1
|
Sekiguchi Y, Adams WM, Hosokawa Y, Benjamin CL, Stearns RL, Huggins RA, Casa DJ. Customizing individual heat mitigation strategies to optimize performance in elite athletes. Front Physiol 2025; 16:1380645. [PMID: 40308571 PMCID: PMC12040879 DOI: 10.3389/fphys.2025.1380645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The aim of this review is twofold: 1) provide a brief discussion surrounding the interindividual variability that has been observed within the context of heat acclimation/acclimatization, body cooling, and hydration strategies, and 2) provide the reader with a practitioner-focused approach for creating individualized heat mitigation strategies. Considering individual variability for heat acclimation and heat acclimatization, various body cooling strategies, and hydration assessment/fluid replacement is important to maximize effects of these strategies, which lead to better performance and health outcomes. There are many factors to consider, and comprehensive approaches are required. The evidenced-informed decision is critical when making an individual approach, and data will help to make decisions effectively. It is important to keep adjusting the approach based on observed data as data is useful information to check if the approach is effective. Specific considerations to individualize the plan are discussed in this review.
Collapse
Affiliation(s)
- Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - William M. Adams
- Department of Sports Medicine, United States Olympic and Paralympic Committee, Colorado Springs, CO, United States
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, United States
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, United States
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Rebecca L. Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Robert A. Huggins
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Douglas J. Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
2
|
Chaseling GK, Blackett K, Vucic S, Barnett M, Davis SL, Jay O, Vargas NT. The effect of cold-water mouth swilling on thermal perceptions and heat-related symptoms for people with multiple sclerosis exercising in a hot environment. Eur J Appl Physiol 2025:10.1007/s00421-025-05766-6. [PMID: 40186657 DOI: 10.1007/s00421-025-05766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE Cold-water ingestion improves exercise capacity in the heat for people with multiple sclerosis (MS). Whether cold-water ingestion also mitigates heat-related MS symptoms is unknown. Ingesting fluid is also limiting for people with MS with impaired bladder function. Therefore, we tested the hypothesis that swilling or ingesting cold-water (7°C) compared to ingesting thermoneutral water (37°C) would mitigate the onset of perceived MS heat-related symptoms and thermal sensation in heat-sensitive people with MS during exercise in the heat. METHODS On three occasions, 13 heat-sensitive participants with MS (41 ± 12 y; 67 ± 12 kg; 1.7 ± 0.1 m; 33.3 ± 9.4 ml·kg-1·min-1) cycled at 40% VO2max at 35 ± 1°C; 30 ± 2% RH until volitional exhaustion (maximum of 60 min). Every 15 min, participants ingested (7IN) or swilled (7SW) 7°C, or ingested 37°C (37IN) water. Thermal sensation, heat-related MS symptoms, rectal (Tre), and mean skin (Tsk) temperature were recorded throughout. RESULTS Thermal sensation was cooler in the 7SW (P < 0.01) and 7IN (P = 0.04) compared to the 37IN trial, but heat-related symptoms (P = 0.57), fatigue (P = 0.90), ΔTre (37IN: 0.74 ± 0.37°C; 7IN: 0.65 ± 0.38°C; 7SW: 0.67 ± 0.34°C; P = 0.38) and ΔTsk (37IN: 1.61 ± 0.82°C; 7IN: 1.67 ± 0.78°C; 7SW: 1.64 ± 0.69°C; P = 0.91), were not different between trials. Nine participants completed 60 min of exercise in the 37IN trial whereas 10 participants completed 60 min of exercise in the 7IN and 7SW trials. CONCLUSION Swilling and ingesting 7°C water induces a cooler thermal sensation in heat-sensitive people with MS exercising in the heat but does not mitigate heat-related MS symptoms. The capacity to complete 60 min of exercise with cold-water ingestion and swilling were comparable.
Collapse
Affiliation(s)
- Georgia K Chaseling
- Thermal Ergonomics Laboratory, Heat and Health Research Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
- Sydney Nursing School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Katrina Blackett
- Thermal Ergonomics Laboratory, Heat and Health Research Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
| | - Steve Vucic
- Westmead Clinical School, University of Sydney Clinical School, Westmead, NSW, Australia
| | - Michael Barnett
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Scott L Davis
- Applied Physiology and Sport Management, Southern Methodist University, Dallas, TX, USA
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Heat and Health Research Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW, 2006, Australia.
| | - Nicole T Vargas
- Thermal Ergonomics Laboratory, Heat and Health Research Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Peng D, Paul E, Lonie S, Rosenblum S, Perera R, Ang GG, Cleland H, Lo CH. Management of operating theatre ambient temperature for major burn patients in a state-wide adult burns centre. Burns 2025; 51:107364. [PMID: 39740482 DOI: 10.1016/j.burns.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION The aim of this study was to investigate the efficacy of limiting increases in theatre ambient temperature to 27°C to prevent intraoperative patient hypothermia. METHODS This single-centre, comparative cohort clinical study investigated the management of theatre ambient temperatures involving patients with ≥ 20 % TBSA burn injuries at Victorian Adult Burns Service (Melbourne, Australia). Data from the intervention group (August 2021 - February 2023, theatre ambient temperature increase limited to 27°C) was compared with a historical cohort (August 2019 - August 2021). Patient hypothermia was defined as core temperature below 36°C. RESULTS In total, 29 patients underwent 107 surgical procedures in the operating theatre. Patient hypothermia was recorded on 45 occasions (42.1 %) and of these, between 35.1 and 36.0°C on 28 occasions (62.2 %). There was no statistically significant difference in the incidence of hypothermia, hospital LOS, ICU LOS, total operations, or mortality between the study cohort and historical cohort. Patients who suffered hypothermia had lower BMI, lower preoperative temperature, and shorter ICU LOS. CONCLUSION Increasing theatre ambient temperature to 27°C is adequate in most cases. A more nuanced approach with selective increase of theatre ambient temperature beyond 27°C, only where clinically indicated, is a refinement that will benefit both patients and staff.
Collapse
Affiliation(s)
- Dangyi Peng
- Faculty of Medicine, Nursing and Health Sciences, Monash University School of Medicine, Australia.
| | - Eldho Paul
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, Victoria 3004, Australia.
| | - Sarah Lonie
- Victorian Adults Burns Service, The Alfred, 55 Commercial Rd., Melbourne, VIC 3004, Australia.
| | - Samara Rosenblum
- Victorian Adults Burns Service, The Alfred, 55 Commercial Rd., Melbourne, VIC 3004, Australia.
| | - Ruvina Perera
- Faculty of Medicine, Nursing and Health Sciences, Monash University School of Medicine, Australia.
| | - G Gleda Ang
- Victorian Adults Burns Service, The Alfred, 55 Commercial Rd., Melbourne, VIC 3004, Australia.
| | - Heather Cleland
- Victorian Adults Burns Service, The Alfred, 55 Commercial Rd., Melbourne, VIC 3004, Australia; Department of Surgery, Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, Victoria 3004, Australia.
| | - Cheng Hean Lo
- Victorian Adults Burns Service, The Alfred, 55 Commercial Rd., Melbourne, VIC 3004, Australia; Department of Surgery, Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
4
|
Yu P, Fan Y, Wang X, Wu H. Effect of Taurine Combined With Creatine on Repeated Sprinting Ability After Exhaustive Exercise Under Hot and Humid Conditions. Sports Health 2025:19417381251320095. [PMID: 39972259 PMCID: PMC11840827 DOI: 10.1177/19417381251320095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Taurine (TAU) and creatine (Cr) are common ergogenic aids used by athletes to enhance performance; however, the effect of their combined supplementation, and on recovery in high temperature and humidity environments, has not been studied. HYPOTHESIS Combined TUA and Cr will have greater effect on physiological indicators and repetitive sprint performance recovery after exhaustive exercise under hot and humid conditions than single supplementation or placebo. STUDY DESIGN Single-blind crossover randomized controlled study. LEVEL OF EVIDENCE Level 2. METHODS Participants (12 sports students) were assigned randomly to 1 of 4 supplementation intervention groups: placebo (P), taurine (T), creatine (C), or taurine + creatine (T+C). Exercise protocol included exhaustion tests and repeated sprinting exercises were conducted in a laboratory environment at 35 °C/65% relative humidity. Heartrate, blood lactate (BLa), tympanic temperature, thermal sensation, and rating of perceived exertion were monitored throughout. Heartrate variability, time to exhaustion (TTE), reaction time, and countermovement jump (CMJ) height were tracked before and after exhaustion exercise and before sprint exercise. RESULTS TTE was significantly higher in the T+C group than in the P group (P = 0.04). BLa and tympanic temperature increased rapidly in all 4 conditions, then decreased gradually, and T group peak values were higher than those of P group (P = 0.04; P < 0.01). CMJ decreased in the C and T+C groups (P = 0.04; P = 0.04) after exhaustive exercise, unlike other groups (P > 0.05). Indicators of repeated sprint exercise, peak power, mean power, and power decrement showed a decreasing trend within groups but no difference between groups (P > 0.05). CONCLUSION In this small student group, under hot and humid conditions, T+C supplementation significantly enhanced TTE. CLINICAL RELEVANCE TAU, Cr, and their combined supplementation do not significantly improve repeated sprint performance after exhaustive exercise under hot and humid conditions.
Collapse
Affiliation(s)
- Peiqi Yu
- Capital University of Physical Education and Sports, Beijing, China
- Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing, China
- Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, China
| | - Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, Henan, China
| | - Xiangyu Wang
- Department of Physical Education, Capital Normal University, Beijing, China
| | - Hao Wu
- Capital University of Physical Education and Sports, Beijing, China
- Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing, China
- Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, China
| |
Collapse
|
5
|
Bird SR, Troynikov O, Watson C, Cohen M, Sostaric S. Cold water ingestion ameliorates increase in core temperature and discomfort during simulated motor racing in a hot environment: a randomized trial. Front Sports Act Living 2025; 7:1514963. [PMID: 40040778 PMCID: PMC11876140 DOI: 10.3389/fspor.2025.1514963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Formula One and other motor car racing drivers race for prolonged periods in hot conditions wearing protective apparel that impairs heat loss. They are thus at risk of a significantly elevated core temperature. The aims of this study were to determine whether the voluntary ingestion of cold fluid aided thermoregulation more effectively than the voluntary ingestion of ambient temperature fluid in a simulated motor racing environment. Methods Eight male participants commenced two 120-min simulated motor racing trials in an environmental chamber (40°C, 50% humidity). During one trial they were provided with 1 L of ambient temperature water (AWT), whilst in the other trial the water temperature was ∼5°C (CWT). A drinking schedule of "1 sip every four minutes" was advocated. Participant core temperature, skin temperature and heart rate were recorded continuously, whilst thermal comfort, response time and cognitive function were assessed at 30-min intervals. Results All participants successfully completed their CWT, but only two completed the full 120-mins of their AWT (AWT trial duration ranged from 80 to 120 min). Despite encouragement to drink more, both the rate of consumption (AWT 333 ± 103 v CWT 436 ± 99 ml/h) and total volume of water consumed (AWT 585 ± 233 v CWT 872 ± 198 ml) were less in the AWT (p < 0.005). At the 75-min point of the trials, participant core temperatures had increased by 1.26 ± 0.29 in AWT and 0.81 ± 0.30 in CWT. Furthermore, at the point of trial cessation, core temperature in the AWT had increased by 1.69 ± 0.36°C, but only 1.17 ± 0.52°C in the CWT (p < 0.05). Participants reported less discomfort and a lower rating of perceived exertion during the CWT. In both trials, response time to the cognitive test decreased as the trials progressed, with no evident difference in response time nor cognitive function between the two trials. Discussion The ingestion of cold water was associated with an ability to continue with volitional performance and associated with an ameliorated increase in core temperature as well as providing psychological benefits of cold "refreshment".
Collapse
Affiliation(s)
- Stephen Richard Bird
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Olga Troynikov
- School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Chris Watson
- School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Marc Cohen
- Extreme Wellness Institute, Melbourne, VIC, Australia
| | - Simon Sostaric
- Melbourne Sports and Allied Health Clinic, Essendon, VIC, Australia
| |
Collapse
|
6
|
Han X, Wu J, Hu Z, Li C, Hu X. A practical deep learning model for core temperature prediction of specialized workers in high-temperature environments. J Therm Biol 2025; 128:104079. [PMID: 39970650 DOI: 10.1016/j.jtherbio.2025.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
The health issues of hazardous operations in high-temperature environments are increasing concerns to the public, especially since global warming and extreme weather conditions have made the high-temperature work more frequent and harsher. The abnormal elevation of human core temperature (Tcr) due to high temperatures directly leads to a decline in physiological functions and may trigger various heat-related health issues, which is especially threatening for those working in such conditions. However, continuous real-time Tcr monitoring and prediction are challenging, particularly considering the hazardous operations in extremely hot environments. To address this problem, a non-invasive Tcr prediction model combining a Kalman filter and a long-term sequence forecasting deep learning model was developed. This model leverages monitored skin temperature (Tsk) and heart rate (HR) as input features, enabling personalized real-time Tcr predictions for various groups of specialized operations personnel. The model's accuracy was validated using the data from a series of chamber experiments with 13 participants under ambient temperatures ranging from 34 to 40 °C and Tcr range of 37-39 °C. The optimal prediction results, evaluated by the test set using seven-point Tsk combined with HR, obtain a MAE value of 0.07, a RMSE value of 0.09, and a R2 value of 0.93. Additionally, the errors of 95% of all Tcr predictions fell within ±0.17 °C. The proposed model has the advantage of requiring simple input parameters/features and producing high-accuracy predictions, which makes it a practical tool for health monitoring and protection of hazardous operations in high-temperature environments.
Collapse
Affiliation(s)
- Xinge Han
- School of Emergency Management & Safety Engineering, China University of Mining and Technology, Beijing, 10083, China
| | - Jiansong Wu
- School of Emergency Management & Safety Engineering, China University of Mining and Technology, Beijing, 10083, China; Inner Mongolia Research Institute, China University of Mining and Technology (Beijing), Ordos, 017004, Inner Mongolia, China.
| | - Zhuqiang Hu
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, CH-9014, St. Gallen, Switzerland
| | - Chuan Li
- School of Emergency Management & Safety Engineering, China University of Mining and Technology, Beijing, 10083, China
| | - Xiaofeng Hu
- School of Information Network Security, People's Public Security University of China, Beijing, China
| |
Collapse
|
7
|
Ito R, Yamashita N. Moderately cool environment with rain and wind increases cold strain and energy expenditure via carbohydrate oxidation during running exercise. J Sports Med Phys Fitness 2025; 65:180-187. [PMID: 39225023 DOI: 10.23736/s0022-4707.24.16100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Outdoor exercise often proceeds despite rain and wind in cool conditions. The aim of this study was to investigate the effects of rain with wind on physiological responses during running exercise at 70% V̇O2max in cool conditions. METHODS Eleven healthy men exercised on a treadmill at 70% V̇O2max intensity for 60 min under conditions of 10 mm/h rain and 3 m/sec wind (RW) or not (CON) at 10°C in a climatic chamber able to simulate various temperature, humidity, rain, and wind conditions. Body temperature, expired air, and blood samples were measured at rest and exercise. RESULTS Rectal temperature, mean weighted skin temperature, and thermal sensation were all significantly lower in RW than in CON during exercise (all P<0.05). Oxygen uptake was significantly higher in RW than in CON during exercise (all P<0.05). Participants' rating of perceived exertion was significantly higher in RW than in CON at 50 and 60 min (P<0.05). Respiratory exchange ratio was significantly higher in RW than in CON at 10, 20, and 40 min. Plasma lactate concentration and plasma norepinephrine levels were significantly higher in RW than in CON during exercise (both P<0.05). CONCLUSIONS Rain with wind intensified body heat loss, and energy expenditure and carbohydrate oxidation increased as the body cooled. These conditions may decrease exercise performance.
Collapse
Affiliation(s)
- Ryo Ito
- School of Informatics, Department of Integrated Informatics, Sports and Information Course, Daido University, Nagoya, Japan -
| | - Naoyuki Yamashita
- Faculty of Arts and Sciences, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
8
|
Flintoff JM, Pattinson C, Ahamed S, Ali S, Bagley A, Broszczak D, Crewther B, de Waal L, Edmed SL, Fernando T, Fookes C, Frentiu FD, Hunt AP, Lipp OV, McMaster B, Mengersen K, Ney L, Oon SL, Pandey A, Pandit P, Peake JM, Perera MMN, Perlo V, Punyadeera C, Schmidt L, Smith SS, Spann K, Stewart I, Sullivan KA, Young D, Kerr G, Parker TJ. Predictive biomarkers of performance under stress: a two-phase study protocol to develop a wearable monitoring system. BMJ Open Sport Exerc Med 2025; 11:e002410. [PMID: 39897983 PMCID: PMC11784218 DOI: 10.1136/bmjsem-2024-002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Understanding and predicting individual responses to common stressors is essential for optimising performance in high-stress environments. This article outlines a protocol for a study to identify biomarkers that predict performance under heat, musculoskeletal, psychosocial and sleep stress, for future integration into a wearable sensor system. In Phase I, healthy adults aged between 18 and 45 years (n=104) will be recruited for an intervention trial that involves exposure to one of the four stressors: heat, musculoskeletal, psychosocial or sleep deprivation. Biomarkers will be identified from molecular markers in biological samples (eg, blood, saliva, sweat and stool), physiological measures and psychological assessments to predict cognitive and physical performance under stress. A within-subjects design will determine changes in molecular and non-molecular markers before and after stress exposure. In Phase II, we will use the biomarkers identified in Phase I to develop a wearable sensor to predict and monitor human performance under stress.
Collapse
Affiliation(s)
- Jonathan M Flintoff
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Cassandra Pattinson
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah Ahamed
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Shahnewaz Ali
- School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Angus Bagley
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Daniel Broszczak
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Blair Crewther
- School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - Louis de Waal
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Centre of Research Excellence in Stillbirth, Mater Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Shannon L Edmed
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Tharindu Fernando
- School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Clinton Fookes
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Francesca D Frentiu
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew P Hunt
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ben McMaster
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kerrie Mengersen
- Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Luke Ney
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Senn L Oon
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ajay Pandey
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Parth Pandit
- School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jonathan M Peake
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Muthukuttige Madusha Nuwanthi Perera
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Virginie Perlo
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Luke Schmidt
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon S Smith
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kirsten Spann
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ian Stewart
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karen A Sullivan
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Danielle Young
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Graham Kerr
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tony J Parker
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Menzies C, Clarke ND, Pugh CJA, Steward CJ, Thake CD, Cullen T. Passive heating in sport: context-specific benefits, detriments, and considerations. Appl Physiol Nutr Metab 2025; 50:1-15. [PMID: 39805100 DOI: 10.1139/apnm-2024-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Exercise and passive heating share some acute physiological responses. These include increases in body temperature, sweat rate, blood flow, heart rate, and redistribution of plasma and blood volume. These responses can vary depending on the heating modality or dose (e.g., temperature, duration, body coverage) and are beneficial to athletes in specific scenarios. These scenarios include being applied to increase muscle or force production, induce rapid weight loss, stimulate thermoregulatory or cardiovascular adaptation, or to accelerate recovery. The rationale being to tailor the specific passive heating protocol to target the desired physiological response. However, some acute responses to passive heating may also be detrimental to sporting outcomes, such as exercising in the heat, having unintended residual negative effects on performance or perceptions of fatigue, or even resulting in hospitalisation if implemented inappropriately. Accordingly, the effects of passive heating should be carefully considered prior to implementation by athletes, coaches, and support staff. Therefore, the purpose of this review is to evaluate the physiological responses to different modes and doses of passive heating and explore the various sport contexts where these effects may either benefit or hinder athletes. Understanding these responses can aid the implementation of passive heating in sport and identify potential recommended heating protocols in each given scenario.
Collapse
Affiliation(s)
- Campbell Menzies
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Neil D Clarke
- College of Life Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Charles J Steward
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - C Douglas Thake
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
| | - Tom Cullen
- Centre for Physical Activity, Sport & Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
10
|
Tetzlaff EJ, Ioannou LG, O'Connor FK, Kaltsatou A, Ly V, Kenny GP. Practical Considerations for Using Personal Cooling Garments for Heat Stress Management in Physically Demanding Occupations: A Systematic Review and Meta-Analysis Using Realist Evaluation. Am J Ind Med 2025; 68:3-25. [PMID: 39498663 DOI: 10.1002/ajim.23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Due to rising temperature extremes, workplaces are seeking new solutions, such as using personal cooling garments (PCG) to mitigate and manage workplace heat exposure. This systematic review sought to assess the physiological and perceptual effects of PCGs on workers in standard work clothing performing moderate-to-heavy intensity tasks in hot environments. METHODS A peer-reviewed search strategy was conducted in MEDLINE, Embase, CINAHL, Scopus, Global Health, and Business Source Complete with no language or time limits. A meta-analysis using a realist evaluation framework was then performed to evaluate the effectiveness of the PCGs. RESULTS Thirty-three studies with 764 participants (98% male; average 21 ± 34 participants per study), conducted primarily in a laboratory setting (76%) were included. The studies were 193 ± 190 min in duration and consisted of a moderate-to-heavy work effort of 3.3 ± 1.0 METs in hot ambient conditions (temperature: 35.9 ± 3.3°C, 51.4 ± 12.1% relative humidity, wet bulb globe temperature [WBGT] 31.2 ± 2.6°C). The PCGs (n = 67) facilitated heat exchange through conduction (n = 39), evaporation (n = 4), convection (n = 2), radiation (n = 2), or hybrid combinations (n = 20). Conductive and hybrid PCGs offered the greatest thermoregulatory benefit, whereby core temperature (Tc) and heart rate (HR) reductions were consistently observed (Conductive: Tc: -0.3°C, HR: -12 bpm; Hybrid: Tc:-0.2°C, HR: -10 bpm), while PCGs directed at enhancing evaporative and radiative heat exchange had no or minimal effect on the physiological outcomes assessed (i.e., TC < 0.1°C, HR: < 0.7 bpm). CONCLUSION While the PCGs had a positive overall effect, conductive options offered the most consistent benefit to workers. WBGT, clothing insulation, and duration of wear significantly affected some physiological and perceptual outcomes.
Collapse
Affiliation(s)
- Emily J Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Leonidas G Ioannou
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Fergus K O'Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- School of Health Sciences and Social Work, Griffith University, Southport, Queensland, Australia
| | - Antonia Kaltsatou
- Functional Architecture of Mammals in their Environment Laboratory, School of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Valentina Ly
- Health Sciences Library, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Laitano O, Oki K, Charkoudian N. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39189870 DOI: 10.1152/physiol.00028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
12
|
Sekiguchi Y, Hosokawa Y, Dadzie E, Lopez V, Bivona JJ, Thornton SN, Jardine JF, Casa DJ, Lee EC. Change in interleukin (IL)-6, 8, and 10 and its association with an increase in core temperature following a 7-mile running race in the warm weather. Res Sports Med 2025; 33:107-116. [PMID: 39543800 DOI: 10.1080/15438627.2024.2428602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The purposes of this study were 1) to investigate if cytokines were increased following a running road-race, and 2) to examine associations between cytokines and hyperthermia. Seventy-seven recreational runners participated in this study which occurred at the 7-mile race in the heat (ambient temperature, 25.0-26.7°C; %RH, 56.7-79.0 ± 5.0%). Before and following the race, blood draws were performed to measure circulating inflammatory cytokines. Core temperature was measured using an ingestible thermistor throughout the race. Core temperature was significantly higher at post-race (39.5 ± 0.7°C) than pre-race (36.9 ± 0.4°C, p < 0.001). IL-6, IL-8, and IL-10 significantly increased at post-race (IL-6, 48.0 ± 22.3 pg⋅ml-1; IL-8, 63.8 ± 23.9 pg⋅ml-1; IL-10, 29.2 ± 20.0 pg⋅ml-1) compared to pre-race (IL-6, 28.4 ± 13.6 pg⋅ml-1; IL-8, 53.2 ± 19.4 pg⋅ml-1; IL-10, 18.6 ± 11.9 pg⋅ml-1, p < 0.001). A greater increase in core temperature pre- to post-race was predicted by the faster finish time, a greater increase in IL-6, and greater body mass loss during the race (r2 = 0.298, p < 0.001). Small associations were found between IL-8 and core temperature at post-race (r = 0.255, p = 0.025). In conclusion, cytokines concentrations and core temperature increased following the race. Moreover, post-race hyperthermia is associated with increased IL-6, faster finish times, and higher body mass losses.
Collapse
Affiliation(s)
- Yasuki Sekiguchi
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
- Sports Performance Lab, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Yuri Hosokawa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Ekow Dadzie
- Human Performance Lab, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Virgilio Lopez
- Human Performance Lab, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Joseph J Bivona
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Staci N Thornton
- Human Performance Lab, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - John F Jardine
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
- Emergency Department, Falmouth Hospital, Falmouth, MA, USA
| | - Douglas J Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| | - Elaine C Lee
- Human Performance Lab, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
13
|
Yu L, Chen Z, Wu W, Xu X, Lv Y, Li C. Effects of Precooling on Endurance Exercise Performance in the Heat: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024; 16:4217. [PMID: 39683610 DOI: 10.3390/nu16234217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
An increasing number of studies have explored the effects of precooling on endurance exercise performance in the heat, yet the available results remain inconsistent. Therefore, this study aimed to investigate the effects of different precooling strategies on endurance exercise performance in the heat. A comprehensive search was conducted across PubMed, Web of Science, Cochrane, Scopus, and EBSCO database. The Cochrane risk assessment tool was employed to evaluate the methodological quality of the included studies. A meta-analysis was subsequently conducted to quantify the standardized mean difference (SMD) and 95% confidence interval for the effects of precooling on endurance exercise performance in the heat. Out of the initially identified 6982 search records, 15 studies were deemed eligible for meta-analysis. Our results showed that precooling significantly improved time trial (TT) performance (SMD, -0.37, p < 0.01, I2 = 0%) and time to exhaustion (TTE) performance in the heat (SMD, 0.73, p < 0.01, I2 = 50%). Further subgroup analyses revealed that external precooling is more effective in improving TT performance (SMD, -0.43, p = 0.004, I2 = 0%) and TTE performance (SMD, 1.01, p < 0.001, I2 = 48%), particularly in running-based performances (TT, SMD, -0.41, p = 0.02, I2 = 0%; TTE, SMD, 0.85, p = 0.0001, I2 = 31%). Precooling is an effective approach to improve endurance exercise performance in the heat. External precooling is more effective in improving endurance exercise performance, particularly in running-based performance.
Collapse
Affiliation(s)
- Laikang Yu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China
| | - Zhizhou Chen
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China
| | - Weiliang Wu
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China
| | - Xinhao Xu
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China
| | - Yuanyuan Lv
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing 100084, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Cui Li
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Struška M, Jarešová PA, Hora M, Wall-Scheffler C, Michálek T, Sládek V. Impact of relative lower-limb length on heat loss and body temperature during running. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25036. [PMID: 39473072 DOI: 10.1002/ajpa.25036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVES Long lower limbs relative to body size are thought to be an adaptation to prevent excessive increases in body temperature during running in hot climate. The advantage of long lower limbs relative to body size is usually explained by an increase in body surface area relative to mass; however, the influence of limb length on relative body surface area was shown to be minor. We aimed to experimentally test the effect of relative lower-limb length (LLL) on body temperature changes during running. Furthermore, we tested the effect of relative LLL on relative body surface area. MATERIALS AND METHODS Adult men (n = 37) ran for 40 min on a treadmill, while their core temperature (ingestible thermometer), skin temperature (infrared thermography), and oxygen consumption (indirect calorimetry) were measured. Relative LLL was calculated as residuals from linear regression of LLL on stature. Linear regression was used to test the effect of relative LLL on standardized heat loss (heat loss/heat production), mean body temperature (weighted mean of skin and core temperatures), and body surface area. RESULTS Relative LLL had a positive effect on standardized heat loss and a negative effect on mean body temperature change during running. Relative LLL had a positive effect on the proportion of body surface area allocated to the lower limbs but not on the relative body surface area. DISCUSSION The reduced increase in mean body temperature associated with long lower limbs suggests an advantage of relatively long lower limbs for greater endurance and speed during persistence hunting or contemporary running events.
Collapse
Affiliation(s)
- Michal Struška
- Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Martin Hora
- Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Tomáš Michálek
- CASRI - Sports Research Institute of Czech Armed Forces, Prague, Czech Republic
| | - Vladimír Sládek
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Kordi M, Bigham D, Tipper J, Ferguson RA, Howatson G, Wale J. Case study of a world hour record simulation in an elite cyclist: Insight into task failure. Eur J Sport Sci 2024; 24:1779-1787. [PMID: 39533527 PMCID: PMC11621379 DOI: 10.1002/ejsc.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
The 'cycling hour-record' is one of the most prestigious events in cycling. However, little detailed analysis of such attempts is available. In preparation for a successful cycling hour-record attempt, an elite cyclist performed a full-hour simulation to provide insights into performance, physiological, aerodynamic and biomechanical limitations that could be identified in the preparation for a subsequent official attempt. Performance (speed, lap time, power and cadence), physiological (heart rate and estimated body temperature), aerodynamic (CDA, helmet angle, rotation and rock) and biomechanical (helmet, thigh and foot position changes) measurements were made throughout the attempt, in which an even-pacing strategy was employed where the point of task failure was defined as the lap which the rider could no longer perform at the targeted lap split (16.6 s) or quicker. The cyclist did not achieve the target distance (54,000 m) during the simulation. The final distance achieved for the hour was 53,250 m. Task failure occurred at 38 min and 33 s (lap 139/34,750 m) into the simulation. Notably, there was a decrease in power output, accompanied with an increase in the estimated body temperature, changes in pedalling kinematics and an increase in aerodynamic drag. The reduction in performance (leading to task failure) during a cycling hour record simulation is underpinned by a decrease in power output as well as an increase in aerodynamic drag due to biomechanical changes in the cycling technique.
Collapse
Affiliation(s)
- Mehdi Kordi
- Royal Dutch Cycling Federation (KNWU)PapendalArnhemThe Netherlands
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastleUK
| | | | | | - Richard A. Ferguson
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Glyn Howatson
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastleUK
- Water Research GroupNorth‐West UniversityPotchefstroomSouth Africa
| | | |
Collapse
|
16
|
Naito T, Saito T, Morinaga H, Eda N, Takai Y. Elevated core temperature in addition to mental fatigue impairs aerobic exercise capacity in highly trained athletes in the heat. J Physiol Anthropol 2024; 43:30. [PMID: 39587651 PMCID: PMC11587623 DOI: 10.1186/s40101-024-00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The purpose of this study was to investigate the effects of elevated core temperature by exposure to heat stress vs. heat exposure without elevated core temperature (mean skin temperature only) in addition to mental fatigue on aerobic exercise capacity in the heat. Seven highly trained athletes completed two experimental conditions: elevation in core and skin temperatures (hyperthermia: HYP), and skin temperatures (SKIN). Participants performed the AX-Continuous Performance Task and Stroop Task to induce mental fatigue during a warm water immersion at 40 °C (HYP) and a passive seated heat exposure in a climatic chamber at 35 °C and 60% relative humidity (SKIN) for 45 min before exercise. Thereafter, participants performed running trial at 80% maximal oxygen uptake until voluntary exhaustion in the same chamber as the SKIN. Exercise time to exhaustion was significantly shorter in the HYP trial (538 ± 200 s) than in the SKIN trial (757 ± 324 s). Rectal temperature at the end of tasks in the HYP trial increased by 0.86 ± 0.26℃ and was significantly higher (37.69 ± 0.18℃) than that of the SKIN trial (36.96 ± 0.13℃), albeit no significant differences in mean skin temperature. Self-reported mental fatigue using visual analog scale was significantly higher after tasks in both trials, but no significant difference between trials was found. Throughout the trial, salivary cortisol concentration and perceptual responses were not affected by hyperthermia. This study demonstrated that a combination of high core temperature and mean skin temperature, and mental fatigue limit aerobic exercise capacity in highly trained athletes in hot environments compared with heat exposure without an elevation of core temperature.
Collapse
Affiliation(s)
- Takashi Naito
- Faculty of Law, Hokkai-Gakuen University, 4-1-40 Asahi-machi Toyohira-Ku, Sapporo-City, Hokkaido, 062-8605, Japan.
| | - Tatsuya Saito
- Faculty of Medicine, Tottori University, 4-101 Koyama-cho minami, Tottori-City, Tottori, 683-8550, Japan
| | - Hirotsugu Morinaga
- Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, 1 Shirouzucho, Kanoya-City, Kagoshima, 891-2391, Japan
| | - Nobuhiko Eda
- Department of Fundamental Educaion, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan
| | - Yohei Takai
- Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, 1 Shirouzucho, Kanoya-City, Kagoshima, 891-2391, Japan
| |
Collapse
|
17
|
Guo Z, Gao J, Liu L, Liu X. Quantitatively Predicting Effects of Exercise on Pharmacokinetics of Drugs Using a Physiologically Based Pharmacokinetic Model. Drug Metab Dispos 2024; 52:1271-1287. [PMID: 39251368 DOI: 10.1124/dmd.124.001809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024] Open
Abstract
Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow and decreasing glomerular filtration rate (GFR) and liver blood flow, thereby altering the absorption, distribution, metabolism, and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g., muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation P = ΣaiHRi was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. The pharmacokinetics of midazolam, quinidine, digoxin, and lidocaine during exercise were predicted by a whole-body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within the 5th-95th percentiles of the simulations, and the estimated peak concentrations (Cmax) and area under the curve (AUC) of drugs were also within 0.5-2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time, and alterations in physiological parameters significantly affected drug pharmacokinetics and the net effect depending on drug characteristics and exercise conditions. In conclusion, the pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters. SIGNIFICANCE STATEMENT: This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed.
Collapse
Affiliation(s)
- Zeyu Guo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jingjing Gao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Lopes TR, de Oliveira DM, Amoroso de Lima LA, Silva BM. Breathing variability during running in athletes: The role of sex, exercise intensity and breathing reserve. Respir Physiol Neurobiol 2024; 331:104350. [PMID: 39270950 DOI: 10.1016/j.resp.2024.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Highly trained aerobic athletes progressively use most of their breathing reserve with increased exercise intensity during whole-body exercise. Additionally, females typically present proportionally smaller lungs than males. Therefore, sex, exercise intensity, and breathing reserve use likely influence the volume and time in which respiratory parameters vary between consecutive breaths during whole-body exercise. However, breath-by-breath variability has been scarcely investigated during exercise. Accordingly, we sought to investigate breath-by-breath pulmonary ventilation (V̇E), tidal volume (VT), and respiratory frequency (fR) variability during a maximal treadmill incremental exercise test in 17 females and 18 males highly trained professional endurance runners. The breath-by-breath variability was analyzed by root mean square of successive differences (RMSSD) within 1-minute windows. Females had lower absolute and percent predicted forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) than males, as well as lower height-adjusted absolute FVC than males. V̇E and VT reserve use were similar between the sexes at peak exercise. While RMSSDV̇E and RMSSDfR did not change over exercise (P > 0.05), RMSSDVT progressively decreased (P < 0.001). RMSSDVT was negatively correlated with VT reserve use only in males. Females showed lower RMSSDV̇E than males during the entire exercise test (P < 0.001). At iso-V̇E reserve use, between-sex differences in RMSSDV̇E persisted (P = 0.003). Our findings indicate that exercise intensity decreases VT variability in professional runners, which is linked to VT reserve use in males but not females. Additionally, the female sex lowers V̇E variability regardless of exercise intensity and V̇E reserve use.
Collapse
Affiliation(s)
- Thiago Ribeiro Lopes
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; São Paulo Association for Medicine Development, São Paulo, Sp, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Diogo Machado de Oliveira
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Luís Adriano Amoroso de Lima
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Bruno Moreira Silva
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Abedin F, DenHartog E. Clothing impact on post-exercise comfort: skin-clothing physiology in transient environment. ERGONOMICS 2024; 67:1080-1096. [PMID: 37960939 DOI: 10.1080/00140139.2023.2281272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Sportswear manufactured from hygroscopic fibres can absorb moisture during activity or intermittent exercise and may change the thermal management of clothing. This change in the thermal behaviour of the fabric can lead to buffer the post-exercise chill. During activity in a moderately cold environment clothing made of 100% wool fibre helps wearers to slow down evaporative and conductive cooling, which can provide more thermal and comfort sensation compared to 100% cotton, 100% viscose, and 100% polyester. Twelve males performed cycling in a controlled climate chamber of temperature: 15 ± 0.5 °C, and relative humidity (RH):50 ± 5% followed by a drying phase in a windy environment by wearing full-sleeve t-shirts. Wool shirt was observed to hold a greater torso skin temperature (p < 0.05) than the other fibre types. Participants were asked a range of comfort-related questions at varying intervals. The temperature sensation was found (p < 0.05) significant for wool clothing. Moreover, participants rated wool shirt significantly (p < 0.05) as more comfortable during the post-exercise phase.
Collapse
Affiliation(s)
- Faisal Abedin
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC, USA
- Textile Protection and Comfort Center, North Carolina State University, Raleigh, NC, USA
| | - Emiel DenHartog
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC, USA
- Textile Protection and Comfort Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
20
|
John K, Kathuria S, Peel J, Page J, Aitkenhead R, Felstead A, Heffernan SM, Jeffries O, Tallent J, Waldron M. Caffeine ingestion compromises thermoregulation and does not improve cycling time to exhaustion in the heat amongst males. Eur J Appl Physiol 2024; 124:2489-2502. [PMID: 38568259 PMCID: PMC11322244 DOI: 10.1007/s00421-024-05460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/04/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Caffeine is a commonly used ergogenic aid for endurance events; however, its efficacy and safety have been questioned in hot environmental conditions. The aim of this study was to investigate the effects of acute caffeine supplementation on cycling time to exhaustion and thermoregulation in the heat. METHODS In a double-blind, randomised, cross-over trial, 12 healthy caffeine-habituated and unacclimatised males cycled to exhaustion in the heat (35 °C, 40% RH) at an intensity associated with the thermoneutral gas exchange threshold, on two separate occasions, 60 min after ingesting caffeine (5 mg/kg) or placebo (5 mg/kg). RESULTS There was no effect of caffeine supplementation on cycling time to exhaustion (TTE) (caffeine; 28.5 ± 8.3 min vs. placebo; 29.9 ± 8.8 min, P = 0.251). Caffeine increased pulmonary oxygen uptake by 7.4% (P = 0.003), heat production by 7.9% (P = 0.004), whole-body sweat rate (WBSR) by 21% (P = 0.008), evaporative heat transfer by 16.5% (P = 0.006) and decreased estimated skin blood flow by 14.1% (P < 0.001) compared to placebo. Core temperature was higher by 0.6% (P = 0.013) but thermal comfort decreased by - 18.3% (P = 0.040), in the caffeine condition, with no changes in rate of perceived exertion (P > 0.05). CONCLUSION The greater heat production and storage, as indicated by a sustained increase in core temperature, corroborate previous research showing a thermogenic effect of caffeine ingestion. When exercising at the pre-determined gas exchange threshold in the heat, 5 mg/kg of caffeine did not provide a performance benefit and increased the thermal strain of participants.
Collapse
Affiliation(s)
- Kevin John
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Sayyam Kathuria
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Jenny Peel
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Joe Page
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Robyn Aitkenhead
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Aimee Felstead
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Shane M Heffernan
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Owen Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, Clayton, Australia
| | - Mark Waldron
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK.
- Welsh Institute of Performance Science, Swansea University, Swansea, UK.
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Down, QLD, Australia.
| |
Collapse
|
21
|
Desroches AJ, Aloui F, Deshayes TA, Goulet EDB. Assessment of the Omius™ cooling headband effectiveness during a 70-min submaximal running effort followed by a 5-km time-trial in hot/humid conditions. J Therm Biol 2024; 124:103964. [PMID: 39226790 DOI: 10.1016/j.jtherbio.2024.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Exercise performed under hot/humid conditions can hinder endurance performance. The Omius™ headband (OH) is purported to reduce the perception of heat and improve performance. We examined the impact of OH on selected thermal and cardiovascular functions, subjective perceptions and running performance. Using a randomized crossover protocol, 10 trained male athletes (28 ± 4 years) completed two trials (OH and sham headband (SH), 35.0 ± 0.3 °C, 56 ± 3% relative humidity) comprising 70 min of running (60% V˙O2max) followed by a 5-km running time-trial (TT). Heart rate, perceived exertion and whole-body thermal comfort did not significantly differ between conditions during the submaximal running effort and TT. Rectal temperature was higher with OH (0.11 ± 0.16 °C, p = 0.052) than SH prior to the submaximal running effort, however, no significant differences were observed between conditions regarding the changes in rectal temperature from baseline during the submaximal running effort and TT. Forehead temperature was significantly lower with OH than SH during the submaximal running effort, but no significant differences were observed at the end of the TT. Scores of perceived forehead thermal comfort were only significantly lower with OH than SH during the submaximal running effort. TT performance did not significantly differ between OH (19.8 ± 1.2 min) and SH (20.2 ± 1.0 min). In conclusion, OH improves forehead thermal comfort and reduces forehead temperature but not rectal temperature, heart rate and perceived exertion during, nor 5-km TT performance following, 70 min of submaximal running in the heat.
Collapse
Affiliation(s)
| | - Fedi Aloui
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas A Deshayes
- School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Québec, Canada; Montreal Heart Institute, Montréal, Québec, Canada
| | - Eric D B Goulet
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Research Centre on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
22
|
Zhou Z, Su Y, Wu Y, Qin F, Zheng X. The effects of cold water immersion and partial body cryotherapy on subsequent exercise performance and thermoregulatory responses in hot conditions. J Therm Biol 2024; 123:103926. [PMID: 39094403 DOI: 10.1016/j.jtherbio.2024.103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
This study investigated the effects of cold water immersion (CWI) and partial body cryotherapy (PBC) applied within a 15-min post-exercise recovery period on thermoregulatory responses, subjective perceptions, and exercise performance under hot conditions (39 °C). Twelve male soccer players participated in team-sports-specific assessments, including Agility T-test (T-test), 20-m sprint test (20M-ST), and Yo-Yo Intermittent Endurance Test Level 1 (YY-T), during two exercise bouts (1st bout and 2nd bout) with a 15-min post-exercise recovery period. Within the recovery period, a 3-min of PBC at -110 °C or CWI at 15 °C or a seated rest (CON) was performed. Mean skin temperature (Tskin) decreased by 4.3 ± 1.08°C (p < 0.001) immediately after PBC, while CWI induced a reduction of 2.5 ± 0.21°C (p < 0.01). Furthermore, PBC and CWI consistently reduced Tskin for 15 and 33 min, respectively (p < 0.05). During the 2nd bout, core temperature (Tcore) was significantly lower in PBC compared to CON (p < 0.05). Heart rate (HR) was significantly lower in CWI compared to CON and PBC during the intervention period. Thermal sensation (TS) was significantly greater in PBC compared to CON and CWI (p < 0.05). Compared to the 1st bout, PBC alleviated the declines in T-test (p < 0.05) and 20M-ST (p < 0.05), while CWI alleviated the decreases in T-test (p < 0.05) and YY-T (p < 0.05), concurrently significantly enhancing 20M-ST (p < 0.05). 20M-ST and YY-T was greater from PBC (p < 0.05) and CWI (p < 0.05) compared with CON in 2nd bout. Additionally, the T-test in CWI was significantly greater than CON (p < 0.05). These results indicate that both PBC and CWI, performed between two exercise bouts, have the potential to improve thermoregulatory strain, reduce thermal perceptual load, and thereby attenuate the subsequent decline in exercise performance.
Collapse
Affiliation(s)
- Zigui Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yuchen Su
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yuge Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Fanjun Qin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Xinyan Zheng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
23
|
Sweet DK, Qiao J, Rosbrook P, Pryor JL. Load-Velocity Profiles Before and After Heated Resistance Exercise. J Strength Cond Res 2024; 38:1019-1024. [PMID: 38781465 DOI: 10.1519/jsc.0000000000004739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Sweet, DK, Qiao, J, Rosbrook, P, and Pryor, JL. Load-velocity profiles before and after heated resistance exercise. J Strength Cond Res 38(6): 1019-1024, 2024-This study examined neuromuscular performance using load-velocity (L-V) profiles in men and women before and after resistance exercise (RE) in hot (HOT; 40° C) and temperate (TEMP; 21° C) environments. Sixteen (f = 8, m = 8) resistance-trained individuals completed a single 70-minute whole-body high-volume load (6 exercises, 4 sets of 10 repetitions) RE bout in HOT and TEMP. Before and after RE, rectal temperature (TRE), muscle temperature of the vastus lateralis (TVL) and triceps brachii (TTB), and an L-V profile for the deadlift and bench press were recorded. Thermoregulatory and L-V data were analyzed using separate 2-way repeated measures analysis of variances (ANOVAs; condition [hot, temperate] and time [pre, post]) with significance level set at p ≤ 0.05. Deadlift peak velocity was reduced at 60% 1 repetition maximum (1RM) after RE in HOT but not TEMP. Peak velocity of 40% 1RM bench press was lower in TEMP vs. HOT pre-RE (p < 0.01). Peak velocity was decreased at all loads in the deadlift L-V profile after RE, regardless of condition. Despite elevated TRE (TEMP; 37.58 ± 0.35, HOT; 38.20 ± 0.39° C), TVL (TEMP; 35.24 ± 0.62, HOT; 37.92 ± 0.55° C), and TTB (TEMP; 35.05 ± 0.78, HOT; 38.00 ± 0.16° C) after RE in HOT vs. TEMP (p < 0.01), RE in HOT did not broadly affect L-V profiles. This indicates heated resistance exercise can be performed with high-volume load and high ambient temperature with minimal performance impairment.
Collapse
Affiliation(s)
- Daniel K Sweet
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | | | | | | |
Collapse
|
24
|
Leavitt VM, Tozlu C, Nelson KE, Boehme AK, Donnelly JE, Aguerre I, Spinner M, Riley CS, Stein J, Onomichi K. A randomized controlled trial of oral antipyretic treatment to reduce overheating during exercise in adults with multiple sclerosis. J Neurol 2024; 271:2207-2215. [PMID: 38413464 DOI: 10.1007/s00415-023-12147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND Some people with multiple sclerosis (pwMS) avoid exercise due to overheating. Evidence from a variety of cooling treatments shows benefits for pwMS. OBJECTIVE Conduct a randomized controlled trial of antipyretic treatment before exercise in pwMS. METHODS Adults over age 18 diagnosed with relapsing-remitting MS reporting heat sensitivity during exercise were randomly assigned to one of six sequences counterbalancing aspirin, acetaminophen, placebo. At each of three study visits separated by ≥ one week, participants received 650-millograms of aspirin, acetaminophen, or placebo before completing a maximal exercise test. Primary outcomes were body temperature change and total time-to-exhaustion (TTE), secondary outcomes were physiological and patient-reported outcomes (PROs). RESULTS Sixty participants were enrolled and assigned to treatment sequence; 37 completed ≥ one study visit. After controlling for order effects, we found that body temperature increase was reduced after aspirin (+ 0.006 ± 0.32 degrees Fahrenheit, p < 0.001) and after acetaminophen (+ 0.31 ± 0.35; p = 0.004) compared to placebo (+ 0.68 ± 0.35). TTE after aspirin (331.6 ± 76.6 s) and acetaminophen (578.2 ± 82.1) did not differ significantly from placebo (551.0 ± 78.4; p's > 0.05). Aspirin benefited all secondary outcomes compared to placebo (all p's < 0.001); acetaminophen showed broadly consistent benefits. CONCLUSION These results support antipyretic treatment as effective for reducing overheating during exercise in pwMS and failed to support antipyretics for increasing TTE in the context of a maximal exercise test. Benefits were shown for physiological markers of exercise productivity and PROs of fatigue, pain, and perceived exertion.
Collapse
Affiliation(s)
- Victoria M Leavitt
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Katherine E Nelson
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Amelia K Boehme
- Department of Neurology and Epidemiology, Columbia University Irving Medical Center, New York, USA
| | - Jaime E Donnelly
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Ines Aguerre
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Michael Spinner
- Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Claire S Riley
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Joel Stein
- Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kaho Onomichi
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
25
|
Fujimoto T, Matsuura Y, Baba Y, Hara R. Effect of Wetsuit Use on Body Temperature and Swimming Performance During Training in the Pool: Recommendations for Open-Water Swimming Training With Wetsuits. Int J Sports Physiol Perform 2024; 19:407-411. [PMID: 38194956 DOI: 10.1123/ijspp.2022-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE Open-water swimmers need to train with wetsuits to get familiar with them; however, body core temperature (Tcore) kinetics when using wetsuits in swimming-pool training remains unclear. The present study assessed the effects of wetsuit use in pool training on Tcore, subjective perceptions, and swimming performance to obtain suggestions for wearing wetsuits in training situations. METHODS Four elite/international-level Japanese swimmers (2 female, age 24 [1] y) completed two 10-km trials with (WS) and without wetsuit (SS) in the swimming pool (Tw: 29.0 °C). During the trial, swimmers were allowed to remove their wetsuit if they could no longer tolerate the heat. Tcore was continuously recorded via ingestible temperature sensors. Swimming speed was estimated from every 100-m lap time. RESULTS Tcore increased by distance in both trials in all swimmers. Tcore when swimmers removed their wetsuit in the WS (distance: 3800 [245] m, time: 2744 [247] s) was higher than that at the same distance in the SS in all swimmers. Rating of perceived exertion was higher in the SS than the WS, and swimming speed was slower in the WS than the SS in all swimmers. CONCLUSION Wetsuit use during pool training increases Tcore and decreases swimming performance. Although wearing wetsuits in training situations is important for familiarization, for the safety of the swimmers, it is recommended that they remove their wetsuit if they feel too hot.
Collapse
Affiliation(s)
- Tomomi Fujimoto
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuiko Matsuura
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuhiro Baba
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Reira Hara
- College of Sports Sciences, Nihon University, Tokyo, Japan
| |
Collapse
|
26
|
Tan XR, Stephenson MC, Alhadad SB, Loh KWZ, Soong TW, Lee JKW, Low ICC. Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:233-244. [PMID: 37678507 PMCID: PMC10980903 DOI: 10.1016/j.jshs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Excessive heat exposure can lead to hyperthermia in humans, which impairs physical performance and disrupts cognitive function. While heat is a known physiological stressor, it is unclear how severe heat stress affects brain physiology and function. METHODS Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures (Tre) attained 39.5°C, inducing exertional or passive hyperthermia, respectively. In a separate trial, blended ice was ingested before and during exercise as a cooling strategy. Data were compared to a control condition with seated rest (normothermic). Brain temperature (Tbr), cerebral perfusion, and task-based brain activity were assessed using magnetic resonance imaging techniques. RESULTS Tbr in motor cortex was found to be tightly regulated at rest (37.3°C ± 0.4°C (mean ± SD)) despite fluctuations in Tre. With the development of hyperthermia, Tbr increases and dovetails with the rising Tre. Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks, implying a reduced central motor drive in hyperthermic participants (Tre = 38.5°C ± 0.1°C). Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia. Executive function was poorer under a passive hyperthermic state, and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex. Conversely, ingestion of blended ice before and during exercise alleviated the rise in both Tre and Tbr and mitigated heat-related neural perturbations. CONCLUSION Severe heat exposure elevates Tbr, disrupts motor cortical activity and executive function, and this can lead to impairment of physical and cognitive performance.
Collapse
Affiliation(s)
- Xiang Ren Tan
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mary C Stephenson
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Sharifah Badriyah Alhadad
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kelvin W Z Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Jason K W Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117510, Singapore; N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore.
| | - Ivan C C Low
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
27
|
Goudini R, Zahiri A, Alizadeh S, Drury B, Anvar SH, Daneshjoo A, Behm DG. The Effects of Physical and Mental Fatigue on Time Perception. Sports (Basel) 2024; 12:59. [PMID: 38393279 PMCID: PMC10891994 DOI: 10.3390/sports12020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The perception of time holds a foundational significance regarding how we elucidate the chronological progression of events. While some studies have examined exercise effects on time perception during exercise periods, there are no studies investigating the effects of exercise fatigue on time perception after an exercise intervention. This study investigated the effects of physical and mental fatigue on time estimates over 30 s immediately post-exercise and 6 min post-test. Seventeen volunteers were subjected to three conditions: physical fatigue, mental fatigue, and control. All participants completed a familiarization session and were subjected to three 30 min experimental conditions (control, physical fatigue (cycling at 65% peak power output), and mental fatigue (Stroop task)) on separate days. Time perception, heart rate, and body temperature were recorded pre-test; at the start of the test; 5, 10, 20, 30 seconds into the interventions; post-test; and at the 6 min follow-up. Rating of perceived exertion (RPE) was recorded four times during the intervention. Physical fatigue resulted in a significant (p = 0.001) underestimation of time compared to mental fatigue and control conditions at the post-test and follow-up, with no significant differences between mental fatigue and control conditions. Heart rate, body temperature, and RPE were significantly (all p = 0.001) higher with physical fatigue compared to mental fatigue and control conditions during the intervention and post-test. This study demonstrated that cycling-induced fatigue led to time underestimation compared to mental fatigue and control conditions. It is crucial to consider that physical fatigue has the potential to lengthen an individual's perception of time estimates in sports or work environments.
Collapse
Affiliation(s)
- Reza Goudini
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (R.G.); (A.Z.); (S.H.A.)
| | - Ali Zahiri
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (R.G.); (A.Z.); (S.H.A.)
| | - Shahab Alizadeh
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Benjamin Drury
- Sport & Exercise Science, Hartpury University, Gloucestershire GL19 3BE, UK;
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (R.G.); (A.Z.); (S.H.A.)
| | - Abdolhamid Daneshjoo
- Department of Sport Injuries and Corrective Exercises, Faculty of Sport Sciences, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran;
| | - David G. Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (R.G.); (A.Z.); (S.H.A.)
| |
Collapse
|
28
|
Morrissey-Basler MC, Brewer GJ, Anderson T, Adams WM, Navarro JS, Marcelino M, Martin DG, Casa DJ. The effect of heat mitigation strategies on thermoregulation and productivity during simulated occupational work in the heat in physically active young men. Front Sports Act Living 2024; 5:1274141. [PMID: 38274034 PMCID: PMC10808760 DOI: 10.3389/fspor.2023.1274141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Purpose To investigate heat stress mitigation strategies on productivity and thermoregulatory responses during simulated occupational work in the heat. Methods Thirteen physically active men (age, 25 ± 4 years; body mass,77.8 ± 14.7 kg; VO2peak, 44.5 ± 9.2 ml·kg-1·min-1) completed five randomized-controlled trials in a hot environment (40°C, 40% relative humidity). Each trial was 4.5 h in duration to simulate an outdoor occupational shift. Thermoregulatory responses (heart rate, HR; rectal temperature, Trec; mean skin temperature, Tsk), perceptual responses (rating of perceived exertion, RPE; thermal sensation; thermal comfort; fatigue) and productivity outcomes (box lifting repetitions, time to exhaustion) were examined in the following heat mitigation strategy interventions: (1) simulated solar radiation with limited fluid intake [SUN]; (2) simulated solar radiation with no fluid restrictions [SUN + H2O]; (3) shade (no simulated solar radiation during trial) with no fluid restrictions [SHADE + H2O]; (4) shade and cooling towels during rest breaks with no fluid restrictions [COOL + H2O]; and (5) shade with cooling towels, cooling vest during activity with no fluid restrictions [COOL + VEST + H2O]. Results [COOL + VEST + H2O] had lower Trec compared to [SUN] [p = 0.004, effect size(ES) = 1.48], [SUN + H2O] (p < 0.001, ES = -1.87), and [SHADE + H2O] (p = 0.001, ES = 1.62). Average Tsk was lower during the treadmill and box lifting activities in the [COOL + VEST + H2O] compared to [SUN] (p < 0.001, ES = 7.92), [SUN + H2O] (p < 0.001,7.96), [SHADE + H2O] (p < 0.001), and [COOL + H2O] (p < 0.001, ES = 3.01). There were performance differences during the [COOL + VEST + H2O] (p = 0.033) and [COOL + H2O] (p = 0.023) conditions compared to [SUN] during phases of the experimental trial, however, there were no differences in total box lifting repetitions between trials (p > 0.05). Conclusion Our results suggest that during a simulated occupational shift in a laboratory setting, additional heat mitigation strategies ([COOL + VEST + H2O] and [COOL + H2O]) reduced physiological strain and improved box lifting performance to a greater degree than [SUN]. These differences may have been attributed to a larger core to skin temperature gradient or reduction in fatigue, thermal sensation, and RPE during [COOL + H2O] and [COOL + VEST + H2O]. These data suggest that body cooling, hydration, and "shade" (removal of simulated radiant heat) as heat stress mitigation strategies should be considered as it reduces physiological strain while producing no additional harm.
Collapse
Affiliation(s)
- Margaret C. Morrissey-Basler
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, United States
- Department of Health Sciences, Providence College, Providence, RI, United States
| | - Gabrielle J. Brewer
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, United States
| | - Travis Anderson
- Department of Sports Medicine, UnitedStates Olympic & Paralympic Committee, Colorado Springs, CO, United States
- UnitedStates Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, United States
| | - William M. Adams
- Department of Sports Medicine, UnitedStates Olympic & Paralympic Committee, Colorado Springs, CO, United States
- UnitedStates Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, United States
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - John S. Navarro
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, United States
| | - Monique Marcelino
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, United States
| | - David G. Martin
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, United States
| | - Douglas J. Casa
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
29
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 2: physiological measurements. Eur J Appl Physiol 2023; 123:2587-2685. [PMID: 37796291 DOI: 10.1007/s00421-023-05284-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 10/06/2023]
Abstract
In this, the second of four historical reviews on human thermoregulation during exercise, we examine the research techniques developed by our forebears. We emphasise calorimetry and thermometry, and measurements of vasomotor and sudomotor function. Since its first human use (1899), direct calorimetry has provided the foundation for modern respirometric methods for quantifying metabolic rate, and remains the most precise index of whole-body heat exchange and storage. Its alternative, biophysical modelling, relies upon many, often dubious assumptions. Thermometry, used for >300 y to assess deep-body temperatures, provides only an instantaneous snapshot of the thermal status of tissues in contact with any thermometer. Seemingly unbeknownst to some, thermal time delays at some surrogate sites preclude valid measurements during non-steady state conditions. To assess cutaneous blood flow, immersion plethysmography was introduced (1875), followed by strain-gauge plethysmography (1949) and then laser-Doppler velocimetry (1964). Those techniques allow only local flow measurements, which may not reflect whole-body blood flows. Sudomotor function has been estimated from body-mass losses since the 1600s, but using mass losses to assess evaporation rates requires precise measures of non-evaporated sweat, which are rarely obtained. Hygrometric methods provide data for local sweat rates, but not local evaporation rates, and most local sweat rates cannot be extrapolated to reflect whole-body sweating. The objective of these methodological overviews and critiques is to provide a deeper understanding of how modern measurement techniques were developed, their underlying assumptions, and the strengths and weaknesses of the measurements used for humans exercising and working in thermally challenging conditions.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- College of Human Ecology, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Blazevich AJ, Fletcher JR. More than energy cost: multiple benefits of the long Achilles tendon in human walking and running. Biol Rev Camb Philos Soc 2023; 98:2210-2225. [PMID: 37525526 DOI: 10.1111/brv.13002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Elastic strain energy that is stored and released from long, distal tendons such as the Achilles during locomotion allows for muscle power amplification as well as for reduction of the locomotor energy cost: as distal tendons perform mechanical work during recoil, plantar flexor muscle fibres can work over smaller length ranges, at slower shortening speeds, and at lower activation levels. Scant evidence exists that long distal tendons evolved in humans (or were retained from our more distant Hominoidea ancestors) primarily to allow high muscle-tendon power outputs, and indeed we remain relatively powerless compared to many other species. Instead, the majority of evidence suggests that such tendons evolved to reduce total locomotor energy cost. However, numerous additional, often unrecognised, advantages of long tendons may speculatively be of greater evolutionary advantage, including the reduced limb inertia afforded by shorter and lighter muscles (reducing proximal muscle force requirement), reduced energy dissipation during the foot-ground collisions, capacity to store and reuse the muscle work done to dampen the vibrations triggered by foot-ground collisions, reduced muscle heat production (and thus core temperature), and attenuation of work-induced muscle damage. Cumulatively, these effects should reduce both neuromotor fatigue and sense of locomotor effort, allowing humans to choose to move at faster speeds for longer. As these benefits are greater at faster locomotor speeds, they are consistent with the hypothesis that running gaits used by our ancestors may have exerted substantial evolutionary pressure on Achilles tendon length. The long Achilles tendon may therefore be a singular adaptation that provided numerous physiological, biomechanical, and psychological benefits and thus influenced behaviour across multiple tasks, both including and additional to locomotion. While energy cost may be a variable of interest in locomotor studies, future research should consider the broader range of factors influencing our movement capacity, including our decision to move over given distances at specific speeds, in order to understand more fully the effects of Achilles tendon function as well as changes in this function in response to physical activity, inactivity, disuse and disease, on movement performance.
Collapse
Affiliation(s)
- Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, Australia
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Porcelli S, Pilotto A, Rossiter HB. NIRS-Based Muscle Oxygenation Is Not Suitable to Compute Convective and Diffusive Components of O 2 Transport at V̇O 2max : Response to Manferdelli, Barstow, and Millet. Med Sci Sports Exerc 2023; 55:2112-2113. [PMID: 37343386 PMCID: PMC10592518 DOI: 10.1249/mss.0000000000003240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, ITALY
- Institute of Biomedical Technologies, National Research Council, Milan, ITALY
| | - A.M. Pilotto
- Department of Molecular Medicine, University of Pavia, Pavia, ITALY
- Department of Medicine, University of Udine, Udine, ITALY
| | - Harry B. Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| |
Collapse
|
32
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 1: Foundational principles and theories of regulation. Eur J Appl Physiol 2023; 123:2379-2459. [PMID: 37702789 DOI: 10.1007/s00421-023-05272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/30/2023] [Indexed: 09/14/2023]
Abstract
This contribution is the first of a four-part, historical series encompassing foundational principles, mechanistic hypotheses and supported facts concerning human thermoregulation during athletic and occupational pursuits, as understood 100 years ago and now. Herein, the emphasis is upon the physical and physiological principles underlying thermoregulation, the goal of which is thermal homeostasis (homeothermy). As one of many homeostatic processes affected by exercise, thermoregulation shares, and competes for, physiological resources. The impact of that sharing is revealed through the physiological measurements that we take (Part 2), in the physiological responses to the thermal stresses to which we are exposed (Part 3) and in the adaptations that increase our tolerance to those stresses (Part 4). Exercising muscles impose our most-powerful heat stress, and the physiological avenues for redistributing heat, and for balancing heat exchange with the environment, must adhere to the laws of physics. The first principles of internal and external heat exchange were established before 1900, yet their full significance is not always recognised. Those physiological processes are governed by a thermoregulatory centre, which employs feedback and feedforward control, and which functions as far more than a thermostat with a set-point, as once was thought. The hypothalamus, today established firmly as the neural seat of thermoregulation, does not regulate deep-body temperature alone, but an integrated temperature to which thermoreceptors from all over the body contribute, including the skin and probably the muscles. No work factor needs to be invoked to explain how body temperature is stabilised during exercise.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Wee J, Tan XR, Gunther SH, Ihsan M, Leow MKS, Tan DSY, Eriksson JG, Lee JKW. Effects of Medications on Heat Loss Capacity in Chronic Disease Patients: Health Implications Amidst Global Warming. Pharmacol Rev 2023; 75:1140-1166. [PMID: 37328294 DOI: 10.1124/pharmrev.122.000782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
Pharmacological agents used to treat or manage diseases can modify the level of heat strain experienced by chronically ill and elderly patients via different mechanistic pathways. Human thermoregulation is a crucial homeostatic process that maintains body temperature within a narrow range during heat stress through dry (i.e., increasing skin blood flow) and evaporative (i.e., sweating) heat loss, as well as active inhibition of thermogenesis, which is crucial to avoid overheating. Medications can independently and synergistically interact with aging and chronic disease to alter homeostatic responses to rising body temperature during heat stress. This review focuses on the physiologic changes, with specific emphasis on thermolytic processes, associated with medication use during heat stress. The review begins by providing readers with a background of the global chronic disease burden. Human thermoregulation and aging effects are then summarized to give an understanding of the unique physiologic changes faced by older adults. The effects of common chronic diseases on temperature regulation are outlined in the main sections. Physiologic impacts of common medications used to treat these diseases are reviewed in detail, with emphasis on the mechanisms by which these medications alter thermolysis during heat stress. The review concludes by providing perspectives on the need to understand the effects of medication use in hot environments, as well as a summary table of all clinical considerations and research needs of the medications included in this review. SIGNIFICANCE STATEMENT: Long-term medications modulate thermoregulatory function, resulting in excess physiological strain and predisposing patients to adverse health outcomes during prolonged exposures to extreme heat during rest and physical work (e.g., exercise). Understanding the medication-specific mechanisms of altered thermoregulation has importance in both clinical and research settings, paving the way for work toward refining current medication prescription recommendations and formulating mitigation strategies for adverse drug effects in the heat in chronically ill patients.
Collapse
Affiliation(s)
- Jericho Wee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Xiang Ren Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Samuel H Gunther
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Melvin Khee Shing Leow
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Doreen Su-Yin Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Johan G Eriksson
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Jason Kai Wei Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| |
Collapse
|
34
|
Niclou A, Sarma M, Levy S, Ocobock C. To the extreme! How biological anthropology can inform exercise physiology in extreme environments. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111476. [PMID: 37423419 DOI: 10.1016/j.cbpa.2023.111476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
The fields of biological anthropology and exercise physiology are closely related and can provide mutually beneficial insights into human performance. These fields often use similar methods and are both interested in how humans function, perform, and respond in extreme environments. However, these two fields have different perspectives, ask different questions, and work within different theoretical frameworks and timescales. Biological anthropologists and exercise physiologists can greatly benefit from working together when examining human adaptation, acclimatization, and athletic performance in the extremes of heat, cold, and high-altitude. Here we review the adaptations and acclimatizations in these three different extreme environments. We then examine how this work has informed and built upon exercise physiology research on human performance. Finally, we present an agenda for moving forward, hopefully, with these two fields working more closely together to produce innovative research that improves our holistic understanding of human performance capacities informed by evolutionary theory, modern human acclimatization, and the desire to produce immediate and direct benefits.
Collapse
Affiliation(s)
- Alexandra Niclou
- Pennington Biomedical Research Center, Baton Rouge, LA, United States of America. https://twitter.com/fiat_luxandra
| | - Mallika Sarma
- Human Space Flight Lab, Johns Hopkins School of Medicine, Baltimore, MD, United States of America. https://twitter.com/skyy_mal
| | - Stephanie Levy
- Department of Anthropology, CUNY Hunter College, New York, NY, United States of America; New York Consortium in Evolutionary Primatology, New York, NY, United States of America. https://twitter.com/slevyscience
| | - Cara Ocobock
- University of Notre Dame Department of Anthropology, Notre Dame, IN, United States of America; Eck Institute for Global Health, Institute for Educational Initiatives, University of Notre Dame, United States of America.
| |
Collapse
|
35
|
Kang J, Ratamess NA, Faigenbaum AD, Bush JA, Finnerty C, DiFiore M, Garcia A, Beller N. Time-of-Day Effects of Exercise on Cardiorespiratory Responses and Endurance Performance-A Systematic Review and Meta-Analysis. J Strength Cond Res 2023; 37:2080-2090. [PMID: 37026733 DOI: 10.1519/jsc.0000000000004497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Kang, J, Ratamess, NA, Faigenbaum, AD, Bush, JA, Finnerty, C, DiFiore, M, Garcia, A, and Beller, N. Time-of-day effects of exercise on cardiorespiratory responses and endurance performance-A systematic review and meta-analysis. J Strength Cond Res 37(10): 2080-2090, 2023-The time-of-day effect of exercise on human function remains largely equivocal. Hence, this study aimed to further analyze the existing evidence concerning diurnal variations in cardiorespiratory responses and endurance performance using a meta-analytic approach. Literature search was conducted through databases, including PubMed, CINAHL, and Google Scholar. Article selection was made based on inclusion criteria concerning subjects' characteristics, exercise protocols, times of testing, and targeted dependent variables. Results on oxygen uptake (V̇ o2 ), heart rate (HR), respiratory exchange ratio, and endurance performance in the morning (AM) and late afternoon or evening (PM) were extracted from the chosen studies. Meta-analysis was conducted with the random-effects model. Thirty-one original research studies that met the inclusion criteria were selected. Meta-analysis revealed higher resting V̇ o2 (Hedges' g = -0.574; p = 0.040) and resting HR (Hedges' g = -1.058; p = 0.002) in PM than in AM. During exercise, although V̇ o2 remained indifferent between AM and PM, HR was higher in PM at submaximal (Hedges' g = -0.199; p = 0.046) and maximal (Hedges' g = -0.298; p = 0.001) levels. Endurance performance as measured by time-to-exhaustion or the total work accomplished was higher in PM than in AM (Hedges' g = -0.654; p = 0.001). Diurnal variations in V̇ o2 appear less detectable during aerobic exercise. The finding that exercising HR and endurance performance were greater in PM than in AM emphasizes the need to consider the effect of circadian rhythm when evaluating athletic performance or using HR as a criterion to assess fitness or monitor training.
Collapse
Affiliation(s)
- Jie Kang
- Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Baranauskiene N, Wang J, Eimantas N, Solianik R, Brazaitis M. Age-related differences in the neuromuscular performance of fatigue-provoking exercise under severe whole-body hyperthermia conditions. Scand J Med Sci Sports 2023; 33:1621-1637. [PMID: 37218443 DOI: 10.1111/sms.14403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE The purpose of this study was to determine if aging would lead to greater decline in neuromuscular function during a fatiguing task under severe whole-body hyperthermia conditions. METHODS Twelve young (aged 19-21 years) and 11 older (aged 65-80 years) males were enrolled in the study, which comprised a randomized control trial under a thermoneutral condition at an ambient temperature of 23°C (CON) and an experimental trial with passive lower body heating in 43°C water (HWI-43°C). Changes in neuromuscular function and fatigability, and physical performance-influencing factors such as psychological, thermoregulatory, neuroendocrine, and immune responses to whole-body hyperthermia were measured. RESULTS A slower increase in rectal temperature, and a lower heart rate, thermal sensation, and sweating rate were observed in older males than young males in response to HWI-43°C trial (p < 0.05). Nevertheless, prolactin increased more in response to hyperthermia in young males, while interleukin-6 and cortisol levels increased more in older males (p < 0.05). Peripheral dopamine levels decreased in older males and increased in young males in response to hyperthermia (p < 0.05). Surprisingly, older males demonstrated greater neuromuscular fatigability resistance and faster maximal voluntary contraction (MVC) torque recovery after a 2-min sustained isometric MVC task under thermoneutral and severe hyperthermic conditions (p < 0.05). CONCLUSION Neuromuscular performance during fatigue-provoking sustained isometric exercise under severe whole-body hyperthermia conditions appears to decline in both age groups, but a lower relative decline in torque production for older males may relate to lower psychological and thermophysiological strain along with a diminished dopamine response and prolactin release.
Collapse
Affiliation(s)
- Neringa Baranauskiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Junli Wang
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
37
|
Chen J, Fonseca MA, Heyes A, Yang J, Zhang X. How Much Will Climate Change Reduce Productivity in a High-Technology Supply Chain? Evidence from Silicon Wafer Manufacturing. ENVIRONMENTAL & RESOURCE ECONOMICS 2023; 86:533-563. [PMID: 37860592 PMCID: PMC10581999 DOI: 10.1007/s10640-023-00803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 10/21/2023]
Abstract
The frequency of hot days in much of the world is increasing. What is the impact of high temperatures on productivity? Can technology-based adaptation mitigate such effects of climate change? We provide some answers to these questions by examining how high outdoor temperatures affect a high-technology, precision manufacturing setting. Exploiting individual-level data on the quantity and quality of work done across 35,190 worker-shifts in a leading NYSE-listed silicon wafer maker in China, we evidence a negative effect of outdoor heat on productivity. The effects are large: in our preferred linear specification, an increase in wet bulb temperature of 10 ∘ C causes a reduction in output of 8.3%. Temperature effects exist even though the manufacturer's work-spaces are indoors and protected by high-quality climate control systems. Results are not driven by extreme weather events and are robust to alternative modelling approaches. They illustrate the potential future adverse economic effects of climate change in most of the industrialised world.
Collapse
Affiliation(s)
- Jingnan Chen
- Economics Department, Business School, University of Exeter, Exeter, EX4 4PU UK
| | - Miguel A. Fonseca
- Economics Department, Business School, University of Exeter, Exeter, EX4 4PU UK
- NIPE, Universidade do Minho, Braga, Portugal
| | - Anthony Heyes
- Economics Department, University of Birmingham, Birmingham, B15 2TT UK
| | - Jie Yang
- Business School, Guilin University of Electronic Technology, Guilin, 541004 Guangxi China
| | - Xiaohui Zhang
- Economics Department, Business School, University of Exeter, Exeter, EX4 4PU UK
| |
Collapse
|
38
|
Bright FM, Clark B, Jay O, Périard JD. Influence of Air Velocity on Self-Paced Exercise Performance in Hot Conditions. Med Sci Sports Exerc 2023; 55:1382-1391. [PMID: 36989528 DOI: 10.1249/mss.0000000000003168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
PURPOSE This study aimed to determine the effect of different air velocities on heat exchange and performance during prolonged self-paced exercise in the heat. METHODS Twelve male cyclists performed a 700-kJ time trial in four different air velocity conditions (still air, 16, 30, and 44 km·h -1 ) in 32°C and 40% relative humidity. Performance, thermal, cardiovascular, and perceptual responses were measured, and heat balance parameters were estimated using partitional calorimetry, including the maximum potential for sweat evaporation ( Emax ). RESULTS Mean power output was lower in still air (232 ± 42 W) than 16 (247 ± 30 W), 30 (250 ± 32 W), and 44 km·h -1 (248 ± 32 W; all P < 0.001), but similar between the 16-, 30-, and 44-km·h -1 air velocity conditions ( P ≥ 0.275). Emax was lower in still air (160 ± 13 W·m -2 ) than 16 (298 ± 25 W·m -2 ), 30 (313 ± 23 W·m -2 ), and 44 km·h -1 (324 ± 31 W·m -2 ) and lower in 16 than 44 km·h -1 (all P < 0.001). Peak core temperature was higher in still air (39.4°C ± 0.7°C) than 16 (39.0°C ± 0.45°C), 30 (38.8°C ± 0.3°C), and 44 km·h -1 (38.8°C ± 0.5°C; all P ≤ 0.002). Mean skin temperature was lower with greater airflow ( P < 0.001) but similar in 30 and 40 km·h -1 ( P = 1.00). Mean heart rate was ~2 bpm higher in still air than 44 km·h -1 ( P = 0.035). RPE was greater in still air than 44 km·h -1 ( P = 0.017). CONCLUSIONS Self-paced cycling in still air was associated with a lower Emax and subsequently higher thermal strain, along with a similar or greater cardiovascular strain, despite work rate being lower than in conditions with airflow. The similarity in performance between the 16-, 30-, and 44-km·h -1 air velocity conditions suggests that airflow ≥16 km·h -1 does not further benefit self-paced exercise performance in the heat because of modest improvements in evaporative efficiency.
Collapse
Affiliation(s)
- Felicity M Bright
- Research Institute for Sport and Exercise, University of Canberra, Canberra, AUSTRALIA
| | - Brad Clark
- Research Institute for Sport and Exercise, University of Canberra, Canberra, AUSTRALIA
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, AUSTRALIA
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, AUSTRALIA
| |
Collapse
|
39
|
Pariyavuth P, Lee JKW, Tan PMS, Vichaiwong K, Mawhinney C, Pinthong M. Practical internal and external cooling methods do not influence rapid recovery from simulated taekwondo performance. J Exerc Sci Fit 2023; 21:286-294. [PMID: 37332293 PMCID: PMC10272492 DOI: 10.1016/j.jesf.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Background/Objectives The influence of post-exercise cooling on recovery has gained much attention in the empirical literature, however, data is limited in regards to optimizing recovery from taekwondo performance when combat is repeated in quick succession within the same day. The aim of this study was therefore to compare the effects of external and internal cooling after simulated taekwondo combat upon intestinal temperature (Tint), psychomotor skills (reaction time, response time, movement time), and neuromuscular function (peak torque, average power, time to reach peak torque). Methods Using a randomized counterbalanced crossover design, 10 well-trained male taekwondo athletes completed four recovery methods on separate occasions: passive recovery (CON), a 5-minute thermoneutral water immersion (35°C) (TWI), a 5-min cold water immersion (15°C) (CWI), and ice slurry ingestion (-1°C) (ICE; consumed every 5 min for 30 min). Heart rate (HR), blood lactate (Blac) concentrations, and Tint were determined at rest, immediately after combat, and at selected intervals during a 90-min recovery period. Neuromuscular functional (measured with isokinetic dynamometer) and psychomotor indices were assessed at baseline and after the recovery period. Results ICE led to a significantly lower Tint at 30 min (P<0.01) and 45 min (P<0.01) after simulated combat; 15-30 min after cessation of ingesting ice slurry, compared with the CON and TWI conditions, respectively. However, there were no differences in Tint across time points between the other conditions (P>0.05). Psychomotor skills and neuromuscular function indices returned to baseline values after the 90 min recovery period (P>0.05) with no differences observed between conditions (P>0.05). Conclusion The present findings suggest that internal (ICE) and external (CWI) recovery methods appear to have little impact on physiological and functional indices over the time course required to influence repeated taekwondo combat performance.
Collapse
Affiliation(s)
- Pariya Pariyavuth
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand
- Faculty of Physical Education, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Jason Kai Wei Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Heat Resilience and Performance Centre, National University of Singapore, Singapore
| | - Pearl Min Sze Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kanokwan Vichaiwong
- Faculty of Physical Therapy, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Christopher Mawhinney
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Metta Pinthong
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
40
|
Bakalidou D, Giannopapas V, Giannopoulos S. Thoughts on Fatigue in Multiple Sclerosis Patients. Cureus 2023; 15:e42146. [PMID: 37602098 PMCID: PMC10438195 DOI: 10.7759/cureus.42146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Chronic fatigue is a common symptom in people with multiple sclerosis (PwMS) and presents as a reversible motor and cognitive impairment with reduced motivation and a desire to rest. The presentation of fatigue symptomatology in PwMS can be spontaneous or induced by mental or physical activity, temperature and humidity fluctuations, acute infections, and even food ingestion. Even though the exacerbation of fatigue symptomatology due to heat reaction is well established, the role of environmental temperature (ambient temperature and relative humidity) is not yet fully understood, and there is not enough systematic evidence regarding its effect. In this article, we present our opinion (based on the current literature and clinical experience) regarding the role of environmental temperature in the manifestation of fatigue symptomatology in PwMS.
Collapse
Affiliation(s)
- Daphne Bakalidou
- Laboratory of Neuromuscular and Cardiovascular Study of Motion (LANECASM) Physiotherapy Department, Faculty of Health and Care Sciences, University of West Attica, Athens, GRC
| | - Vasileios Giannopapas
- Physical Therapy, University of West Attica, Athens, GRC
- 2nd Neurological Department, Attikon University Hospital, Athens, GRC
| | | |
Collapse
|
41
|
Andrade MT, Nunes‐Leite MMS, Bruzzi RS, Souza CH, Uendeles‐Pinto JP, Prado LS, Soares DD, Gonçalves DAP, Coimbra CC, Wanner SP. Predicting the body core temperature of recreational athletes at the end of a 10 km self-paced run under environmental heat stress. Exp Physiol 2023; 108:852-864. [PMID: 37018484 PMCID: PMC10988464 DOI: 10.1113/ep091017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to identify the factors predicting the body core temperature of athletes at the end of a 10 km self-paced run in a hot environment. What is the main finding and its importance? Hyperthermia in athletes subjected to self-paced running depends on several factors, highlighting the integrated control of core temperature during exercise under environmental heat stress. Five of the seven variables that significantly predicted core temperature are not invasive and, therefore, practical for use outside the laboratory environment: heart rate, sweat rate, wet-bulb globe temperature, running speed and maximal oxygen consumption. ABSTRACT Measurement of body core temperature (Tcore ) is paramount to determining the thermoregulatory strain of athletes. However, standard measurement procedures of Tcore are not practical for extended use outside the laboratory environment. Therefore, determining the factors that predict Tcore during a self-paced run is crucial for creating more effective strategies to minimize the heat-induced impairment of endurance performance and reduce the occurrence of exertional heatstroke. The aim of this study was to identify the factors predicting Tcore values attained at the end of a 10 km time trial (end-Tcore ) under environmental heat stress. Initially, we extracted data obtained from 75 recordings of recreationally trained men and women. Next, we ran hierarchical multiple linear regression analyses to understand the predictive power of the following variables: wet-bulb globe temperature, average running speed, initial Tcore , body mass, differences between Tcore and skin temperature (Tskin ), sweat rate, maximal oxygen uptake, heart rate and change in body mass. Our data indicated that Tcore increased continuously during exercise, attaining 39.6 ± 0.5°C (mean ± SD) after 53.9 ± 7.5 min of treadmill running. This end-Tcore value was primarily predicted by heart rate, sweat rate, differences between Tcore and Tskin , wet-bulb globe temperature, initial Tcore , running speed and maximal oxygen uptake, in this order of importance (β power values corresponded to 0.462, -0.395, 0.393, 0.327, 0.277, 0.244 and 0.228, respectively). In conclusion, several factors predict Tcore in athletes subjected to self-paced running under environmental heat stress. Moreover, considering the conditions investigated, heart rate and sweat rate, two practical (non-invasive) variables, have the highest predictive power.
Collapse
Affiliation(s)
- Marcelo T. Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Matheus M. S. Nunes‐Leite
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Rúbio S. Bruzzi
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Carlos H. Souza
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - João P. Uendeles‐Pinto
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Luciano S. Prado
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
- Sports Training Center, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Danusa D. Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Dawit A. P. Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
- Sports Training Center, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Cândido C. Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| | - Samuel P. Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational TherapyUniversidade Federal de Minas GeraisBelo HorizonteMGBrazil
| |
Collapse
|
42
|
Pryor JL, Lao P, Leija RG, Perez S, Morales J, Looney DP, Cochrane-Snyman KC. Verification Phase Confirms V̇O 2max in a Hot Environment in Sedentary Untrained Males. Med Sci Sports Exerc 2023; 55:1069-1075. [PMID: 36719655 DOI: 10.1249/mss.0000000000003126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE This study aimed to assess the V̇O 2 uptake obtained during a GXT and subsequent verification phase in untrained participants in a hot environment. METHODS Twelve sedentary males completed a GXT followed by a biphasic supramaximal-load verification phase in a hot environment (39°C, 32% relative humidity). Rest between tests occurred in a temperate chamber and lasted until gastrointestinal temperature returned to baseline. RESULTS Mean verification phase V̇O 2max (37.8 ± 4.3 mL·kg -1 ·min -1 ) was lower than GXT (39.8 ± 4.1 mL·kg -1 ·min -1 ; P = 0.03) and not statistically equivalent. Using an individualized analysis approach, only 17% (2/12) of participants achieved a V̇O 2 plateau during the GXT. Verification phase confirmed GXT V̇O 2max in 100% of participants, whereas the traditional and the new age-dependent secondary V̇O 2max criteria indicated GXT V̇O 2max achievement at much lower rates (8/12 [67%] vs 7/12 [58%], respectively). Correlational indices between GXT and verification phase V̇O 2max were strong (intraclass correlation coefficient = 0.95, r = 0.86), and Bland-Altman analysis revealed a low mean bias of -2.1 ± 1.9 mL·kg -1 ·min -1 and 95% limits of agreement (-5.8 to 1.7 mL·kg -1 ·min -1 ). CONCLUSIONS Very few untrained males achieved a V̇O 2 plateau during GXT in the heat. When conducting GXT in a hot condition, the verification phase remains a valuable addition to confirm V̇O 2max in untrained males.
Collapse
Affiliation(s)
- J Luke Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY
| | - Peter Lao
- Department of Kinesiology, California State University, Fresno, Fresno, CA
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Sergio Perez
- Department of Kinesiology, California State University, Fresno, Fresno, CA
| | - Jacobo Morales
- Department of Kinesiology, California State University, Fresno, Fresno, CA
| | - David P Looney
- United States Army Research Institute of Environmental Medicine (USARIEM), Natick, MA
| | | |
Collapse
|
43
|
Oyama T, Fujii M, Nakajima K, Takakura J, Hijioka Y. Validation of upper thermal thresholds for outdoor sports using thermal physiology modelling. Temperature (Austin) 2023; 11:92-106. [PMID: 38577294 PMCID: PMC10989705 DOI: 10.1080/23328940.2023.2210477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 04/06/2024] Open
Abstract
Thermal safety guidelines with upper thresholds aim to protect athletes' health, yet evidence-based sport-specific thresholds remain unestablished. Experimenting with athletes in severely hot conditions raises ethical concerns, so we used a thermo-physiological model to validate the thresholds of guidelines for outdoor sports. First, the reproducibility of the joint system thermoregulation model (JOS-3) of core temperature has been validated for 18 sports experiments (n = 213) and 11 general exercise experiments (n = 121) using the Bland - Altman analysis. Then, core temperatures were predicted using the JOS-3 in conditions corresponding to the upper thresholds, and if the 90th-99.7th percentile core temperature value (corresponding to 0.3%-10% of the participants) exceeded 40°C, the thresholds were judged as potentially hazardous. Finally, we proposed revisions for sports with potentially hazardous thresholds. As a result, the JOS-3 could simulate core temperature increases in most experiments (27/29) for six sports and general exercises with an accuracy of 0.5°C. The current upper thresholds for marathons, triathlons, and football are potentially hazardous. Suggested revisions, based on specified percentiles, include: Football: revise from wet bulb globe temperature (WBGT) 32°C to 29-31°C or not revise. Marathon: revise from WBGT 28°C to 24-27°C. Triathlon: revise from WBGT 32.2°C to 23-26°C. If conducting sports events under the revised upper thresholds proves difficult, taking measures for a possible high incidence of heat illness becomes crucial, such as placing additional medical resources, assisting heat acclimatization and cooling strategies for participants, and rule changes such as shorter match times and increased breaks.
Collapse
Affiliation(s)
- Takahiro Oyama
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| | - Minoru Fujii
- Social Systems Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Kenichi Nakajima
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Jun’ya Takakura
- Social Systems Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Yasuaki Hijioka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
44
|
Alhadad SB, Chua MCY, Lee JKW, Low ICC. The effects of low and normal dose ice slurry ingestion on endurance capacity and intestinal epithelial injury in the heat. J Sci Med Sport 2023:S1440-2440(23)00078-6. [PMID: 37179242 DOI: 10.1016/j.jsams.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES Compare the effects of ice slurry ingestion at low and normal doses on endurance capacity and exertional heat stress-induced gastrointestinal perturbations. DESIGN Randomised, cross-over design. METHODS Twelve physically active males completed four treadmill running trials, ingesting ice slurry (ICE) or ambient drink (AMB) at 2 g·kg-1 (Normal; N) or 1 g·kg-1 (Low; L) doses every 15-min during exercise and 8 g·kg-1 (N) or 4 g·kg-1 (L) pre- and post-exercise. Pre-, during and post-exercise serum intestinal fatty-acid binding protein ([I-FABP]) and lipopolysaccharide ([LPS]) concentrations were determined. RESULTS Pre-exercise gastrointestinal temperature (Tgi) was lower in L + ICE than L + AMB (p < 0.05), N + ICE than N + AMB (p < 0.001) and N + ICE than L + ICE (p < 0.001). Higher rate of Tgi rise (p < 0.05) and lower estimated sweat rate (p < 0.001) were observed in N + ICE than N + AMB. Rate of Tgi rise was similar at low dose (p = 0.113) despite a lower estimated sweat rate in L + ICE than L+AMB (p < 0.01). Time-to-exhaustion was longer in L + ICE than L + AMB (p < 0.05), but similar between N + ICE and N + AMB (p = 0.142) and L + ICE and N + ICE (p = 0.766). [I-FABP] and [LPS] were similar (p > 0.05). CONCLUSIONS L + ICE elicited a lower heat dissipation compensatory effect with similar endurance capacity as N + ICE. Ice slurry conferred no protection against exertional heat stress-induced gastrointestinal perturbations.
Collapse
Affiliation(s)
- Sharifah B Alhadad
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Melissa C Y Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jason K W Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; Institute for Digital Medicine, National University of Singapore, Singapore
| | - Ivan C C Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
45
|
Choo HC, Lee M, Yeo V, Poon W, Ihsan M. The effect of cold water immersion on the recovery of physical performance revisited: A systematic review with meta-analysis. J Sports Sci 2023; 40:2608-2638. [PMID: 36862831 DOI: 10.1080/02640414.2023.2178872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
This review evaluated the effect of CWI on the temporal recovery profile of physical performance, accounting for environmental conditions and prior exercise modality. Sixty-eight studies met the inclusion criteria. Standardised mean differences were calculated for parameters assessed at <1, 1-6, 24, 48, 72 and ≥96 h post-immersion. CWI improved short-term recovery of endurance performance (p = 0.01, 1 h), but impaired sprint (p = 0.03, 1 h) and jump performance (p = 0.04, 6h). CWI improved longer-term recovery of jump performance (p < 0.01-0.02, 24 h and 96 h) and strength (p < 0.01, 24 h), which coincided with decreased creatine kinase (p < 0.01-0.04, 24-72 h), improved muscle soreness (p < 0.01-0.02, 1-72 h) and perceived recovery (p < 0.01, 72 h). CWI improved the recovery of endurance performance following exercise in warm (p < 0.01) and but not in temperate conditions (p = 0.06). CWI improved strength recovery following endurance exercise performed at cool-to-temperate conditions (p = 0.04) and enhanced recovery of sprint performance following resistance exercise (p = 0.04). CWI seems to benefit the acute recovery of endurance performance, and longer-term recovery of muscle strength and power, coinciding with changes in muscle damage markers. This, however, depends on the nature of the preceding exercise.
Collapse
Affiliation(s)
- Hui Cheng Choo
- Sport Physiology Department, Sport Science and Medicine Centre, Singapore Sport Institute, Singapore
| | - Marcus Lee
- Sports Science, National Youth Sports Institute, Singapore
| | - Vincent Yeo
- Sport Physiology Department, Sport Science and Medicine Centre, Singapore Sport Institute, Singapore
| | - Wayne Poon
- School of Medical and Health Science, Edith Cowan University, Joondalup, Australia
| | - Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
46
|
Eizenga MR, Flewwelling LD, Warrier T, Scott GR. Thermal performance curve of endurance running at high temperatures in deer mice. J Exp Biol 2023; 226:286951. [PMID: 36752138 DOI: 10.1242/jeb.244847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
The impacts of warming temperatures associated with climate change on performance are poorly understood in most mammals. Thermal performance curves are a valuable means of examining the effects of temperature on performance traits, but they have rarely been used in endotherms. Here, we examined the thermal performance curve of endurance running capacity at high temperatures in the deer mouse (Peromyscus maniculatus). Endurance capacity was measured using an incremental speed test on a treadmill, and subcutaneous temperature in the abdominal region was measured as a proxy for body temperature (Tb). Endurance time at 20°C was repeatable but varied appreciably across individuals, and was unaffected by sex or body mass. Endurance capacity was maintained across a broad range of ambient temperatures (Ta) but was reduced above 35°C. Tb during running varied with Ta, and reductions in endurance were associated with Tb greater than 40°C when Ta was above 35°C. At the high Ta that limited endurance running capacity (but not at lower Ta), Tb tended to rise throughout running trials with increases in running speed. Metabolic and thermoregulatory measurements at rest showed that Tb, evaporative water loss and breathing frequency increased at Ta of 36°C and above. Therefore, the upper threshold temperatures at which endurance capacity is impaired are similar to those inducing heat responses at rest in this species. These findings help discern the mechanisms by which deer mice are impacted by warming temperatures, and provide a general approach for examining thermal breadth of performance in small mammals.
Collapse
Affiliation(s)
- Matthew R Eizenga
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Luke D Flewwelling
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Tanisha Warrier
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
47
|
Otani H. Prior heat exposure diminishes upper-body endurance work capacity and maximal arm and leg strength in young men. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:337-345. [PMID: 36449084 DOI: 10.1007/s00484-022-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Workers often experience heat exposure before manual labour. This study investigated whether prior heat exposure diminished upper-body endurance work capacity and maximal isokinetic arm and leg strength in young men. Ten male participants completed two trials in a climatic chamber maintained at 25°C with 50% relative humidity. The two trials required them to complete a 30-min pre-exercise water-immersion at either 40°C (HOT) to provoke an approximately 1°C rise in rectal temperature (Tre) or 36°C (CON) to maintain a normal Tre. Pre- and post-immersion and following arm-cranking, isokinetic maximal voluntary contraction (MVC) torque was assessed for the elbow flexors and knee extensors. During arm-cranking, time to exhaustion was measured using arm crank ergometry at 60% peak oxygen uptake. Electromyography was recorded from the elbow flexors and knee extensors to calculate the integrated electromyography. Tre at post-immersion was higher in HOT (Mean ± SD, 38.1 ± 0.3°C) than CON (37.1 ± 0.3°C; P < 0.01). Time to exhaustion was less in HOT (41 ± 13 min) than CON (52 ± 12 min; P < 0.01). Isokinetic MVC torque in the elbow flexors and knee extensors was lower in HOT than CON (both P < 0.05). The integrated electromyography of the elbow flexors and knee extensors were lower in HOT than CON (both P < 0.05). This study indicates that a 1°C rise in Tre by prior heat exposure reduces time to exhaustion during arm-cranking and isokinetic MVC torque of the elbow flexors and knee extensors. Workers should be careful about reductions in upper-body endurance work capacity and maximal arm and leg strength when exposed to heat before manual labour.
Collapse
Affiliation(s)
- Hidenori Otani
- Faculty of Health Care Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo, 670-8524, Japan.
| |
Collapse
|
48
|
Jiang D, Yu Q, Liu M, Dai J. Effects of different external cooling placements prior to and during exercise on athletic performance in the heat: A systematic review and meta-analysis. Front Physiol 2023; 13:1091228. [PMID: 36703929 PMCID: PMC9871495 DOI: 10.3389/fphys.2022.1091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Nowadays, many high-profile international sport events are often held in warm or hot environments, hence, it is inevitable for these elite athletes to be prepared for the challenges from the heat. Owing to internal cooling may cause gastrointestinal discomfort to athletes, external cooling technique seems to be a more applicable method to deal with thermal stress. Central cooling mainly refers to head, face, neck and torso cooling, can help to reduce skin temperature and relieve thermal perception. Peripheral cooling mainly refers to four limbs cooling, can help to mitigate metabolic heat from muscular contrac to effectively prevent the accumulation of body heat. Hence, we performed a meta-analysis to assess the effectiveness of different external cooling placements on athletic performance in the heat Methods: A literatures search was conducted using Web of Science, MEDLINE and SPORTDiscus until September 2022. The quality and risk of bias in the studies were independently assessed by two researchers. Results: 1,430 articles were initially identified (Web of Science = 775; MEDLINE = 358; SPORTDiscus = 271; Additional records identified through other sources = 26), 60 articles (82 experiments) met the inclusion criteria and were included in the final analysis, with overall article quality being deemed moderate. Central cooling (SMD = 0.43, 95% CI 0.27 to 0.58, p < 0.001) was most effective in improving athletic performance in the heat, followed by central and peripheral cooling (SMD = 0.38, 95% CI 0.23 to 0.54, p < 0.001), AND peripheral cooling (SMD = 0.32, 95% CI 0.07 to 0.57, p = 0.013). For the cooling-promotion effects on different sports types, the ranking order in central cooling was ETE (exercise to exhaustion), TT (time-trial), EWT (exercise within the fixed time or sets), IS (intermittent sprint); the ranking order in peripheral cooling was EWT, TT, ETE and IS; the ranking order in central and peripheral cooling was ETE, IS, EWT and TT. Conclusion: Central cooling appears to be an more effective intervention to enhance performance in hot conditions through improvements of skin temperature and thermal sensation, compared to other external cooling strategies. The enhancement effects of peripheral cooling require sufficient re-warming, otherwise it will be trivial. Although, central and peripheral cooling seems to retain advantages from central cooling, as many factors may influence the effects of peripheral cooling to offset the positive effects from central cooling, the question about whether central and peripheral cooling method is better than an isolated cooling technique is still uncertain and needs more researchs to explore it.
Collapse
Affiliation(s)
- Dongting Jiang
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Qiuyu Yu
- Sports Coaching College, Beijing Sports University, Beijing, China
- Big Ball Sports Center, Hebei Provincial Sports Bureau, Shijiazhuang, China
| | - Meng Liu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Jinjin Dai
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
49
|
Competition Between Desired Competitive Result, Tolerable Homeostatic Disturbance, and Psychophysiological Interpretation Determines Pacing Strategy. Int J Sports Physiol Perform 2023; 18:335-346. [PMID: 36848906 DOI: 10.1123/ijspp.2022-0171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 03/01/2023]
Abstract
Scientific interest in pacing goes back >100 years. Contemporary interest, both as a feature of athletic competition and as a window into understanding fatigue, goes back >30 years. Pacing represents the pattern of energy use designed to produce a competitive result while managing fatigue of different origins. Pacing has been studied both against the clock and during head-to-head competition. Several models have been used to explain pacing, including the teleoanticipation model, the central governor model, the anticipatory-feedback-rating of perceived exertion model, the concept of a learned template, the affordance concept, the integrative governor theory, and as an explanation for "falling behind." Early studies, mostly using time-trial exercise, focused on the need to manage homeostatic disturbance. More recent studies, based on head-to-head competition, have focused on an improved understanding of how psychophysiology, beyond the gestalt concept of rating of perceived exertion, can be understood as a mediator of pacing and as an explanation for falling behind. More recent approaches to pacing have focused on the elements of decision making during sport and have expanded the role of psychophysiological responses including sensory-discriminatory, affective-motivational, and cognitive-evaluative dimensions. These approaches have expanded the understanding of variations in pacing, particularly during head-to-head competition.
Collapse
|
50
|
Otani H, Goto T, Kobayashi Y, Goto H, Shirato M, Hosokawa Y, Tokizawa K, Kaya M. Thermal strain is greater in the late afternoon than morning during exercise in the gym without airflow and air conditioning on a clear summer day. Front Sports Act Living 2023; 5:1147845. [PMID: 36926618 PMCID: PMC10011131 DOI: 10.3389/fspor.2023.1147845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Introduction There are no reports examining the time-of-day effect on team training sessions in the gym without airflow and air conditioning on thermal strain in the summer heat. We investigated this effect during badminton training sessions on a clear summer day. Methods Nine male high school badminton players (Mean ± SD; age 17.1 ± 0.6 y, height 171 ± 4 cm, body mass 59 ± 7 kg) completed two 2.5-h badminton training sessions in the gym without airflow and air conditioning. The training sessions were started at 0900 h (AM) and 1600 h (PM) on separate days in August. Skin temperatures (chest, triceps, thigh, calf), infrared tympanic temperature, heart rate, thermal sensation and rating of perceived exertion were recorded at rest and at regular intervals during the sessions. Results Indoor and outdoor environmental heat stress progressively increased in AM and decreased in PM during the sessions. Ambient temperature (AM 30.1 ± 0.9°C; PM 33.2 ± 1.0°C: P < 0.001) and wet-bulb globe temperature (AM 28.1 ± 0.5°C; PM 30.0 ± 0.9°C: P = 0.001) during the sessions in the gym were higher in PM than AM. Mean skin temperature (AM 34.2 ± 1.0°C; PM 34.7 ± 0.7°C: P < 0.001), infrared tympanic temperature (AM 37.8 ± 0.5°C; PM 38.1 ± 0.4°C: P = 0.001) and thermal sensation (AM 2.7 ± 1.4; PM 3.3 ± 1.0: P < 0.001) during the sessions were higher in PM than AM. Body heat storage (AM 159 ± 30 W·m-2; PM 193 ± 30 W·m-2: P < 0.05) was greater in PM than AM. There were no time-of-day differences in the average heart rate (AM 75 ± 4% age-predicted maximal heart rate; PM 76 ± 5 age-predicted maximal heart rate: P = 0.534), body mass loss (AM 0.6 ± 0.3 kg; PM 0.8 ± 0.2°C: P = 0.079), the volume of water ingested (AM 1.5 ± 0.1 L; PM 1.6 ± 0.3 L: P = 0.447) and rating of perceived exertion (AM 16 ± 2; PM 16 ± 3: P = 0.281). Conclusions This study indicates greater thermal strain in PM trial than in AM trial during team training sessions in the gym without airflow and air conditioning on a clear summer day. Therefore, athletes and coaches of indoor sports should perceive that athletes may be exposed to a greater risk for thermal strain in the late afternoon from 1600 h than in the morning from 0900 h during the sessions in the gym under these conditions.
Collapse
Affiliation(s)
- Hidenori Otani
- Faculty of Health Care Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Takayuki Goto
- National Institute of Technology, Akashi College, Akashi, Japan
| | - Yuki Kobayashi
- National Institute of Technology, Akashi College, Akashi, Japan
| | - Heita Goto
- Kyushu Kyoritsu University, Kitakyushu, Japan
| | | | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Ken Tokizawa
- National Institute of Occupational Safety and Health, Kiyose, Japan
| | - Mitsuharu Kaya
- School of Rehabilitation, Hyogo Medical University, Kobe, Japan
| |
Collapse
|