1
|
Dereli AS, Apaire A, El Tahry R. Sudden Unexpected Death in Epilepsy: Central Respiratory Chemoreception. Int J Mol Sci 2025; 26:1598. [PMID: 40004062 PMCID: PMC11855741 DOI: 10.3390/ijms26041598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a critical concern for individuals suffering from epilepsy, with respiratory dysfunction playing a significant role in its pathology. Fatal seizures are often characterized by central apnea and hypercapnia (elevated CO2 levels), indicating a failure in ventilatory control. Research has shown that both human epilepsy patients and animal models exhibit a reduced hypercapnic ventilatory response in the interictal (non-seizure) period, suggesting an impaired ability to regulate breathing in response to high CO2 levels. This review examines the role of central chemoreceptors-specifically the retrotrapezoid nucleus, raphe nuclei, nucleus tractus solitarius, locus coeruleus, and hypothalamus in this pathology. These structures are critical for sensing CO2 and maintaining respiratory homeostasis. Emerging evidence also implicates neuropeptidergic pathways within these chemoreceptive regions in SUDEP. Neuropeptides like galanin, pituitary adenylate cyclase-activating peptide (PACAP), orexin, somatostatin, and bombesin-like peptides may modulate chemosensitivity and respiratory function, potentially exacerbating respiratory failure during seizures. Understanding the mechanisms linking central chemoreception, respiratory control, and neuropeptidergic signaling is essential to developing targeted interventions to reduce the risk of SUDEP in epilepsy patients.
Collapse
Affiliation(s)
- Ayse S. Dereli
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
| | - Auriane Apaire
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
| | - Riem El Tahry
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
- Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
2
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
3
|
Petrucci AN, Joyal KG, Chou JW, Li R, Vencer KM, Buchanan GF. Post-ictal Generalized EEG Suppression is reduced by Enhancing Dorsal Raphe Serotonergic Neurotransmission. Neuroscience 2020; 453:206-221. [PMID: 33242541 DOI: 10.1016/j.neuroscience.2020.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. A proposed risk marker for SUDEP is the duration of post-ictal generalized EEG suppression (PGES). The mechanisms underlying PGES are unknown. Serotonin (5-HT) has been implicated in SUDEP pathophysiology. Seizures suppress activity of 5-HT neurons in the dorsal raphe nucleus (DRN). We hypothesized that suppression of DRN 5-HT neuron activity contributes to PGES and increasing 5-HT neurotransmission or stimulating the DRN before a seizure would decrease PGES duration. Adult C57BL/6J and Pet1-Cre mice received EEG/EMG electrodes, a bipolar stimulating/recording electrode in the right basolateral amygdala, and either a microdialysis guide cannula or an injection of adeno-associated virus (AAV) allowing expression of channelrhodopsin2 plus an optic fiber into the DRN. Systemic application of the selective 5-HT reuptake inhibitor citalopram (20 mg/kg) decreased PGES duration from seizures induced during wake (n = 23) and non-rapid eye movement (NREM) sleep (n = 13) whereas fluoxetine (10 mg/kg) pretreatment decreased PGES duration following seizures induced from wake (n = 11), but not NREM sleep (n = 9). Focal chemical (n = 6) or optogenetic (n = 8) stimulation of the DRN reduced PGES duration following seizures in kindled mice induced during wake. During PGES, animals exhibited immobility and suppression of EEG activity that was reduced by citalopram pretreatment. These results suggest 5-HT and the DRN may regulate PGES.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| | - Jonathan W Chou
- Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, United States.
| | - Rui Li
- Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| | - Kimberly M Vencer
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, United States
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Neurology, Carver College of Medicine, Carver College of Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
4
|
Leirão IP, Colombari DSA, da Silva GSF, Zoccal DB. Lesion of Serotonergic Afferents to the Retrotrapezoid Nucleus Impairs the Tachypneic Response to Hypercapnia in Unanesthetized Animals. Neuroscience 2020; 452:63-77. [PMID: 33212216 DOI: 10.1016/j.neuroscience.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Hypercapnia promotes an increase in pulmonary ventilation due to the stimulation of brainstem chemosensory cells that are connected to the respiratory network. Among these cells are the raphe serotonergic neurons which widely send projections to distinct central respiratory compartments. Nevertheless, the physiological role of specific raphe serotonergic projections to other chemosensitive sites on the emergence of hypercapnia ventilatory response in vivo still remains to be elucidated. Here we investigated whether the ventilatory response to hypercapnia requires serotonergic inputs to the chemosensitive cells of the retrotrapezoid nucleus (RTN) in the ventrolateral medulla. To test this, pulmonary ventilation was evaluated under baseline conditions and during hypercapnia (7% CO2) in unanesthetized juvenile Holtzman rats (60-90 g) that received bilateral microinjections of either vehicle (control) or anti-SERT-SAP (0.1 mM, 10 pmol/100 nl) toxin in the RTN to retrogradely destroy serotonergic afferents to this region. Fifteen days after microinjections, baseline ventilation was not different between anti-SERT-SAP (n = 8) and control animals (n = 9). In contrast, the ablation of RTN-projecting serotonergic neurons markedly attenuated the hypercapnia-induced increase in respiratory frequency which was correlated with reduced numbers of serotonergic neurons in the raphe obscurus and magnus, but not in the raphe pallidus. The increase in tidal volume during hypercapnia was not significantly affected by anti-SERT-SAP microinjections in the RTN. Our data indicate that serotoninergic neurons that send projections to the RTN region are required for the processing of ventilatory reflex response during exposure to high CO2 in unanesthetized conditions.
Collapse
Affiliation(s)
- Isabela P Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics. Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, MG, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
5
|
Cummings KJ, Leiter JC. Take a deep breath and wake up: The protean role of serotonin preventing sudden death in infancy. Exp Neurol 2020; 326:113165. [PMID: 31887304 PMCID: PMC6956249 DOI: 10.1016/j.expneurol.2019.113165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 01/24/2023]
Abstract
Recordings from infants who died suddenly and unexpectedly demonstrate the occurrence of recurring apneas, ineffective gasping, and finally, failure to restore eupnea and arouse prior to death. Immunohistochemical and autoradiographic data demonstrate a constellation of serotonergic defects in the caudal raphe nuclei in infants who died of Sudden Infant Death Syndrome (SIDS). The purpose of this review is to synthesize what is known about adaptive responses of the infant to severely hypoxic conditions, which unleash a flood of neuromodulators that inhibit cardiorespiratory function, thermogenesis, and arousal and the emerging role of serotonin, which combats this cardiorespiratory inhibition to foster autoresuscitation, eupnea, and arousal to ensure survival following an hypoxic episode. The laryngeal and carotid body chemoreflexes are potent in newborns and infants, and both reflexes can induce apnea and bradycardia, which may be adaptive initially, but must be terminated if an infant is to survive. Serotonin has a unique ability to touch on each of the processes that may be required to recover from hypoxic reflex apnea: gasping, the restoration of heart rate and blood pressure, termination of apneas and, eventually, stimulation of eupnea and arousal. Recurrent apneic events, bradycardia, ineffective gasping and a failure to terminate apneas and restore eupnea are observed in animals harboring defects in the caudal serotonergic system models - all of these phenotypes are reminiscent of and compatible with the cardiorespiratory recordings made in infants who subsequently died of SIDS. The caudal serotonergic system provides an organized, multi-pronged defense against reflex cardiorespiratory inhibition and the hypoxia that accompanies prolonged apnea, bradycardia and hypotension, and any deficiency of caudal serotonergic function will increase the propensity for sudden unexplained infant death.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, University of Missouri-Columbia, Dalton Cardiovascular Research Center, 134 Research Park Drive, Columbia, MO 65203, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, USA.
| |
Collapse
|
6
|
Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex. J Neurosci 2017; 37:1807-1819. [PMID: 28073937 DOI: 10.1523/jneurosci.2316-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/30/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022] Open
Abstract
Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1, referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine-N-oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei.SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using genetic tools, we characterize a 5-HT neuron subtype defined by expression of Tachykinin1 and Pet1 (Tac1-Pet1 neurons), mapping soma localization to the caudal medulla primarily and axonal projections to brainstem motor nuclei most prominently, and, when silenced, observed blunting of the ventilatory response to inhaled CO2Tac1-Pet1 neurons thus appear distinct from and contrast previously described Egr2-Pet1 neurons, which project primarily to chemosensory integration centers and are themselves chemosensitive.
Collapse
|
7
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Role of Astrocytes in Central Respiratory Chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:109-145. [PMID: 27714687 DOI: 10.1007/978-3-319-40764-7_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Astrocytes perform various homeostatic functions in the nervous system beyond that of a supportive or metabolic role for neurons. A growing body of evidence indicates that astrocytes are crucial for central respiratory chemoreception. This review presents a classical overview of respiratory central chemoreception and the new evidence for astrocytes as brainstem sensors in the respiratory response to hypercapnia. We review properties of astrocytes for chemosensory function and for modulation of the respiratory network. We propose that astrocytes not only mediate between CO2/H+ levels and motor responses, but they also allow for two emergent functions: (1) Amplifying the responses of intrinsic chemosensitive neurons through feedforward signaling via gliotransmitters and; (2) Recruiting non-intrinsically chemosensitive cells thanks to volume spreading of signals (calcium waves and gliotransmitters) to regions distant from the CO2/H+ sensitive domains. Thus, astrocytes may both increase the intensity of the neuron responses at the chemosensitive sites and recruit of a greater number of respiratory neurons to participate in the response to hypercapnia.
Collapse
|
9
|
Corcoran AE, Richerson GB, Harris MB. Functional link between the hypocretin and serotonin systems in the neural control of breathing and central chemosensitivity. J Neurophysiol 2015; 114:381-9. [PMID: 25878157 DOI: 10.1152/jn.00870.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT)-synthesizing neurons of the medullary raphe are putative central chemoreceptors, proposed to be one of potentially multiple brain stem chemosensitive cell types and loci interacting to produce the respiratory chemoreflex. Hypocretin-synthesizing neurons of the lateral hypothalamus are important contributors to arousal state, thermoregulation, and feeding behavior and are also reportedly involved in the hypercapnic ventilatory response. Recently, a functional interaction was found between the hypocretin system and 5-HT neurons of the dorsal raphe. The validity and potential significance of hypocretin modulation of medullary raphe 5-HT neurons, however, is unknown. As such, the purpose of this study was to explore functional interactions between the hypocretin system and 5-HT system of the medullary raphe on baseline respiratory output and central chemosensitivity. To explore such interactions, we used the neonatal in vitro medullary slice preparation derived from wild-type (WT) mice (normal 5-HT function) and a knockout strain lacking all central 5-HT neurons (Lmx1b(f/f/p) mice). We examined effects of acidosis, hypocretin-1, a hypocretin receptor antagonist (SB-408124), and the effect of the antagonist on the response to acidosis. We confirmed the critical role of 5-HT neurons in central chemosensitivity given that the increased hypoglossal burst frequency with acidosis, characteristic of WT mice, was absent in preparations derived from Lmx1b(f/f/p) mice. We also found that hypocretin facilitated baseline neural ventilatory output in part through 5-HT neurons. Although the impact of hypocretin on 5-HT neuronal sensitivity to acidosis is still unclear, hypocretins did appear to mediate the burst duration response to acidosis via serotonergic mechanisms.
Collapse
Affiliation(s)
- Andrea E Corcoran
- Department of Biology and Wildlife, and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska; Departments of Neurology and Cellular & Molecular Physiology, Yale University, New Haven, Connecticut; Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire;
| | - George B Richerson
- Departments of Neurology and Cellular & Molecular Physiology, Yale University, New Haven, Connecticut; Veteran's Affairs Medical Center, West Haven, Connecticut; and Departments of Neurology and Molecular Physiology & Biophysics, University of Iowa, Iowa City, Iowa
| | - Michael B Harris
- Department of Biology and Wildlife, and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| |
Collapse
|
10
|
Puissant MM, Echert AE, Yang C, Mouradian GC, Novotny T, Liu P, Liang M, Hodges MR. RNASeq-derived transcriptome comparisons reveal neuromodulatory deficiency in the CO₂ insensitive brown Norway rat. J Physiol 2014; 593:415-30. [PMID: 25630262 DOI: 10.1113/jphysiol.2014.285171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/22/2014] [Indexed: 11/08/2022] Open
Abstract
Raphé-derived serotonin (5-HT) and thyrotropin-releasing hormone (TRH) play important roles in fundamental, homeostatic control systems such as breathing and specifically the ventilatory CO2 chemoreflex. Brown Norway (BN) rats exhibit an inherent and severe ventilatory insensitivity to hypercapnia but also exhibit relatively normal ventilation at rest and during other conditions, similar to multiple genetic models of 5-HT system dysfunction in mice. Herein, we tested the hypothesis that the ventilatory insensitivity to hypercapnia in BN rats is due to altered raphé gene expression and the consequent deficiencies in raphé-derived neuromodulators such as TRH. Medullary raphé transcriptome comparisons revealed lower expression of multiple 5-HT neuron-specific genes in BN compared to control Dahl salt-sensitive rats, predictive of reduced central nervous system monoamines by bioinformatics analyses and confirmed by high-performance liquid chromatography measurements. In particular, raphé Trh mRNA and peptide levels were significantly reduced in BN rats, and injections of the stable TRH analogue Taltirelin (TAL) stimulated breathing dose-dependently, with greater effects in BN versus control Sprague-Dawley rats. Importantly, TAL also effectively normalized the ventilatory CO2 chemoreflex in BN rats, but TAL did not affect CO2 sensitivity in control Sprague-Dawley rats. These data establish a molecular basis of the neuromodulatory deficiency in BN rats, and further suggest an important functional role for TRH signalling in the mammalian CO2 chemoreflex.
Collapse
Affiliation(s)
- Madeleine M Puissant
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
12
|
Cleary DR, Roeder Z, Elkhatib R, Heinricher MM. Neuropeptide Y in the rostral ventromedial medulla reverses inflammatory and nerve injury hyperalgesia in rats via non-selective excitation of local neurons. Neuroscience 2014; 271:149-59. [PMID: 24792711 PMCID: PMC4071144 DOI: 10.1016/j.neuroscience.2014.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Abstract
Chronic pain reflects not only sensitization of the ascending nociceptive pathways, but also changes in descending modulation. The rostral ventromedial medulla (RVM) is a key structure in a well-studied descending pathway, and contains two classes of modulatory neurons, the ON-cells and the OFF-cells. Disinhibition of OFF-cells depresses nociception; increased ON-cell activity facilitates nociception. Multiple lines of evidence show that sensitization of ON-cells contributes to chronic pain, and reversing or blocking this sensitization is of interest as a treatment of persistent pain. Neuropeptide Y (NPY) acting via the Y1 receptor has been shown to attenuate hypersensitivity in nerve-injured animals without affecting normal nociception when microinjected into the RVM, but the neural basis for this effect was unknown. We hypothesized that behavioral anti-hyperalgesia was due to selective inhibition of ON-cells by NPY at the Y1 receptor. To explore the possibility of Y1 selectivity on ON-cells, we stained for the NPY-Y1 receptor in the RVM, and found it broadly expressed on both serotonergic and non-serotonergic neurons. In subsequent behavioral experiments, NPY microinjected into the RVM in lightly anesthetized animals reversed signs of mechanical hyperalgesia following either nerve injury or chronic hindpaw inflammation. Unexpectedly, rather than decreasing ON-cell activity, NPY increased spontaneous activity of both ON- and OFF-cells without altering noxious-evoked changes in firing. Based on these results, we conclude that the anti-hyperalgesic effects of NPY in the RVM are not explained by selective inhibition of ON-cells, but rather by increased spontaneous activity of OFF-cells. Although ON-cells undoubtedly facilitate nociception and contribute to hypersensitivity, the present results highlight the importance of parallel OFF-cell-mediated descending inhibition in limiting the expression of chronic pain.
Collapse
Affiliation(s)
- D R Cleary
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States.
| | - Z Roeder
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - R Elkhatib
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States; Department of Anesthesia, Cairo University Hospital, Cairo, Egypt
| | - M M Heinricher
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
13
|
Presti MF, Schmeichel AM, Low PA, Parisi JE, Benarroch EE. Degeneration of brainstem respiratory neurons in dementia with Lewy bodies. Sleep 2014; 37:373-8. [PMID: 24501436 DOI: 10.5665/sleep.3418] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Respiratory dysfunction, including sleep disordered breathing, is characteristic of multiple system atrophy (MSA) and may reflect degeneration of brainstem respiratory nuclei involved in respiratory rhythmogenesis and chemosensitivity, including the pre-Bötzinger complex (preBötC), nucleus raphe pallidus (RPa), and nucleus raphe obscurus (ROb). However, impaired ventilatory responses to hypercapnia have also been reported in dementia with Lewy bodies (DLB), suggesting that these nuclei may also be affected in DLB. OBJECTIVES To determine whether there is involvement of the preBötC, RPa, and ROb in DLB. DESIGN We applied stereological methods to analyze sections immunostained for neurokinin-1 receptor and tryptophan hydroxylase in neuropathologically confirmed cases of DLB, MSA, and controls. RESULTS Reduction of neuronal density occurred in all three nuclei in DLB, as well as in MSA. The magnitude of neuronal depletion in ROb was similar in DLB and MSA (49% versus 56% respectively, compared to controls, P < 0.05), but neuronal loss in the preBötC and RPa was less severe in DLB than in MSA (40% loss in preBötC of DLB, P < 0.05 and 68% loss in MSA, P < 0.0001, compared to controls; 46% loss in RPa of DLB, P < 0.05 and 73% loss in MSA P < 0.0001, compared to controls). CONCLUSIONS Medullary respiratory nuclei are affected in dementia with Lewy bodies but less severely than in multiple system atrophy. This may help explain differences in the frequency of sleep disordered breathing in these two disorders.
Collapse
Affiliation(s)
| | | | | | - Joseph E Parisi
- Department of Neurology ; Division of Anatomical Pathology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
14
|
Guyenet PG, Abbott SBG. Chemoreception and asphyxia-induced arousal. Respir Physiol Neurobiol 2013; 188:333-43. [PMID: 23608705 PMCID: PMC3749262 DOI: 10.1016/j.resp.2013.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/02/2013] [Accepted: 04/06/2013] [Indexed: 02/07/2023]
Abstract
Arousal protects against the adverse and potentially fatal effects of asphyxia during sleep. Asphyxia stimulates the carotid bodies and central chemoreceptors but the sequence of events leading to arousal is uncertain. In this review, the theoretical mechanisms leading to arousal from sleep are briefly summarized and the issue of whether central respiratory chemoreceptors (CRCs) or other types of CO2-responsive CNS neurons contribute to asphyxia-induced arousal is discussed. We focus on the role of the retrotrapezoid nucleus, the raphe and the locus coeruleus and emphasize the anatomical and neurophysiological evidence which suggests that these putative central chemoreceptors could contribute to arousal independently of their effects on breathing. Finally, we describe recent attempts to test the contribution of specific brainstem pathways to asphyxia-induced arousal using optogenetic and other tools and the possible contribution of a group of hypoxia-sensitive brainstem neurons (the C1 cells) to breathing and arousal.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States.
| | | |
Collapse
|
15
|
da Silva GS, Giusti H, Castro OW, Garcia-Cairasco N, Gargaglioni LH, Branco LG, Glass ML. Serotonergic neurons in the nucleus raphé obscurus are not involved in the ventilatory and thermoregulatory responses to hypoxia in adult rats. Respir Physiol Neurobiol 2013; 187:139-48. [DOI: 10.1016/j.resp.2013.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 03/21/2013] [Accepted: 04/08/2013] [Indexed: 11/25/2022]
|
16
|
Hodges MR, Echert AE, Puissant MM, Mouradian GC. Fluoxetine augments ventilatory CO2 sensitivity in Brown Norway but not Sprague Dawley rats. Respir Physiol Neurobiol 2013; 186:221-8. [PMID: 23454023 DOI: 10.1016/j.resp.2013.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 11/30/2022]
Abstract
The Brown Norway (BN; BN/NHsdMcwi) rat exhibits a deficit in ventilatory CO2 sensitivity and a modest serotonin (5-HT) deficiency. Here, we tested the hypothesis that the selective serotonin reuptake inhibitor fluoxetine would augment CO2 sensitivity in BN but not Sprague Dawley (SD) rats. Ventilation during room air or 7% CO2 exposure was measured before, during and after 3 weeks of daily injections of saline or fluoxetine (10mg/(kgday)) in adult male BN and SD rats. Fluoxetine had minimal effects on room air breathing in BN and SD rats (p>0.05), although tidal volume (VT) was reduced in BN rats (p<0.05). There were also minimal effects of fluoxetine on CO2 sensitivity in SD rats, but fluoxetine increased minute ventilation, breathing frequency and VT during hypercapnia in BN rats (p<0.05). The augmented CO2 response was reversible upon withdrawal of fluoxetine. Brain levels of biogenic amines were largely unaffected, but 5-HIAA and the ratio of 5-HIAA/5-HT were reduced (p<0.05) consistent with selective and effective 5-HT reuptake inhibition. Thus, fluoxetine increases ventilatory CO2 sensitivity in BN but not SD rats, further suggesting altered 5-HT system function may contribute to the inherently low CO2 sensitivity in the BN rat.
Collapse
Affiliation(s)
- Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | | | | | | |
Collapse
|
17
|
Perez IA, Keens TG. Peripheral chemoreceptors in congenital central hypoventilation syndrome. Respir Physiol Neurobiol 2013; 185:186-93. [DOI: 10.1016/j.resp.2012.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/30/2022]
|
18
|
Buchanan GF. Timing, sleep, and respiration in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:191-219. [PMID: 23899599 DOI: 10.1016/b978-0-12-396971-2.00008-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breathing is perhaps the physiological function that is most vital to human survival. Without breathing and adequate oxygenation of tissues, life ceases. As would be expected for such a vital function, breathing occurs automatically, without the requirement of conscious input. Breathing is subject to regulation by a variety of factors including circadian rhythms and vigilance state. Given the need for breathing to occur continuously with little tolerance for interruption, it is not surprising that breathing is subject to both circadian phase-dependent and vigilance-state-dependent regulation. Similarly, the information regarding respiratory state, including blood-gas concentrations, can affect circadian timing and sleep-wake state. The exact nature of the interactions between breathing, circadian phase, and vigilance state can vary depending upon the species studied and the methodologies employed. These interactions between breathing, circadian phase, and vigilance state may have important implications for a variety of human diseases, including sleep apnea, asthma, sudden unexpected death in epilepsy, and sudden infant death syndrome.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Neurology, Yale University School of Medicine, New Haven, and Veteran's Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|
19
|
Purinergic transmission in the rostral but not caudal medullary raphe contributes to the hypercapnia-induced ventilatory response in unanesthetized rats. Respir Physiol Neurobiol 2012; 184:41-7. [DOI: 10.1016/j.resp.2012.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/15/2012] [Accepted: 07/18/2012] [Indexed: 11/23/2022]
|
20
|
Phillips RS, Cleary DR, Nalwalk JW, Arttamangkul S, Hough LB, Heinricher MM. Pain-facilitating medullary neurons contribute to opioid-induced respiratory depression. J Neurophysiol 2012; 108:2393-404. [PMID: 22956800 DOI: 10.1152/jn.00563.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Respiratory depression is a therapy-limiting side effect of opioid analgesics, yet our understanding of the brain circuits mediating this potentially lethal outcome remains incomplete. Here we studied the contribution of the rostral ventromedial medulla (RVM), a region long implicated in pain modulation and homeostatic regulation, to opioid-induced respiratory depression. Microinjection of the μ-opioid agonist DAMGO in the RVM of lightly anesthetized rats produced both analgesia and respiratory depression, showing that neurons in this region can modulate breathing. Blocking opioid action in the RVM by microinjecting the opioid antagonist naltrexone reversed the analgesic and respiratory effects of systemically administered morphine, showing that this region plays a role in both the analgesic and respiratory-depressant properties of systemically administered morphine. The distribution of neurons directly inhibited by RVM opioid microinjection was determined with a fluorescent opioid peptide, dermorphin-Alexa 594, and found to be concentrated in and around the RVM. The non-opioid analgesic improgan, like DAMGO, produced antinociception but, unlike DAMGO, stimulated breathing when microinjected into the RVM. Concurrent recording of RVM neurons during improgan microinjection showed that this agent activated RVM ON-cells, OFF-cells, and NEUTRAL-cells. Since opioids are known to activate OFF-cells but suppress ON-cell firing, the differential respiratory response to these two analgesic drugs is best explained by their opposing effects on the activity of RVM ON-cells. These findings show that pain relief can be separated pharmacologically from respiratory depression and identify RVM OFF-cells as important central targets for continued development of potent analgesics with fewer side effects.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
21
|
Barrett KT, Kinney HC, Li A, Daubenspeck JA, Leiter JC, Nattie EE. Subtle alterations in breathing and heart rate control in the 5-HT1A receptor knockout mouse in early postnatal development. J Appl Physiol (1985) 2012; 113:1585-93. [PMID: 22936722 DOI: 10.1152/japplphysiol.00939.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that absence of the 5-HT(1A) receptor would negatively affect the development of cardiorespiratory control. In conscious wild type (WT) and 5-HT(1A) receptor knockout (KO) mice, we measured resting ventilation (Ve), oxygen consumption (Vo(2)), heart rate (HR), breathing and HR variability, and the hypercapnic ventilatory response (HCVR) at postnatal day 5 (P5), day 15 (P15), and day 25 (P25). In KO mice compared with WT, we found a 17% decrease in body weight at only P5 (P < 0.01) and no effect on Vo(2). Ve was significantly (P < 0.001) lower at P5 and P25, but there was no effect on the HCVR. Breathing variability (interbreath interval), measured by standard deviation, the root mean square of the standard deviation (RMSSD), and the product of the major (L) and minor axes (T) of the Poincaré first return plot, was 57% to 187% higher only at P5 (P < 0.001). HR was 6-10% slower at P5 (P < 0.001) but 7-9% faster at P25 (P < 0.001). This correlated with changes in the spectral analysis of HR variability; the low frequency to high frequency ratio was 47% lower at P5 but 68% greater at P25. The RMSSD and (L × T) of HR variability were ~2-fold greater at P5 only (P < 0.001; P < 0.05). We conclude that 5-HT(1A) KO mice have a critical period of potential vulnerability at P5 when pups hypoventilate and have a slower respiratory frequency and HR with enhanced variability of both, suggesting abnormal maturation of cardiorespiratory control.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lindsey BG, Rybak IA, Smith JC. Computational models and emergent properties of respiratory neural networks. Compr Physiol 2012; 2:1619-70. [PMID: 23687564 PMCID: PMC3656479 DOI: 10.1002/cphy.c110016] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components,including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions,enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology and Neuroscience Program, University of South Florida College of Medicine, Tampa, Florida, USA.
| | | | | |
Collapse
|
23
|
Dias MB, Nucci TB, Branco LGS, Gargaglioni LH. Opioid μ-receptors in the rostral medullary raphe modulate hypoxia-induced hyperpnea in unanesthetized rats. Acta Physiol (Oxf) 2012; 204:435-42. [PMID: 21827637 DOI: 10.1111/j.1748-1716.2011.02345.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM It has been suggested that the medullary raphe (MR) plays a key role in the physiological responses to hypoxia. As opioid μ-receptors have been found in the MR, we studied the putative role of opioid μ-receptors in the rostral MR (rMR) region on ventilation in normal and 7% hypoxic conditions. METHODS We measured pulmonary ventilation (VE) and the body temperatures (Tb) of male Wistar rats before and after the selective opioid μ-receptor antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, cyclic, 0.1 μg per 0.1 μL) was microinjected into the rMR during normoxia or after 60 min of hypoxia. RESULTS The animals treated with intra-rMR CTAP exhibited an attenuation of the ventilatory response to hypoxia (430 ± 86 mL kg(-1) min(-1)) compared with the control group (790 ± 82 mL kg(-1) min(-1) ) (P < 0.05). No differences in the Tb were observed between groups during hypoxia. CONCLUSION These data suggest that opioids acting on μ-receptors in the rMR exert an excitatory modulation of hyperventilation induced by hypoxia.
Collapse
Affiliation(s)
- M B Dias
- Department of Physiological Sciences, Federal University of Goias, Goiania, GO, Brazil
| | | | | | | |
Collapse
|
24
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
25
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
26
|
Ray R, Corcoran A, Brust R, Kim JC, Richerson GB, Nattie E, Dymecki SM. Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 2011; 333:637-42. [PMID: 21798952 PMCID: PMC3729433 DOI: 10.1126/science.1205295] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Physiological homeostasis is essential for organism survival. Highly responsive neuronal networks are involved, but their constituent neurons are just beginning to be resolved. To query brain serotonergic neurons in homeostasis, we used a neuronal silencing tool, mouse RC::FPDi (based on the synthetic G protein-coupled receptor Di), designed for cell type-specific, ligand-inducible, and reversible suppression of action potential firing. In mice harboring Di-expressing serotonergic neurons, administration of the ligand clozapine-N-oxide (CNO) by systemic injection attenuated the chemoreflex that normally increases respiration in response to tissue carbon dioxide (CO(2)) elevation and acidosis. At the cellular level, CNO suppressed firing rate increases evoked by CO(2) acidosis. Body thermoregulation at room temperature was also disrupted after CNO triggering of Di; core temperatures plummeted, then recovered. This work establishes that serotonergic neurons regulate life-sustaining respiratory and thermoregulatory networks, and demonstrates a noninvasive tool for mapping neuron function.
Collapse
Affiliation(s)
- Russell Ray
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, U.S.A
| | - Andrea Corcoran
- Department of Physiology, Dartmouth Medical School, One Medical Center Road, Lebanon, NH 03756-0001, U.S.A
| | - Rachael Brust
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, U.S.A
| | - Jun Chul Kim
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, Ontario M5S 3G3, Canada
| | - George B. Richerson
- Department of Neurology, UI Hospitals and Clinics, 200 Hawkins Drive, 2007 RCP, Iowa City, Iowa 52242, U.S.A
| | - Eugene Nattie
- Department of Physiology, Dartmouth Medical School, One Medical Center Road, Lebanon, NH 03756-0001, U.S.A
| | - Susan M. Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, U.S.A
| |
Collapse
|
27
|
da Silva GSF, Giusti H, Benedetti M, Dias MB, Gargaglioni LH, Branco LGS, Glass ML. Serotonergic neurons in the nucleus raphe obscurus contribute to interaction between central and peripheral ventilatory responses to hypercapnia. Pflugers Arch 2011; 462:407-18. [DOI: 10.1007/s00424-011-0990-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/30/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
|
28
|
Abstract
We used optogenetics to determine the global respiratory effects produced by selectively stimulating raphe obscurus (RO) serotonergic neurons in anesthetized mice and to test whether these neurons detect changes in the partial pressure of CO(2), and hence function as central respiratory chemoreceptors. Channelrhodopsin-2 (ChR2) was selectively (∼97%) incorporated into ∼50% of RO serotonergic neurons by injecting AAV2 DIO ChR2-mCherry (adeno-associated viral vector double-floxed inverse open reading frame of ChR2-mCherry) into the RO of ePet-Cre mice. The transfected neurons heavily innervated lower brainstem and spinal cord regions involved in autonomic and somatic motor control plus breathing but eschewed sensory related regions. Pulsed laser photostimulation of ChR2-transfected serotonergic neurons increased respiratory frequency (fR) and diaphragmatic EMG (dEMG) amplitude in relation to the duration and frequency of the light pulses (half saturation, 1 ms; 5-10 Hz). dEMG amplitude and fR increased slowly (half saturation after 10-15 s) and relaxed monoexponentially (tau, 13-15 s). The breathing stimulation was reduced ∼55% by methysergide (broad spectrum serotonin antagonist) and potentiated (∼16%) at elevated levels of inspired CO(2) (8%). RO serotonergic neurons, identified by their entrainment to short light pulses (threshold, 0.1-1 ms) were silent (nine cells) or had a low and regular level of activity (2.1 ± 0.4 Hz; 11 cells) that was not synchronized with respiration. These and nine surrounding neurons with similar characteristics were unaffected by adding up to 10% CO(2) to the breathing mixture. In conclusion, RO serotonergic neurons activate breathing frequency and amplitude and potentiate the central respiratory chemoreflex but do not appear to have a central respiratory chemoreceptor function.
Collapse
|
29
|
Cummings KJ, Li A, Nattie EE. Brainstem serotonin deficiency in the neonatal period: autonomic dysregulation during mild cold stress. J Physiol 2011; 589:2055-64. [PMID: 21486799 DOI: 10.1113/jphysiol.2010.203679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Based on previous studies in adult animals, devoid of 5-HT neurones, showing altered thermoregulation in cold stress (4°C) and a reduced ventilatory response to CO₂, we hypothesized that neonatal mice lacking 60-70% of their 5-HT neurones (Pet-1(-/-)) would have: (1) a reduced thermogenic response to a mild drop in ambient temperature (TA), (2) reduced V(E) and heart rate (HR) responses to mild cooling that reflect this reduced thermogenic response, and (3) a reduced ventilatory response to CO₂ after postnatal day 12 (P12), when 5-HT neurones become chemosensitive in vitro. We first determined that a 60-70% loss of 5-HT-positive neurones results in a ~90% loss of 5-HT from the brainstems of Pet-1(-/-) animals. We then subjected Pet-1(-/-) and wild-type (WT) mice (N = 5) to mild environmental cooling (T(A) = 29°C) at ~P12. T(A) was initially held at 34°C for ~20 min, reduced to 29°C over 15 min and held for an additional 10 min at steady state, and then returned to 34°C. From 34°C to 29°C, there was a robust increase in V(O₂) in P12WT, but not Pet-1(-/-) animals (68±19.9% versus -16±8%, respectively; P = 0.002). On average, body temperature (T(B)) dropped 1.1°C more in Pet-1(-/-) compared to WT animals (P = 0.03). HR remained unchanged in WT but dropped 22±2.3% in Pet-1(-/-) animals (P = 0.01). Genotype had no effect on tail temperature (T(T)), either at 34°C or 29°C. After cooling, values for V(O₂) and HR of Pet-1(-/-) animals were no different to values predicted by Q₁₀ effects alone, while values of WT animals were greater than predicted. V(E) increased in WT with cooling, while it decreased in Pet-1(-/-) animals (P = 0.002). Still, Pet-1(-/-) animals hyperventilated relative to WT (increased V(E)/V(O₂)) irrespective of T(A) (P = 0.002). As tested in a separate group of pups, there was no difference in the ventilatory response to CO₂ between WT and Pet-1(-/-) animals, either at P5 or P15. We conclude that during neonatal life in mouse pups: (1) brainstem 5-HT is critical for the thermogenic response to a mild drop in environmental temperature probably via a sympathetically-mediated increase in brown fat metabolism; (2) reduced thermogenesis probably contributes to the reduced HR and V(O₂) observed with 5-HT deficiency; and (3) the presence of some brainstem 5-HT is sufficient for an appropriate ventilatory response to hypercapnia up until P15. Infants with reduced brainstem 5-HT could be prone to cardiovascular and respiratory abnormalities resulting from compromised thermogenesis.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
30
|
Penatti E, Barina A, Schram K, Li A, Nattie E. Serotonin transporter null male mouse pups have lower ventilation in air and 5% CO2 at postnatal ages P15 and P25. Respir Physiol Neurobiol 2011; 177:61-5. [PMID: 21333760 DOI: 10.1016/j.resp.2011.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/07/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
In Wild Type (WT) and serotonin transporter (5HTT) null mice, we studied oxygen consumption, ventilation and heart rate in air and 5% CO(2) at postnatal (P) days P5, P15, and P25 using either a head-out (younger mice) or whole body plethysmograph (older mice). Body weight and temperature did not differ between the groups. Oxygen consumption differed significantly only in females at P15 when it was reduced in 5HTT nulls (P<0.01). Heart rate similarly differed only in female 5HTT nulls at P15 being decreased in both air and CO(2) (P<0.01). Ventilation in air and 5% CO(2) was significant reduced via an effect on tidal volume at P15 (P<0.02) and P25 (P<0.05) but only in males. Ventilation in air and 5% CO(2) was greater in 5HTT null females at P25. We conclude that the gender specific effect (male predominant) on the CO(2) response reported in 5HTT null adult mice (Li and Nattie, 2008, J. Physiol. 586.9, 2321-2329, 2008) appears to have origins in early postnatal life (P15) when ventilation in both air and 5% CO(2) is reduced.
Collapse
Affiliation(s)
- Eliana Penatti
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA
| | | | | | | | | |
Collapse
|
31
|
Nattie E. Julius H. Comroe, Jr., distinguished lecture: central chemoreception: then ... and now. J Appl Physiol (1985) 2011; 110:1-8. [PMID: 21071595 PMCID: PMC3252999 DOI: 10.1152/japplphysiol.01061.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/05/2010] [Indexed: 12/19/2022] Open
Abstract
The 2010 Julius H. Comroe, Jr., Lecture of the American Physiological Society focuses on evolving ideas in chemoreception for CO₂/pH in terms of what is "sensed," where it is sensed, and how the sensed information is used physiologically. Chemoreception is viewed as involving neurons (and glia) at many sites within the hindbrain, including, but not limited to, the retrotrapezoid nucleus, the medullary raphe, the locus ceruleus, the nucleus tractus solitarius, the lateral hypothalamus (orexin neurons), and the caudal ventrolateral medulla. Central chemoreception also has an important nonadditive interaction with afferent information arising at the carotid body. While ventilation has been viewed as the primary output variable, it appears that airway resistance, arousal, and blood pressure can also be significantly affected. Emphasis is placed on the importance of data derived from studies performed in the absence of anesthesia.
Collapse
Affiliation(s)
- Eugene Nattie
- Department of Physiology, Dartmouth Medical School, Lebanon New Hampshire 03756-0001, USA.
| |
Collapse
|
32
|
Allen T, Juric-Sekhar G, Campbell S, Mussar KE, Seidel K, Tan J, Zyphur M, Villagracia L, Stephanian D, Koch H, Ramirez JM, Rubens DD. Inner ear insult suppresses the respiratory response to carbon dioxide. Neuroscience 2010; 175:262-72. [PMID: 21130842 DOI: 10.1016/j.neuroscience.2010.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/18/2010] [Accepted: 11/16/2010] [Indexed: 12/13/2022]
Abstract
Compensated respiratory acidosis has been observed in a significant number of patients with active vestibular disease. We therefore hypothesized that the inner ear may play an unrecognized integral role in respiratory control. To test this premise, we investigated whether mice with induced inner ear injury demonstrated any alteration in their respiratory response to inhaled carbon dioxide (CO(2)). Experimental mice and control mice were included in two separate experiments. Intra-tympanic gentamycin injections were administered to induce inner ear damage in experimental animals. Hearing loss and vestibular dysfunction were tested 1-week after injections to confirm presence of inner ear insult, following which the animal's respiratory response to inhalation of 8% CO(2) was examined. Mice with inner ear injury (n=60) displayed a significantly diminished hypercapnic ventilatory response (HCVR). This contrasted with the normal HCVR seen in control mice that had not undergone tympanic injections (n=30), controls that received tympanic injections with saline (n=5), and controls that had gentamicin administered systemically (n=5). In response to inspired CO(2), the mean respiratory frequency of control mice increased by an average of 50% over their baseline values for both parts of the experiment. In contrast, the ear-damaged experimental group mean values increased by only three breaths per minute (bpm) (2%) in the first experiment and by 28 bpm (11%) in the second experiment. Inner ear damage significantly reduces the respiratory response to CO(2) inhalation. In addition to the established role of the inner ear organ in hearing and balance, this alludes to an unidentified function of the inner ear and its interconnecting neuronal pathways in respiratory regulation. This finding may offer valuable new clues for disease states with abnormal respiratory control where inner ear dysfunction may be present.
Collapse
Affiliation(s)
- T Allen
- Department of Anesthesia, Seattle Children's Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hodges MR, Richerson GB. Medullary serotonin neurons and their roles in central respiratory chemoreception. Respir Physiol Neurobiol 2010; 173:256-63. [PMID: 20226279 PMCID: PMC4554718 DOI: 10.1016/j.resp.2010.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 11/13/2022]
Abstract
Much progress has been made in our understanding of central chemoreception since the seminal experiments of Fencl, Loeschcke, Mitchell and others, including identification of new brainstem regions and specific neuron types that may serve as central "sensors" of CO(2)/pH. In this review, we discuss key attributes, or minimal requirements a neuron/cell must possess to be defined as a central respiratory chemoreceptor, and summarize how well each of the various candidates fulfill these minimal criteria-especially the presence of intrinsic chemosensitivity. We then discuss some of the in vitro and in vivo evidence in support of the conclusion that medullary serotonin (5-HT) neurons are central chemoreceptors. We also provide an additional hypothesis that chemosensitive medullary 5-HT neurons are poised to integrate multiple synaptic inputs from various other sources thought to influence ventilation. Finally, we discuss open questions and future studies that may aid in continuing our advances in understanding central chemoreception.
Collapse
Affiliation(s)
- Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
34
|
Kuwaki T, Li A, Nattie E. State-dependent central chemoreception: a role of orexin. Respir Physiol Neurobiol 2010; 173:223-9. [PMID: 20170755 PMCID: PMC2975519 DOI: 10.1016/j.resp.2010.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/26/2022]
Abstract
Sites involved in central chemoreception (CCR) are widely distributed in the brain. One possible explanation for the existence of multiple central chemoreceptor sites is the vigilance state-dependent hypothesis, that some sites are of greater importance in wakefulness others in sleep. We briefly summarize the evidence for a distributed network of central chemoreceptor sites and a vigilance state-dependent differentiation among them. We then discuss the role of orexin in vigilance state-dependent CCR based on our recent studies using orexin knockout mice and focal microdialysis of an orexin receptor antagonist at the retrotrapezoid nucleus and medullary raphe in rats. Orexin affects CCR in a vigilance state-dependent manner that varies with circadian time. Orexin also contributes to emotional stress- and other state-dependent related regulation of ventilation, e.g., the defense response. Diversity in central chemoreception including orexin neurons and the synaptic control of respiratory and cardiovascular output neurons appears to be necessary for animals to adapt themselves to constantly changing situations and behavioral states.
Collapse
Affiliation(s)
- Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Aihua Li
- Department of Physiology, Dartmouth Medical School
| | | |
Collapse
|
35
|
Abstract
By definition central respiratory chemoreceptors (CRCs) are cells that are sensitive to changes in brain PCO(2) or pH and contribute to the stimulation of breathing elicited by hypercapnia or metabolic acidosis. CO(2) most likely works by lowering pH. The pertinent proton receptors have not been identified and may be ion channels. CRCs are probably neurons but may also include acid-sensitive glia and vascular cells that communicate with neurons via paracrine mechanisms. Retrotrapezoid nucleus (RTN) neurons are the most completely characterized CRCs. Their high sensitivity to CO(2) in vivo presumably relies on their intrinsic acid sensitivity, excitatory inputs from the carotid bodies and brain regions such as raphe and hypothalamus, and facilitating influences from neighboring astrocytes. RTN neurons are necessary for the respiratory network to respond to CO(2) during the perinatal period and under anesthesia. In conscious adults, RTN neurons contribute to an unknown degree to the pH-dependent regulation of breathing rate, inspiratory, and expiratory activity. The abnormal prenatal development of RTN neurons probably contributes to the congenital central hypoventilation syndrome. Other CRCs presumably exist, but the supportive evidence is less complete. The proposed locations of these CRCs are the medullary raphe, the nucleus tractus solitarius, the ventrolateral medulla, the fastigial nucleus, and the hypothalamus. Several wake-promoting systems (serotonergic and catecholaminergic neurons, orexinergic neurons) are also putative CRCs. Their contribution to central respiratory chemoreception may be behavior dependent or vary according to the state of vigilance.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
36
|
Dean JB, Putnam RW. The caudal solitary complex is a site of central CO(2) chemoreception and integration of multiple systems that regulate expired CO(2). Respir Physiol Neurobiol 2010; 173:274-87. [PMID: 20670695 DOI: 10.1016/j.resp.2010.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 12/16/2022]
Abstract
The solitary complex is comprised of the nucleus tractus solitarius (NTS, sensory) and dorsal motor nucleus of the vagus (DMV, motor), which functions as an integrative center for neural control of multiple systems including the respiratory, cardiovascular and gastroesophageal systems. The caudal NTS-DMV is one of the several sites of central CO(2) chemoreception in the brain stem. CO(2) chemosensitive neurons are fully responsive to CO(2) at birth and their responsiveness seems to depend on pH-sensitive K(+) channels. In addition, chemosensitive neurons are highly sensitive to conditions such as hypoxia (e.g., neural plasticity) and hyperoxia (e.g., stimulation), suggesting they employ redox and nitrosative signaling mechanisms. Here we review the cellular and systems physiological evidence supporting our hypothesis that the caudal NTS-DMV is a site for integration of respiratory, cardiovascular and gastroesophageal systems that work together to eliminate CO(2) during acute and chronic respiratory acidosis to restore pH homeostasis.
Collapse
Affiliation(s)
- Jay B Dean
- Dept. of Molecular Pharmacology & Physiology, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
37
|
Nattie E, Li A. Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. J Appl Physiol (1985) 2010; 108:1417-24. [PMID: 20133433 PMCID: PMC2867536 DOI: 10.1152/japplphysiol.01261.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/28/2010] [Indexed: 11/22/2022] Open
Abstract
This minireview examines data showing the locations of central chemoreceptor sites as identified by the presence of ventilatory responses to focal, mild acidification produced in unanesthetized animals in vivo, how the site-specific responses vary by arousal state, and what the emerging role of orexin might be in this state-dependent central chemoreceptor system. We comment on the organization of this distributed central chemoreceptor system and suggest that interactions among sites are synergistic and not additive, which is an important aspect of its normal function.
Collapse
Affiliation(s)
- Eugene Nattie
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA.
| | | |
Collapse
|
38
|
da Silva GSF, Li A, Nattie E. High CO2/H+ dialysis in the caudal ventrolateral medulla (Loeschcke's area) increases ventilation in wakefulness. Respir Physiol Neurobiol 2010; 171:46-53. [PMID: 20117251 PMCID: PMC2853775 DOI: 10.1016/j.resp.2010.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 11/21/2022]
Abstract
Central chemoreception, the detection of CO(2)/H(+) within the brain and the resultant effect on ventilation, was initially localized at two areas on the ventrolateral medulla, one rostral (rVLM-Mitchell's) the other caudal (cVLM-Loeschcke's), by surface application of acidic solutions in anesthetized animals. Focal dialysis of a high CO(2)/H(+) artificial cerebrospinal fluid (aCSF) that produced a milder local pH change in unanesthetized rats (like that with a approximately 6.6mm Hg increase in arterial P(CO2)) delineated putative chemoreceptor regions for the rVLM at the retrotrapezoid nucleus and the rostral medullary raphe that function predominantly in wakefulness and sleep, respectively. Here we ask if chemoreception in the cVLM can be detected by mild focal stimulation and if it functions in a state dependent manner. At responsive sites just beneath Loeschcke's area, ventilation was increased by, on average, 17% (P<0.01) only in wakefulness. These data support our hypothesis that central chemoreception is a distributed property with some sites functioning in a state dependent manner.
Collapse
Affiliation(s)
| | - Aihua Li
- Department of Physiology, Dartmouth Medical School, Lebanon, NH, USA
| | - Eugene Nattie
- Department of Physiology, Dartmouth Medical School, Lebanon, NH, USA
| |
Collapse
|
39
|
Chernov MM, Erlichman JS, Leiter JC. Ionic mechanisms of central CO(2) chemosensitivity. Respir Physiol Neurobiol 2010; 173:298-304. [PMID: 20380898 DOI: 10.1016/j.resp.2010.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/17/2010] [Accepted: 03/26/2010] [Indexed: 11/29/2022]
Abstract
A comparative analysis of chemosensory systems in invertebrates and vertebrates reveals that different animals use similar strategies when sensing CO(2) to control respiration. A variety of animals possess neurons that respond to changes in pH. These respiratory chemoreceptor neurons seem to rely largely on pH-dependent inhibition of potassium channels, but the channels do not appear to be uniquely adapted to detect pH. The 'chemosensory' potassium channels identified thus far are widely distributed, common potassium channels. The pH-sensitivity is a common feature of the channels whether the channels are in chemosensory neurons or not. Thus, the pattern of synaptic connectivity and the mix of potassium channels expressed seem to determine whether a neuron is chemosensory or not, rather than any special adaptation of a channel for pH-sensitivity. Moreover, there are often multiple pH-sensitive channels in each chemosensory neuron. These ionic mechanisms may, however, be only part of the chemosensory process, and pH-dependent modulation of synaptic activity seems to contribute to central chemosensitivity as well. In addition, the exploration of the mechanisms of pH-dependent modulation of ion channel activity in chemosensory cells is incomplete: additional mechanisms of pH modulation of channel activity may be found, and addition conductances, other than potassium channels, may participate in the chemosensory process.
Collapse
Affiliation(s)
- Mykyta M Chernov
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
40
|
An interdependent model of central/peripheral chemoreception: evidence and implications for ventilatory control. Respir Physiol Neurobiol 2010; 173:288-97. [PMID: 20206717 DOI: 10.1016/j.resp.2010.02.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 11/22/2022]
Abstract
In this review we discuss the implications for ventilatory control of newer evidence suggesting that central and peripheral chemoreceptors are not functionally separate but rather that they are dependent upon one another such that the sensitivity of the medullary chemoreceptors is critically determined by input from the carotid body chemoreceptors and vice versa i.e., they are interdependent. We examine potential interactions of the interdependent central and carotid body (CB) chemoreceptors with other ventilatory-related inputs such as central hypoxia, lung stretch, and exercise. The limitations of current approaches addressing this question are discussed and future studies are suggested.
Collapse
|
41
|
Dias MB, Li A, Nattie E. The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle. Respir Physiol Neurobiol 2010; 170:96-102. [PMID: 19995618 PMCID: PMC2844074 DOI: 10.1016/j.resp.2009.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/09/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
It has been shown that orexin plays an important role in the hypercapnic chemoreflex during wakefulness, and OX(1)Rs in the retrotrapezoid nucleus (RTN) participate in this mechanism. We hypothesized that OX(1)R in the rostral medullary raphe (MR) also contributes to the hypercapnic chemoreflex. We studied the effects on ventilation in air and in 7% CO(2) of focal antagonism of OX(1)R in the rostral MR by microdialysis of SB-334867 in rats during wakefulness and NREM sleep, under dark and light periods. During wakefulness in the dark period, but not in the light period, SB-334867 caused a 16% reduction of the hyperventilation induced by 7% CO(2) compared with vehicle. There was no significant effect in sleep. The basal ventilation, body temperature and V(O2) were not affected. No effect was observed in a separate group of animals which had the microdialysis probe misplaced (peri-raphe). We conclude that OX(1)R in the rostral medullary raphe contribute to the hypercapnic chemoreflex in wakefulness, during the dark period in rats.
Collapse
Affiliation(s)
- Mirela Barros Dias
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA
| | | | | |
Collapse
|
42
|
Nuding SC, Segers LS, Shannon R, O'Connor R, Morris KF, Lindsey BG. Central and peripheral chemoreceptors evoke distinct responses in simultaneously recorded neurons of the raphé-pontomedullary respiratory network. Philos Trans R Soc Lond B Biol Sci 2009; 364:2501-16. [PMID: 19651652 PMCID: PMC2865126 DOI: 10.1098/rstb.2009.0075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The brainstem network for generating and modulating the respiratory motor pattern includes neurons of the medullary ventrolateral respiratory column (VRC), dorsolateral pons (PRG) and raphé nuclei. Midline raphé neurons are proposed to be elements of a distributed brainstem system of central chemoreceptors, as well as modulators of central chemoreceptors at other sites, including the retrotrapezoid nucleus. Stimulation of the raphé system or peripheral chemoreceptors can induce a long-term facilitation of phrenic nerve activity; central chemoreceptor stimulation does not. The network mechanisms through which each class of chemoreceptor differentially influences breathing are poorly understood. Microelectrode arrays were used to monitor sets of spike trains from 114 PRG, 198 VRC and 166 midline neurons in six decerebrate vagotomized cats; 356 were recorded during sequential stimulation of both receptor classes via brief CO(2)-saturated saline injections in vertebral (central) and carotid arteries (peripheral). Seventy neurons responded to both stimuli. More neurons were responsive only to peripheral challenges than those responsive only to central chemoreceptor stimulation (PRG, 20 : 4; VRC, 41 : 10; midline, 25 : 13). Of 16 474 pairs of neurons evaluated for short-time scale correlations, similar percentages of reference neurons in each brain region had correlation features indicative of a specific interaction with at least one target neuron: PRG (59.6%), VRC (51.0%) and raphé nuclei (45.8%). The results suggest a brainstem network architecture with connectivity that shapes the respiratory motor pattern via overlapping circuits that modulate central and peripheral chemoreceptor-mediated influences on breathing.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruce G. Lindsey
- Department of Molecular Pharmacology and Physiology and Neuroscience Program, School of Biomedical Sciences, College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612-4799, USA
| |
Collapse
|
43
|
Guyenet PG, Bayliss DA, Stornetta RL, Fortuna MG, Abbott SBG, DePuy SD. Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir Physiol Neurobiol 2009; 168:59-68. [PMID: 19712903 PMCID: PMC2734912 DOI: 10.1016/j.resp.2009.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Breathing automaticity and CO(2) regulation are inseparable neural processes. The retrotrapezoid nucleus (RTN), a group of glutamatergic neurons that express the transcription factor Phox2b, may be a crucial nodal point through which breathing automaticity is regulated to maintain CO(2) constant. This review updates the analysis presented in prior publications. Additional evidence that RTN neurons have central respiratory chemoreceptor properties is presented, but this is only one of many factors that determine their activity. The RTN is also regulated by powerful inputs from the carotid bodies and, at least in the adult, by many other synaptic inputs. We also analyze how RTN neurons may control the activity of the downstream central respiratory pattern generator. Specifically, we review the evidence which suggests that RTN neurons (a) innervate the entire ventral respiratory column and (b) control both inspiration and expiration. Finally, we argue that the RTN neurons are the adult form of the parafacial respiratory group in neonate rats.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Corcoran AE, Hodges MR, Wu Y, Wang W, Wylie CJ, Deneris ES, Richerson GB. Medullary serotonin neurons and central CO2 chemoreception. Respir Physiol Neurobiol 2009; 168:49-58. [PMID: 19394450 PMCID: PMC2787387 DOI: 10.1016/j.resp.2009.04.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/15/2009] [Accepted: 04/18/2009] [Indexed: 11/18/2022]
Abstract
Serotonergic (5-HT) neurons are putative central respiratory chemoreceptors, aiding in the brain's ability to detect arterial changes in PCO2 and implement appropriate ventilatory responses to maintain blood homeostasis. These neurons are in close proximity to large medullary arteries and are intrinsically chemosensitive in vitro, characteristics expected for chemoreceptors. 5-HT neurons of the medullary raphé are stimulated by hypercapnia in vivo, and their disruption results in a blunted hypercapnic ventilatory response. More recently, data collected from transgenic and knockout mice have provided further insight into the role of 5-HT in chemosensitivity. This review summarizes current evidence in support of the hypothesis that 5-HT neurons are central chemoreceptors, and addresses arguments made against this role. We also briefly explore the relationship between the medullary raphé and another chemoreceptive site, the retrotrapezoid nucleus, and discuss how they may interact during hypercapnia to produce a robust ventilatory response.
Collapse
Affiliation(s)
- Andrea E Corcoran
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Erlichman JS, Boyer AC, Reagan P, Putnam RW, Ritucci NA, Leiter JC. Chemosensory responses to CO2 in multiple brain stem nuclei determined using a voltage-sensitive dye in brain slices from rats. J Neurophysiol 2009; 102:1577-90. [PMID: 19553484 DOI: 10.1152/jn.00381.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used epifluorescence microscopy and a voltage-sensitive dye, di-8-ANEPPS, to study changes in membrane potential during hypercapnia with or without synaptic blockade in chemosensory brain stem nuclei: the locus coeruleus (LC), the nucleus of the solitary tract, lateral paragigantocellularis nucleus, raphé pallidus, and raphé obscurus and, in putative nonchemosensitive nuclei, the gigantocellularis reticular nucleus and the spinotrigeminal nucleus. We studied the response to hypercapnia in LC cells to evaluate the performance characteristics of the voltage-sensitive dye. Hypercapnia depolarized many LC cells and the voltage responses to hypercapnia were diminished, but not eradicated, by synaptic blockade (there were intrinsically CO2-sensitive cells in the LC). The voltage response to hypercapnia was substantially diminished after inhibiting fast Na+ channels with tetrodotoxin. Thus action potential-related activity was responsible for most of the optical signal that we detected. We systematically examined CO2 sensitivity among cells in brain stem nuclei to test the hypothesis that CO2 sensitivity is a ubiquitous phenomenon, not restricted to nominally CO2 chemosensory nuclei. We found intrinsically CO2 sensitive neurons in all the nuclei that we examined; even the nonchemosensory nuclei had small numbers of intrinsically CO2 sensitive neurons. However, synaptic blockade significantly altered the distribution of CO2-sensitive cells in all of the nuclei so that the cellular response to CO2 in more intact preparations may be difficult to predict based on studies of intrinsic neuronal activity. Thus CO2-sensitive neurons are widely distributed in chemosensory and nonchemosensory nuclei and CO2 sensitivity is dependent on inhibitory and excitatory synaptic activity even within brain slices. Neuronal CO2 sensitivity important for the behavioral response to CO2 in intact animals will thus be determined as much by synaptic mechanisms and patterns of connectivity throughout the brain as by intrinsic CO2 sensitivity.
Collapse
|
46
|
Intrinsic chemosensitivity: how is it measured; what does it mean; and how does it help us understand the ventilatory response to CO2? Respir Physiol Neurobiol 2009; 166:13-5. [PMID: 19444986 DOI: 10.1016/j.resp.2008.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Rice CD, Lois JH, Kerman IA, Yates BJ. Localization of serotoninergic neurons that participate in regulating diaphragm activity in the cat. Brain Res 2009; 1279:71-81. [PMID: 19433074 DOI: 10.1016/j.brainres.2009.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/01/2009] [Accepted: 05/03/2009] [Indexed: 10/20/2022]
Abstract
Although a considerable body of literature indicates that serotoninergic neurons affect diaphragm activity both through direct inputs to phrenic motoneurons and multisynaptic connections involving the brainstem respiratory groups, the locations of the serotoninergic neurons that modulate breathing have not been well defined. The present study identified these neurons in cats by combining the transneuronal retrograde transport of rabies virus from the diaphragm with the immunohistochemical detection of the N-terminal region of tryptophan hydroxylase-2 (TPH2), the brain-specific isoform of the enzyme responsible for the initial and rate-limiting step in serotonin synthesis. TPH2-immunopositive neurons were present in the midline raphe nuclei, formed a column in the ventrolateral medulla near the lateral reticular nucleus, and were spread across the dorsal portion of the pons just below the fourth ventricle. In most animals, only a small fraction of neurons (typically <20%) labeled for TPH2 in each of the medullary raphe nuclei and the medullary ventrolateral column were infected with rabies virus. However, the percentage of medullary neurons dual-labeled for both rabies and TPH2 was much higher in animals with very advanced infections where virus had spread transneuronally through many synapses. Furthermore, in all cases, TPH2-immunopositive neurons that were infected by rabies virus were significantly less prevalent in the pons than the medulla. These findings suggest that although serotoninergic neurons with direct influences on diaphragm activity are widely scattered in the brainstem, the majority of these neurons are located in the medulla. Many non-serotoninergic neurons in the raphe nuclei were also infected with rabies virus, indicating that midline cells utilizing multiple neurotransmitters participate in the control of breathing.
Collapse
Affiliation(s)
- Cory D Rice
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
48
|
Dias MB, Li A, Nattie EE. Antagonism of orexin receptor-1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness. J Physiol 2009; 587:2059-67. [PMID: 19273574 DOI: 10.1113/jphysiol.2008.168260] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent data from transgenic mice suggest that orexin plays an important role in the ventilatory response to CO(2) during wakefulness. We hypothesized that orexin receptor-1 (OX(1)R) in the retrotrapezoid nucleus (RTN) contributes to chemoreception. In unanaesthetized rats, we measured ventilation using a whole-body plethysmograph, together with EEG and EMG. We dialysed the vehicle and then SB-334867 (OX(1)R antagonist) into the RTN to focally inhibit OX(1)R and studied the effects of both treatments on breathing in air and in 7% CO(2). During wakefulness, SB-334867 caused a 30% reduction of the hyperventilation induced by 7% CO(2) (mean +/- S.E.M., 135 +/- 10 ml (100 g)(-1) min(-1)) compared with vehicle (182 +/- 10 ml (100 g)(-1) min(-1)) (P < 0.01). This effect was due to both decreased tidal volume and breathing frequency. There was a much smaller, though significant, effect in sleep (9% reduction). Neither basal ventilation nor oxygen consumption was affected. The number and duration of apnoeas were similar between control and treatment periods. No effect was observed in a separate group of animals who had the microdialysis probe misplaced (peri-RTN). We conclude that projections of orexin-containing neurons to the RTN contribute, via OX(1)Rs in the region, to the hypercapnic chemoreflex control during wakefulness and to a lesser extent, non-rapid eye movement sleep.
Collapse
Affiliation(s)
- Mirela Barros Dias
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA
| | | | | |
Collapse
|
49
|
Nattie E, Li A. Muscimol dialysis into the caudal aspect of the Nucleus tractus solitarii of conscious rats inhibits chemoreception. Respir Physiol Neurobiol 2008; 164:394-400. [PMID: 18824146 DOI: 10.1016/j.resp.2008.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 01/31/2023]
Abstract
We studied the effects on chemoreception of bilateral focal inhibition of the caudal Nucleus tractus solitarii (cNTS) by microdialysis of muscimol (0.5 mM) in rats during wakefulness and NREM sleep at two temperatures, 24 degrees C and 30 degrees C, just below and within the thermoneutral zone, respectively. Body temperature and VO2 did not differ at these two temperatures. The CO2 response (% increase in V(E)/VO2) did not differ at 24 degrees C vs. 30 degrees C and muscimol inhibited the CO2 response equally at both temperatures. In contrast, the hypoxic response (% increase in V(E)/VO2) was greater at 30 degrees C than at 24 degrees C and muscimol inhibited it only at 30 degrees C. These effects were similar in wakefulness and NREM sleep. We conclude that: (1) ambient temperature can affect the V(E)/VO2 response to hypoxia but not hypercapnia and (2) at 24 degrees C muscimol in the cNTS affects the CO2 response but not the hypoxic response providing indirect support for the presence of chemoreception within the NTS.
Collapse
Affiliation(s)
- Eugene Nattie
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, United States.
| | | |
Collapse
|
50
|
Golder FJ, Martinez SD. Bilateral vagotomy differentially alters the magnitude of hypoglossal and phrenic long-term facilitation in anesthetized mechanically ventilated rats. Neurosci Lett 2008; 442:213-8. [DOI: 10.1016/j.neulet.2008.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/12/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|