1
|
A role for the sodium pump in H2O2-induced vasorelaxation in porcine isolated coronary arteries. Pharmacol Res 2014; 90:25-35. [PMID: 25258292 DOI: 10.1016/j.phrs.2014.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/08/2014] [Accepted: 09/14/2014] [Indexed: 01/17/2023]
Abstract
Hydrogen peroxide (H2O2) has been proposed to act as a factor for endothelium-derived hyperpolarization (EDH) and EDH may act as a 'back up' system to compensate the loss of the NO pathway. Here, the mechanism of action of H2O2 in porcine isolated coronary arteries (PCAs) was investigated. Distal PCAs were mounted in a wire myograph and pre-contracted with U46619 (1nM-50μM), a thromboxane A2-mimetic or KCl (60mM). Concentration-response curves to H2O2(1μM-1mM), bradykinin (0.01nM-1μM), sodium nitroprusside (SNP) (10nM-10μM), verapamil (1nM-10μM), KCl (0-20mM) or Ca(2+)-reintroduction (1μM-10mM) were constructed in the presence of various inhibitors. Activity of the Na(+)/K(+)-pump was measured through rubidium-uptake using atomic absorption spectrophotometry. H2O2 caused concentration-dependent vasorelaxations with a maximum relaxation (Rmax) of 100±16% (mean±SEM), pEC50=4.18±0.20 (n=4) which were significantly inhibited by PEG-catalase at 0.1-1.0mM H2O2 (P<0.05). 10mM TEA significantly inhibited the relaxation up to 100μM H2O2 (P<0.05). 60mM K(+) and 500nM ouabain significantly inhibited H2O2-induced vasorelaxation producing a relaxation of 40.8±8.5% (n=5) and 47.5±8.6% (n=6) respectively at 1mM H2O2 (P<0.0001). H2O2-induced vasorelaxation was unaffected by the removal of endothelium, inhibition of NO, cyclo-oxygenase, gap junctions, SKCa, IKCa, BKCa Kir, KV, KATP or cGMP. 100μM H2O2 had no effects on the KCl-induced vasorelaxation or Ca(2+)-reintroduction contraction. 1mM H2O2 inhibited both KCl-induced vasorelaxation and rubidium-uptake consistent with inhibition of the Na(+)/K(+)-pump activity. We have shown that the vascular actions of H2O2 are sensitive to ouabain and high concentrations of H2O2 are able to modulate the Na(+)/K(+)-pump. This may contribute towards its vascular actions.
Collapse
|
2
|
Abstract
Production of superoxide anion O2*- by the membrane-bound enzyme NADPH oxidase of phagocytes is a long-known phenomenon; it is generally assumed that O2*-helps phagocytes kill bacterial intruders. The details and the chemistry of the killing process have, however, remained a mystery. Isoforms of NADPH oxidase exist in membranes of nearly every cell, suggesting that reactive oxygen species (ROS) participate in intra- and intercellular signaling processes. What the nature of the signal is exactly, how it is transmitted, and what structural characteristics a receptor of a "radical message" must have, have not been addressed convincingly. This review discusses how the action of messengers is in agreement with radical-specific behavior. In search for the smallest common denominator of cellular free radical activity we hypothesize that O2*- and its conjugate acid, HO2*, may have evolved under primordial conditions as regulators of membrane mechanics and that isoprostanes, widely used markers of "oxidative stress", may be an adventitious correlate of this biologic activity of O2*-/HO2*. An overall picture is presented that suggests that O2*-/HO2* radicals, by modifying cell membranes, help other agents gain access to the hydrophobic region of phospholipid bilayers and hence contribute to lipid-dependent signaling cascades. With this, O2*-/HO2* are proposed as indispensable adjuvants for the generation of cellular signals, for membrane transport, channel gating and hence, in a global sense, for cell viability and growth. We also suggest that many of the allegedly O2*- dependent bacterial pathologies and carcinogenic derailments are due to membrane-modifying activity rather than other chemical reactions of O2*-/HO2*. A consequence of this picture is the potential evolution of the "radical theory of ageing" to a "lipid theory of aging".
Collapse
Affiliation(s)
- Manfred Saran
- Institut für Strahlenbiologie, GSF-Forschungszentrum für Umwelt und Gesundheit, 85764, Neuherberg, Germany.
| |
Collapse
|
3
|
Saito M, Watanabe Y, Itoh T. Mechanism underlying H2O2-induced inhibition of acetylcholine-induced contraction in rabbit tracheal smooth muscle. Eur J Pharmacol 2007; 557:195-203. [PMID: 17188263 DOI: 10.1016/j.ejphar.2006.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/10/2006] [Accepted: 11/13/2006] [Indexed: 11/20/2022]
Abstract
The mechanism underlying the inhibition by H2O2 of acetylcholine-induced contraction was investigated in epithelium-denuded strips of rabbit trachea. Acetylcholine (10 microM) generated a phasic, followed by a tonic increase in both the intracellular Ca2+ concentration ([Ca2+]i) and force. Although the acetylcholine-induced tonic contraction was around 9 times the high K+ (80 mM)-induced one, the two stimulants induced similar [Ca2+]i increases (around 0.2 microM), indicating that acetylcholine generates tonic contraction via increases in both [Ca2+]i and myofilament Ca2+-sensitivity. H2O2 (30 microM) (a) enhanced the acetylcholine-induced tonic (not phasic) increase in [Ca2+]i but attenuated both phases of the acetylcholine-induced contraction and (b) enhanced the high K+-induced increase in [Ca2+]i but did not modify the high K+-induced contraction. In beta-escin-skinned strips, application of acetylcholine in the presence of GTP enhanced the contraction induced by 0.3 microM Ca2+ so that its amplitude became similar to that induced by 1 microM Ca2+. H2O2 (30 microM) attenuated the contraction induced by 0.3 microM Ca2+ (alone or in the presence of acetylcholine) but not those induced by higher concentrations of Ca2+ alone (0.5 microM and 1 microM). These results indicate that H2O2 acts directly on contractile proteins in rabbit tracheal smooth muscle to inhibit the contraction induced by low concentrations of Ca2+ (<0.5 microM). An action of H2O2 that increases [Ca2+]i (and thereby masks this reactive-oxygen-induced inhibition of myofilament Ca2+-sensitivity) is apparent in the presence of high K+ but not of acetylcholine. Thus, in rabbit tracheal smooth muscle H2O2 downregulates myofilament Ca2+-sensitivity more potently during acetylcholine-induced contraction than during high-K+-induced contraction, leading to an effective inhibition of the former contraction.
Collapse
Affiliation(s)
- Michihiro Saito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | | | | |
Collapse
|
4
|
Kojima K, Kume H, Ito S, Oguma T, Shiraki A, Kondo M, Ito Y, Shimokata K. Direct effects of hydrogen peroxide on airway smooth muscle tone: roles of Ca2+ influx and Rho-kinase. Eur J Pharmacol 2006; 556:151-6. [PMID: 17157292 DOI: 10.1016/j.ejphar.2006.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 11/18/2022]
Abstract
Reactive oxidant species are implicated in the chronic airway inflammation related to asthma and chronic obstructive pulmonary disease. This study was designed to determine mechanisms underlying contraction induced by hydrogen peroxide (H(2)O(2)), a clinical marker of oxidative stress, in airway smooth muscle. Isometric tension and fluorescent intensities of fura-2, an index of intracellular Ca(2+) concentrations ([Ca(2+)](i)), were measured in epithelium-denuded tracheal smooth muscle tissues isolated from guinea pigs. H(2)O(2) (0.01-1 mM) caused contraction with an augmentation of [Ca(2+)](i) in a concentration-dependent manner in the normal physiological solution containing 2.4 mM of extracellular Ca(2+) concentrations. The contractile force and [Ca(2+)](i) by H(2)O(2) (1 mM) were approximately half of those in response to 1 microM methacholine. However, contraction by H(2)O(2) was not generated under the condition that extracellular Ca(2+) concentrations were less than 0.15 mM. Verapamil (10 microM), an inhibitor of voltage-operated Ca(2+) channels, partially but significantly inhibited the H(2)O(2)-induced contraction. In contrast, SKF-96365 (1-{beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl}-1H-imidazole hydrochloride) (100 microM), a non-selective inhibitor of Ca(2+) channels, completely abolished both the contraction and the increase in [Ca(2+)](i) elicited by H(2)O(2). Moreover, Y-27632 ((R)-(+)-trans-N-(4-Pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide) (0.03-10 microM), an inhibitor of Rho-kinase, caused a concentration-dependent inhibition of the H(2)O(2)-induced contraction. In conclusion, both the Ca(2+) influx from the extracellular side and the Ca(2+) sensitization by Rho-kinase are involved in the regulation of airway smooth muscle tone induced by H(2)O(2). An inhibition of the Rho/Rho-kinase pathway may be beneficial for the treatment of airflow limitation mediated by oxidative stress.
Collapse
Affiliation(s)
- Katsuyuki Kojima
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rogers PA, Chilian WM, Bratz IN, Bryan RM, Dick GM. H2O2 activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 2006; 292:H1404-11. [PMID: 17071731 DOI: 10.1152/ajpheart.00696.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that coronary vasodilation in response to hydrogen peroxide (H(2)O(2)) is attenuated by 4-aminopyridine (4-AP), an inhibitor of voltage-gated K(+) (K(V)) channels. Using whole cell patch-clamp techniques, we tested the hypothesis that H(2)O(2) increases K(+) current in coronary artery smooth muscle cells. H(2)O(2) increased K(+) current in a concentration-dependent manner (increases of 14 +/- 3 and 43 +/- 4% at 0 mV with 1 and 10 mM H(2)O(2), respectively). H(2)O(2) increased a conductance that was half-activated at -18 +/- 1 mV and half-inactivated at -36 +/- 2 mV. H(2)O(2) increased current amplitude; however, the voltages of half activation and inactivation were not altered. Dithiothreitol, a thiol reductant, reversed the effect of H(2)O(2) on K(+) current and significantly shifted the voltage of half-activation to -10 +/- 1 mV. N-ethylmaleimide, a thiol-alkylating agent, blocked the effect of H(2)O(2) to increase K(+) current. Neither tetraethylammonium (1 mM) nor iberiotoxin (100 nM), antagonists of Ca(2+)-activated K(+) channels, blocked the effect of H(2)O(2) to increase K(+) current. In contrast, 3 mM 4-AP completely blocked the effect of H(2)O(2) to increase K(+) current. These findings lead us to conclude that H(2)O(2) increases the activity of 4-AP-sensitive K(V) channels. Furthermore, our data support the idea that 4-AP-sensitive K(V) channels are redox sensitive and contribute to H(2)O(2)-induced coronary vasodilation.
Collapse
Affiliation(s)
- Paul A Rogers
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
6
|
Rogers PA, Dick GM, Knudson JD, Focardi M, Bratz IN, Swafford AN, Saitoh SI, Tune JD, Chilian WM. H2O2-induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-sensitive K+ channels. Am J Physiol Heart Circ Physiol 2006; 291:H2473-82. [PMID: 16751285 DOI: 10.1152/ajpheart.00172.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) is a proposed endothelium-derived hyperpolarizing factor and metabolic vasodilator of the coronary circulation, but its mechanisms of action on vascular smooth muscle remain unclear. Voltage-dependent K(+) (K(V)) channels sensitive to 4-aminopyridine (4-AP) contain redox-sensitive thiol groups and may mediate coronary vasodilation to H(2)O(2). This hypothesis was tested by studying the effect of H(2)O(2) on coronary blood flow, isometric tension of arteries, and arteriolar diameter in the presence of K(+) channel antagonists. Infusing H(2)O(2) into the left anterior descending artery of anesthetized dogs increased coronary blood flow in a dose-dependent manner. H(2)O(2) relaxed left circumflex rings contracted with 1 muM U46619, a thromboxane A(2) mimetic, and dilated coronary arterioles pressurized to 60 cmH(2)O. Denuding the endothelium of coronary arteries and arterioles did not affect the ability of H(2)O(2) to cause vasodilation, suggesting a direct smooth muscle mechanism. Arterial and arteriolar relaxation by H(2)O(2) was reversed by 1 mM dithiothreitol, a thiol reductant. H(2)O(2)-induced relaxation was abolished in rings contracted with 60 mM K(+) and by 10 mM tetraethylammonium, a nonselective inhibitor of K(+) channels, and 3 mM 4-AP. Dilation of arterioles by H(2)O(2) was antagonized by 0.3 mM 4-AP but not 100 nM iberiotoxin, an inhibitor of Ca(2+)-activated K(+) channels. H(2)O(2)-induced increases in coronary blood flow were abolished by 3 mM 4-AP. Our data indicate H(2)O(2) increases coronary blood flow by acting directly on vascular smooth muscle. Furthermore, we suggest 4-AP-sensitive K(+) channels, or regulating proteins, serve as redox-sensitive elements controlling coronary blood flow.
Collapse
Affiliation(s)
- Paul A Rogers
- Dept. of Physiology, Louisiana State Univ. Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Warren AY, Matharoo-Ball B, Shaw RW, Khan RN. Hydrogen peroxide and superoxide anion modulate pregnant human myometrial contractility. Reproduction 2005; 130:539-44. [PMID: 16183871 DOI: 10.1530/rep.1.00437] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reactive oxygen species (ROS) have the propensity to cause macromolecular damage with consequent modification of cellular function. We investigated the effects of two particular oxidants, superoxide (O2−) anions and hydrogen peroxide (H2O2), on oxytocin-induced myometrial contractility using biopsies from women undergoing Caesarean section at term gestation. Isometric tension recordings were performed and concentration–response curves derived after addition of test agents. A maximal reduction in myometrial contractility to 27.2 ± 4.5% of control was observed followed application of H2O2. The enzyme scavenger catalase (CAT) reduced the inhibitory effect of H2O2but had little effect at 10-fold lower concentrations. Addition of dialysed xanthine oxidase ± hypoxanthine significantly inhibited contractility to 23.8.0 ± 4.2% compared with control. Pre-incubation with superoxide dismutase and CAT diminished this effect. The non-specific potassium channel blocker, tetraethylammonium chloride (1 mM), had no effect on myometrial contractility. We conclude that human myometrium is susceptible to the effects of ROS, which may be produced by reperfusion–ischaemic episodes during labour. Our findings could, in part, explain the weak or prolonged depression of contractions characteristic of myometrial dysfunction culminating in difficult labours.
Collapse
Affiliation(s)
- Averil Y Warren
- Centre for Reproduction and Early Life, Institute of Clinical Research, University of Nottingham, The Medical School, Derby DE22 3DT, UK
| | | | | | | |
Collapse
|
8
|
Abstract
Isoprostanes were first recognized as convenient markers of oxidative stress, but their powerful effects on a variety of cell functions are now also being increasingly appreciated. This is particularly true of the lung, which is comprised of a wide variety of different cell types (smooth muscle, innervation, epithelium, lymphatics, etc.), all of which have been shown to respond to exogenously applied isoprostanes. In this review, we summarize these biological responses in the lung, and also consider the roles that isoprostanes might play in a range of pulmonary clinical disorders.
Collapse
Affiliation(s)
- Luke J Janssen
- Asthma Research Group, Father Sean O'Sullivan Research Center, Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
9
|
Ellis A, Triggle CR. Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol 2004; 81:1013-28. [PMID: 14719036 DOI: 10.1139/y03-106] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Opinions on the role of reactive oxygen species (ROS) in the vasculature have shifted in recent years, such that they are no longer merely regarded as indicators of cellular damage or byproducts of metabolism--they may also be putative mediators of physiological functions. Hydrogen peroxide (H2O2), in particular, can initiate vascular myocyte proliferation (and, incongruously, apoptosis), hyperplasia, cell adhesion, migration, and the regulation of smooth muscle tone. Endothelial cells express enzymes that produce ROS in response to various stimuli, and H2O2 is a potent relaxant of vascular smooth muscle. H2O2 itself can mediate endothelium-dependent relaxations in some vascular beds. Although nitric oxide (NO) is well recognized as an endothelium-derived dilator, it is also well established, particularly in the microvasculature, that another factor, endothelium-derived hyperpolarizing factor (EDHF), is a significant determinant of vasodilatory tone. This review primarily focuses on the hypothesis that H2O2 is an EDHF in resistance arteries. Putative endothelial sources of H2O2 and the effects of H2O2 on potassium channels, calcium homeostasis, and vascular smooth muscle tone are discussed. Furthermore, given the perception that ROS can more likely elicit cytotoxic effects than perform signalling functions, the arguments for and against H2O2 being an endogenous vasodilator are assessed.
Collapse
Affiliation(s)
- Anthie Ellis
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, AB, Canada
| | | |
Collapse
|
10
|
Abstract
Isoprostanes are widely recognized as useful markers of membrane lipid peroxidation. It seems to be less well appreciated, however, that they also elicit important biological responses, even though this was first shown at the same time that they were introduced as markers of oxidative stress. The past several years have seen the list of cells/tissues which are sensitive to isoprostanes grow considerably: in fact, as we summarize here, there is now evidence that essentially every cell type in the lung responds in some pathologically relevant way to isoprostanes. In this sense, they might well be considered as not just markers of oxidative stress and inflammation, but also as a novel group of inflammatory mediators. Moreover, in addition to their pathological effects, we summarize here the evidence which has led us to hypothesize that isoprostanes could play an important role in vascular smooth muscle physiology as "endothelium-derived hyperpolarizing factors."
Collapse
Affiliation(s)
- L J Janssen
- Department of Medicine, Asthma Research Group, Father Sean O'Sullivan Research Center, Firestone Institute for Respiratory Health, St. Joseph's Hospital, McMaster University, Hamilton, Ont., Canada L8N4A6.
| |
Collapse
|
11
|
Chang DJ, Lim CS, Lee SH, Kaang BK. Hydrogen peroxide modulates K+ ion currents in cultured Aplysia sensory neurons. Brain Res 2003; 970:159-68. [PMID: 12706257 DOI: 10.1016/s0006-8993(03)02316-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) causes oxidative stress and is considered a mediator of cell death in various organisms. Our previous studies showed that prolonged (>6 h) treatment of Aplysia sensory neurons with 1 mM H(2)O(2) produced hyperpolarization of the resting membrane potential, followed by apoptotic morphological changes. In this study, we examined the effect of H(2)O(2) on the membrane conductance of Aplysia sensory neurons. Hyperpolarization was induced by 10 mM H(2)O(2) within 1 h, and this was attributed to increased membrane conductance. In addition, treatment with 10 mM H(2)O(2) for 3 min produced immediate depolarization, which was due to decreased membrane conductance. The H(2)O(2)-induced hyperpolarization and depolarization were completely blocked by dithiothreitol, a disulfide-reducing agent. The later increase of membrane conductance induced by H(2)O(2) was completely blocked by 100 mM TEA, a K(+) channel blocker, suggesting that H(2)O(2)-induced hyperpolarization is due to the activation of K(+) conductance. However, the inhibition of K(+) efflux by TEA did not protect against H(2)O(2)-induced cell death in cultured Aplysia sensory neurons, which indicates that the signal pathway leading to H(2)O(2)-induced cell death is more complicated than expected.
Collapse
Affiliation(s)
- Deok-Jin Chang
- National Research Laboratory of Neurobiology, Institute of Molecular Biology and Genetics, School of Biological Sciences, College of Natural Sciences, Seoul National University, San 56-1 Silim-dong Kwanak-gu, South Korea
| | | | | | | |
Collapse
|
12
|
Janssen LJ. Ionic mechanisms and Ca(2+) regulation in airway smooth muscle contraction: do the data contradict dogma? Am J Physiol Lung Cell Mol Physiol 2002; 282:L1161-78. [PMID: 12003770 DOI: 10.1152/ajplung.00452.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In general, excitation-contraction coupling in muscle is dependent on membrane depolarization and hyperpolarization to regulate the opening of voltage-dependent Ca(2+) channels and, thereby, influence intracellular Ca(2+) concentration ([Ca(2+)](i)). Thus Ca(2+) channel blockers and K(+) channel openers are important tools in the arsenals against hypertension, stroke, and myocardial infarction, etc. Airway smooth muscle (ASM) also exhibits robust Ca(2+), K(+), and Cl(-) currents, and there are elaborate signaling pathways that regulate them. It is easy, then, to presume that these also play a central role in contraction/relaxation of ASM. However, several lines of evidence speak to the contrary. Also, too many researchers in the ASM field view the sarcoplasmic reticulum as being centrally located and displacing its contents uniformly throughout the cell, and they have focused almost exclusively on the initial single [Ca(2+)] spike evoked by excitatory agonists. Several recent studies have revealed complex spatial and temporal heterogeneity in [Ca(2+)](i), the significance of which is only just beginning to be appreciated. In this review, we will compare what is known about ion channels in ASM with what is believed to be their roles in ASM physiology. Also, we will examine some novel ionic mechanisms in the context of Ca(2+) handling and excitation-contraction coupling in ASM.
Collapse
Affiliation(s)
- Luke J Janssen
- Asthma Research Group, Firestone Institute for Respiratory Health, St. Joseph's Hospital, McMaster University, Hamilton, Ontario, Canada L8N 4A6.
| |
Collapse
|
13
|
Janssen LJ. Isoprostanes: an overview and putative roles in pulmonary pathophysiology. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1067-82. [PMID: 11350785 DOI: 10.1152/ajplung.2001.280.6.l1067] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Isoprostanes are produced during peroxidation of membrane lipids by free radicals and reactive oxygen species. Initially, they were recognized as being valuable markers of oxidative stress, and in the past 10 years, dozens of disease states and experimental conditions with diverse etiologies have been shown to be associated with marked increases in urinary, plasma, and tissue levels of isoprostanes. However, they are not just mere markers; they evoke important biological responses on virtually every cell type found within the lung, and these responses exhibit compound-, tissue-, and species-related variations. In fact, the isoprostanes may mediate many of the features of the disease states for which they are used as indicators. In this review, I describe the chemistry, metabolism, and pharmacology of isoprostanes, with a particular emphasis on pulmonary cell types, and the possible roles of isoprostanes in pulmonary pathophysiology.
Collapse
Affiliation(s)
- L J Janssen
- Asthma Research Group, Father Sean O'Sullivan Research Center, St. Joseph's Hospital, McMaster University, 50 Charlton Ave. East, Hamilton, Ontario L8N 4A6, Canada.
| |
Collapse
|
14
|
Hamilton CA, McPhaden AR, Berg G, Pathi V, Dominiczak AF. Is hydrogen peroxide an EDHF in human radial arteries? Am J Physiol Heart Circ Physiol 2001; 280:H2451-5. [PMID: 11356597 DOI: 10.1152/ajpheart.2001.280.6.h2451] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In human radial arteries, a nitric oxide/prostanoid-independent mechanism that has the pharmacological characteristics of an EDHF contributes to endothelium-dependent relaxation. H2O2 can act as an EDHF in some vascular beds. We examined the hypothesis that endogenously produced H2O2 mediated the nitric oxide/prostanoid-independent relaxation to carbachol in radial arteries obtained from patients undergoing coronary artery bypass surgery. Superoxide levels, measured by chemiluminescence, were similar in radial and internal mammary arteries, but immunohistochemical staining for Cu/Zn superoxide dismutase (SOD) was lower in endothelium from radial arteries. In organ chamber studies, neither addition of catalase nor addition of SOD to the bathing fluid modified nitric oxide/prostanoid-independent relaxations to carbachol in radial arteries. However, nitric oxide-dependent vasorelaxation was enhanced in the presence of SOD. Thus the nitric oxide/prostanoid-independent relaxation to carbachol is not due to H2O2 and, unlike nitric oxide-mediated vasorelaxation, is not attenuated by superoxide. Blood vessels showing EDHF-mediated relaxations resistant to oxidative stress may provide favorable outcomes in revascularization surgery.
Collapse
Affiliation(s)
- C A Hamilton
- Department of Medicine and Therapeutics, Western Infirmary, Glasgow G11 6NT, United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
Janssen LJ. Isoprostanes: generation, pharmacology, and roles in free-radical-mediated effects in the lung. Pulm Pharmacol Ther 2000; 13:149-55. [PMID: 10930353 DOI: 10.1006/pupt.2000.0244] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoprostanes are produced during peroxidation of membrane lipids by free radicals and reactive oxygen species, and are currently used as markers of many disease states and experimental conditions in which oxidative stress is a prominent feature. A small number of reports have described the ability of some isoprostanes to evoke important biological effects in smooth muscle and other cell types. However, most of these studies were done using rat tissues, and only two specific isoprostanes - 8-iso-PGE(2)and 8-iso-PGF(2alpha)- were tested. In this review, we describe the generation of isoprostanes during oxidative stress, and their effects on smooth muscle, including our novel findings of their effects on human airway, pulmonary artery and pulmonary vein smooth muscles. Collectively, the data suggest that isoprostanes may not only be markers, but may in fact mediate the effects of free radicals and reactive oxygen species.
Collapse
Affiliation(s)
- L J Janssen
- Asthma Research Group, Father Sean O'Sullivan Research Center, Hamilton, Ontario, Canada.
| |
Collapse
|