1
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
2
|
Parnow A, Hafedh M, Tsunoda I, Patel DI, Baker JS, Saeidi A, Bagchi S, Sengupta P, Dutta S, Łuszczki E, Stolarczyk A, Oleksy Ł, Al Kiyumi MH, Laher I, Zouhal H. Effectiveness of exercise interventions in animal models of multiple sclerosis. Front Med (Lausanne) 2023; 10:1143766. [PMID: 37089595 PMCID: PMC10116993 DOI: 10.3389/fmed.2023.1143766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Multiple sclerosis (MS) is associated with an impaired immune system that severely affects the spinal cord and brain, and which is marked by progressive inflammatory demyelination. Patients with MS may benefit from exercise training as a suggested course of treatment. The most commonly used animal models of studies on MS are experimental autoimmune/allergic encephalomyelitis (EAE) models. The present review intends to concisely discuss the interventions using EAE models to understand the effectiveness of exercise as treatment for MS patients and thereby provide clear perspective for future research and MS management. For the present literature review, relevant published articles on EAE animal models that reported the impacts of exercise on MS, were extracted from various databases. Existing literature support the concept that an exercise regimen can reduce the severity of some of the clinical manifestations of EAE, including neurological signs, motor function, pain, and cognitive deficits. Further results demonstrate the mechanisms of EAE suppression with information relating to the immune system, demyelination, regeneration, and exercise in EAE. The role for neurotrophic factors has also been investigated. Analyzing the existing reports, this literature review infers that EAE is a suitable animal model that can help researchers develop further understanding and treatments for MS. Besides, findings from previous animal studies supports the contention that exercise assists in ameliorating MS progression.
Collapse
Affiliation(s)
- Abdolhossein Parnow
- Department of Sport Biological Sciences, Physical Education and Sports Sciences Faculty, Razi University, Kermanshah, Iran
| | - Muthanna Hafedh
- Department of Exercise Physiology, General Directorate of Education Basrah, Basrah, Iraq
- Department of Sports Activities, College of Adm&Eco/Qurna, University of Basrah, Basrah, Iraq
| | - Ikuo Tsunoda
- Department of Microbiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Darpan I. Patel
- School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Julien S. Baker
- Department of Sport, Physical Education and Health, Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran
| | - Sovan Bagchi
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, India
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Artur Stolarczyk
- Department of Orthopedics and Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Oleksy
- Department of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Maisa Hamed Al Kiyumi
- Department of Family Medicine and Public Health, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - Hassane Zouhal
- University of Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes, France
- Institute International des Sciences du Sport (2I2S), Irodouër, France
| |
Collapse
|
3
|
Takei Y, Amagase Y, Iida K, Sagawa T, Goto A, Kambayashi R, Izumi-Nakaseko H, Matsumoto A, Kawai S, Sugiyama A, Takada T, Hirasawa A. Alteration in peritoneal cells with the chemokine CX3CL1 reverses age-associated impairment of recognition memory. GeroScience 2022; 44:2305-2318. [PMID: 35593945 DOI: 10.1007/s11357-022-00579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Cognitive function progressively declines with advancing age. The aging process can be promoted by obesity and attenuated by exercise. Both conditions affect levels of the chemokine CX3CL1 in peripheral tissues; however, its role in cognitive aging is unknown. In the current study, we administered CX3CL1 into the peritoneal cavity of aged mice to investigate its impact on the aging process. In the peritoneal cavity, CX3CL1 not only reversed the age-associated accumulation of cells expressing the senescence marker p16INK4a but also increased peritoneal phagocytic activity, indicating that CX3CL1 affected the phenotypes of peritoneal cells. In the hippocampus of aged mice, intraperitoneal administration of CX3CL1 increased the number of Type-2 neural stem cells and promoted brain-derived neurotrophic factor (BDNF) expression. This treatment, furthermore, improved novel object recognition memory impaired with advancing age. Intraperitoneal transplantation of peritoneal cells from CX3CL1-treated aged mice improved novel object recognition memory in recipient aged mice. It indicates that peritoneal cells have a critical role in the CX3CL1-induced improvement of recognition memory in aged mice. Vagotomy inhibited the CX3CL1-induced increase in BDNF expression, demonstrating that the vagus nerve is involved in the hippocampal BDNF expression induced by intraperitoneal administration of CX3CL1. Thus, our results demonstrate that a novel connection among the peritoneal cells, the vagus nerve, and the hippocampus can reverse the age-associated decline in recognition memory.
Collapse
Affiliation(s)
- Yoshinori Takei
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Yoko Amagase
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Keiko Iida
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Sagawa
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Ai Goto
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akio Matsumoto
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Shinichi Kawai
- Department of Inflammation & Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
- Department of Aging Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
- Department of Inflammation & Pain Control Research, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Tatsuyuki Takada
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
Silva RAD. People with asthma: care during the COVID-19 pandemic and the importance of regular exercise for the immune system. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
5
|
Mohamed AA, Alawna M. The effect of aerobic exercise on immune biomarkers and symptoms severity and progression in patients with COVID-19: A randomized control trial. J Bodyw Mov Ther 2021; 28:425-432. [PMID: 34776174 PMCID: PMC8339452 DOI: 10.1016/j.jbmt.2021.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND The World Health Organization in March 2020 has announced that COVID-19 is a world pandemic because the number of infected cases increases rapidly. however, there are several available vaccines, their protection is limited to a certain period. Thus, the role of modalities that improve immune functions should be performed to counter COVID-19 viral load and decrease mortality rates. OBJECTIVE To investigate the effect of aerobic exercise on immune biomarkers, disease severity, and progression in patients with COVID-19. DESIGN A randomized controlled study. PARTICIPANTS Thirty patients with COVID-19 participated in this study. Participants' age ranged from 24 to 45 years old. Participants had a mild or moderate COVID-19. Participants were assigned randomly into two groups, exercise and control groups. There were two main dependent variables including blood immune markers and severity of respiratory symptoms. INTERVENTIONS All participants performed 2 weeks of moderate-intensity aerobic exercise for 40 min/session, 3 sessions/week. The measurements were performed at baseline, and after 2-weeks. RESULTS At baseline measurements, there were non-significant differences between both groups in the Wisconsin scale total score, Leucocytes, Lymphocytes, Interleukin-6, Interleukin-10, Immunoglobulin-A, and TNF-α (P > .05). After the intervention, the Wisconsin scale (patient-oriented illness-specific quality-of-life) total score significantly decreased in the intervention group (P < .05); while, Leucocytes, Lymphocytes, and Immunoglobulin-A significantly increased in the intervention group (P < .05). CONCLUSION The current study indicated that 2 weeks of moderate-intensity aerobic exercise decreased the severity and progression of COVID-19 associated disorders and quality of life. Also, a 2-weeks of aerobic exercise positively affected immune function by increasing the amounts of Leucocytes, Lymphocytes, Immunoglobulin A.
Collapse
Affiliation(s)
- Ayman A Mohamed
- Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey; Department of Basic Sciences, Faculty of Physical Therapy, Beni-Suef University, Beni Suef, Egypt
| | - Motaz Alawna
- Department of Physiotherapy and Rehabilitation, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey; Department of Physiotherapy and Rehabilitation, Faculty of Allied Medical Sciences, Arab American University, Jenin, Palestine.
| |
Collapse
|
6
|
Comparison of the effects of co-transplantation of bone marrow hematopoietic stem cells and thymic multipotent stromal cells on the immune system of mice depending on methods. EUREKA: LIFE SCIENCES 2021. [DOI: 10.21303/2504-5695.2021.001993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Physical interaction of multipotent stromal cells (MSCs) and hematopoietic stem cells (HSCs) is a modern approach to effective and focused changes in the properties of HSCs. Resulting of those contact interaction is significant activation of cells with following immune system restoration.
The purpose of the study is to investigate the effect of co-transplantation of bone marrow hematopoietic stem cells (HSCs) and thymic multipotent stromal cells (MSCs) separately and as a union of cells on regeneration of the murine immune system, damaged by cyclophosphamide.
MSCs were obtained from thymuses of C57BL mice using explant technique. Bone marrow cells (BMCs) were obtained by flushing out the femur with a nutrient medium. BMCs were cocultivated for 2 hours on the monolayer of thymus-derived MSCs. The immune deficiency of mice was modelled by the treatment with cyclophosphamide (CP). After that, the cells were co-transplanted in two methods (separately into different the retroorbital sinus and as a union after co-cultivation) and the parameters of the immune system were evaluated. It was shown, that separate co-transplantation of BMCs and thymus-derived MSCs is associated with the restoration of the number of bone marrow cells, thymus, spleen and lymph nodes with an increase in the proliferation index of lymph node cells by 1.4 times compared to control. It normalized the previous reduced concentration of hemoglobin and hematocrit in the blood. Co-transplantation had a suppressive effect on the blast transformation reaction, induced by phytohemagglutinin, by 4.3 times, but showed a stimulating effect on DTHR response by 1.6 times compared to control.
Co-transplantation of the union of BMCs and MSCs is associated with the restoration of the number of bone marrow cells, spleen and lymph nodes. The level of spontaneous apoptosis of lymph node cells significantly increased by 3.3 times compared to control. It had not effect on hematological parameters, but is activated to impact the immune system. Thus, as a result of cells union administration showed normalization of the bactericidal activity of peritoneal macrophages, unlike the separate co-transplantation. This cells graft had a suppressive effect on the number of antibody-producing cells in the spleen by 4.2 times compared to control.
Previous co-cultivation and contact interaction of cells change the properties of cell graft. The effect of co-transplantation of BMCs and thymic MSCs is not a simple additive effect of cells. It is acquiring the features typical to certain cell types, and the expression of new characteristics. We assume this phenomenon as a result development of complex cells cooperative processes in vivo and in vitro
Collapse
|
7
|
Valencia-Sánchez S, Nava-Castro KE, Palacios-Arreola MI, Prospéro-García O, Morales-Montor J, Drucker-Colín R. Chronic exercise modulates the cellular immunity and its cannabinoid receptors expression. PLoS One 2019; 14:e0220542. [PMID: 31738771 PMCID: PMC6860935 DOI: 10.1371/journal.pone.0220542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
The impact of performing exercise on the immune system presents contrasting effects on health when performed at different intensities. In addition, the consequences of performing chronic exercise have not been sufficiently studied in contrast to the effects of acute bouts of exercise. The porpoise of this work was to determine the effect that a popular exercise regimen (chronic/moderate/aerobic exercise) has on the proportion of different immune cell subsets, their function and if it affects the cannabinoid system with potentially functional implications on the immune system. A marked increase in several immune cell subsets and their expression of cannabinoid receptors was expected, as well as an enhanced proliferative and cytotoxic activity by total splenocytes in exercised animals. For this study male Wistar rats performed treadmill running 5 times a week for a period of 10 weeks, at moderate intensity. Our results showed a significant decrease in lymphocyte subpopulations (CD4+, Tγδ, and CD45 RA+ cells) and an increase in the cannabinoid receptors expression in those same cell. Although functional assays did not reveal any variation in total immunoglobulin production or NK cells cytotoxic activity, proliferative capability of total splenocytes increased in trained rats. Our results further support the notion that exercise affects the immunological system and extends the description of underlying mechanisms mediating such effects. Altogether, our results contribute to the understanding of the benefits of exercise on the practitioner´s general health.
Collapse
Affiliation(s)
- Salvador Valencia-Sánchez
- Instituto de Fisiología Celular, Departamento de Neuropatología Molecular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, México
| | - Karen Elizabeth Nava-Castro
- Genotoxicología y Mutagénesis Ambientales, Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Ciudad de México, México
| | | | - Oscar Prospéro-García
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad De Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP, Ciudad de México, México
- * E-mail:
| | - René Drucker-Colín
- Instituto de Fisiología Celular, Departamento de Neuropatología Molecular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
8
|
Exercise training enhances in vivo clearance of endotoxin and attenuates inflammatory responses by potentiating Kupffer cell phagocytosis. Sci Rep 2017; 7:11977. [PMID: 28931917 PMCID: PMC5607327 DOI: 10.1038/s41598-017-12358-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
The failure of Kupffer cells (KCs) to remove endotoxin is an important factor in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). In this study, the effects of exercise training on KC function were studied in terms of in vivo endotoxin clearance and inflammatory responses. Mice were allocated into rest and exercise groups. KC bead phagocytic capacity and plasma steroid hormone levels were determined following exercise training. Endotoxin and inflammatory cytokine levels in plasma were determined over time following endotoxin injection. KC bead phagocytic capacity was potentiated and clearance of exogenously-injected endotoxin was increased in the exercise group. Inflammatory cytokine (TNF-α and IL-6) levels were lower in the exercise group. We found that only DHEA was increased in the plasma of the exercise group. In an in vitro experiment, the addition of DHEA to RAW264.7 cells increased bead phagocytic capacity and attenuated endotoxin-induced inflammatory responses. These results suggest that exercise training modulates in vivo endotoxin clearance and inflammatory responses in association with increased DHEA production. These exercise-induced changes in KC capacity may contribute to a slowing of disease progression in NAFLD patients.
Collapse
|
9
|
Bernardes D, Brambilla R, Bracchi-Ricard V, Karmally S, Dellarole A, Carvalho-Tavares J, Bethea JR. Prior regular exercise improves clinical outcome and reduces demyelination and axonal injury in experimental autoimmune encephalomyelitis. J Neurochem 2015; 136 Suppl 1:63-73. [PMID: 26364732 DOI: 10.1111/jnc.13354] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022]
Abstract
Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long-term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4(+) T cells, and CD8(+) T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. In this study, we show that a program of 6 weeks of preconditioning exercise promoted a significant reduction of cells infiltrating into the spinal cord, a significant reduction in myelin damage and a significant reduction in axonal damage in experimental autoimmune encephalomyelitis (EAE) mice at 42 dpi. Collectively, our study demonstrates for the first time that a preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease.
Collapse
Affiliation(s)
- Danielle Bernardes
- Departamento de Fisiologia e Biofísica, Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil.,The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Roberta Brambilla
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Valerie Bracchi-Ricard
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Department of Biology, Drexel University, Philadelphia, Philadelphia, USA
| | - Shaffiat Karmally
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Anna Dellarole
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Juliana Carvalho-Tavares
- Departamento de Fisiologia e Biofísica, Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, Philadelphia, USA
| |
Collapse
|
10
|
Sasaki H, Ohtsu T, Ikeda Y, Tsubosaka M, Shibata S. Combination of meal and exercise timing with a high-fat diet influences energy expenditure and obesity in mice. Chronobiol Int 2014; 31:959-75. [PMID: 25007387 DOI: 10.3109/07420528.2014.935785] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mice, obesity has been observed not only in those freely fed a high-fat diet (HFD) but also in those fed while physically inactive. In contrast, a HFD during physically active periods protects against obesity and the impairments in the circadian rhythm induced by free feeding of a HFD. Although exercise is known to be effective for obesity prevention and management, the optimal timing of exercise has not yet been determined. In the present experiments, we aimed to determine the best combination of daily timing of HFD consumption and exercise for the prevention of HFD-induced weight gain in mice. In this experiment, "morning" refers to the beginning of the active phase (the "morning" for nocturnal animals). Increases in body weight related to free feeding of a HFD was significantly reduced with 4 h of exercise during the late (evening) or middle (noon) active period compared to 4 h of exercise during the early (morning) active period or free access to exercise, which resulted in hours of exercise similar to that of morning exercise. These results suggested that eating in the morning or at noon followed by exercise in the evening could prevent weight gain more effectively than exercise in the morning followed by eating at noon or in the evening. The group fed a HFD for 4 h in the morning had lower body weight than the group fed a HFD for 4 h in the evening without exercise. The last group of experiments tested the hypothesis that there would be an interaction between mealtime and exercise time (i.e. time of day) versus order (i.e. which comes first) effects. We compared groups that exercised for 4 h at noon and were fed either in the morning or evening and groups that were fed for 4 h at noon and either exercised in the morning or evening. We found that the groups that were fed before exercise gained less body and fat weight and more skeletal muscle weight compared to the groups that exercised before eating. Corresponding to the body and fat weight changes, the respiratory exchange ratio (RER) was lower and energy expenditure was higher in the groups fed before exercise than in the groups fed after exercise, and these effects on energy metabolism were also observed in the early stage of HFD feeding before obesity. When obese mice fed a HFD for 12 weeks were exposed to a combination of feeding and exercise timing in an effort to reduce body weight, eating followed by exercise resulted in greater weight loss, similar to the experiments conducted to prevent weight gain. These results demonstrate that a combination of daily timing of eating and exercise may influence weight gain and that eating followed by exercise may be effective for minimizing increases in body and fat weight as well as maximizing increases in skeletal muscle weight.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University , Shinjuku-ku, Tokyo , Japan
| | | | | | | | | |
Collapse
|
11
|
Jun JK, Lee WL, Park HG, Lee SK, Jeong SH, Lee YR. Moderate intensity exercise inhibits macrophage infiltration and attenuates adipocyte inflammation in ovariectomized rats. J Exerc Nutrition Biochem 2014; 18:119-27. [PMID: 25566447 PMCID: PMC4241928 DOI: 10.5717/jenb.2014.18.1.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/18/2014] [Accepted: 02/27/2014] [Indexed: 12/02/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate the effects of the different endurance exercise intensities on the macrophage infiltration and adipocyte inflammation of ovariectomized rats. [Methods] 24 female SD rats (6 weeks old) were randomly assigned to sham control (SC; n=6), ovariectomized control (OC; n=6), ovariectomized low intensity exercise (OL; n=6), and ovariectomized moderate intensity exercise (OM; n=6) groups. The two training groups ran for 60 min/day, 5 times/ week at 18 and 26m/min for 16 weeks. Twenty-four hours after the last exercise session, rats were sacrified, and epididymal pads were analyzed. F4/80 and IL-6 expressions were evaluated by western blotting. ICAM-1, VCAM-1 TLR4, TNF-α, and MCP-1 mRNA expressions were evaluated by RT-PCR. [Results] In comparison with OC group, OM group showed significantly lower body weight gain and adipose tissue mass. Also, OM group markedly inhibited F4/80 expression, adhesion molecule (ICAM-1, VCAM-1) and pro-inflammatory cytokines (TLR4, TNF-α, MCP-1) mRNA expressions in adipose tissue. In contrast, OL group partially prevented body weight gain while other examined parameter were unaffected by low intensity exercise training. [Conclusion] The results of this study suggest that OM group inhibits visceral macrophage infiltration by suppressing the adhesion molecules. It may also attenuate cytokine production in the adipose tissue by repressing the TLR4-mediated pro-inflammatory signaling cascades in ovariectomized rats.
Collapse
Affiliation(s)
- Jong Kui Jun
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Wang Lok Lee
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Hee Geun Park
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Sang Ki Lee
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Sun Hyo Jeong
- Department of Science Management, Mokwon University, Daejeon, Korea
| | - Young Ran Lee
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
12
|
Park HG, Lee YR, Jun JK, Lee WL. Exercise training is more effective than resveratrol supplementation on alleviation of inflammation in peritoneal macrophages of high fat diet mice. J Exerc Nutrition Biochem 2014; 18:79-87. [PMID: 25566442 PMCID: PMC4241938 DOI: 10.5717/jenb.2014.18.1.79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 11/10/2022] Open
Abstract
[Purpose] This study investigated the effect of exercise training and resveratrol supplementation with low fat diet on proinflammatory profiles by Lipopolysaccharide (LPS)-stimulation in peritoneal macrophage of high fat diet mice. [Methods] To accomplish the purpose of this study, C57BL/6 male mice were fed high fat diet (45% fat diet) for 8 weeks. Then these mice were divided into 3 groups; HLC (high fat diet and low fat diet for 8 weeks as the control, n=10), HLR (high fat diet and low fat diet for 8 weeks with resveratrol supplementation, n=10). HLE (high fat diet and low fat diet for 8 weeks with moderate exercise training, n=10). Resveratrol (10 mg/kg) was administrated once a day, 5 days/week for 8 weeks. Exercise training was performed for 8 weeks on a treadmill running for 30-60 min/day at 10-22 m/min, 0% grade, 5 days/week. After exercise training, all the peritoneal macrophage was collected and LPS (0, 0.5, 1.0 μg/ml) were used to stimulate the cells. Then peritoneal macrophage TNF-α, IL-6, MCP-1, IL12p70, IFN-γ, IL-10 were measured by BD cytometric bead array mouse inflammation kit. [Results] As a result, body weight and total cholesterol were significantly reduced in HLE compared with HLC (p<.05). Also, TNF-α and MCP-1 were decreased in HLE compared with HLC (p<.05) by LPS-stimulation (0, 0.5, 1.0 μg/ml) and IL-6, IL-12p70 and IFN-r were decreased in HLE compared with HLC (p<.05) by LPS-stimulation (1.0 μg/ml). But resveratrol supplementation did not affect the result. [Conclusion] These findings suggest that exercise training has beneficial effects on body weight, total cholesterol, peritoneal macrophage and proinflammatory cytokine in high fat diet mice.
Collapse
Affiliation(s)
- Hee Geun Park
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Young Ran Lee
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Jong Kui Jun
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| | - Wang Lok Lee
- Department of Sports Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
13
|
Gleeson M, Bishop N, Oliveira M, Tauler P. Influence of training load on upper respiratory tract infection incidence and antigen-stimulated cytokine production. Scand J Med Sci Sports 2011; 23:451-7. [PMID: 22151281 DOI: 10.1111/j.1600-0838.2011.01422.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2011] [Indexed: 01/10/2023]
Abstract
This study examined the effect of training load on upper respiratory tract infection (URTI) incidence in men and women engaged in endurance-based physical activity during winter and sought to establish if there are training-associated differences in immune function related to patterns of illness. Seventy-five individuals provided resting blood and saliva samples for determination of markers of systemic immunity. Weekly training and illness logs were kept for the following 4 months. Comparisons were made between subjects (n = 25) who reported that they exercised 3-6 h/week (LOW), 7-10 h/week (MED) or ≥ 11 h/week (HIGH). The HIGH and MED groups had more URTI episodes than the LOW group (2.4 ± 2.8 and 2.6 ± 2.2 vs 1.0 ± 1.6, respectively: P < 0.05). The HIGH group had approximately threefold higher interleukin (IL)-2, IL-4 and IL-10 production (all P < 0.05) by antigen-stimulated whole blood culture than the LOW group and the MED group had twofold higher IL-10 production than the LOW group (P < 0.05). Other immune variables were not influenced by training load. It is concluded that high levels of physical activity are associated with increased risk of URTI and this may be related to an elevated anti-inflammatory cytokine response to antigen challenge.
Collapse
Affiliation(s)
- M Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | | | | |
Collapse
|
14
|
Wang J, Song H, Tang X, Yang Y, Vieira VJ, Niu Y, Ma Y. Effect of exercise training intensity on murine T-regulatory cells and vaccination response. Scand J Med Sci Sports 2011; 22:643-52. [PMID: 21410542 DOI: 10.1111/j.1600-0838.2010.01288.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To understand the underlying mechanism(s) for the effect of exercise at different intensities on T cell and DNA vaccination responses, we treated mice in a training protocol with regular moderate-intensity exercise (MIE) or prolonged, exhaustive high-intensity exercise (HIE). After 6 weeks of training, splenocytes were isolated to evaluate cytokine expression and T-regulatory (Treg) cell proportion by RT-PCR and FACS, respectively. Another set of mice that completed the same training protocol were used to determine DNA vaccination responses. These mice were immunized three times with HBV DNA vaccine at 2-week intervals and euthanized on day 14 after the last immunization. Serum and splenocytes were isolated to determine humoral and cell-mediated immunity (CMI). Results showed that HIE increased anti-inflammatory cytokine expression and CD4(+) CD25(+) Treg cell proportion. Further, HIE decreased IFN-γ expression, T-lymphocyte proliferation, and antigen-specic cytotoxic response in HBV DNA vaccine-immunized mice. MIE did not change anti-inflammatory cytokine expression or CD4(+) CD25(+) Treg cell proportion but increased pro-inflammatory cytokine expression and augmented antigen-specific CMI. Thus, MIE lower the risk of cancer and infectious illness through enhancing the pro-inflammatory responses. By contrast, HIE might increase the risk of common infections, such as upper respiratory tract infection, due to an up-regulation of CD4(+) CD25(+) Treg cells and anti-inflammatory responses.
Collapse
Affiliation(s)
- J Wang
- Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ferreira CKO, Prestes J, Donatto FF, Verlengia R, Navalta JW, Cavaglieri CR. Phagocytic responses of peritoneal macrophages and neutrophils are different in rats following prolonged exercise. Clinics (Sao Paulo) 2010; 65:1167-73. [PMID: 21243292 PMCID: PMC2999715 DOI: 10.1590/s1807-59322010001100020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To analyze the effects of exhausting long-duration physical exercise (swimming) sessions of different durations and intensities on the number and phagocytic capacity of macrophages and neutrophils in sedentary rats. INTRODUCTION Exercise intensity, duration and frequency are important factors in determining immune response to physical effort. Thus, the effects of exhausting long-duration exercise are unclear. METHODS Wistar rats were divided into two groups: an untreated group (macrophage study) and oyster glycogen-treated rats (neutrophil study). In each group, the animals were subdivided into five groups (10 rats per group): unexercised controls, an unadapted low-intensity exercise group, an unadapted moderate-intensity exercise group, a preadapted low-intensity exercise group and a preadapted moderate-intensity exercise group. All exercises were performed to exhaustion, and preadaptation consisted of 5, 15, 30 and 45 min sessions. RESULTS Macrophage study: the number of peritoneal macrophages significantly decreased (9.22 ± 1.78 x 10(6)) after unadapted exercise but increased (21.50 ± 0.63 x 10(6)) after preadapted low-intensity exercise, with no changes in the moderate-intensity exercise group. Phagocytic capacity, however, increased by more than 80% in all exercise groups (low/moderate, unadapted/preadapted). Neutrophil study: the number of peritoneal neutrophils significantly decreased after unadapted (29.20 ± 3.34 x 10(6)) and preadapted (50.00 ± 3.53 x 10(6)) low-intensity exercise but increased after unadapted (127.60 ± 5.14 x 10(6)) and preadapted (221.80 ± 14.85 x 10(6)) moderate exercise. Neutrophil phagocytic capacity decreased by 63% after unadapted moderate exercise but increased by 90% after corresponding preadapted sessions, with no changes in the low-intensity exercise groups. CONCLUSION Neutrophils and macrophages of sedentary rats respond differently to exercise-induced stress. Adaptation sessions reduce exercise-induced stress on the immune system.
Collapse
|
16
|
Vitorino DC, Buzzachera CF, Curi R, Fernandes LC. Effect of chronic supplementation with shark liver oil on immune responses of exercise-trained rats. Eur J Appl Physiol 2009; 108:1225-32. [PMID: 20033704 DOI: 10.1007/s00421-009-1267-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2009] [Indexed: 11/25/2022]
Abstract
Previous studies have reported that chronic supplementation with shark liver oil (SLO) improves immune response of lymphocyte, macrophage and neutrophil in animal models and humans. In a similar manner, exercise training also stimulates the immune system. However, we are not aware of any study about the association of exercise and SLO supplementation on immune response. Thus, our main goal was to investigate the effect of chronic supplementation with SLO on immune responses of exercise-trained rats. Male Wistar rats were divided into four groups: sedentary with no supplementation (SED, n = 20), sedentary with SLO supplementation (SEDslo, n = 20), exercised (EX, n = 17) and exercised supplemented with SLO (EXslo, n = 19). Rats swam for 6 weeks, 1.5 h/day, in water at 32 +/- 1 degrees C, with a load of 6.0% body weight attached to the thorax of rat. Animals were killed 48 h after the last exercise session. SLO supplementation did not change phagocytosis, lysosomal volume, superoxide anion and hydrogen peroxide production by peritoneal macrophages and blood neutrophils. Thymus and spleen lymphocyte proliferation were significantly higher in SEDslo, EX, and EXslo groups compared with SED group (P < 0.05). Gut-associated lymphocyte proliferation, on the other hand, was similar between the four experimental groups. Our findings show that SLO and EX indeed are able to increase lymphocyte proliferation, but their association did not induce further stimulation in the adaptive immune response and also did not modify innate immunity.
Collapse
Affiliation(s)
- Daniele Cristina Vitorino
- Department of Physiology, Federal University of Paraná, Biological Sciences Building, Curitiba, PR 81530-970, Brazil.
| | | | | | | |
Collapse
|
17
|
Schebeleski-Soares C, Occhi-Soares RC, Franzói-de-Moraes SM, de Oliveira Dalálio MM, Almeida FN, de Ornelas Toledo MJ, de Araújo SM. Preinfection aerobic treadmill training improves resistance against Trypanosoma cruzi infection in mice. Appl Physiol Nutr Metab 2009; 34:659-65. [PMID: 19767801 DOI: 10.1139/h09-053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise performed before infections has been linked to improvement of the immune response against infections. The purpose of this study was to evaluate the influence of preinfection moderate-intensity treadmill training on acute Trypanosoma cruzi infection in mice. Ninety-nine female BALB/c mice were divided into 4 groups, as follows: training + infection (T+I) (n = 41); no training + infection (NT+I) (n = 38); training + no infection (T+NI) (n = 10); and no training + no infection (NT+NI) (n = 10). The exercise program for trained groups was carried out on a motorized treadmill for 8 weeks. Infected groups were inoculated with the Y strain of T. cruzi. Infectivity, prepatent period, patent period, parasitemia peak, mortality, survival time, weight, food intake, tumor necrosis factor-alpha serum levels, and peritoneal macrophage hydrogen peroxide production were evaluated. We found that preinfection training induced statistically significant reductions in parasitemia peak (p < 0.03) and weight loss (p < 0.04). However, no statistically significant differences were found for the other parameters evaluated when trained and nontrained infected groups were compared. We conclude that preinfection aerobic training induces some improvement in the immune response to T. cruzi infection in female BALB/c mice.
Collapse
|
18
|
Effect of exercise on glutamine metabolism in macrophages of trained rats. Eur J Appl Physiol 2009; 107:309-15. [DOI: 10.1007/s00421-009-1130-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
19
|
Nascimento ED, Leandro CVG, Amorim MAF, Palmeiras A, Ferro TC, Castro CMMBD, Castro RMD. Efeitos do estresse agudo de contenção, do estresse crônico de natação e da administração de glutamina sobre a liberação de superóxido por macrófagos alveolares de ratos. REV NUTR 2007. [DOI: 10.1590/s1415-52732007000400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Avaliar a liberação de ânion superóxido por macrófagos alveolares em ratos submetidos ou não ao estresse agudo, ao exercício físico de natação e à suplementação com glutamina. MÉTODOS: Quarenta e dois ratos machos da linhagem Wistar com idade em torno de 62 (desvio-padrão=3) dias de idade foram divididos em grupos controle, treino, estresse e glutamina. Após a intervenção, macrófagos alveolares foram coletados e estimulados com acetato de formol miristato para a avaliação da liberação de ânion superóxido. RESULTADOS: Em comparação à primeira hora (controle=26,2, desvio-padrão=4,2; treino=28,7, desvio-padrão=5,1; estresse=20,3, desvio-padrão=4,4; glutamina=26,2, desvio-padrão=4,2), houve aumento (p<0,001) da liberação de superóxido em todos os grupos experimentais na segunda hora (controle=38,4, desvio-padrão=4,9; treino=40,7, desvio-padrão=6,1; estresse=30,2, desvio-padrão=5,6; glutamina=39,2, desvio-padrão=5,2) de observação. O treinamento e a suplementação com glutamina não provocaram diferenças na liberação de superóxido em macrófagos alveolares quando comparados ao grupo controle. Apenas nos ratos submetidos a estresse houve redução da liberação de superóxido tanto na primeira (20,3, desvio-padrão=4,4; p<0,05) quanto na segunda hora (30,2, desvio-padrão=5,6; p<0,05) de observação. CONCLUSÃO: Os achados sugerem que o estresse pode ser um dos fatores implicados na imunossupressão, uma vez que a redução da produção de ânion superóxido por macrófagos pode levar à diminuição de sua capacidade microbicida. No entanto, o protocolo de treinamento físico de natação usado e a suplementação com glutamina, na quantidade e na forma administrada, não alteraram a liberação de superóxido por macrófagos alveolares.
Collapse
|
20
|
Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Oat beta-glucan effects on neutrophil respiratory burst activity following exercise. Med Sci Sports Exerc 2007; 39:639-44. [PMID: 17414801 DOI: 10.1249/mss.0b013e3180306309] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Fatiguing exercise has been associated with a decrease in certain functions of neutrophils, whereas moderate exercise has generally been associated with an increase. Consumption of oat beta-glucan (ObetaG), a soluble fiber and mild immune system enhancer, may offset the immunosuppression associated with intense training and perhaps further enhance the benefits of moderate exercise. PURPOSE To test the effects of ObetaG consumption on neutrophil function and number after both moderate and fatiguing exercise. METHODS Male mice were assigned to one of six treatment groups. Fatiguing exercise mice (Ftg-ObetaG and Ftg-H2O) ran to volitional fatigue on a treadmill for three consecutive days, and moderate exercise mice (Mod-ObetaG and Mod-H2O) ran for six consecutive days for 1 h. Control mice (Con-ObetaG and Con-H2O) were exposed to the treadmill environment but did not run. ObetaG was consumed in the drinking water (approximately 0.6 mL x d(-1)) for 10 consecutive days. After rest or exercise on the last day of training, mice were given a 1-mL i.p. injection of thioglycollate. Mice were sacrificed 3 h later; neutrophils were harvested from the peritoneal cavity and counted, and their respiratory burst activity was measured using flow cytometry. RESULTS Both moderate exercise and ObetaG increased neutrophil burst activity, whereas fatiguing exercise had no effect. Neutrophil number was increased by fatiguing exercise and ObetaG, but not moderate exercise. There were no additive effects of exercise and ObetaG on either of these variables. CONCLUSION These data suggest that although not additive in their effects, both ObetaG and exercise can alter overall neutrophil respiratory burst activity (number and/or function), but only ObetaG increased both number and function, which may have important ramifications for defense against infection.
Collapse
Affiliation(s)
- E Angela Murphy
- Divison of Applied Physiology, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wong CM, Ou CQ, Thach TQ, Chau YK, Chan KP, Ho SY, Chung RY, Lam TH, Hedley AJ. Does regular exercise protect against air pollution-associated mortality? Prev Med 2007; 44:386-92. [PMID: 17291575 DOI: 10.1016/j.ypmed.2006.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 12/11/2006] [Accepted: 12/25/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To examine whether habitual exercise would modify the effects of air pollution on mortality. METHODS This study included 24,053 Hong Kong Chinese who died at the age of 30 years or older in 1998. Individual information on frequency of exercise was obtained by interviewing their relatives at all four death registries. The deceased subjects were categorized as never-exercise (<once/month) and exercise (> or =once/month). Excess risks (ER) of mortality per 10 microg/m(3) increase of air pollutant were estimated separately by a Poisson regression model in the exercise and never-exercise groups. An interaction model was used to estimate the difference in ER between the two groups. RESULTS In people aged 65 years or older and categorized as never-exercise group, there were significant ER of mortality for all natural causes attributed to nitrogen dioxide (p<0.05), ozone (p<0.05) and particulate matter with an aerodynamic diameter of 10 mum or smaller (p<0.01). When compared to the exercise group, the ER were significantly higher by 4.31% (95% confidence interval: 2.57%, 6.03%), 1.75% (0.25%, 3.23%), and 3.06% (1.74%, 4.37%), respectively. The estimates were insensitive to adjustment for socioeconomic, smoking and health status, and were non-linear by different exercise levels. CONCLUSIONS The results of this study provide evidence that habitual exercise may prevent premature death attributable to air pollution.
Collapse
Affiliation(s)
- Chit-Ming Wong
- Department of Community Medicine, School of Public Health, The University of Hong Kong, 5th Floor, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Murphy EA, Davis JM, Brown AS, Carmichael MD, Van Rooijen N, Ghaffar A, Mayer EP. Role of lung macrophages on susceptibility to respiratory infection following short-term moderate exercise training. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1354-8. [PMID: 15308485 DOI: 10.1152/ajpregu.00274.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Moderate exercise training is associated with a decreased risk for upper respiratory tract infection in human and animal studies, but the mechanisms have not been elucidated. Lung macrophages play an important role in resistance to respiratory infection, and moderate exercise can enhance macrophage antiviral resistance, but no studies have directly tested the role of lung macrophages in this response. This study tested the effect of lung macrophage depletion on susceptibility to infection following short-term moderate exercise training. Mice were assigned to one of four groups: exercise (Ex) and resting controls (Con) with and without clodronate encapsulated liposomes (CL2MDP-lip). Ex mice ran for 1 h on a treadmill for 6 days at 36 m/min, 8% grade. Fifteen minutes following exercise or rest on the last day of training, mice were intranasally inoculated with a standardized dose of herpes simplex virus type 1. Clodronate (Ex-CL2MDP-lip and Con-CL2MDP-lip) or PBS liposomes (Ex-PBS-lip and Con-PBS-lip) (100 μl) were intranasally administered following exercise or rest on the 4th day of training and again on the 4th day postinfection. Morbidity, mortality, and symptom severity were monitored for 21 days. Exercise decreased morbidity by 36%, mortality by 61%, and symptom severity score on days 5–7 ( P < 0.05). Depletion of lung macrophages negated the beneficial effects of moderate exercise. This was indicated by no differences between Ex-CL2MDP-lip and Con-PBS-lip in morbidity (89 vs. 95%), mortality (79 vs. 95%), or symptom severity. Results indicate that lung macrophages play an important role in mediating the beneficial effects of moderate exercise on susceptibility to respiratory infection.
Collapse
Affiliation(s)
- E A Murphy
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, 1300 Wheat St., Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Effects of moderate exercise and oat β-glucan on innate immune function and susceptibility to respiratory infection. Am J Physiol Regul Integr Comp Physiol 2004; 286:R366-72. [PMID: 14551169 DOI: 10.1152/ajpregu.00304.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both moderate exercise and the soluble oat fiber β-glucan can increase immune function and decrease risk of infection, but no information exists on their possible combined effects. This study tested the effects of moderate exercise and oat β-glucan on respiratory infection, macrophage antiviral resistance, and natural killer (NK) cell cytotoxicity. Mice were assigned to four groups: exercise and water, exercise and oat β-glucan, control water, or control oat β-glucan. Oat β-glucan was fed in the drinking water for 10 days before intranasal inoculation of herpes simplex virus type 1 (HSV-1) or euthanasia. Exercise consisted of treadmill running (1 h/day) for 6 days. Macrophage resistance to HSV-1 was increased with both exercise and oat β-glucan, whereas NK cell cytotoxicity was only increased with exercise. Exercise was also associated with a 45 and 38% decrease in morbidity and mortality, respectively. Mortality was also decreased with oat β-glucan, but this effect did not reach statistical significance. No additive effects of exercise and oat β-glucan were found. These data confirm a positive effect of both moderate exercise and oat β-glucan on immune function, but only moderate exercise was associated with a significant reduction in the risk of upper respiratory tract infection in this model.
Collapse
Affiliation(s)
- J M Davis
- Dept. of Exercise Science, 1300 Wheat St., Columbia, SC 29208, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Ainsworth DM, Appleton JA, Eicker SW, Luce R, Julia Flaminio M, Antczak DF. The effect of strenuous exercise on mRNA concentrations of interleukin-12, interferon-gamma and interleukin-4 in equine pulmonary and peripheral blood mononuclear cells. Vet Immunol Immunopathol 2003; 91:61-71. [PMID: 12507851 DOI: 10.1016/s0165-2427(02)00274-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of strenuous exercise on the mRNA concentrations of interleukin-12p35 subunit (IL-12p35), interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) in equine pulmonary and peripheral blood mononuclear cells (PBMCs) was investigated. We hypothesized that strenuous exercise would suppress the expression of IL-12p35, IFN-gamma and augment the expression of IL-4. Eleven horses were randomly divided into two groups, a stall-confined control group (n=5) and an exercise-conditioned treatment group (n=6). Bronchoalveolar and PBMCs were obtained from horses in the treatment group prior to the commencement of a 9-week conditioning program and 24h after the completion of a maximum exercise test conducted in week 12. Samples were obtained simultaneously from control horses. Differential counts were performed on the bronchoalveolar lavage cells. Real-time PCR was performed on the pulmonary and PBMCs to quantitate cytokine expression using equine-specific primers and Taqman probes. Target gene expression was normalized to 18s rRNA expression. With the exception of IL-4 in the BALF cells, mRNA for the three cytokines was detected in the mononuclear cells from all horses at both sampling times. There were no significant differences in the cytokine mRNA concentrations between the two groups of horses at either of the sampling times. These findings demonstrate that strenuous treadmill exercise does not exert a deleterious effect on gene expression for IL-12p35, IFN-gamma or IL-4 when assessed in horses 24h following the intense physical activity.
Collapse
Affiliation(s)
- Dorothy M Ainsworth
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Kemi OJ, Loennechen JP, Wisløff U, Ellingsen Ø. Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy. J Appl Physiol (1985) 2002; 93:1301-9. [PMID: 12235029 DOI: 10.1152/japplphysiol.00231.2002] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas novel pathways of pathological heart enlargement have been unveiled by thoracic aorta constriction in genetically modified mice, the molecular mechanisms of adaptive cardiac hypertrophy remain virtually unexplored and call for an effective and well-characterized model of physiological mechanical loading. Experimental procedures of maximal oxygen consumption (VO(2 max)) and intensity-controlled treadmill running were established in 40 female and 36 male C57BL/6J mice. An inclination-dependent VO(2 max) with 0.98 test-retest correlation was found at 25 degrees treadmill grade. Running for 2 h/day, 5 days/wk, in intervals of 8 min at 85-90% of VO(2 max) and 2 min at 50% (adjusted to weekly VO(2 max) testing) increased VO(2 max) to a plateau 49% above sedentary females and 29% in males. Running economy improved in both sexes, and echocardiography indicated significantly increased left ventricle posterior wall thickness. Ventricular weights increased by 19-29 and 12-17% in females and males, respectively, whereas cardiomyocyte dimensions increased by 20-32, and 17-23% in females and males, respectively; skeletal muscle mass increased by 12-18%. Thus the model mimics human responses to exercise and can be used in future studies of molecular mechanisms underlying these adaptations.
Collapse
Affiliation(s)
- Ole Johan Kemi
- Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | |
Collapse
|