the antioxidant effect of candidate nephroprotectants; ii) to reveal additional, antioxidant-independent effects among those compounds providing more nephroprotection than that expected from its antioxidant activity; and thus iii) to discriminate and focus most effective nephroprotectants on clinical usage.
Collapse
Affiliation(s)
- Alfredo G Casanova
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Laura Vicente-Vicente
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - María Teresa Hernández-Sánchez
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Moisés Pescador
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Marta Prieto
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Carlos Martínez-Salgado
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Ana I Morales
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain
| | - Francisco J López-Hernández
- Unidad de Toxicología, Departamento de Fisiología y Farmacología, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL-IESCYL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Valladolid, Spain.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Magnesium (Mg) imbalances are frequently overlooked. Hypermagnesemia usually occurs in preeclamptic women after Mg therapy or in end-stage renal disease patients, whereas hypomagnesemia is more common with a prevalence of up to 15% in the general population. Increasing evidence points toward a role for mild-to-moderate chronic hypomagnesemia in the pathogenesis of hypertension, type 2 diabetes mellitus, and metabolic syndrome. RECENT FINDINGS The kidneys are the major regulator of total body Mg homeostasis. Over the last decade, the identification of the responsible genes in rare genetic disorders has enhanced our understanding of how the kidney handles Mg. The different genetic disorders and medications contributing to abnormal Mg homeostasis are reviewed. SUMMARY As dysfunctional Mg homeostasis contributes to the development of many common human disorders, serum Mg deserves closer monitoring. Hypomagnesemic patients may be asymptomatic or may have mild symptoms. In severe hypomagnesemia, patients may present with neurological symptoms such as seizures, spasms, or cramps. Renal symptoms include nephrocalcinosis and impaired renal function. Most conditions affect tubular Mg reabsorption by disturbing the lumen-positive potential in the thick ascending limb or the negative membrane potential in the distal convoluted tubule.
Collapse
|
26
|
Protective effect of dexpanthenol against nephrotoxic effect of amikacin: An experimental study. Biomed Pharmacother 2017; 89:1409-1414. [PMID: 28320109 DOI: 10.1016/j.biopha.2017.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Amikacin has the largest spectrum among aminoglycosides, its nephrotoxic effect limits its utilization. Our purpose in this study is to review the protective effect of dexpanthenol against the nephrotoxic effect of amikacin, accompanied with histopathological and biochemical parameters. METHODS 32 rats were randomly separated into four groups with eight in each (amikacin (1.2mg/kg/day), amikacin (1.2mg/kg/day)+dexpanthenol (500mg/kg/day), dexpanthenol (500mg/kg/day) and control). In order to assess the oxidative balance and renal damage between groups, biochemical parameters (total antioxidant capacity (TAS), total oxidant stress (TOS), catalase (CAT), paraoxonase (PON), arylesterase (ARES), urea, and creatinin) were studied from the blood samples. At the end of the 14th day, renal tissues were reviewed blindly by a pathologist. RESULTS TOS and oxidative stress index (OSI) values were significantly lower in the group which was administered with dexpanthenol+amikacin compared to the group which only received amikacin (respectively, p=0.001, p=0.002). Antioxidant biochemical parameters (TAS, CAT, PON, and ARES) were significantly higher in the group which was administered with dexpanthenol+amikacin compared to the group administered only with amikacin (respectively, p=0.007, p=0.001, p=0.003, p=0.003). Urea and creatitin values were found to be significantly lower in the group which was administered with dexpanthenol+amikacin compared to the group administered only with amikacin (respectively, p=0.002, p=0.001). Histopathologic changes such as glomerular and tubular epithelium changes and interstitial edema were clearly observed in the group administered only with amikacin, such findings were insignificant in the group administered with dexpanthenol+amikacin. CONCLUSION It was revealed with biochemical and histopathologic data that nephrotoxic effects created by amikacin administration can be limited with dexpanthenol by using them together, and further advanced clinical studies are required.
Collapse
|
27
|
Cocucci E, Kim JY, Bai Y, Pabla N. Role of Passive Diffusion, Transporters, and Membrane Trafficking-Mediated Processes in Cellular Drug Transport. Clin Pharmacol Ther 2016; 101:121-129. [PMID: 27804130 DOI: 10.1002/cpt.545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Abstract
Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation.
Collapse
Affiliation(s)
- E Cocucci
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - J Y Kim
- Division of Pharmaceutics, School of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Y Bai
- Division of Pharmaceutics, School of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - N Pabla
- Division of Pharmaceutics, School of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
Domi R, Huti G, Sula H, Baftiu N, Kaci M, Bodeci A, Pesha A. From Pre-Existing Renal Failure to Perioperative Renal Protection: The Anesthesiologist's Dilemmas. Anesth Pain Med 2016; 6:e32386. [PMID: 27642570 PMCID: PMC5018084 DOI: 10.5812/aapm.32386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/26/2015] [Accepted: 10/17/2015] [Indexed: 01/08/2023] Open
Abstract
CONTEXT Pre-existing renal dysfunction presents specific features that anesthesiologists must deal with. Anesthesia and renal function are connected and can interfere with each other. Induced hypotension anesthesia and the toxic effects of anesthetic drugs can further deteriorate renal function. EVIDENCE ACQUISITION Decreased renal function can prolong anesthetic drug effects by decreased elimination of these drugs. Anesthesia can deteriorate renal function and decreased renal function can interfere with drug elimination leading to their prolonged effect. The anesthesiologist must understand all the physiological aspects of the patient, renal protection, and the relationships between anesthetic drugs and renal function. This review article aims to summarize these aspects. RESULTS Perioperative renal failure and renal protection is a crucial moment in clinical practice of every anesthesiologist. CONCLUSIONS Good knowledges for renal function remain a hallmark of daily practice of the anesthesiologist, considering renal function as an important determinant factor in anesthesia practice.
Collapse
Affiliation(s)
- Rudin Domi
- Department of Anesthesiology and Intensive Care Medicine, “Mother Teresa” University Hospital Center, Faculty of Medicine, Medical University of Albania, Tirana, Albania
- Corresponding author: Rudin Domi, Department of Anesthesiology and Intensive Care Medicine, “Mother Teresa” University Hospital Center, Faculty of Medicine, Medical University of Albania, Tirana, Albania. Tel: +355-682067003, E-mail:
| | - Gentian Huti
- Department of Anesthesia, American Hospital, Tirana, Albania
| | - Hektor Sula
- Department of Anesthesiology and Intensive Care Medicine, “Mother Teresa” University Hospital Center, Faculty of Medicine, Medical University of Albania, Tirana, Albania
| | - Nehat Baftiu
- Clinic of Anesthesiology and Intensive Care, University Clinic Center, Faculty of Medicine, “Hasan Prishtina” University, Prishtine, Kosovo
| | - Myzafer Kaci
- Department of Anesthesiology and Intensive Care Medicine, “Mother Teresa” University Hospital Center, Faculty of Medicine, Medical University of Albania, Tirana, Albania
| | - Artan Bodeci
- Department of Anesthesiology and Intensive Care Medicine, “Mother Teresa” University Hospital Center, Faculty of Medicine, Medical University of Albania, Tirana, Albania
| | - Albert Pesha
- Clinic of Surgery, Regional Hospital, Fier, Albania
| |
Collapse
|
29
|
|
30
|
Blázquez-Medela AM, García-Sánchez O, Quirós Y, Blanco-Gozalo V, Prieto-García L, Sancho-Martínez SM, Romero M, Duarte JM, López-Hernández FJ, López-Novoa JM, Martínez-Salgado C. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations. Medicine (Baltimore) 2015; 94:e1617. [PMID: 26469898 PMCID: PMC4616806 DOI: 10.1097/md.0000000000001617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys.We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage.Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments.The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening.KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage.
Collapse
Affiliation(s)
- Ana M Blázquez-Medela
- From the Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Spain (AMB-M, OG-S, LP-G, SMS-M, FJL-H, JML-N, CM-S); Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain (AMB-M, LP-G, SMS-M, FJL-H, JML-N, CM-S); Bio-inRen S.L., Salamanca, Spain (YQ, VB-G); Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Spain (MR, JMD); and Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Hospital Universitario de Salamanca, Spain (FJL-H, CM-S)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cárdenas-González M, Jacobo Estrada T, Rodríguez-Muñoz R, Barrera-Chimal J, Bobadilla NA, Barbier OC, Del Razo LM. Sub-chronic exposure to fluoride impacts the response to a subsequent nephrotoxic treatment with gentamicin. J Appl Toxicol 2015; 36:309-19. [DOI: 10.1002/jat.3186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Mariana Cárdenas-González
- Departamento de Toxicología; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN); México D. F. Mexico
| | - Tania Jacobo Estrada
- Departamento de Toxicología; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN); México D. F. Mexico
| | - Rafael Rodríguez-Muñoz
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN); México D. F. Mexico
| | - Jonatan Barrera-Chimal
- Unidad de Fisiología Molecular. Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; México D. F. Mexico
| | - Norma A. Bobadilla
- Unidad de Fisiología Molecular. Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; México D. F. Mexico
| | - Olivier C. Barbier
- Departamento de Toxicología; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN); México D. F. Mexico
| | - Luz M. Del Razo
- Departamento de Toxicología; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN); México D. F. Mexico
| |
Collapse
|
32
|
Akour AA, Kennedy MJ, Gerk PM. The Role of Megalin in the Transport of Gentamicin Across BeWo Cells, an In Vitro Model of the Human Placenta. AAPS JOURNAL 2015; 17:1193-9. [PMID: 25986422 DOI: 10.1208/s12248-015-9778-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/24/2015] [Indexed: 11/30/2022]
Abstract
Aminoglycosides (AG) are known to readily cross the placenta, although the mechanisms responsible for placental transport have not been characterized. Megalin is expressed in human placenta, and it is reasonable to speculate, given its role in renal AG uptake, that it is similarly involved in placental transport. However, the role of megalin in placental AG uptake has not been established. An in vitro model to study megalin-mediated placental transport has also not been previously described. The objectives of this study, therefore, were to evaluate the human choriocarcinoma (BeWo) cell line as a model to study megalin-mediated placental transport and to assess the uptake kinetics of gentamicin, an AG antibiotic, using this in vitro model. BeWo cells were grown on Transwell® plates, and megalin expression and functional activity were assessed. Uptake of (3)H-gentamicin was also evaluated in the presence and absence of megalin inhibitors. Expression of megalin protein and mRNA in BeWo cells were confirmed via immunoblot and qPCR analysis. Uptake of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) (a megalin substrate) was time-, concentration-, and temperature-dependent consistent with a transporter-mediated process. FITC-BSA uptake was also significantly reduced in the presence of unlabeled gentamicin (a megalin substrate) and sodium maleate (to induce megalin shedding) suggesting that megalin is functionally active in BeWo cells. Gentamicin uptake exhibited time and temperature dependence, saturability and Michaelis-Menten kinetics, all of which suggest a transporter-mediated process. Gentamicin uptake was also significantly reduced in the presence of the megalin inhibitors RAP and EDTA suggesting that megalin is likely involved in gentamicin uptake.
Collapse
Affiliation(s)
- Amal A Akour
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | |
Collapse
|
33
|
Akour AA, Gerk P, Kennedy MJ. Megalin expression in human term and preterm placental villous tissues: effect of gestational age and sample processing and storage time. J Pharmacol Toxicol Methods 2014; 71:147-54. [PMID: 25304941 DOI: 10.1016/j.vascn.2014.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/03/2014] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The aims of this study were to characterize megalin expression in human term and preterm placental villous tissues and to assess the impact of gestational age and sample storage on receptor expression. METHODS Placental tissue samples were collected from pregnant women undergoing term and preterm Cesarean deliveries. Placental villous tissues were used to quantify megalin protein and mRNA expression by western blotting and quantitative polymerase chain reaction (q-PCR), respectively. Stability of megalin expression was also evaluated under various processing and storage conditions. RESULTS Megalin mRNA was detected in term and preterm placental villous tissues. Expression in early preterm samples was 6-fold higher than in late preterm and term samples. Refrigeration of processed term samples at 4°C for up to 18h had a slight impact on megalin mRNA expression with stored samples exhibiting mRNA levels approximately 1.5-fold lower than those frozen immediately after processing. A greater decrease in mRNA expression (up to 33-fold) was observed when processed samples were snap-frozen immediately and thawed at 4°C. Processing of samples prior to refrigeration also appeared to improve mRNA stability with significantly higher expression levels noted in processed vs. unprocessed samples at all points for up to 48h. DISCUSSION These data suggest that expression of megalin mRNA in term placental villous tissue is relatively stable for up to 18h when samples are processed immediately and refrigerated at 4°C prior to freezing. Processing prior to storage also appears to improve mRNA stability. This paper demonstrates the practical feasibility of analyzing stored tissue samples, thus, it will help with placental mRNA analysis. Additionally, megalin expression appears to vary inversely with gestational age with the greatest expression noted in the most premature samples. Age-dependent differences in placental megalin may therefore influence fetal exposure.
Collapse
Affiliation(s)
- Amal A Akour
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Phillip Gerk
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Mary Jayne Kennedy
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
34
|
Blázquez-Medela AM, García-Sánchez O, Blanco-Gozalo V, Quiros Y, Montero MJ, Martínez-Salgado C, López-Novoa JM, López-Hernández FJ. Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats. PLoS One 2014; 9:e105988. [PMID: 25148248 PMCID: PMC4141836 DOI: 10.1371/journal.pone.0105988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/25/2014] [Indexed: 01/12/2023] Open
Abstract
Background Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Methods Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Results Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Conclusions Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion.
Collapse
Affiliation(s)
- Ana M. Blázquez-Medela
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
- Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain
| | - Omar García-Sánchez
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
- Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain
| | - Víctor Blanco-Gozalo
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Unidad de Investigación, Hospital Universitario de Salamanca, Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
- Bio-inRen, S.L., Salamanca, Spain
| | - Yaremi Quiros
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
- Bio-inRen, S.L., Salamanca, Spain
| | - María J. Montero
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Carlos Martínez-Salgado
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Unidad de Investigación, Hospital Universitario de Salamanca, Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
- Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain
| | - José M. López-Novoa
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
- Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain
| | - Francisco J. López-Hernández
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Unidad de Investigación, Hospital Universitario de Salamanca, Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
- Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo, Madrid, Spain
- * E-mail:
| |
Collapse
|
35
|
Nagai J, Takano M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem Pharmacol 2014; 90:331-7. [PMID: 24881578 DOI: 10.1016/j.bcp.2014.05.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 11/18/2022]
Abstract
Aminoglycoside antibiotics such as gentamicin and amikacin are well recognized as a clinically important antibiotic class because of their reliable efficacy and low cost. However, the clinical use of aminoglycosides is limited by their nephrotoxicity and ototoxicity. Nephrotoxicity is induced mainly due to high accumulation of the antibiotics in renal proximal tubular cells. Therefore, a lot of studies on characterization of the renal transport system for aminoglycosides so far reported involved various in-vivo and in-vitro techniques. Early studies revealed that aminoglycosides are taken up through adsorptive endocytosis in renal epithelial cells. Subsequently, it was found that megalin, a multiligand endocytic receptor abundantly expressed on the apical side of renal proximal tubular cells, can bind aminoglycosides and that megalin-mediated endocytosis plays a crucial role in renal accumulation of aminoglycosides. Therefore, megalin has been suggested to be a promising molecular target for the prevention of aminoglycoside-induced nephrotoxicity. On the other hand, recently, some reports have indicated that aminoglycosides are transported via a pathway that does not require endocytosis, such as non-selective cation channel-mediated entry, in cultured renal tubular cells as well as cochlear outer hair cells. In this commentary article, we review the cellular transport of aminoglycosides in renal epithelial cells, focusing on endocytosis-dependent and -independent pathways.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
36
|
Acquired resistance of Listeria monocytogenes in and escaped from liver parenchymal cells to gentamicin is caused by being coated with their plasma membrane. Microbes Infect 2014; 16:237-43. [DOI: 10.1016/j.micinf.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/22/2013] [Accepted: 11/09/2013] [Indexed: 11/24/2022]
|
37
|
Mahadevappa R, Nielsen R, Christensen EI, Birn H. Megalin in acute kidney injury: foe and friend. Am J Physiol Renal Physiol 2013; 306:F147-54. [PMID: 24197071 DOI: 10.1152/ajprenal.00378.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney proximal tubule is a key target in many forms of acute kidney injury (AKI). The multiligand receptor megalin is responsible for the normal proximal tubule uptake of filtered molecules, including nephrotoxins, cytokines, and markers of AKI. By mediating the uptake of nephrotoxins, megalin plays an essential role in the development of some types of AKI. However, megalin also mediates the tubular uptake of molecules implicated in the protection against AKI, and changes in megalin expression have been demonstrated in AKI in animal models. Thus, modulation of megalin expression in response to AKI may be an important part of the tubule cell adaption to cellular protection and regeneration and should be further investigated as a potential target of intervention. This review explores current evidence linking megalin expression and function to the development, diagnosis, and progression of AKI as well as renal protection against AKI.
Collapse
Affiliation(s)
- Ravikiran Mahadevappa
- Dept. of Biomedicine, Aarhus Univ., Wilhelm Meyers Allé 3, Bldg. 1234, Aarhus DK-8000, Denmark.
| | | | | | | |
Collapse
|
38
|
Wang X, Lin Y, Zeng Y, Sun X, Gong T, Zhang Z. Effects of mycophenolic acid–glucosamine conjugates on the base of kidney targeted drug delivery. Int J Pharm 2013; 456:223-34. [DOI: 10.1016/j.ijpharm.2013.07.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/04/2013] [Accepted: 07/21/2013] [Indexed: 10/26/2022]
|
39
|
Megalin contributes to kidney accumulation and nephrotoxicity of colistin. Antimicrob Agents Chemother 2013; 57:6319-24. [PMID: 24100504 DOI: 10.1128/aac.00254-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interest has recently been shown again in colistin because of the increased prevalence of infections caused by multidrug-resistant Gram-negative bacteria. Although the potential for nephrotoxicity is a major dose-limiting factor in colistin use, little is known about the mechanisms that underlie colistin-induced nephrotoxicity. In this study, we focused on an endocytosis receptor, megalin, that is expressed in renal proximal tubules, with the aim of clarifying the role of megalin in the kidney accumulation and nephrotoxicity of colistin. We examined the binding of colistin to megalin by using a vesicle assay. The kidney accumulation, urinary excretion, and concentrations in plasma of colistin in megalin-shedding rats were also evaluated. Furthermore, we examined the effect of megalin ligands and a microtubule-depolymerizing agent on colistin-induced nephrotoxicity. We found that cytochrome c, a typical megalin ligand, inhibited the binding of colistin to megalin competitively. In megalin-shedding rats, renal proximal tubule colistin accumulation was decreased (13.5 ± 1.6 and 21.3 ± 2.6 μg in megalin-shedding and control rats, respectively). Coadministration of colistin and cytochrome c or albumin fragments resulted in a significant decrease in urinary N-acetyl-β-d-glucosaminidase (NAG) excretion, a marker of renal tubular damage (717.1 ± 183.9 mU/day for colistin alone, 500.8 ± 102.4 mU/day for cytochrome c with colistin, and 406.7 ± 156.7 mU/day for albumin fragments with colistin). Moreover, coadministration of colistin and colchicine, a microtubule-depolymerizing agent, resulted in a significant decrease in urinary NAG excretion. In conclusion, our results indicate that colistin acts as a megalin ligand and that megalin plays a key role in the accumulation in the kidney and nephrotoxicity of colistin. Megalin ligands may be new targets for the prevention of colistin-induced nephrotoxicity.
Collapse
|
40
|
Cisplatin-induced ototoxicity in pediatric solid tumors: the role of glutathione S-transferases and megalin genetic polymorphisms. J Pediatr Hematol Oncol 2013; 35:e138-43. [PMID: 23274376 DOI: 10.1097/mph.0b013e3182707fc5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cisplatin-induced ototoxicity, an important dose-limiting side effect, has proven high interindividual variability. Glutathione S-transferases (GSTs) are isoenzymes involved in cellular detoxification processes. Megalin has been demonstrated to bind aminoglycosides, known to be similar to cisplatin for their ototoxicity. The GSTs and megalin expression is genetically polymorphic, which might be responsible for the variability in cisplatin-induced ototoxicity. The genotyping of GSTM1, GSTT1 polymorphisms, and 2 nonsynonymous single nucleotide polymorphisms (SNPs) at megalin genes, rs2075252 and rs2228171, were performed in 68 children diagnosed with solid tumors who received cisplatin-based chemotherapy. After the end of treatment, audiometry demonstrated hearing loss in 79.4% of patients according to Brock classification. The cumulative cisplatin dose >400 mg/m is associated with increased risk of cisplatin-induced ototoxicity [odds ratio (OR), 17.5; 95% confidence interval (CI), 3.09-98.62]. GSTT1 wild genotype and C-allele of rs2228171 SNPs of megalin gene occurred with higher frequency in patients with ototoxicity (P=0.023; OR, 10; 95% CI, 1.80-56.00 and P=0.034; OR, 2.67; 95% CI, 1.22-5.82, respectively). In conclusion, our results suggested that GSTT1 wild genotype and C-allele of rs2228171 SNPs might be risk factors for ototoxicity. The cumulative cisplatin dose <400 mg/m should be beneficial in order to ameliorate ototoxicity.
Collapse
|
41
|
Konopska B, Gburek J, Gołąb K, Warwas M. Influence of aminoglycoside antibiotics on chicken cystatin binding to renal brush-border membranes. J Pharm Pharmacol 2013; 65:988-94. [DOI: 10.1111/jphp.12058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023]
Abstract
Abstract
Objectives
Drug-induced kidney injury is a serious adverse event which needs to be monitored during aminoglycoside therapy. Urine cystatin C is considered an early and sensitive marker of nephrotoxicity. Cystatin C, a low-molecular-weight serum protein, and basic drugs have a common transport system expressed in the apical membrane of renal proximal tubular cells. The aim of this study was to investigate whether aminoglycoside antibiotics influenced cystatin C binding to the renal brush-border membrane.
Methods
The binding study was performed using a rapid filtration technique and affinity column displacement method.
Key findings
Concentration-dependent inhibition of chicken cystatin binding to brush-border membranes by gentamicin was observed. The gentamicin interaction with brush-border membranes was of relatively low affinity (Ki = 32 μm) in comparison with the chicken cystatin affinity to the binding sites (Kd = 3.6 μm). Amikacin and gentamicin were only able to displace chicken cystatin from the chromatographic affinity column in concentrations several times higher than normally found in the tubular fluid during standard aminoglycoside therapy.
Conclusion
Cystatin reabsorption in the proximal tubule cannot be significantly affected by aminoglycoside antibiotics because of their relatively low affinity to common binding sites on the brush-border membrane.
Collapse
Affiliation(s)
- Bogusława Konopska
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Gburek
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Krzysztof Gołąb
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Maria Warwas
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
42
|
Lin Y, Li Y, Wang X, Gong T, Zhang L, Sun X. Targeted drug delivery to renal proximal tubule epithelial cells mediated by 2-glucosamine. J Control Release 2013; 167:148-56. [PMID: 23415893 DOI: 10.1016/j.jconrel.2013.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/23/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
In order to develop a novel kidney-targeted drug delivery system, we synthesized prednisolone carbamate-glucosamine conjugate (PCG) using 2-glucosamine as a ligand, and investigated its potential targeting efficacy. In vitro studies demonstrated that PCG could remarkably improve the uptake of drug by kidney cells. And the specific uptake of PCG could be largely reduced by the inhibitors of megalin receptor. More importantly, PCG showed an excellent kidney targeting property in vivo, and the concentration of the conjugate in the kidney was 8.1-fold higher than that of prednisolone group at 60 min after intravenous injection. Besides, PCG could significantly reverse the disease progression in renal ischemia-reperfusion (I/R) injury animal models. Furthermore, PCG presented no adverse effect on bone density while prednisolone resulted in severe osteoporosis. Thus, it indicated that 2-glucosamine could be a potential ligand for kidney-targeted delivery of prednisolone.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Dagil R, O'Shea C, Nykjær A, Bonvin AMJJ, Kragelund BB. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats: insight from the nmr structure of the 10th complement type repeat domain alone and in complex with gentamicin. J Biol Chem 2012; 288:4424-35. [PMID: 23275343 DOI: 10.1074/jbc.m112.434159] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gentamicin is an aminoglycoside widely used in treatments of, in particular, enterococcal, mycobacterial, and severe Gram-negative bacterial infections. Large doses of gentamicin cause nephrotoxicity and ototoxicity, entering the cell via the receptor megalin. Until now, no structural information has been available to describe the interaction with gentamicin in atomic detail, and neither have any three-dimensional structures of domains from the human megalin receptor been solved. To address this gap in our knowledge, we have solved the NMR structure of the 10th complement type repeat of human megalin and investigated its interaction with gentamicin. Using NMR titration data in HADDOCK, we have generated a three-dimensional model describing the complex between megalin and gentamicin. Gentamicin binds to megalin with low affinity and exploits the common ligand binding motif previously described (Jensen, G. A., Andersen, O. M., Bonvin, A. M., Bjerrum-Bohr, I., Etzerodt, M., Thogersen, H. C., O'Shea, C., Poulsen, F. M., and Kragelund, B. B. (2006) J. Mol. Biol. 362, 700-716) utilizing the indole side chain of Trp-1126 and the negatively charged residues Asp-1129, Asp-1131, and Asp-1133. Binding to megalin is highly similar to gentamicin binding to calreticulin. We discuss the impact of this novel insight for the future structure-based design of gentamicin antagonists.
Collapse
Affiliation(s)
- Robert Dagil
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
44
|
Nagai J, Komeda T, Yumoto R, Takano M. Effect of protamine on the accumulation of gentamicin in opossum kidney epithelial cells. J Pharm Pharmacol 2012; 65:441-6. [DOI: 10.1111/jphp.12005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/11/2012] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The purpose of this study was to examine whether or not protamine, an arginine-rich basic protein mixture, inhibits the accumulation of gentamicin, a nephrotoxic drug, in cultured opossum kidney (OK) epithelial cells.
Methods
The effect of protamine from salmon on accumulation and binding of [3H]gentamicin was investigated in OK cells.
Key findings
Protamine inhibited the binding and accumulation of [3H]gentamicin in a concentration-dependent manner. The accumulation of [14C]inulin, a marker of fluid-phase endocytosis, was not affected by protamine at concentrations up to 1 mm. l-Arginine at concentrations up to 10 mm had no significant effect on the accumulation of [3H]gentamicin. On the other hand, preincubation with 100 μm protamine for 5 min decreased the accumulation of [3H]gentamicin to almost the same extent as coincubation with 100 μm protamine for 60 min.
Conclusions
Our results indicate that protamine decreases the accumulation of gentamicin in OK cells. These findings suggest that protamine or its derivatives might be useful in preventing the nephrotoxicity of aminoglycoside antibiotics including gentamicin.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuji Komeda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
45
|
Monaghan K, Nolan B, Labato M. Feline acute kidney injury: 1. Pathophysiology, etiology and etiology-specific management considerations. J Feline Med Surg 2012; 14:775-84. [PMID: 23087003 PMCID: PMC11112174 DOI: 10.1177/1098612x12464458] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PRACTICAL RELEVANCE Acute kidney injury (AKI) is a frequently recognized disease process in cats that requires immediate and aggressive intervention. A thorough understanding of the pathophysiologic processes underlying AKI and familiarity with the most common etiologies are essential for providing the most effective and timely therapy. Possessing this knowledge will also allow a more accurate prognosis to be given, and afford the best chance of a favorable outcome. CLINICAL CHALLENGES Feline patients often present with vague signs of AKI, which may delay treatment and adversely affect the prognosis. Their response to injury and treatment is often different to that of other species. AUDIENCE This two-part review article is directed at small animal practitioners as well as specialists. Part 1 reviews mechanisms underlying AKI in the cat, as well as etiologies and treatments related to some specific causes of AKI. EVIDENCE BASE The veterinary literature is limited with regards to the pathophysiology of AKI unique to the cat. However, there are numerous feline studies evaluating causes of AKI.
Collapse
Affiliation(s)
- Kelly Monaghan
- Department of Medical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
46
|
Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 2012; 25:450-70. [PMID: 22763634 DOI: 10.1128/cmr.05041-11] [Citation(s) in RCA: 564] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Combination antibiotic therapy for invasive infections with Gram-negative bacteria is employed in many health care facilities, especially for certain subgroups of patients, including those with neutropenia, those with infections caused by Pseudomonas aeruginosa, those with ventilator-associated pneumonia, and the severely ill. An argument can be made for empiric combination therapy, as we are witnessing a rise in infections caused by multidrug-resistant Gram-negative organisms. The wisdom of continued combination therapy after an organism is isolated and antimicrobial susceptibility data are known, however, is more controversial. The available evidence suggests that the greatest benefit of combination antibiotic therapy stems from the increased likelihood of choosing an effective agent during empiric therapy, rather than exploitation of in vitro synergy or the prevention of resistance during definitive treatment. In this review, we summarize the available data comparing monotherapy versus combination antimicrobial therapy for the treatment of infections with Gram-negative bacteria.
Collapse
|
47
|
Sawada T, Nagai J, Okada Y, Yumoto R, Takano M. Gadolinium modulates gentamicin uptake via an endocytosis-independent pathway in HK-2 human renal proximal tubular cell line. Eur J Pharmacol 2012; 684:146-53. [DOI: 10.1016/j.ejphar.2012.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 03/09/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
|
48
|
A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials 2012; 33:4700-11. [DOI: 10.1016/j.biomaterials.2012.02.063] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/29/2012] [Indexed: 01/17/2023]
|
49
|
Comparison of four renal function estimation equations for pharmacokinetic modeling of gentamicin in geriatric patients. Antimicrob Agents Chemother 2012; 56:1862-9. [PMID: 22290966 DOI: 10.1128/aac.05634-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most aminoglycoside pharmacokinetic models include an index of renal function, such as creatinine clearance, to describe drug clearance. However, the best clinical descriptor of renal function for the pharmacokinetic modeling of aminoglycosides has not been established. This analysis was based on 412 gentamicin concentrations from 92 geriatric patients who received intravenous gentamicin for various infectious diseases. Four two-compartment population models were fitted to gentamicin concentrations in a learning set of 64 patients using the nonparametric adaptive grid (NPAG) algorithm. Each model included an index of renal function, namely, the Cockcroft-Gault (CG), Jelliffe (JEL), modification of diet in renal disease (MDRD), or modified MDRD (MDRDm; adjusted to individual body surface area) equation as a covariate influencing gentamicin serum clearance. Goodness of fit and predictive performance of the four models were compared using standard criteria in both the learning set and in a validation set of 28 patients. A final analysis was performed to estimate the population pharmacokinetic parameter values of the entire 92-patient group. In the learning set, the CG-based model best fit the data, followed by JEL-, MDRD-, and MDRDm-based models, with relative reductions of the Akaike information criterion of 29.4, 20.2, 14.2, and 4.2, respectively. Bias and precision of population predictions were significantly different among the four models. In the validation set, individual predictions from the four models showed marginally different biases. The final estimation confirmed the previous results. Specifically, the CG-based model showed predictive performance that was comparable to or better than that of the MDRD-based model at each stage of the analysis. This study shows that methods used to estimate renal function should not be considered interchangeable for the model-based estimation of gentamicin concentrations.
Collapse
|
50
|
Oda K, Yumoto R, Nagai J, Katayama H, Takano M. Mechanism underlying insulin uptake in alveolar epithelial cell line RLE-6TN. Eur J Pharmacol 2011; 672:62-9. [PMID: 22004610 DOI: 10.1016/j.ejphar.2011.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 10/16/2022]
Abstract
For the development of efficient pulmonary delivery systems for protein and peptide drugs, it is important to understand their transport mechanisms in alveolar epithelial cells. In this study, the uptake mechanism for FITC-insulin in cultured alveolar epithelial cell line RLE-6TN was elucidated. FITC-insulin uptake by RLE-6TN cells was time-dependent, temperature-sensitive, and concentration-dependent. The uptake was inhibited by metabolic inhibitors, cytochalasin D, clathrin-mediated endocytosis inhibitors, and dynasore, an inhibitor of dynamin GTPase. On the other hand, no inhibitory effect was observed with caveolae-mediated endocytosis inhibitors and a macropinocytosis inhibitor. Intracellular FITC-insulin was found to be partly transported to the basal side of the epithelial cell monolayers. In addition, colocalization of FITC-insulin and LysoTracker Red was observed on confocal laser scanning microscopy, indicating that FITC-insulin was partly targeted to lysosomes. In accordance with these findings, SDS-PAGE/fluoroimage analysis showed that intact FITC-insulin in the cells was eliminated with time. The possible receptor involved in FITC-insulin uptake by RLE-6TN cells was examined by using siRNA. Transfection of the cells with megalin or insulin receptor siRNA successfully reduced the corresponding mRNA expression. FITC-insulin uptake decreased on the transfection with insulin receptor siRNA, but not that with megalin siRNA. These results suggest that insulin is taken up through endocytosis in RLE-6TN cells, and after the endocytosis, the intracellular insulin is partly degraded in lysosomes and partly transported to the basal side. Insulin receptor, but not megalin, may be involved at least partly in insulin endocytosis in RLE-6TN cells.
Collapse
Affiliation(s)
- Keisuke Oda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | |
Collapse
|