1
|
Losgott T, Schicker KW, Hilber K, Boehm S, Salzer I. Gaussian white noise stimulation as an alternative method to excite sensory neurons. Front Pharmacol 2025; 16:1561905. [PMID: 40331198 PMCID: PMC12053156 DOI: 10.3389/fphar.2025.1561905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Peripheral nerve endings of dorsal root ganglion (DRG) neurons act as nociceptors and generate action potentials in response to noxious stimuli. Primary cultures of dissociated DRG have been used extensively to study changes neuronal excitability caused by either analgesics or pathological conditions, such as inflammation. The dissociation procedure can be viewed as a form of axotomy, and one might expect a resulting increase in excitability of the neurons during the subsequent culture period. However, changes in firing properties of DRG neurons over time in vitro have not been investigated systematically. Methods Thus, the current experiments compared action potential firing in dissociated DRG neurons after one to 7 days in culture and examined Gaussian white noise as novel stimulation paradigm. Primary cultures of DRG neurons were recorded in perforated patch current-clamp. Action potentials were evoked either by a sequence of five rectangular current pulses with increasing amplitudes or by Gaussian white noise of varying RMS amplitudes and frequencies. Results Conventional rectangular current injections triggered 19 ± 20 action potentials in cells when recorded within 24 h after dissociation. After 7 days in culture, DRG neurons fired 4.3 ± 0.7 action potentials in response to current pulses. Inflammatory mediators increased numbers of action potentials evoked by rectangular current pulses within 24 h after dissociation to 66 ± 54, but left those elicited after 7 days in vitro unaltered (4.3 ± 0.5). In the same set of neurons kept in culture for 7 days, Gaussian white noise stimuli triggered 1,540 ± 470 action potentials, and this number was increased to 2089 ± 685 by inflammatory mediators. The Kv7 channel activator retigabine and the paracetamol metabolite n-acetyl-p-benzoquinone imine (NAPQI) decreased numbers of action potentials triggered by Gaussian white noise, but failed to do so when rectangular current pulses were used as stimuli, both in neurons after 7 days in culture. Discussion These results demonstrate a decrease in the excitability of DRG neurons from day one to 7 after dissociation and reveal Gaussian white noise as reliable trigger of action potential firing in these neurons.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Salzer
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Jiang H, Kittipibul V, Mahfoud F, Böhm M, Sobotka PA, Esler M, Wang J, Fudim M. The road to renal denervation for hypertension and beyond (HF): two decades of failed, succeeded, and to be determined. Heart Fail Rev 2025; 30:293-314. [PMID: 39509056 DOI: 10.1007/s10741-024-10463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Activation of the sympathetic nervous system has been attributed to the development of hypertension. Two established approaches for treating hypertension are pharmacotherapy and lifestyle changes. With an improved understanding of renal nerve anatomy and physiology, renal denervation has been proposed as an alternative treatment for hypertension. Specifically, it has been shown that the interruption of sympathetic nerves connecting the kidney and the sympathetic nervous system can reduce blood pressure. Here, we present a review on how renal denervation can help hypertension patients, specifically focusing on our novel understanding of renal nerve anatomy, denervation technique, and subsequent clinical trials, and how it may be used to treat other cardiovascular diseases like heart failure.
Collapse
Affiliation(s)
- Haoran Jiang
- Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Veraprapas Kittipibul
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Felix Mahfoud
- Department of Cardiology, University Heart Center, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, Basel, Switzerland
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Böhm
- Department of Internal Medicine III - Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Paul A Sobotka
- Department of Cardiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Murray Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jie Wang
- The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, Columbia, NY, USA
| | - Marat Fudim
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
3
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2025; 603:1729-1779. [PMID: 39340173 PMCID: PMC11955874 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N. Herring
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - O. A. Ajijola
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| | - R. D. Foreman
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - A. V. Gourine
- Centre for Cardiovascular and Metabolic NeuroscienceUniversity College LondonLondonUK
| | - A. L. Green
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - J. Osborn
- Department of SurgeryUniversity of MinnesotaMinneapolisMNUSA
| | - D. J. Paterson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - J. F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - C. M. Ripplinger
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - C. Smith
- Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandOHUSA
| | - T. L. Vrabec
- Department of Physical Medicine and Rehabilitation, School of MedicineCase Western Reserve UniversityClevelandOHUSA
| | - H. J. Wang
- Department of AnesthesiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - I. H. Zucker
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - J. L. Ardell
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| |
Collapse
|
4
|
Evans LC, Dayton A, Osborn JW. Renal nerves in physiology, pathophysiology and interoception. Nat Rev Nephrol 2025; 21:57-69. [PMID: 39363020 DOI: 10.1038/s41581-024-00893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
Sympathetic efferent renal nerves have key roles in the regulation of kidney function and blood pressure. Increased renal sympathetic nerve activity is thought to contribute to hypertension by promoting renal sodium retention, renin release and renal vasoconstriction. This hypothesis led to the development of catheter-based renal denervation (RDN) for the treatment of hypertension. Two RDN devices that ablate both efferent and afferent renal nerves received FDA approval for this indication in 2023. However, in animal models, selective ablation of afferent renal nerves resulted in comparable anti-hypertensive effects to ablation of efferent and afferent renal nerves and was associated with a reduction in sympathetic nerve activity. Selective afferent RDN also improved kidney function in a chronic kidney disease model. Notably, the beneficial effects of RDN extend beyond hypertension and chronic kidney disease to other clinical conditions that are associated with elevated sympathetic nerve activity, including heart failure and arrhythmia. These findings suggest that the kidney is an interoceptive organ, as increased renal sensory nerve activity modulates sympathetic activity to other organs. Future studies are needed to translate this knowledge into novel therapies for the treatment of hypertension and other cardiorenal diseases.
Collapse
Affiliation(s)
- Louise C Evans
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Alex Dayton
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN, USA
| | - John W Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Lale N, Ditting T, Hilgers KF, Linz P, Ott C, Schmieder RE, Schiffer M, Amann K, Veelken R, Rodionova K. Afferent neurons of the kidney with impaired firing pattern in inflammation - role of sodium currents? Pflugers Arch 2023; 475:1329-1342. [PMID: 37672108 PMCID: PMC10567872 DOI: 10.1007/s00424-023-02852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
Peripheral neurons with renal afferents exhibit a predominantly tonic firing pattern of higher frequency that is reduced to low frequencies (phasic firing pattern) in renal inflammation. We wanted to test the hypothesis that the reduction in firing activity during inflammation is due to high-activity tonic neurons switching from higher to low frequencies depending on altered sodium currents. We identified and cultivated afferent sensory neurons with renal projections from the dorsal root ganglia (Th11-L2). Cultivated neurons were incubated with the chemokine CXCL1 (1,5 nmol/ml) for 12 h. We characterized neurons as "tonic," i.e., sustained action potential (AP) firing, or "phasic," i.e., < 5 APs upon stimulation in the current clamp. Their membrane currents were investigated in a voltage clamp. Data analyzed: renal vs. non-renal and tonic vs. phasic neurons. Renal afferent neurons exposed to CXCL1 showed a decrease in tonic firing pattern (CXCL1: 35,6% vs. control: 57%, P < 0.05). Na+ and K+ currents were not different between control renal and non-renal DRG neurons. Phasic neurons exhibited higher Na+ and K+ currents than tonic resulting in shorter APs (3.7 ± 0.3 vs. 6.1 ± 0.6 ms, P < 0.01). In neurons incubated with CXCL1, Na+ and K+ peak current density increased in phasic (Na+: - 969 ± 47 vs. - 758 ± 47 nA/pF, P < 0.01; K+: 707 ± 22 vs. 558 ± 31 nA/pF, P < 0.01), but were unchanged in tonic neurons. Phasic neurons exposed to CXCL1 showed a broader range of Na+ currents ([- 365- - 1429 nA] vs. [- 412- - 4273 nA]; P < 0.05) similar to tonic neurons. After CXCL1 exposure, significant changes in phasic neurons were observed in sodium activation/inactivation as well as a wider distribution of Na+ currents characteristic of tonic neurons. These findings indicate a subgroup of tonic neurons besides mere tonic or phasic neurons exists able to exhibit a phasic activity pattern under pathological conditions.
Collapse
Affiliation(s)
- Nena Lale
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
- Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
- Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| | - Roland E Schmieder
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany.
- Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany.
| | - Kristina Rodionova
- Department of Internal Medicine 4 Nephrology and Hypertension, Friedrich-Alexander University Erlangen, 91054, Erlangen, Germany
| |
Collapse
|
6
|
Lauar MR, Evans LC, Van Helden D, Fink GD, Banek CT, Menani JV, Osborn JW. Renal and hypothalamic inflammation in renovascular hypertension: role of afferent renal nerves. Am J Physiol Regul Integr Comp Physiol 2023; 325:R411-R422. [PMID: 37519252 PMCID: PMC10639016 DOI: 10.1152/ajpregu.00072.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Renal denervation (RDN) is a potential therapy for drug-resistant hypertension. However, whether its effects are mediated by ablation of efferent or afferent renal nerves is not clear. Previous studies have implicated that renal inflammation and the sympathetic nervous system are driven by the activation of afferent and efferent renal nerves. RDN attenuated the renal inflammation and sympathetic activity in some animal models of hypertension. In the 2 kidney,1 clip (2K1C) model of renovascular hypertension, RDN also decreased sympathetic activity; however, mechanisms underlying renal and central inflammation are still unclear. We tested the hypothesis that the mechanisms by which total RDN (TRDN; efferent + afferent) and afferent-specific RDN (ARDN) reduce arterial pressure in 2K1C rats are the same. Male Sprague-Dawley rats were instrumented with telemeters to measure mean arterial pressure (MAP), and after 7 days, a clip was placed on the left renal artery. Rats underwent TRDN, ARDN, or sham surgery of the clipped kidney and MAP was measured for 6 wk. Weekly measurements of water intake (WI), urine output (UO), and urinary copeptin were conducted, and urine was analyzed for cytokines/chemokines. Neurogenic pressor activity (NPA) was assessed at the end of the protocol calculated by the depressor response after intraperitoneal injection of hexamethonium. Rats were euthanized and the hypothalamus and kidneys removed for measurement of cytokine content. MAP, NPA, WI, and urinary copeptin were significantly increased in 2K1C-sham rats, and these responses were abolished by both TRDN and ARDN. 2K1C-sham rats presented with renal and hypothalamic inflammation and these responses were largely mitigated by TRDN and ARDN. We conclude that RDN attenuates 2K1C hypertension primarily by ablation of afferent renal nerves which disrupts bidirectional renal neural-immune pathways.NEW & NOTEWORTHY Hypertension resulting from reduced perfusion of the kidney is dependent on renal sensory nerves, which are linked to inflammation in the kidney and hypothalamus. Afferent renal nerves are required for chronic increases in both water intake and vasopressin release observed following renal artery stenosis. Findings from this study suggest an important role of renal sensory nerves that has previously been underestimated in the pathogenesis of 2K1C hypertension.
Collapse
Affiliation(s)
- Mariana R Lauar
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Physiology and Pathology, Dentistry School, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - Louise C Evans
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Dusty Van Helden
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences, Tucson, Arizona, United States
| | - José V Menani
- Department of Physiology and Pathology, Dentistry School, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - John W Osborn
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
7
|
Tyshynsky R, Sensarma S, Riedl M, Bukowy J, Schramm LP, Vulchanova L, Osborn JW. Periglomerular afferent innervation of the mouse renal cortex. Front Neurosci 2023; 17:974197. [PMID: 36777644 PMCID: PMC9909228 DOI: 10.3389/fnins.2023.974197] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Recent studies using a novel method for targeted ablation of afferent renal nerves have demonstrated their importance in the development and maintenance of some animal models of hypertension. However, relatively little is known about the anatomy of renal afferent nerves distal to the renal pelvis. Here, we investigated the anatomical relationship between renal glomeruli and afferent axons identified based on transient receptor potential vanilloid 1 channel (TRPV1) lineage or calcitonin gene related peptide (CGRP) immunolabeling. Analysis of over 6,000 (10,000 was accurate prior to the removal of the TH data during the review process) glomeruli from wildtype C57BL/6J mice and transgenic mice expressing tdTomato in TRPV1 lineage cells indicated that approximately half of all glomeruli sampled were closely apposed to tdTomato+ or CGRP+ afferent axons. Glomeruli were categorized as superficial, midcortical, or juxtamedullary based on their depth within the cortex. Juxtamedullary glomeruli were more likely to be closely apposed by afferent axon subtypes than more superficial glomeruli. High-resolution imaging of thick, cleared renal slices and subsequent distance transformations revealed that CGRP+ axons closely apposed to glomeruli were often found within 2 microns of nephrin+ labeling of glomerular podocytes. Furthermore, imaging of thick slices suggested that CGRP+ axon bundles can closely appose multiple glomeruli that share the same interlobular artery. Based on their expression of CGRP or tdTomato, prevalence near glomeruli, proximity to glomerular structures, and close apposition to multiple glomeruli within a module, we hypothesize that periglomerular afferent axons may function as mechanoreceptors monitoring glomerular pressure. These anatomical findings highlight the importance of further studies investigating the physiological role of periglomerular afferent axons in neural control of renal function in health and disease.
Collapse
Affiliation(s)
- Roman Tyshynsky
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Sulagna Sensarma
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Maureen Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - John Bukowy
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, WI, United States
| | - Lawrence P. Schramm
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lucy Vulchanova
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States,Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - John W. Osborn
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States,Department of Surgery, University of Minnesota, Minneapolis, MN, United States,*Correspondence: John W. Osborn,
| |
Collapse
|
8
|
Pickny L, Hindermann M, Ditting T, Hilgers KF, Linz P, Ott C, Schmieder RE, Schiffer M, Amann K, Veelken R, Rodionova K. Myocardial infarction with a preserved ejection fraction-the impaired function of the cardio-renal baroreflex. Front Physiol 2023; 14:1144620. [PMID: 37082237 PMCID: PMC10110856 DOI: 10.3389/fphys.2023.1144620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction: In experimental myocardial infarction with reduced ejection fraction causing overt congestive heart failure, the control of renal sympathetic nerve activity (RSNA) by the cardio-renal baroreflex was impaired. The afferent vagal nerve activity under these experimental conditions had a lower frequency at saturation than that in controls. Hence, by investigating respective first neurons in the nodose ganglion (NG), we wanted to test the hypothesis that after myocardial infarction with still-preserved ejection fraction, the cardiac afferent nerve pathway is also already impaired. Material and methods: A myocardial infarction was induced by coronary artery ligature. After 21 days, nodose ganglion neurons with cardiac afferents from rats with myocardial infarction were cultured. A current clamp was used to characterize neurons as "tonic," i.e., sustained action potential (AP) firing, or "phasic," i.e., <5 APs upon current injection. Cardiac ejection fraction was measured using echocardiography; RSNA was recorded to evaluate the sensitivity of the cardiopulmonary baroreflex. Renal and cardiac histology was studied for inflammation and fibrosis markers. Results: A total of 192 neurons were investigated. In rats, after myocardial infarction, the number of neurons with a tonic response pattern increased compared to that in the controls (infarction vs. control: 78.6% vs. 48.5%; z-test, *p < 0.05), with augmented production of APs (23.7 ± 2.86 vs. 15.5 ± 1.86 APs/600 ms; mean ± SEM, t-test, *p < 0.05). The baseline activity of RSNA was subtly increased, and its control by the cardiopulmonary baroreflex was impaired following myocardial infarction: the fibrosis marker collagen I augmented in the renal interstitium. Discussion: After myocardial infarction with still-preserved ejection fraction, a complex impairment of the afferent limb of the cardio-renal baroreflex caused dysregulation of renal sympathetic nerve activity with signs of renal fibrosis.
Collapse
Affiliation(s)
- Lisa Pickny
- Department of Internal Medicine 4—Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Martin Hindermann
- Department of Internal Medicine 4—Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4—Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Department of Internal Medicine 4—Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| | - Karl F. Hilgers
- Department of Internal Medicine 4—Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4—Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Department of Internal Medicine 4—Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| | - Roland E. Schmieder
- Department of Internal Medicine 4—Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4—Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4—Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Department of Internal Medicine 4—Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
- *Correspondence: Roland Veelken,
| | - Kristina Rodionova
- Department of Internal Medicine 4—Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
DeLalio LJ, Stocker SD. Sympathoexcitatory responses to renal chemosensitive stimuli are exaggerated at nighttime in rats. Am J Physiol Heart Circ Physiol 2022; 323:H437-H448. [PMID: 35867707 PMCID: PMC9394783 DOI: 10.1152/ajpheart.00665.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The circadian cycle impacts sympathetic nerve activity (SNA), cardiovascular hemodynamics, and renal function. Activation of renal sensory nerves by chemosensory and mechanosensory stimuli reflexively changes efferent SNA and arterial blood pressure (ABP) to maintain homeostasis. However, it is unclear to what extent circadian cycle influences reflex SNA and ABP responses to renal sensory stimuli. Renal, splanchnic, and lumbar SNA and ABP responses to intrarenal arterial infusion of bradykinin or capsaicin and elevated renal pelvic pressure were measured in male and female Sprague-Dawley rats during nighttime (wakeful/active phase) and daytime (inactive phase). Intrarenal arterial bradykinin infusion significantly increased efferent renal SNA, splanchnic SNA, and ABP but not lumbar SNA. Responses were greater during nighttime versus daytime. Similarly, intrarenal arterial capsaicin infusion significantly increased renal SNA and splanchnic SNA, and responses were again greater during nighttime. Elevated renal pelvic pressure increased renal SNA and splanchnic SNA; however, responses did not differ between daytime and nighttime. Finally, afferent renal nerve activity responses to bradykinin were not different between daytime and nighttime. Thus, renal chemokines elicit greater sympathoexcitatory responses at nighttime that cannot be attributed to differences in afferent renal nerve activity. Collectively, these data suggest that the circadian cycle alters the excitability of central autonomic networks to alter baseline SNA and ABP as well as the magnitude of visceral reflexes.NEW & NOTEWORTHY The current study discovers that the circadian cycle influences sympathetic and hemodynamic responses to activation of renal chemosensitive sensory fibers. Sympathetic responses to intrarenal bradykinin or capsaicin infusion were exaggerated during nighttime (active period), but mechanosensitive responses to elevated renal pelvic pressure were not. Importantly, renal afferent nerve responses were not different between nighttime and daytime. These data suggest that the circadian cycle modulates sympathetic responses to visceral afferent activation.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sean D Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Dulai JS, Smith ESJ, Rahman T. Acid-sensing ion channel 3: An analgesic target. Channels (Austin) 2021; 15:94-127. [PMID: 33258401 PMCID: PMC7801124 DOI: 10.1080/19336950.2020.1852831] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acid-sensing ion channel 3 (ASIC3) belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. There are 7 different ASIC subunits encoded by 5 different genes. Most ASIC subunits form trimeric ion channels that upon activation by extracellular protons mediate a transient inward current inducing cellular excitability. ASIC subunits exhibit differential tissue expression and biophysical properties, and the ability of subunits to form homo- and heteromeric trimers further increases the complexity of currents measured and their pharmacological properties. ASIC3 is of particular interest, not only because it exhibits high expression in sensory neurones, but also because upon activation it does not fully inactivate: a transient current is followed by a sustained current that persists during a period of extracellular acidity, i.e. ASIC3 can encode prolonged acidosis as a nociceptive signal. Furthermore, certain mediators sensitize ASIC3 enabling smaller proton concentrations to activate it and other mediators can directly activate the channel at neutral pH. Moreover, there is a plethora of evidence using transgenic mouse models and pharmacology, which supports ASIC3 as being a potential target for development of analgesics. This review will focus on current understanding of ASIC3 function to provide an overview of how ASIC3 contributes to physiology and pathophysiology, examining the mechanisms by which it can be modulated, and highlighting gaps in current understanding and future research directions.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
DeLalio LJ, Stocker SD. Impact of anesthesia and sex on sympathetic efferent and hemodynamic responses to renal chemo- and mechanosensitive stimuli. J Neurophysiol 2021; 126:668-679. [PMID: 34259043 DOI: 10.1152/jn.00277.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Activation of renal sensory nerves by chemo- and mechanosensitive stimuli produces changes in efferent sympathetic nerve activity (SNA) and arterial blood pressure (ABP). Anesthesia and sex influence autonomic function and cardiovascular hemodynamics, but it is unclear to what extent anesthesia and sex impact SNA and ABP responses to renal sensory stimuli. We measured renal, splanchnic, and lumbar SNA and ABP in male and female Sprague-Dawley rats during contralateral renal infusion of capsaicin and bradykinin or during elevation in renal pelvic pressure. Responses were evaluated with a decerebrate preparation or Inactin, urethane, or isoflurane anesthesia. Intrarenal arterial infusion of capsaicin (0.1-30.0 μM) increased renal SNA, splanchnic SNA, or ABP but decreased lumbar SNA in the Inactin group. Intrarenal arterial infusion of bradykinin (0.1-30.0 μM) increased renal SNA, splanchnic SNA, and ABP but decreased lumbar SNA in the Inactin group. Elevated renal pelvic pressure (0-20 mmHg, 30 s) significantly increased renal SNA and splanchnic SNA but not lumbar SNA in the Inactin group. In marked contrast, SNA and ABP responses to every renal stimulus were severely blunted in the urethane and decerebrate groups and absent in the isoflurane group. In the Inactin group, the magnitude of SNA responses to chemo- and mechanosensory stimuli were not different between male and female rats. Thus, chemo- and mechanosensitive stimuli produce differential changes in renal, splanchnic, and lumbar SNA. Experimentally, future investigations should consider Inactin anesthesia to examine sympathetic and hemodynamic responses to renal sensory stimuli.NEW & NOTEWORTHY The findings highlight the impact of anesthesia, and to a lesser extent sex, on sympathetic efferent and hemodynamic responses to chemosensory and mechanosensory renal stimuli. Sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses were present in Inactin-anesthetized rats but largely absent in decerebrate, isoflurane, or urethane preparations. Renal chemosensory stimuli differentially changed SNA: renal and splanchnic SNA increased, but lumbar SNA decreased. Future investigations should consider Inactin anesthesia to study SNA and hemodynamic responses to renal sensory nerve activation.
Collapse
Affiliation(s)
- Leon J DeLalio
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sean D Stocker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Rodionova K, Hilgers KF, Rafii-Tabrizi S, Doellner J, Cordasic N, Linz P, Karl AL, Ott C, Schmieder RE, Schiffer M, Amann K, Veelken R, Ditting T. Responsiveness of afferent renal nerve units in renovascular hypertension in rats. Pflugers Arch 2021; 473:1617-1629. [PMID: 34232378 PMCID: PMC8433106 DOI: 10.1007/s00424-021-02591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
Previous data suggest that renal afferent nerve activity is increased in hypertension exerting sympathoexcitatory effects. Hence, we wanted to test the hypothesis that in renovascular hypertension, the activity of dorsal root ganglion (DRG) neurons with afferent projections from the kidneys is augmented depending on the degree of intrarenal inflammation. For comparison, a nonhypertensive model of mesangioproliferative nephritis was investigated. Renovascular hypertension (2-kidney, 1-clip [2K1C]) was induced by unilateral clipping of the left renal artery and mesangioproliferative glomerulonephritis (anti-Thy1.1) by IV injection of a 1.75-mg/kg BW OX-7 antibody. Neuronal labeling (dicarbocyanine dye [DiI]) in all rats allowed identification of renal afferent dorsal root ganglion (DRG) neurons. A current clamp was used to characterize neurons as tonic (sustained action potential [AP] firing) or phasic (1–4 AP) upon stimulation by current injection. All kidneys were investigated using standard morphological techniques. DRG neurons exhibited less often tonic response if in vivo axonal input from clipped kidneys was received (30.4% vs. 61.2% control, p < 0.05). However, if the nerves to the left clipped kidneys were cut 7 days prior to investigation, the number of tonic renal neurons completely recovered to well above control levels. Interestingly, electrophysiological properties of neurons that had in vivo axons from the right non-clipped kidneys were not distinguishable from controls. Renal DRG neurons from nephritic rats also showed less often tonic activity upon current injection (43.4% vs. 64.8% control, p < 0.05). Putative sympathoexcitatory and impaired sympathoinhibitory renal afferent nerve fibers probably contribute to increased sympathetic activity in 2K1C hypertension.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Salman Rafii-Tabrizi
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Johannes Doellner
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Nada Cordasic
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Anna-Lena Karl
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| | - Roland E Schmieder
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany. .,Department of Radiology, Friedrich-Alexander University Erlangen, Erlangen, Germany.
| | - Tilmann Ditting
- Department of Internal Medicine 4 - Nephrology and Hypertension, Friedrich-Alexander University Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 - Nephrology and Hypertension, Paracelsus Private Medical School Nuremberg, Nuremberg, Germany
| |
Collapse
|
13
|
Neurogenic substance P-influences on action potential production in afferent neurons of the kidney? Pflugers Arch 2021; 473:633-646. [PMID: 33786667 PMCID: PMC8049925 DOI: 10.1007/s00424-021-02552-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022]
Abstract
We recently showed that a substance P (SP)–dependent sympatho-inhibitory mechanism via afferent renal nerves is impaired in mesangioproliferative nephritis. Therefore, we tested the hypothesis that SP released from renal afferents inhibits the action potential (AP) production in their dorsal root ganglion (DRG) neurons. Cultured DRG neurons (Th11-L2) were investigated in current clamp mode to assess AP generation during both TRPV1 stimulation by protons (pH 6) and current injections with and without exposure to SP (0.5 µmol) or CGRP (0.5 µmol). Neurons were classified as tonic (sustained AP generation) or phasic (≤ 4 APs) upon current injection; voltage clamp experiments were performed for the investigation of TRPV1-mediated inward currents due to proton stimulation. Superfusion of renal neurons with protons and SP increased the number of action potentials in tonic neurons (9.6 ± 5 APs/10 s vs. 16.9 ± 6.1 APs/10 s, P < 0.05, mean ± SD, n = 7), while current injections with SP decreased it (15.2 ± 6 APs/600 ms vs. 10.2 ± 8 APs/600 ms, P < 0.05, mean ± SD, n = 29). Addition of SP significantly reduced acid-induced TRPV1-mediated currents in renal tonic neurons (− 518 ± 743 pA due to pH 6 superfusion vs. − 82 ± 50 pA due to pH 6 with SP superfusion). In conclusion, SP increased action potential production via a TRPV1-dependent mechanism in acid-sensitive renal neurons. On the other hand, current injection in the presence of SP led to decreased action potential production. Thus, the peptide SP modulates signaling pathways in renal neurons in an unexpected manner leading to both stimulation and inhibition of renal neuronal activity in different (e.g., acidic) environmental contexts.
Collapse
|
14
|
Osborn JW, Tyshynsky R, Vulchanova L. Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annu Rev Physiol 2021; 83:429-450. [PMID: 33566672 DOI: 10.1146/annurev-physiol-031620-091656] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal sympathetic (efferent) nerves play an important role in the regulation of renal function, including glomerular filtration, sodium reabsorption, and renin release. The kidney is also innervated by sensory (afferent) nerves that relay information to the brain to modulate sympathetic outflow. Hypertension and other cardiometabolic diseases are linked to overactivity of renal sympathetic and sensory nerves, but our mechanistic understanding of these relationships is limited. Clinical trials of catheter-based renal nerve ablation to treat hypertension have yielded promising results. Therefore, a greater understanding of how renal nerves control the kidney under physiological and pathophysiological conditions is needed. In this review, we provide an overview of the current knowledge of the anatomy of efferent and afferent renal nerves and their functions in normal and pathophysiological conditions. We also suggest further avenues of research for development of novel therapies targeting the renal nerves.
Collapse
Affiliation(s)
- John W Osborn
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA;
| | - Roman Tyshynsky
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
15
|
Wen J, Chen Z, Wang S, Zhao M, Wang S, Zhao S, Zhang X. Age-related reductions in the excitability of phasic dorsal root ganglion neurons innervating the urinary bladder in female rats. Brain Res 2021; 1752:147251. [PMID: 33421375 DOI: 10.1016/j.brainres.2020.147251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/04/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022]
Abstract
Previous studies have revealed an impairment in bladder sensory transduction in aged animals. To examine the contributions of electrical property changes of bladder primary afferents to this impairment, we compared the electrical properties of dorsal root ganglion (DRG) neurons innervating the bladder among young (3 months), middle-aged (12 months), and old (24 months) female rats. The DRG neurons were labeled using axonal tracing techniques. Whole-cell current-clamp recordings of small and medium-sized neurons were performed to assess their passive and active properties. Two patterns of firing were identified based on responses to super-threshold stimuli (1.5, 2.0, 2.5, and 3.0 × rheobase): tonic neurons fired more action potentials (APs), whereas phasic neurons fired only one AP at the onset of stimulus. Tonic neurons were smaller and had a slower rate of AP rise, longer AP duration, more depolarized voltage threshold, and greater rheobase than phasic neurons. In phasic neurons, there was an age-associated increase in voltage threshold and an increase of rheobase (P < 0.05), suggesting an age-related decrease in excitability. In addition, both middle-aged and old rats had longer AP durations and slower rates of AP rise than young rats (P < 0.05). In tonic neurons, old rats had a greater AP overshoot and greater rate of AP rise, but no age-associated changes were identified in any other electrical properties. Our results suggest that the electrical properties of tonic and phasic bladder afferents are differentially altered with aging. A decrease in excitability may contribute to age-related reductions in bladder sensory function.
Collapse
Affiliation(s)
- Jiliang Wen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, PR China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, PR China
| | - Zhenghao Chen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, PR China
| | - Si Wang
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, PR China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, PR China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, PR China
| | - Shengtian Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, PR China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, PR China.
| |
Collapse
|
16
|
DeLalio LJ, Stocker SD. Impact of anesthesia, sex, and circadian cycle on renal afferent nerve sensitivity. Am J Physiol Heart Circ Physiol 2021; 320:H117-H132. [PMID: 33216622 PMCID: PMC7847066 DOI: 10.1152/ajpheart.00675.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023]
Abstract
Elevated renal afferent nerve (ARNA) activity or dysfunctional reno-renal reflexes via altered ARNA sensitivity contribute to hypertension and chronic kidney disease. These nerves contain mechano- and chemosensitive fibers that respond to ischemia, changes in intrarenal pressures, and chemokines. Most studies have utilized various anesthetized preparations and exclusively male animals to characterize ARNA responses. Therefore, this study assessed the impact of anesthesia, sex, and circadian period on ARNA responses and sensitivity. Multifiber ARNA recordings were performed in male and female Sprague-Dawley rats (250-400 g) and compared across decerebrate versus Inactin, isoflurane, and urethane anesthesia groups. Intrarenal artery infusion of capsaicin (0.1-50.0 μM, 0.05 mL) produced concentration-dependent increases in ARNA; however, the ARNA sensitivity was significantly greater in decerebrate versus Inactin, isoflurane, and urethane groups. Increases in renal pelvic pressure (0-30 mmHg, 30 s) produced pressure-dependent increases in ARNA; however, ARNA sensitivity was again greater in decerebrate and Inactin groups versus isoflurane and urethane. Acute renal artery occlusion (30 s) increased ARNA, but responses did not differ across groups. Analysis of ARNA responses to increased pelvic pressure between male and female rats revealed significant sex differences only in isoflurane and urethane groups. ARNA responses to intrarenal capsaicin infusion were significantly blunted at nighttime versus daytime; however, ARNA responses to increased pelvic pressure or renal artery occlusion were not different between daytime and nighttime. These results demonstrate that ARNA sensitivity is greatest in decerebrate and Inactin-anesthetized groups but was not consistently influenced by sex.NEW & NOTEWORTHY We determined the impact of anesthesia, sex, and circadian cycle on renal afferent nerve (ARNA) sensitivity to chemical and mechanical stimuli. ARNA sensitivity to renal capsaicin infusion was greatest in decerebrate > Inactin > urethane or isoflurane groups. Elevated renal pelvic pressure significantly increased ARNA; decerebrate and Inactin groups exhibited the greatest ARNA sensitivity. Sex differences in renal afferent responses were not consistently observed. Circadian cycle altered chemosensory but not mechanosensory responses.
Collapse
Affiliation(s)
- Leon J DeLalio
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sean D Stocker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Rodionova K, Veelken R, Hilgers KF, Paulus EM, Linz P, Fischer MJM, Schenker M, Reeh P, Tiegs G, Ott C, Schmieder R, Schiffer M, Amann K, Ditting T. Afferent renal innervation in anti-Thy1.1 nephritis in rats. Am J Physiol Renal Physiol 2020; 319:F822-F832. [PMID: 33017188 DOI: 10.1152/ajprenal.00063.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Afferent renal nerves exhibit a dual function controlling central sympathetic outflow via afferent electrical activity and influencing intrarenal immunological processes by releasing peptides such as calcitonin gene-related peptide (CGRP). We tested the hypothesis that increased afferent and efferent renal nerve activity occur with augmented release of CGRP in anti-Thy1.1 nephritis, in which enhanced CGRP release exacerbates inflammation. Nephritis was induced in Sprague-Dawley rats by intravenous injection of OX-7 antibody (1.75 mg/kg), and animals were investigated neurophysiologically, electrophysiologically, and pathomorphologically 6 days later. Nephritic rats exhibited proteinuria (169.3 ± 10.2 mg/24 h) with increased efferent renal nerve activity (14.7 ± 0.9 bursts/s vs. control 11.5 ± 0.9 bursts/s, n = 11, P < 0.05). However, afferent renal nerve activity (in spikes/s) decreased in nephritis (8.0 ± 1.8 Hz vs. control 27.4 ± 4.1 Hz, n = 11, P < 0.05). In patch-clamp recordings, neurons with renal afferents from nephritic rats showed a lower frequency of high activity following electrical stimulation (43.4% vs. 66.4% in controls, P < 0.05). In vitro assays showed that renal tissue from nephritic rats exhibited increased CGRP release via spontaneous (14 ± 3 pg/mL vs. 6.8 ± 2.8 pg/ml in controls, n = 7, P < 0.05) and stimulated mechanisms. In nephritic animals, marked infiltration of macrophages in the interstitium (26 ± 4 cells/mm2) and glomeruli (3.7 ± 0.6 cells/glomerular cross-section) occurred. Pretreatment with the CGRP receptor antagonist CGRP8-37 reduced proteinuria, infiltration, and proliferation. In nephritic rats, it can be speculated that afferent renal nerves lose their ability to properly control efferent sympathetic nerve activity while influencing renal inflammation through increased CGRP release.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Eva-Maria Paulus
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, University of Erlangen, Erlangen, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martina Schenker
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Physiology and Pathophysiology, University Erlangen, Erlangen, Germany
| | - Peter Reeh
- Department of Physiology and Pathophysiology, University Erlangen, Erlangen, Germany
| | - Gisa Tiegs
- Center of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ott
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland Schmieder
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
18
|
de Moraes ER, Kushmerick C, Naves LA. Morphological and functional diversity of first-order somatosensory neurons. Biophys Rev 2017; 9:847-856. [PMID: 28889335 DOI: 10.1007/s12551-017-0321-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023] Open
Abstract
First-order somatosensory neurons transduce and convey information about the external or internal environment of the body to the central nervous system. They are pseudo unipolar neurons with cell bodies residing in one of several ganglia located near the central nervous system, with the short branch of the axon connecting to the spinal cord or the brain stem and the long branch extending towards the peripheral organ they innervate. Besides their sensory transducer and conductive role, somatosensory neurons also have trophic functions in the tissue they innervate and participate in local reflexes in the periphery. The cell bodies of these neurons are remarkably diverse in terms of size, molecular constitution, and electrophysiological properties. These parameters have provided criteria for classification that have proved useful to establish and study their functions. In this review, we discuss ways to measure and classify populations of neurons based on their size and action potential firing pattern. We also discuss attempts to relate the different populations to specific sensory modalities.
Collapse
Affiliation(s)
- Eder Ricardo de Moraes
- Departamento de Fisiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Christopher Kushmerick
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lígia Araujo Naves
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Abdulla MH, Johns EJ. The innervation of the kidney in renal injury and inflammation: a cause and consequence of deranged cardiovascular control. Acta Physiol (Oxf) 2017; 220:404-416. [PMID: 28181735 DOI: 10.1111/apha.12856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/14/2016] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
Abstract
Extensive investigations have revealed that renal sympathetic nerves regulate renin secretion, tubular fluid reabsorption and renal haemodynamics which can impact on cardiovascular homoeostasis normally and in pathophysiological states. The significance of the renal afferent innervation and its role in determining the autonomic control of the cardiovascular system is uncertain. The transduction pathways at the renal afferent nerves have been shown to require pro-inflammatory mediators and TRPV1 channels. Reno-renal reflexes have been described, both inhibitory and excitatory, demonstrating that a neural link exists between kidneys and may determine the distribution of excretory and haemodynamic function between the two kidneys. The impact of renal afferent nerve activity on basal and reflex regulation of global sympathetic drive remains opaque. There is clinical and experimental evidence that in states of chronic kidney disease and renal injury, there is infiltration of T-helper cells with a sympatho-excitation and blunting of the high- and low-pressure baroreceptor reflexes regulating renal sympathetic nerve activity. The baroreceptor deficits are renal nerve-dependent as the dysregulation can be relieved by renal denervation. There is also experimental evidence that in obese states, there is a sympatho-excitation and disrupted baroreflex regulation of renal sympathetic nerve activity which is mediated by the renal innervation. This body of information provides an important basis for directing greater attention to the role of renal injury/inflammation causing an inappropriate activation of the renal afferent nerves as an important initiator of aberrant autonomic cardiovascular control.
Collapse
Affiliation(s)
- M. H. Abdulla
- Department of Physiology; University College Cork; Cork Ireland
| | - E. J. Johns
- Department of Physiology; University College Cork; Cork Ireland
| |
Collapse
|
20
|
Rodionova K, Fiedler C, Guenther F, Grouzmann E, Neuhuber W, Fischer MJM, Ott C, Linz P, Freisinger W, Heinlein S, Schmidt ST, Schmieder RE, Amann K, Scrogin K, Veelken R, Ditting T. Complex reinnervation pattern after unilateral renal denervation in rats. Am J Physiol Regul Integr Comp Physiol 2016; 310:R806-18. [PMID: 26911463 DOI: 10.1152/ajpregu.00227.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/10/2016] [Indexed: 12/14/2022]
Abstract
Renal denervation (DNX) is a treatment for resistant arterial hypertension. Efferent sympathetic nerves regrow, but reinnervation by renal afferent nerves has only recently been shown in the renal pelvis of rats after unilateral DNX. We examined intrarenal perivascular afferent and sympathetic efferent nerves after unilateral surgical DNX. Tyrosine hydroxylase (TH), CGRP, and smooth muscle actin were identified in kidney sections from 12 Sprague-Dawley rats, to distinguish afferents, efferents, and vasculature. DNX kidneys and nondenervated kidneys were examined 1, 4, and 12 wk after DNX. Tissue levels of CGRP and norepinephrine (NE) were measured with ELISA and mass spectrometry, respectively. DNX decreased TH and CGRP labeling by 90% and 95%, respectively (P < 0.05) within 1 wk. After 12 wk TH and CGRP labeling returned to baseline with a shift toward afferent innervation (P < 0.05). Nondenervated kidneys showed a doubling of both labels within 12 wk (P < 0.05). CGRP content decreased by 72% [3.2 ± 0.3 vs. 0.9 ± 0.2 ng/gkidney; P < 0.05] and NA by 78% [1.1 ± 0.1 vs. 0.2 ± 0.1 pmol/mgkidney; P < 0.05] 1 wk after DNX. After 12 wk, CGRP, but not NE, content in DNX kidneys was fully recovered, with no changes in the nondenervated kidneys. The use of phenol in the DNX procedure did not influence this result. We found morphological reinnervation and transmitter recovery of afferents within 12 wk after DNX. Despite morphological evidence of sympathetic regrowth, NE content did not fully recover. These results suggest a long-term net surplus of afferent influence on the DNX kidney may be contributing to the blood pressure lowering effect of DNX.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Christian Fiedler
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Franziska Guenther
- Department of Physiology 1, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Eric Grouzmann
- Service de Biomédicine, Laboratoire des Catéchoalamines et Peptides, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, Switzerland; and
| | - Winfried Neuhuber
- Department of Anatomy I, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Michael J M Fischer
- Department of Physiology 1, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Peter Linz
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Wolfgang Freisinger
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Sonja Heinlein
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Stephanie T Schmidt
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Roland E Schmieder
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Kerstin Amann
- Department of Pathology, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Karie Scrogin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Roland Veelken
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremburg, Erlangen, Germany;
| |
Collapse
|
21
|
Ditting T, Freisinger W, Rodionova K, Schatz J, Lale N, Heinlein S, Linz P, Ott C, Schmieder RE, Scrogin KE, Veelken R. Impaired excitability of renal afferent innervation after exposure to the inflammatory chemokine CXCL1. Am J Physiol Renal Physiol 2015; 310:F364-71. [PMID: 26697980 DOI: 10.1152/ajprenal.00189.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023] Open
Abstract
Recently, we showed that renal afferent neurons exhibit a unique firing pattern, i.e., predominantly sustained firing, upon stimulation. Pathological conditions such as renal inflammation likely alter excitability of renal afferent neurons. Here, we tested whether the proinflammatory chemokine CXCL1 alters the firing pattern of renal afferent neurons. Rat dorsal root ganglion neurons (Th11-L2), retrogradely labeled with dicarbocyanine dye, were incubated with CXCL1 (20 h) or vehicle before patch-clamp recording. The firing pattern of neurons was characterized as tonic, i.e., sustained action potential (AP) firing, or phasic, i.e., <5 APs following current injection. Of the labeled renal afferents treated with vehicle, 58.9% exhibited a tonic firing pattern vs. 7.8%, in unlabeled, nonrenal neurons (P < 0.05). However, after exposure to CXCL1, significantly more phasic neurons were found among labeled renal neurons; hence the occurrence of tonic neurons with sustained firing upon electrical stimulation decreased (35.6 vs. 58.9%, P < 0.05). The firing frequency among tonic neurons was not statistically different between control and CXCL1-treated neurons. However, the lower firing frequency of phasic neurons was even further decreased with CXCL1 exposure [control: 1 AP/600 ms (1-2) vs. CXCL1: 1 AP/600 ms (1-1); P < 0.05; median (25th-75th percentile)]. Hence, CXCL1 shifted the firing pattern of renal afferents from a predominantly tonic to a more phasic firing pattern, suggesting that CXCL1 reduced the sensitivity of renal afferent units upon stimulation.
Collapse
Affiliation(s)
- Tilmann Ditting
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Wolfgang Freisinger
- Department of Internal Medicine 1, Nephrology Johannes-Guttenberg University, Mainz, Germany
| | - Kristina Rodionova
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Johannes Schatz
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Nena Lale
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Sonja Heinlein
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Peter Linz
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Roland E Schmieder
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Karie E Scrogin
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Roland Veelken
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany;
| |
Collapse
|
22
|
Barry EF, Johns EJ. Intrarenal bradykinin elicits reno-renal reflex sympatho-excitation and renal nerve-dependent fluid retention. Acta Physiol (Oxf) 2015; 213:731-9. [PMID: 25369876 DOI: 10.1111/apha.12420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/01/2014] [Accepted: 10/29/2014] [Indexed: 01/16/2023]
Abstract
AIMS The renal sensory nerves are importantly involved in the sympathetic regulation of cardiovascular and renal function. Two reno-renal reflexes are recognized, one in which activation of renal sensory nerves elicits a renal sympatho-inhibition, and one which causes a renal sympatho-excitation and about which little is known. This study investigated the role of bradykinin (BK) in engaging an excitatory reno-renal reflex. METHODS Rats were anaesthetized (chloralose/urethane) and prepared for the measurement of renal function or renal sympathetic nerve activity (RSNA). BK was infused into the cortico-medullary border of the ipsilateral kidney and the impact on contralateral renal function and RSNA evaluated. RESULTS Intrarenal infusion of BK at 3 × 10(-9) and 6 × 10(-9) g L(-1) had no effect on mean arterial pressure, at 104 ± 5 mmHg or glomerular filtration rate in either the ipsilateral or contralateral kidneys, at 4.31 ± 0.45 mL min(-1) kg(-1) . At the highest dose of BK, fractional sodium excretion (FENa) was 1.47% in the ipsilateral kidney and was significantly lower, at 0.64% (P < 0.05) in the contralateral kidney but this difference did not occur following ipsilateral renal denervation. Ipsilateral intrarenal infusion of BK at 3 × 10(-9) , 6 × 10(-9) and 1.2 × 10(-8) g L(-1) elicited dose-related increases (P < 0.05) in contralateral RSNA, reaching some 78% at the highest dose, but these responses were prevented by ipsilateral renal denervation. CONCLUSIONS Intrarenal infusion of BK produced an excitatory reno-renal reflex which was expressed as a renal nerve-dependent antinatriuresis in the contralateral kidney. The findings suggest that inflammatory mediators such as BK may be important in initiating a sympatho-excitation associated with renal and cardiovascular diseases.
Collapse
Affiliation(s)
- E. F. Barry
- Department of Physiology; University College Cork; Cork Ireland
| | - E. J. Johns
- Department of Physiology; University College Cork; Cork Ireland
| |
Collapse
|
23
|
Characteristics of dorsal root ganglia neurons sensitive to Substance P. Mol Pain 2014; 10:73. [PMID: 25431155 PMCID: PMC4280706 DOI: 10.1186/1744-8069-10-73] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Substance P modulates ion channels and the excitability of sensory neurons in pain pathways. Within the heterogeneous population of Dorsal Root Ganglia (DRG) primary sensory neurons, the properties of cells that are sensitive to Substance P are poorly characterized. To define this population better, dissociated rat DRG neurons were tested for their responsiveness to capsaicin, ATP and acid. Responses to ATP were classified according to the kinetics of current activation and desensitization. The same cells were then tested for modulation of action potential firing by Substance P. RESULTS Acid and capsaicin currents were more frequently encountered in the largest diameter neurons. P2X3-like ATP currents were concentrated in small diameter neurons. Substance P modulated the excitability in 20 of 72 cells tested (28%). Of the Substance P sensitive cells, 10 exhibited an increase in excitability and 10 exhibited a decrease in excitability. There was no significant correlation between sensitivity to capsaicin and to Substance P. Excitatory effects of Substance P were strongly associated with cells that had large diameters, fired APs with large overshoots and slowly decaying after hyperpolarizations, and expressed acid currents at pH 7. No neurons that were excited by Substance P presented P2X3-like currents. In contrast, neurons that exhibited inhibitory effects of Substance P fired action potentials with rapidly decaying after hyperpolarizations. CONCLUSION We conclude that excitatory effects of Substance P are restricted to a specific neuronal subpopulation with limited expression of putative nociceptive markers.
Collapse
|
24
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 849] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|
25
|
Yu YQ, Chen XF, Yang Y, Yang F, Chen J. Electrophysiological identification of tonic and phasic neurons in sensory dorsal root ganglion and their distinct implications in inflammatory pain. Physiol Res 2014; 63:793-9. [PMID: 25157654 DOI: 10.33549/physiolres.932708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the mammalian autonomic nervous system, tonic and phasic neurons can be differentiated on firing patterns in response to long depolarizing current pulse. However, the similar firing patterns in the somatic primary sensory neurons and their functional significance are not well investigated. Here, we identified two types of neurons innervating somatic sensory in rat dorsal root ganglia (DRG). Tonic neurons fire action potentials (APs) in an intensity-dependent manner, whereas phasic neurons typically generate only one AP firing at the onset of stimulation regardless of intensity. Combining retrograde labeling of somatic DRG neurons with fluorescent tracer DiI, we further find that these neurons demonstrate distinct changes under inflammatory pain states induced by complete Freund's adjuvant (CFA) or bee venom toxin melittin. In tonic neurons, CFA and melittin treatments significantly decrease rheobase and AP durations (depolarization and repolarization), enhance amplitudes of overshoot and afterhyperpolarization (AHP), and increase the number of evoked action potentials. In phasic neurons, however, the same inflammation treatments cause fewer changes in these electrophysiological parameters except for the increased overshoot and decreased AP durations. In the present study, we find that tonic neurons are more hyperexcitable than phasic neurons after peripheral noxious inflammatory stimulation. The results indicate the distinct contributions of two types of DRG neurons in inflammatory pain.
Collapse
Affiliation(s)
- Y-Q Yu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Fourth Military Medical University, Xi'an, PR China.
| | | | | | | | | |
Collapse
|
26
|
Kaßmann M, Harteneck C, Zhu Z, Nürnberg B, Tepel M, Gollasch M. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf) 2013; 207:546-64. [PMID: 23253200 DOI: 10.1111/apha.12051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/15/2012] [Accepted: 12/11/2012] [Indexed: 12/13/2022]
Abstract
Recent preclinical data indicate that activators of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) may improve the outcome of ischaemic acute kidney injury (AKI). The underlying mechanisms are unclear, but may involve TRPV1 channels in dorsal root ganglion neurones that innervate the kidney. Recent data identified TRPV4, together with TRPV1, to serve as major calcium influx channels in endothelial cells. In these cells, gating of individual TRPV4 channels within a four-channel cluster provides elementary calcium influx (calcium sparklets) to open calcium-activated potassium channels and promote vasodilation. The TRPV receptors can also form heteromers that exhibit unique conductance and gating properties, further increasing their spatio-functional diversity. This review summarizes data on electrophysiological properties of TRPV1/4 and their modulation by endogenous channel agonists such as 20-HETE, phospholipase C and phosphatidylinositide 3-kinase (PI3 kinase). We review important roles of TRPV1 and TRPV4 in kidney physiology and renal ischaemia reperfusion injury; further studies are warranted to address renoprotective mechanism of vanilloid receptors in ischaemic AKI including the role of the capsaicin receptor TRPV1 in primary sensory nerves and/or endothelium. Particular attention should be paid to understand the kidneys' ability to respond to ischaemic stimuli after catheter-based renal denervation therapy in man, whereas the discovery of novel pharmacological TRPV modulators may be a successful strategy for better treatment of acute or chronic kidney failure.
Collapse
Affiliation(s)
- M. Kaßmann
- Charité University Medicine, Section Nephrology/Intensive Care, Campus Virchow, and Experimental and Clinical Research Center (ECRC); Berlin; Germany
| | - C. Harteneck
- Institut für Experimentelle & Klinische Pharmakologie & Toxikologie and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA); Eberhard-Karls-Universität; Tübingen; Germany
| | - Z. Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases; Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension; Chongqing; China
| | - B. Nürnberg
- Institut für Experimentelle & Klinische Pharmakologie & Toxikologie and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research (ICePhA); Eberhard-Karls-Universität; Tübingen; Germany
| | - M. Tepel
- Department of Nephrology, and University of Southern Denmark, Institute of Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research; Odense University Hospital; Odense; Denmark
| | - M. Gollasch
- Charité University Medicine, Section Nephrology/Intensive Care, Campus Virchow, and Experimental and Clinical Research Center (ECRC); Berlin; Germany
| |
Collapse
|
27
|
Freisinger W, Schatz J, Ditting T, Lampert A, Heinlein S, Lale N, Schmieder R, Veelken R. Sensory renal innervation: a kidney-specific firing activity due to a unique expression pattern of voltage-gated sodium channels? Am J Physiol Renal Physiol 2013; 304:F491-7. [PMID: 23283993 DOI: 10.1152/ajprenal.00011.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensory neurons with afferent axons from the kidney are extraordinary in their response to electrical stimulation. More than 50% exhibit a tonic firing pattern, i.e., sustained action potential firing throughout depolarizing, pointing to an increased excitability, whereas nonrenal neurons show mainly a phasic response, i.e., less than five action potentials. Here we investigated whether these peculiar firing characteristics of renal afferent neurons are due to differences in the expression of voltage-gated sodium channels (Navs). Dorsal root ganglion (DRG) neurons from rats (Th11-L2) were recorded by the current-clamp technique and distinguished as "tonic" or "phasic." In voltage-clamp recordings, Navs were characterized by their tetrodotoxoxin (TTX) sensitivity, and their molecular identity was revealed by RT-PCR. The firing pattern of 66 DRG neurons (41 renal and 25 nonrenal) was investigated. Renal neurons exhibited more often a tonic firing pattern (56.1 vs. 12%). Tonic neurons showed a more positive threshold (-21.75 ± 1.43 vs.-29.33 ± 1.63 mV; P < 0.05), a higher overshoot (56.74 [53.6-60.96] vs. 46.79 mV [38.63-54.75]; P < 0.05) and longer action potential duration (4.61 [4.15-5.85] vs. 3.35 ms [2.12-5.67]; P < 0.05). These findings point to an increased presence of the TTX-resistant Navs 1.8 and 1.9. Furthermore, tonic neurons exhibited a relatively higher portion of TTX-resistant sodium currents. Interestingly, mRNA expression of TTX-resistant sodium channels was significantly increased in renal, predominantly tonic, DRG neurons. Hence, under physiological conditions, renal sensory neurons exhibit predominantly a firing pattern associated with higher excitability. Our findings support that this is due to an increased expression and activation of TTX-resistant Navs.
Collapse
Affiliation(s)
- Wolfgang Freisinger
- Dept. of Medicine 4, Univ. of Erlangen-Nürnberg, Loschgestraβe 8, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
He QL, Chen Y, Qin J, Mo SL, Wei M, Zhang JJ, Li MN, Zou XN, Zhou SF, Chen XW, Sun LB. Osthole, a herbal compound, alleviates nucleus pulposus-evoked nociceptive responses through the suppression of overexpression of acid-sensing ion channel 3 (ASIC3) in rat dorsal root ganglion. Med Sci Monit 2012; 18:BR229-36. [PMID: 22648244 PMCID: PMC3560735 DOI: 10.12659/msm.882899] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Osthole (Ost), a natural coumarin derivative, has been shown to inhibit many pro-inflammatory mediators and block voltage-gated Na+ channels. During inflammation, acidosis is an important pain inducer which activates nociceptors by gating depolarizing cationic channels, such as acid-sensing ion channel 3 (ASIC3). The aim of this study was to examine the effects of Ost on nucleus pulposus-evoked nociceptive responses and ASIC3 over-expression in the rat dorsal root ganglion, and to investigate the possible mechanism. MATERIAL/METHODS Radicular pain was generated with application of nucleus pulposus (NP) to nerve root. Mechanical allodynia was evaluated using von Frey filaments with logarithmically incremental rigidity to calculate the 50% probability thresholds for mechanical paw withdrawal. ASIC3 protein expression in dorsal root ganglions (DRGs) was assessed with Western blot and immunohistochemistry. Membrane potential (MP) shift of DRG neurons induced by ASIC3-sensitive acid (pH6.5) was determined by DiBAC(4) (3) fluorescence intensity (F.I.). RESULTS The NP-evoked mechanical hyperalgesia model showed allodynia for 3 weeks, and ASIC3 expression was up-regulated in DRG neurons, reaching peak on Day 7. Epidural administration of Ost induced a remarkable and prolonged antinociceptive effect, accompanied by an inhibition of over-expressed ASIC3 protein and of abnormal shift of MP. Amiloride (Ami), an antagonist of ASIC3, strengthened the antinociceptive effect of Ost. CONCLUSIONS Up-regulation of ASIC3 expression may be associated with NP-evoked mechanical hyperalgesia. A single epidural injection of Ost decreased ASIC3 expression in DGR neurons and the pain in the NP-evoked mechanical hyperalgesia model. Osthole may be of great benefit for preventing chronic pain status often seen in lumbar disc herniation (LDH).
Collapse
Affiliation(s)
- Qiu-Lan He
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsagogiorgas C, Wedel J, Hottenrott M, Schneider MO, Binzen U, Greffrath W, Treede RD, Theisinger B, Theisinger S, Waldherr R, Krämer BK, Thiel M, Schnuelle P, Yard BA, Hoeger S. N-octanoyl-dopamine is an agonist at the capsaicin receptor TRPV1 and mitigates ischemia-induced [corrected] acute kidney injury in rat. PLoS One 2012; 7:e43525. [PMID: 22916273 PMCID: PMC3423369 DOI: 10.1371/journal.pone.0043525] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 07/23/2012] [Indexed: 01/11/2023] Open
Abstract
Since stimulation of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) mitigates acute kidney injury (AKI) and endogenous N-acyl dopamine derivatives are able to activate TRPV1, we tested if synthetic N-octanoyl-dopamine (NOD) activates TRPV1 and if it improves AKI. These properties of NOD and its intrinsic anti-inflammatory character were compared with those of dopamine (DA). TRPV1 activation and anti-inflammatory properties of NOD and DA were tested using primary cell cultures in vitro. The influence of NOD and DA on AKI was tested in a prospective, randomized, controlled animal study with 42 inbred male Lewis rats (LEW, RT1), treated intravenously with equimolar concentrations of DA or NOD one hour before the onset of warm ischemia and immediately before clamp release. NOD, but not DA, activates TRPV1 channels in isolated dorsal root ganglion neurons (DRG) that innervate several tissues including kidney. In TNFα stimulated proximal tubular epithelial cells, inhibition of NFκB and subsequent inhibition of VCAM1 expression by NOD was significantly stronger than by DA. NOD improved renal function compared to DA and saline controls. Histology revealed protective effects of NOD on tubular epithelium at day 5 and a reduced number of monocytes in renal tissue of DA and NOD treated rats. Our data demonstrate that NOD but not DA activates TRPV1 and that NOD has superior anti-inflammatory properties in vitro. Although NOD mitigates deterioration in renal function after AKI, further studies are required to assess to what extend this is causally related to TRPV1 activation and/or desensitization.
Collapse
Affiliation(s)
- Charalambos Tsagogiorgas
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ditting T, Freisinger W, Siegel K, Fiedler C, Small L, Neuhuber W, Heinlein S, Reeh PW, Schmieder RE, Veelken R. Tonic Postganglionic Sympathetic Inhibition Induced by Afferent Renal Nerves? Hypertension 2012; 59:467-76. [DOI: 10.1161/hypertensionaha.111.185538] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tilmann Ditting
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Wolfgang Freisinger
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Kirsten Siegel
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Christian Fiedler
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Lisa Small
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Winfried Neuhuber
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Sonja Heinlein
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Peter W. Reeh
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Roland E. Schmieder
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Roland Veelken
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| |
Collapse
|
31
|
Wu WL, Cheng CF, Sun WH, Wong CW, Chen CC. Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol Ther 2011; 134:127-38. [PMID: 22233754 DOI: 10.1016/j.pharmthera.2011.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023]
Abstract
The acid-sensing ion channel 3 (ASIC3) is a pH sensor that responds to mild extracellular acidification and is predominantly expressed in nociceptors. There is much interest in targeting ASIC3 to relieve pain associated with tissue acidosis, and selective drugs targeting ASIC3 have been used to relieve acid-evoked pain in animal models and human studies. There is accumulating evidence that ASIC3 is widely expressed in many neuronal and non-neuronal cells, such as neurons in the brain and adipose cells, albeit to a lesser extent than in nociceptors. Asic3-knockout mice have reduced anxiety levels and enhanced insulin sensitivity, suggesting that antagonizing ASIC3 has additional benefits. This view is tempered by recent studies suggesting that Asic3-knockout mice may experience cardiovascular disturbances. Due to the development of ASIC3 antagonists as analgesics, we review here the additional benefits, safety, risks, and strategy associated with antagonizing ASIC3 function.
Collapse
Affiliation(s)
- Wei-Li Wu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Ditting T, Linz P, Freisinger W, Heinlein S, Reeh PW, Fiedler C, Siegel K, Scrogin KE, Neuhuber W, Veelken R. Norepinephrine reduces ω-conotoxin-sensitive Ca2+ currents in renal afferent neurons in rats. Am J Physiol Renal Physiol 2011; 302:F350-7. [PMID: 22049399 DOI: 10.1152/ajprenal.00681.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sympathetic efferent and peptidergic afferent renal nerves likely influence hypertensive and inflammatory kidney disease. Our recent investigation with confocal microscopy revealed that in the kidney sympathetic nerve endings are colocalized with afferent nerve fibers (Ditting T, Tiegs G, Rodionova K, Reeh PW, Neuhuber W, Freisinger W, Veelken R. Am J Physiol Renal Physiol 297: F1427-F1434, 2009; Veelken R, Vogel EM, Hilgers K, Amman K, Hartner A, Sass G, Neuhuber W, Tiegs G. J Am Soc Nephrol 19: 1371-1378, 2008). However, it is not known whether renal afferent nerves are influenced by sympathetic nerve activity. We tested the hypothesis that norepinephrine (NE) influences voltage-gated Ca(2+) channel currents in cultured renal dorsal root ganglion (DRG) neurons, i.e., the first-order neuron of the renal afferent pathway. DRG neurons (T11-L2) retrogradely labeled from the kidney and subsequently cultured, were investigated by whole-cell patch clamp. Voltage-gated calcium channels (VGCC) were investigated by voltage ramps (-100 to +80 mV, 300 ms, every 20 s). NE and appropriate adrenergic receptor antagonists were administered by microperfusion. NE (20 μM) reduced VGCC-mediated currents by 10.4 ± 3.0% (P < 0.01). This reduction was abolished by the α-adrenoreceptor inhibitor phentolamine and the α(2)-adrenoceptor antagonist yohimbine. The β-adrenoreceptor antagonist propranolol and the α(1)-adrenoceptor antagonist prazosin had no effect. The inhibitory effect of NE was abolished when N-type currents were blocked by ω-conotoxin GVIA, but was unaffected by other specific Ca(2+) channel inhibitors (ω-agatoxin IVA; nimodipine). Confocal microscopy revealed sympathetic innervation of DRGs and confirmed colocalization of afferent and efferent fibers within in the kidney. Hence NE released from intrarenal sympathetic nerve endings, or sympathetic fibers within the DRGs, or even circulating catecholamines, may influence the activity of peptidergic afferent nerve fibers through N-type Ca(2+) channels via an α(2)-adrenoceptor-dependent mechanism. However, the exact site and the functional role of this interaction remains to be elucidated.
Collapse
Affiliation(s)
- Tilmann Ditting
- Dept. of Internal Medicine 4, Nephrology and Hypertension, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Smillie SJ, Brain SD. Calcitonin gene-related peptide (CGRP) and its role in hypertension. Neuropeptides 2011; 45:93-104. [PMID: 21269690 DOI: 10.1016/j.npep.2010.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 01/19/2023]
Abstract
Hypertension is still presently the number one "silent killer" in the Western World, and a major risk factor for the development of secondary diseases contributing to cardiovascular disease (CVD). However, despite a broad range of therapies, the mechanisms involved in the onset of hypertension remains unclear, therefore there is a real need to investigate the mechanisms involved. Calcitonin gene-related peptide (CGRP) is the most potent microvascular vasodilator known to date. Widely expressed in the nervous system, this peptide is considered to play a positive role in wound healing and protects against ischaemic and other traumas. However, whilst the protective mechanisms are not well understood, evidence indicates that these mechanisms become important in vascular-related stress. This review provides evidence that CGRP is both a potent vasodilator and hypotensive agent. However studies to date suggest that CGRP does not contribute to the physiological regulation of blood pressure. By comparing results from a range of human and animal studies, findings broadly suggest an association between CGRP and the pathophysiology of hypertension in terms of protective mechanisms, with possibly the RAMP1 component of the CGRP receptor playing a key role in the brain stem, in addition to peripheral receptors. The studies of agents that release CGRP agonists are at an early stage, with analogues for human use currently under development. However, at this stage, further research is required to establish the mechanisms by which CGRP is protective in the onset of hypertension, if novel and therapeutic modes of treatment are to be developed.
Collapse
Affiliation(s)
- Sarah-Jane Smillie
- BHF Centre of Cardiovascular Excellence and Centre for Integrative Biomedicine, Cardiovascular Division, Franklin-Wilkins Building, Waterloo Campus, King's College London, London SE19NH, UK
| | | |
Collapse
|