1
|
Deng X, Guo C, Qin H, Zhao L, Li Y, Zhao Z, Li H, Yang L, Wang D, Yuan G. Association between Circulating Ectodysplasin A and Diabetic Kidney Disease. J Diabetes Res 2023; 2023:5087761. [PMID: 37091044 PMCID: PMC10115520 DOI: 10.1155/2023/5087761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 04/25/2023] Open
Abstract
Background Ectodysplasin A (EDA), a member of the TNF family, plays important roles in ectodermal development, while recent studies expanded its regulatory effects on insulin resistance and lipid metabolism. This study was the first time to investigate the correlation between circulating EDA and albuminuria in patients with T2DM. Methods A total of 189 T2DM and 59 healthy subjects were enrolled in the study. We analyzed the concentrations of EDA by ELISA. Plasma glucose, insulin, HbA1c, lipids, creatinine, BUN, and UACR were also measured. Insulin resistance and pancreatic cell function were assessed by HOMA. Results Circulating EDA concentration was significantly increased in T2DM patients and increased with the degree of albuminuria. EDA was positively correlated with age, FIns, HOMA-IR, HOMA-β, Scr, and UACR, and negatively correlated with eGFR. Linear stepwise regression showed that FIns, HOMA-β, and UACR were independent influencing factors of EDA. Logistic regression analysis showed that EDA was independently associated with the occurrence of albuminuria in T2DM. ROC curve showed that EDA had an area under the receiver operating curve of 0.701 [95%CI = (0.625 - 0.777), P < 0.001]. Conclusion EDA is positively correlated with the degree of albuminuria in patients with T2DM and may be involved in the occurrence and progression of diabetic kidney disease (DKD).
Collapse
Affiliation(s)
- Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chang Guo
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huijuan Qin
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanyan Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haoxiang Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Luo Y, Deng D, Lin L, Zhou Y, Wang L, Zou X, Wang X. FGF2 isoforms play distinct roles in tubular epithelial-to-mesenchymal transition in diabetic nephropathy. Exp Cell Res 2022; 420:113355. [PMID: 36115414 DOI: 10.1016/j.yexcr.2022.113355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of different isoforms of Fibroblast growth factor-2 (FGF2) in tubular epithelial-to-mesenchymal transition (EMT) in diabetic nephropathy remains unknown. We aimed to evaluate the role of FGF2 isoforms in the pathogenesis of EMT. MATERIALS AND METHODS Western blot and immunofluorescence were used to assess the expression of FGF2 isoforms in db/db mice and high glucose-stimulated HK2 cells. The effects of specific FGF2 isoforms on EMT were explored via overexpression or knockdown of the corresponding isoform in HK2 cells cultivated in high glucose. RESULTS Expression of low molecular weight (LMW) FGF2 was up-regulated while high molecular weight (HMW) FGF2 was down-regulated in the kidney of db/db mice and HK2 cells cultured in high glucose that underwent EMT. Overexpression of the LMW FGF2 enhanced EMT changes, while overexpression of the HMW FGF2 attenuated EMT. Knockdown of HMW FGF2 in HK2 cells promoted the EMT process. CONCLUSIONS The expression and function of LMW and HMW FGF2 differed in the process of EMT in tubular cells. LMW FGF2 contributed to EMT, while HMW FGF2 played a protective role in the EMT process.
Collapse
Affiliation(s)
- Yingying Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Danfang Deng
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Lamei Lin
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Yikun Zhou
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Lan Wang
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Xinrong Zou
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China.
| |
Collapse
|
3
|
Paul Owens E, Grania Healy H, Andrew Vesey D, Elizabeth Hoy W, Carolyn Gobe G. Targeted biomarkers of progression in chronic kidney disease. Clin Chim Acta 2022; 536:18-28. [PMID: 36041551 DOI: 10.1016/j.cca.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is an increasingly significant health issue worldwide. Early stages of CKD can be asymptomatic and disease trajectory difficult to predict. Not everyone with CKD progresses to kidney failure, where kidney replacement therapy is the only life-sustaining therapy. Predicting which patients will progress to kidney failure would allow better use of targeted treatments and more effective allocation of health resources. Current diagnostic tests to identify patients with progressive disease perform poorly but there is a suite of new and emerging predictive biomarkers with great clinical promise. METHODS This narrative review describes new and emerging biomarkers of pathophysiologic processes of CKD development and progression, accessible in blood or urine liquid biopsies. Biomarkers were selected based on their reported pathobiological functions in kidney injury, inflammation, oxidative stress, repair and fibrosis. Biomarker function and evidence of involvement in CKD development and progression are reported. CONCLUSION Many biomarkers reviewed here have received little attention to date, perhaps because of conflicting conclusions of their utility in CKD. The functional roles of the selected biomarkers in the underlying pathobiology of progression of CKD are a powerful rationale for advancing and validating these molecules as prognosticators and predictors of CKD trajectory.
Collapse
Affiliation(s)
- Evan Paul Owens
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
| | - Helen Grania Healy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
| | - David Andrew Vesey
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Wendy Elizabeth Hoy
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Centre for Chronic Disease, The University of Queensland, Brisbane 4072, Australia
| | - Glenda Carolyn Gobe
- NHMRC CKD CRE (CKD.QLD), The University of Queensland, Brisbane 4072, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia.
| |
Collapse
|
4
|
Deng J, Liu Y, Liu Y, Li W, Nie X. The Multiple Roles of Fibroblast Growth Factor in Diabetic Nephropathy. J Inflamm Res 2021; 14:5273-5290. [PMID: 34703268 PMCID: PMC8524061 DOI: 10.2147/jir.s334996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication in the late stages of diabetes. Currently, the etiology and pathogenesis of DN are not well understood. Even so, available evidence shows its development is associated with metabolism, oxidative stress, cytokine interaction, genetic factors, and renal microvascular disease. Diabetic nephropathy can lead to proteinuria, edema and hypertension, among other complications. In severe cases, it can cause life-threatening complications such as renal failure. Patients with type 1 diabetes, hypertension, high protein intake, and smokers have a higher risk of developing DN. Fibroblast growth factor (FGF) regulates several human processes essential for normal development. Even though FGF has been implicated in the pathological development of DN, the underlying mechanisms are not well understood. This review summarizes the role of FGF in the development of DN. Moreover, the association of FGF with metabolism, inflammation, oxidative stress and fibrosis in the context of DN is discussed. Findings of this review are expected to deepen our understanding of DN and generate ideas for developing effective prevention and treatments for the disease.
Collapse
Affiliation(s)
- Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Key Laboratory of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| |
Collapse
|
5
|
Wakashima T, Tanaka T, Fukui K, Komoda Y, Shinozaki Y, Kobayashi H, Matsuo A, Nangaku M. JTZ-951, an HIF prolyl hydroxylase inhibitor, suppresses renal interstitial fibroblast transformation and expression of fibrosis-related factors. Am J Physiol Renal Physiol 2019; 318:F14-F24. [PMID: 31630548 DOI: 10.1152/ajprenal.00323.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Some preceding studies have provided evidence that hypoxia-inducible factor (HIF)-prolyl hydroxylase (PH) inhibitors have therapeutic potential against tubular interstitial fibrosis (TIF). Recently, transformation of renal interstitial fibroblasts (RIFs) into α-smooth muscle actin-positive myofibroblasts with loss of their hypoxia-inducible erythropoietin (EPO) expression has been hypothesized as the central mechanism responsible for TIF with renal anemia (the RIF hypothesis). These reports have suggested that HIF-PH inhibitors may suppress TIF via suppressing transformation of RIFs. However, the direct effect of HIF-PH inhibitors on transformation of RIFs has not been demonstrated because there has been no appropriate assay system. Here, we established a novel in vitro model of the transformation of RIFs. This model expresses key phenotypic changes such as transformation of RIFs accompanied by loss of their hypoxia-inducible EPO expression, as proposed by the RIF hypothesis. Using this model, we demonstrated that JTZ-951, a newly developed HIF-PH inhibitor, stabilized HIF protein in RIFs, suppressed transformation of RIFs, and maintained their hypoxia-inducible EPO expression. JTZ-951 also suppressed the expression of FGF2, FGF7, and FGF18, which are upregulated during transformation of RIFs. Furthermore, expression of Fgf2, Fgf7, and Fgf18 was correlated with TIF in an animal model of TIF. We also demonstrated that not only FGF2, which is a well-known growth-promoting factor, but also FGF18 promoted proliferation of RIFs. These data suggest that JTZ-951 has therapeutic potential against TIF with renal anemia. Furthermore, FGF2, FGF7, and FGF18, which faithfully reflect the anti-TIF effects of JTZ-951, have potential as TIF biomarkers.
Collapse
Affiliation(s)
- Takeshi Wakashima
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kenji Fukui
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Yasumasa Komoda
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Yuichi Shinozaki
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Hatsue Kobayashi
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Akira Matsuo
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Porta M, Amione C, Barutta F, Fornengo P, Merlo S, Gruden G, Albano L, Ciccarelli M, Ungaro P, Durazzo M, Beguinot F, Berchialla P, Cavallo F, Trento M. The co-activator-associated arginine methyltransferase 1 (CARM1) gene is overexpressed in type 2 diabetes. Endocrine 2019; 63:284-292. [PMID: 30173329 DOI: 10.1007/s12020-018-1740-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE We examined the expression of a panel of epigenetic enzymes catalyzing histone tails post-transcriptional modifications, together with effectors of metabolic and inflammatory alterations, in type 2 diabetes. METHODS Cross-sectional, case-control study of 21 people with type 2 diabetes and 21 matched controls. Total RNA was extracted from white cells and reverse transcribed. PCR primer assays for 84 key genes encoding enzymes known to modify genomic DNA and histones were performed. Western blot was performed on lysates using primary antibodies for abnormally expressed enzymes. Hormones and cytokines were measured by multiplex kits. A Bayesian network was built to investigate the relationships between epigenetic, cytokine, and endocrine variables. RESULTS Co-activator-associated aRginine Methyltransferase 1 (CARM1) expression showed a five-fold higher median value, matched by higher protein levels, among patients who also had increased GIP, IL-4, IL-7, IL-13, IL-17, FGF basic, G-CSF, IFN-γ, and TNFα and decreased IP-10. In a Bayesian network approach, CARM1 expression showed a conditional dependence on diabetes, but was independent of all other variables nor appeared to influence any. CONCLUSIONS Increased CARM1 expression in type 2 diabetes suggests that epigenetic mechanisms are altered in human diabetes. The impact of lifestyle and pharmacological treatment on regulation of this enzyme should be further investigated.
Collapse
Affiliation(s)
- Massimo Porta
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy.
| | - Cristina Amione
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Federica Barutta
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Paolo Fornengo
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Stefano Merlo
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Gabriella Gruden
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Luigi Albano
- National Research Council, URT of the Institute of Experimental Endocrinology Oncology "G. Salvatore", Naples, Italy
| | - Marco Ciccarelli
- National Research Council, URT of the Institute of Experimental Endocrinology Oncology "G. Salvatore", Naples, Italy
| | - Paola Ungaro
- National Research Council, URT of the Institute of Experimental Endocrinology Oncology "G. Salvatore", Naples, Italy
| | - Marilena Durazzo
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| | - Francesco Beguinot
- National Research Council, URT of the Institute of Experimental Endocrinology Oncology "G. Salvatore", Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Franco Cavallo
- Department of Public Health and Paediatric Sciences, University of Turin, Turin, Italy
| | - Marina Trento
- Department of Medical Sciences, Laboratory of Clinical Pedagogy, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Strunz CMC, Roggerio A, Cruz PL, Pacanaro AP, Salemi VMC, Benvenuti LA, Mansur ADP, Irigoyen MC. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes. J Nutr Biochem 2017; 40:219-227. [DOI: 10.1016/j.jnutbio.2016.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023]
|
8
|
Hamza AH, Al-Bishri WM, Damiati LA, Ahmed HH. Mesenchymal stem cells: a future experimental exploration for recession of diabetic nephropathy. Ren Fail 2016; 39:67-76. [PMID: 27774826 PMCID: PMC6014323 DOI: 10.1080/0886022x.2016.1244080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The progresses made in stem cell therapy offer an innovative approach and exhibit great potential for the repair of damaged organs and tissues. This study was conducted with a view to find the mechanisms responsible for the effectiveness of bone marrow-derived mesenchymal stem cells (BM-MSCs) in the suppression of diabetes and experimentally-induced diabetic nephropathy. METHODS To realize this objective, diabetic and diabetic nephropathy subject groups that underwent MSC treatment were studied through numerous biochemistry and molecular genetics analyses. RESULTS The findings show that, relative to the control groups, the rats in the diabetic and diabetic nephropathy groups treated with stem cells infused with BM-MSCs showed a significant reversal in the levels of their insulin, glucose, heme-oxygenase-1 (HO-1) serum, and advanced glycation end product (AGEP). Moreover, BM-MSC therapy was also found to have a definite positive effect on the kidney functions. In addition, it also corresponded with a significant decrease in the availability of certain growth factors, namely the fibroblast growth factor (FGF), the platelet-derived growth factor (PDGF), and the transforming growth factor-β (TGF-β). BM-MSC treatment also improved the levels of expression of monocyte chemoatractant-1 (MCP-1) and interleukin-8 (IL-8) genes within kidney tissues. Lastly, the treatment recovered the organizational structure of the kidney and pancreas, a result demonstrated by a histopathological analysis. These results greatly coincide with those obtained through the biochemistry and molecular genetics analyses. CONCLUSION Treatment using BM-MSCs is determined to be definitely effective in cases of diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Amal H Hamza
- a Biochemictry Department, Faculty of Science Al Faisalia , King Abdulaziz University , Jeddah , Saudi Arabia.,b Biochemistry and Nutrition Department, Faculty of Women , Ain Shams University , Cairo , Egypt
| | - Widad M Al-Bishri
- a Biochemictry Department, Faculty of Science Al Faisalia , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Laila A Damiati
- c Biology Department, Faculty of Science , University of Jeddah , Jeddah , Saudi Arabia
| | - Hanaa H Ahmed
- d Hormones Department , National Research Centre , Dokki , Giza , Egypt
| |
Collapse
|
9
|
Abstract
SIGNIFICANCE Peroxisomes are organelles present in most eukaryotic cells. The organs with the highest density of peroxisomes are the liver and kidneys. Peroxisomes possess more than fifty enzymes and fulfill a multitude of biological tasks. They actively participate in apoptosis, innate immunity, and inflammation. In recent years, a considerable amount of evidence has been collected to support the involvement of peroxisomes in the pathogenesis of kidney injury. RECENT ADVANCES The nature of the two most important peroxisomal tasks, beta-oxidation of fatty acids and hydrogen peroxide turnover, functionally relates peroxisomes to mitochondria. Further support for their communication and cooperation is furnished by the evidence that both organelles share the components of their division machinery. Until recently, the majority of studies on the molecular mechanisms of kidney injury focused primarily on mitochondria and neglected peroxisomes. CRITICAL ISSUES The aim of this concise review is to introduce the reader to the field of peroxisome biology and to provide an overview of the evidence about the contribution of peroxisomes to the development and progression of kidney injury. The topics of renal ischemia-reperfusion injury, endotoxin-induced kidney injury, diabetic nephropathy, and tubulointerstitial fibrosis, as well as the potential therapeutic implications of peroxisome activation, are addressed in this review. FUTURE DIRECTIONS Despite recent progress, further studies are needed to elucidate the molecular mechanisms induced by dysfunctional peroxisomes and the role of the dysregulated mitochondria-peroxisome axis in the pathogenesis of renal injury. Antioxid. Redox Signal. 25, 217-231.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, University Medical Center Göttingen , Göttingen, Germany
| |
Collapse
|
10
|
Conserva F, Gesualdo L, Papale M. A Systems Biology Overview on Human Diabetic Nephropathy: From Genetic Susceptibility to Post-Transcriptional and Post-Translational Modifications. J Diabetes Res 2016; 2016:7934504. [PMID: 26798653 PMCID: PMC4698547 DOI: 10.1155/2016/7934504] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Accepted: 09/10/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN), a microvascular complication occurring in approximately 20-40% of patients with type 2 diabetes mellitus (T2DM), is characterized by the progressive impairment of glomerular filtration and the development of Kimmelstiel-Wilson lesions leading to end-stage renal failure (ESRD). The causes and molecular mechanisms mediating the onset of T2DM chronic complications are yet sketchy and it is not clear why disease progression occurs only in some patients. We performed a systematic analysis of the most relevant studies investigating genetic susceptibility and specific transcriptomic, epigenetic, proteomic, and metabolomic patterns in order to summarize the most significant traits associated with the disease onset and progression. The picture that emerges is complex and fascinating as it includes the regulation/dysregulation of numerous biological processes, converging toward the activation of inflammatory processes, oxidative stress, remodeling of cellular function and morphology, and disturbance of metabolic pathways. The growing interest in the characterization of protein post-translational modifications and the importance of handling large datasets using a systems biology approach are also discussed.
Collapse
Affiliation(s)
- Francesca Conserva
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
- Division of Cardiology and Cardiac Rehabilitation, “S. Maugeri” Foundation, IRCCS, Institute of Cassano Murge, 70020 Cassano delle Murge, Italy
| | - Loreto Gesualdo
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
- *Loreto Gesualdo:
| | - Massimo Papale
- Molecular Medicine Center, Section of Nephrology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
11
|
Glypican-5 Increases Susceptibility to Nephrotic Damage in Diabetic Kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1889-98. [PMID: 25987249 DOI: 10.1016/j.ajpath.2015.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/21/2015] [Accepted: 03/09/2015] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes mellitus is a leading health issue worldwide. Among cases of diabetes mellitus nephropathy (DN), the major complication of type 2 diabetes mellitus, the nephrotic phenotype is often intractable to clinical intervention and demonstrates the rapid decline of renal function to end-stage renal disease. We recently identified the gene for glypican-5 (GPC5), a cell-surface heparan sulfate proteoglycan, as conferring susceptibility for acquired nephrotic syndrome and additionally identified an association through a genome-wide association study between a variant in GPC5 and DN of type 2 diabetes mellitus. In vivo and in vitro data showed a progressive increase of GPC5 in type 2 DN along with severity; the excess was derived from glomerular mesangial cells. In this study, diabetic kidney showed that accumulation of fibroblast growth factor (Fgf)2 strikingly induced progressive proteinuria that was avoided in Gpc5 knockdown mice. The efficacy of Gpc5 inhibition was exerted through expression of the Fgf receptors 3 and 4 provoked in the diabetic kidney attributively. Extraglomerular Fgf2 was pathogenic in DN, and the deterrence of Gpc5 effectively inhibited the glomerular accumulation of Fgf2, the subsequent increase of mesangial extracellular matrix, and the podocytes' small GTPase activity. These findings elucidate the pivotal role of GPC5, identified as a susceptible gene in the genome-wide association study, in hyperglycemia-induced glomerulopathy.
Collapse
|
12
|
Iori E, Ruzzene M, Zanin S, Sbrignadello S, Pinna LA, Tessari P. Effects of CK2 inhibition in cultured fibroblasts from Type 1 Diabetic patients with or without nephropathy. Growth Factors 2015; 33:259-66. [PMID: 26340273 DOI: 10.3109/08977194.2015.1073725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CK2 is a multifunctional, pleiotropic protein kinase involved in the regulation of cell proliferation and survival. Since fibroblasts from Type 1 Diabetes patients (T1DM) with Nephropathy exhibit increased proliferation, we studied cell viability, basal CK2 expression and activity, and response to specific CK2 inhibitors TBB (4,5,6,7-tetrabenzotriazole) and CX4945, in fibroblasts from T1DM patients either with (T1DM+) or without (T1DM-) Nephropathy, and from healthy controls (N). We tested expression and phosphorylation of CK2-specific molecular targets. In untreated fibroblasts from T1DM+, the cell viability was higher than in both N and T1DM-. CK2 inhibitors significantly reduced cell viability in all groups, but more promptly and with a larger effect in T1DM+. Differences in CK2-dependent phosphorylation sites were detected. In conclusion, our results unveil a higher dependence of T1DM+ cells on CK2 for their survival, despite a similar expression and a lower activity of this kinase compared with those of normal cells.
Collapse
Affiliation(s)
| | - Maria Ruzzene
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | - Sofia Zanin
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | | | - Lorenzo Alberto Pinna
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
- c Venetian Institute of Molecular Medicine , Padova , Italy
| | | |
Collapse
|
13
|
Lappas M. Markers of endothelial cell dysfunction are increased in human omental adipose tissue from women with pre-existing maternal obesity and gestational diabetes. Metabolism 2014; 63:860-73. [PMID: 24684825 DOI: 10.1016/j.metabol.2014.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the effect of maternal obesity and gestational diabetes mellitus (GDM) on the expression and release of genes involved in endothelial cell dysfunction in human placenta and omental adipose tissue. MATERIALS/METHODS Human placenta and omental adipose tissue were obtained from non-obese and obese normal glucose tolerant (NGT) women and women with GDM at the time of Caesarean section. Quantitative RT-PCR was performed to determine the level of expression. Tissue explants were performed to determine the release of proteins of interest. RESULTS There was no effect of pre-existing maternal obesity or GDM on placental gene expression or secretion of members of the VEGF family members (PLGF and VEGF-A expression and secretion; sFlt-1 release; VEGFR1 and VEGFR2 mRNA expression); FGFR1 mRNA expression, FGF2 mRNA expression and secretion; endoglin mRNA expression and secretion (sEng); and the adhesion molecules ICAM-1 and VCAM-1. On the other hand, in omental adipose tissue, pre-existing maternal obesity and GDM were associated with increased gene expression of PLGF, endoglin and ICAM-1 and increased secretion of PLGF, sFlt-1, FGF2, sEng and sICAM-1. There was, however, no effect of maternal pre-existing obesity and GDM on VEGF-A, VEGFR1, VEGFR2, FGFR1 and VCAM-1 expression or secretion. CONCLUSIONS This study demonstrated the presence of abnormal expression and secretion of angiogenic proteins and adhesion molecules in omental adipose tissue, but not placenta, from pregnant women with GDM and pre-existing maternal obesity. Increased angiogenic and adhesion molecules released from adipose tissue may affect angiogenesis, inflammation and or lipid and glucose metabolism in both mum and her offspring.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
14
|
Humphreys BD. Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy. Semin Nephrol 2013; 32:463-70. [PMID: 23062987 DOI: 10.1016/j.semnephrol.2012.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pericytes are a heterogeneous group of extensively branched cells located in microvessels where they make focal contacts with endothelium. Pericytes stabilize blood vessels, regulate vascular tone, synthesize matrix, participate in repair, and serve as progenitor cells, among other functions. Recent work has highlighted the role of pericytes and pericyte-like cells in fibrosis, in which chronic injury triggers pericyte proliferation and differentiation into collagen-secretory, contractile myofibroblasts with migration away from vessels, causing microvascular rarefaction. In this review the developmental origins of kidney pericytes and perivascular fibroblasts are summarized, pericyte to myofibroblast transition in type I diabetic nephropathy is discussed, and the regulation of pericyte differentiation into myofibroblasts as a therapeutic target for treatment of diabetic nephropathy is described.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
Hodgin JB, Nair V, Zhang H, Randolph A, Harris RC, Nelson RG, Weil EJ, Cavalcoli JD, Patel JM, Brosius FC, Kretzler M. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 2013; 62:299-308. [PMID: 23139354 PMCID: PMC3526018 DOI: 10.2337/db11-1667] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Murine models are valuable instruments in defining the pathogenesis of diabetic nephropathy (DN), but they only partially recapitulate disease manifestations of human DN, limiting their utility. To define the molecular similarities and differences between human and murine DN, we performed a cross-species comparison of glomerular transcriptional networks. Glomerular gene expression was profiled in patients with early type 2 DN and in three mouse models (streptozotocin DBA/2, C57BLKS db/db, and eNOS-deficient C57BLKS db/db mice). Species-specific transcriptional networks were generated and compared with a novel network-matching algorithm. Three shared human-mouse cross-species glomerular transcriptional networks containing 143 (Human-DBA STZ), 97 (Human-BKS db/db), and 162 (Human-BKS eNOS(-/-) db/db) gene nodes were generated. Shared nodes across all networks reflected established pathogenic mechanisms of diabetes complications, such as elements of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and vascular endothelial growth factor receptor (VEGFR) signaling pathways. In addition, novel pathways not previously associated with DN and cross-species gene nodes and pathways unique to each of the human-mouse networks were discovered. The human-mouse shared glomerular transcriptional networks will assist DN researchers in selecting mouse models most relevant to the human disease process of interest. Moreover, they will allow identification of new pathways shared between mice and humans.
Collapse
Affiliation(s)
- Jeffrey B. Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ann Randolph
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Robert G. Nelson
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - E. Jennifer Weil
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - James D. Cavalcoli
- Department of Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jignesh M. Patel
- Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin
| | - Frank C. Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Corresponding author: Frank C. Brosius III,
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Abstract
Interstitial fibrosis, associated with extensive accumulation of extracellular matrix constituents in the cortical interstitium, is directly correlated to progression of renal disease. The earliest histological marker of this progression is the accumulation in the interstitium of fibroblasts with the phenotypic appearance of myofibroblasts. These myofibroblasts are contractile cells that express alpha smooth muscle actin and incorporate it into intracellular stress fibres. Although fibroblasts are histologically visible in normal kidneys, there are relatively few of them and proximal tubular epithelial cells predominate. In progressive disease, however, the interstitium becomes filled with myofibroblasts. In this review, we will examine the phenotype and function of fibroblasts and myofibroblasts in the cortical interstitium and the processes that may modulate them.
Collapse
Affiliation(s)
- Soma Meran
- Institute of Nephrology, School of Medicine, University of Cardiff, Heath Park, UK
| | | |
Collapse
|
17
|
Shevalye H, Stavniichuk R, Xu W, Zhang J, Lupachyk S, Maksimchyk Y, Drel VR, Floyd EZ, Slusher B, Obrosova IG. Poly(ADP-ribose) polymerase (PARP) inhibition counteracts multiple manifestations of kidney disease in long-term streptozotocin-diabetic rat model. Biochem Pharmacol 2009; 79:1007-14. [PMID: 19945439 DOI: 10.1016/j.bcp.2009.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 11/26/2022]
Abstract
Evidence for the important role for poly(ADP-ribose) polymerase (PARP) in the pathogenesis of diabetic nephropathy is emerging. We previously reported that PARP inhibitors counteract early Type 1 diabetic nephropathy. This study evaluated the role for PARP in kidney disease in long-term Type 1 diabetes. Control and streptozotocin-diabetic rats were maintained with or without treatment with the PARP inhibitor 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de] anthracen-3-one (GPI-15,427, Eisai Inc.), 30mgkg(-1)d(-1), for 26 weeks after first 2 weeks without treatment. PARP activity in the renal cortex was assessed by Western blot analysis of poly(ADP-ribosyl)ated proteins. Urinary albumin, isoprostane, and 8-hydroxy-2'-deoxyguanosine excretion, and renal concentrations of transforming growth factor-beta(1), vascular endothelial growth factor, soluble intercellular adhesion molecule-1, fibronectin, and nitrotyrosine were evaluated by ELISA, and urinary creatinine and renal lipid peroxidation products by colorimetric assays. PARP inhibition counteracted diabetes-associated increase in renal cortex poly(ADP-ribosyl)ated protein level. Urinary albumin, isoprostane, and 8-hydroxy-2'-deoxyguanosine excretions and urinary albumin/creatinine ratio were increased in diabetic rats, and all these changes were at least partially prevented by GPI-15,427 treatment. PARP inhibition counteracted diabetes-induced renal transforming growth factor-beta(1), vascular endothelial growth factor, and fibronectin, but not soluble intercellular adhesion molecule-1 and nitrotyrosine, accumulations. Lipid peroxidation product concentrations were indistinguishable among control and diabetic rats maintained with or without GPI-15,427 treatment. In conclusion, PARP activation plays an important role in kidney disease in long-term diabetes. These findings provide rationale for development and further studies of PARP inhibitors and PARP inhibitor-containing combination therapies, for prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Hanna Shevalye
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|