1
|
Guo Z, Wu M, Chen L, Chen H, Wu J, Xie Q, Lin G, Lian D, Peng J, Shen A. Neferine attenuates hypertensive cardiomyocyte apoptosis and modulates key signaling pathways: An in vivo and in vitro study. Eur J Pharmacol 2025; 994:177393. [PMID: 39956263 DOI: 10.1016/j.ejphar.2025.177393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Although neferine exhibits obvious therapeutic effects against hypertension, its effects on cardiac protection remain unknown. PURPOSE This study aimed to investigate its potential cardioprotective effects and associated mechanisms. METHODS Spontaneously hypertensive rats (SHRs) were randomly divided into four groups, namely SHR, SHR + Neferine-L (2.5 mg/kg/day), SHR + Neferine-M (5 mg/kg/day), and SHR + Neferine-H (10 mg/kg/day). Wistar Kyoto rats were used as control. Various concentrations of neferine or double distilled water were then administered intragastrically for 10 weeks. Thereafter, cardiac function, pathological changes, cell apoptosis, and reactive oxygen species (ROS) accumulation, as well as their underlying mechanisms, were evaluated in SHRs and/or hypoxia-induced H9c2 cells. RESULT Neferine treatment significantly mitigated the decrease in left ventricular ejection fraction and fractional shortening and increase in left ventricular mass, end-systolic volume, and cardiac injury in SHRs. In SHR cardiac tissues, neferine treatment reversed 154 upregulated and 108 and downregulated transcripts. Pathway enrichment analysis found that multiple pathways were commonly enriched, including the apoptosis, PI3K-Akt, MAPK, and HIF-1 pathways. Consistently, neferine treatment significantly mitigated cardiomyocyte apoptosis, restored mitochondrial membrane depolarization, and reduced ROS accumulation. Mechanistically, neferine treatment significantly decreased the phosphorylation of ERK, p38 MAPK, and JNK; the Bax/Bcl-2 ratio; and the expression of HIF-1α, NADPH oxidase 4, and cleaved caspases-3 and -9 but increased the phosphorylation of PI3K and Akt and the expression of CD31. CONCLUSION Neferine treatment effectively mitigated hypertensive cardiomyocyte apoptosis and attenuated the abnormal activation of multiple signaling pathways, including the PI3K/Akt, MAPK, and HIF-1 pathways.
Collapse
Affiliation(s)
- Zhi Guo
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Lingqi Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Overseas Education College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Hong Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Jinkong Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Dawei Lian
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing, 100091, China.
| |
Collapse
|
2
|
Mirani B, Dauz JD, Yazaki K, Latifi N, Santerre JP, Bendeck MP, Simmons CA, Friedberg MK. Right Ventricular Stiffening and Function Are Associated With Main Pulmonary Artery Remodeling in a Rat Model of Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2025. [PMID: 40270258 DOI: 10.1161/atvbaha.124.321354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Coupling between right ventricular (RV) function and the pulmonary vasculature determines outcomes in pulmonary arterial (PA) hypertension. The mechanics of the main PA (mPA) is an important but understudied determinant of RV-PA coupling. To investigate the histology and mechanics of PA in relationship to RV remodeling, mechanics, hemodynamics, and coupling in experimental PA hypertension. METHODS In a sugen-hypoxia rat model of PA hypertension, RV hemodynamics were assessed by conductance catheters. Active tension-strain curves were generated using echocardiography. mPA and RV free wall were harvested to determine their macrostructure and microstructure, composition, and mechanical properties. Comprehensive multivariate analyses elucidated relationships between PA and RV mechanics, structure, and coupling. RESULTS Pulmonary hypertensive mPAs developed fibrosis relative to healthy controls, as did RVs, which also hypertrophied, with reorientation of muscle fibers toward a trilayer architecture reminiscent of normal left ventricular architecture. Increased glycosaminoglycan deposition and increased collagen-to-elastin ratio in PA, and increased collagen, as well as hypertrophy and reorganization of myofibers in RV, led to increased stiffness. This increase in stiffness was more pronounced in the longitudinal direction in the high- and low-strain regime for PA and RV, respectively, causing increased mechanical anisotropy. mPA stiffening correlated significantly with RV tissue mechanical remodeling and reduced systolic performance, cardiac output, and RV-PA coupling. CONCLUSIONS Compositional, structural, and mechanical changes in mPA correlate with adverse RV remodeling, mechanics, function, and coupling in PA hypertension. Therefore, increasing mechanical compliance of the large PAs may be an important and novel therapeutic strategy for mitigating RV failure.
Collapse
Affiliation(s)
- Bahram Mirani
- Department of Mechanical and Industrial Engineering, University of Toronto, ON, Canada. (B.M., N.L., C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, ON, Canada. (B.M., J.P.S., C.A.S.)
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada (B.M., N.L., J.P.S., M.P.B., C.A.S.)
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (B.M., K.Y.)
| | - John D Dauz
- Labatt Family Heart Center, The Hospital for Sick Children, University of Toronto, ON, Canada. (J.D.D., M.K.F.)
- Department of Paediatrics, University of Toronto, ON, Canada. (J.D.D., M.K.F.)
| | - Kana Yazaki
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (B.M., K.Y.)
| | - Neda Latifi
- Department of Mechanical and Industrial Engineering, University of Toronto, ON, Canada. (B.M., N.L., C.A.S.)
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada (B.M., N.L., J.P.S., M.P.B., C.A.S.)
- Department of Medical Engineering, University of South Florida, Tampa (N.L.)
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, ON, Canada. (B.M., J.P.S., C.A.S.)
- Faculty of Dentistry, University of Toronto, ON, Canada. (J.P.S.)
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada (B.M., N.L., J.P.S., M.P.B., C.A.S.)
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada. (M.P.B.)
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada (B.M., N.L., J.P.S., M.P.B., C.A.S.)
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, ON, Canada. (B.M., N.L., C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, ON, Canada. (B.M., J.P.S., C.A.S.)
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada (B.M., N.L., J.P.S., M.P.B., C.A.S.)
| | - Mark K Friedberg
- Labatt Family Heart Center, The Hospital for Sick Children, University of Toronto, ON, Canada. (J.D.D., M.K.F.)
- Department of Paediatrics, University of Toronto, ON, Canada. (J.D.D., M.K.F.)
| |
Collapse
|
3
|
Semyashkin A, Nesteruk J, Giannikopouloui D, Scheid M, Tarusinov G, Tannous A, Te Vrugt M, Ben Mime L. Pulmonary artery banding for dilated and depressed left ventricle: dilated cardiomyopathy versus left ventricular non-compaction cardiomyopathy. Cardiol Young 2025; 35:717-721. [PMID: 40012293 DOI: 10.1017/s1047951125000460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
OBJECTIVES To retrospectively assess the suitability of pulmonary artery banding as a treatment strategy for dilated cardiomyopathy and left ventricular non-compaction cardiomyopathy with depressed left ventricular ejection fraction. METHODS The study was retrospective and included consecutive patients who met the inclusion criteria: diagnosed with dilated cardiomyopathy or left ventricular non-compaction cardiomyopathy and left ventricular ejection fraction less than 35%. Cardiac indices were documented, and clinical outcomes were followed for 5 years. RESULTS This study included 21 patients with depressed left ventricular ejection fraction due to dilated cardiomyopathy (n = 11) or left ventricular non-compaction cardiomyopathy (n = 10), treated either with anti-congestion medication alone or in combination with pulmonary artery banding. The groups treated with pulmonary artery banding showed significant improvement in left ventricular ejection fraction compared to controls (ANOVA, p = 0.0002), with no major adverse events. In the subgroup with left ventricular non-compaction, pulmonary artery banding led to significant improvement of the left ventricular ejection fraction (p = 0.00002) and significant reductions in the Z scores of left ventricular end-diastolic diameter (p = 0.0002) and of end-diastolic volume (p = 0.004). CONCLUSIONS Pulmonary artery banding appears to be a viable strategy for improving heart function in patients with non-compaction and dilated cardiomyopathy and depressed left ventricular ejection fraction. While pulmonary artery banding demonstrated more pronounced benefits in the subgroup with non-compaction cardiomyopathy, significantly enhancing cardiac restoration indices throughout the follow-up period, warranting further investigation in larger studies.
Collapse
Affiliation(s)
- Andrey Semyashkin
- Department of Pediatric Cardiac Surgery, University Hospital Muenster, Muenster, Germany
| | - Julia Nesteruk
- University Heart Center Freiburg Bad Krozingen, Freiburg, Germany
| | | | - Michael Scheid
- Kaiser Wilhelm Krankenhaus, Pediatric Heart Center, Duisburg, Germany
| | - Gleb Tarusinov
- Kaiser Wilhelm Krankenhaus, Pediatric Heart Center, Duisburg, Germany
| | - Aktam Tannous
- Kaiser Wilhelm Krankenhaus, Pediatric Heart Center, Duisburg, Germany
| | - Marcel Te Vrugt
- Department of Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Lotfi Ben Mime
- Pediatric Heart Surgery, Center for Congenital Heart Defects and Children's Heart Center, HDZ-NRW, University Hospital of the Ruhr-University Bochum Medical Faculty OWL University Bielefeld, Germany
| |
Collapse
|
4
|
Akazawa Y, Vaidyanathan S, Dewar MB, Yazaki K, Dauz J, Honjo O, Sun M, Kabir G, Jankov RP, Heximer SP, Connelly KA, Friedberg MK. Homeostatic Role of Decorin in Right Ventricular Pressure Overload and Pulmonary Hypertension Induced Remodeling. JACC Basic Transl Sci 2025; 10:323-341. [PMID: 40139874 PMCID: PMC12013849 DOI: 10.1016/j.jacbts.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 03/29/2025]
Abstract
Right ventricular (RV) pressure loading induces RV profibrotic signaling and fibrosis associated with RV dysfunction. RV decorin protein levels are decreased in patients with chronic RV pressure loading. RV decorin protein levels are also decreased in 4 animal models of mechanical RV pressure loading and pulmonary arterial hypertension. Human cardiac fibroblasts overexpressing decorin show diminished collagen-1 secretion in response to mechanical or chemical profibrotic stress while decorin knockout human cardiac fibroblasts show increased collagen-1 secretion in response to stress. Downregulation of decorin may play a key role in upregulating transforming growth factor-β1 profibrotic signaling and fibrosis that contribute to RV dysfunction in RV pressure loading.
Collapse
Affiliation(s)
- Yohei Akazawa
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Michael Bradley Dewar
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Kana Yazaki
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John Dauz
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Osami Honjo
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Sun
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Golam Kabir
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Robert P Jankov
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Scott Patrick Heximer
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Zeng X, Ma Z, Wen S, Zhou L, Hong W, Wu Z, Cen C, Bai Q, Ding S, Chen X, Wang J, Chen L, Lu W, Wang T. Imatinib aggravates pressure-overload-induced right ventricle failure via JNK/Runx2 pathway. Br J Pharmacol 2025. [PMID: 39965654 DOI: 10.1111/bph.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/28/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND PURPOSE Right ventricular (RV) function is the key prognostic determinant of pulmonary hypertension (PH). In PH patients, imatinib treatment decreases pulmonary vascular resistance and improves exercise capacity, but does not change mortality or duration to clinical worsening. Imatinib has been reported to be cardiotoxic in the left heart. We hypothesise that imatinib damages the pressure overloaded RV via its direct effects within the heart, which may counteract its therapeutic effects in haemodynamic improvement of PH. EXPERIMENTAL APPROACH A pulmonary arterial banding (PAB) rat model with fixed pulmonary artery narrowing was performed to avoid changes in RV afterload. KEY RESULTS In PAB rats, imatinib treatment decreased the survival rate and exacerbated RV dysfunction, myocardial hypertrophy, apoptosis and fibrosis. In vitro, imatinib increased cardiomyocyte hypertrophy and did not change cardiac fibroblasts activation; however, imatinib-treated conditioned medium from cardiomyocytes promoted fibroblast activation. Mechanistically, imatinib increased the phosphorylation of c-jun N-terminal kinase (JNK) and the expression of RUNX family transcription factor 2 (Runx2), and subsequently promoted the transcription of thrombospondin 4 (THBS4) and connective tissue growth factor (CTGF) in RV cardiomyocytes. Finally, SP600125, a JNK inhibitor, significantly alleviated imatinib-induced RV failure in PAB rats and enhanced the effects of imatinib on RV function improvement in SU5416 + hypoxia-induced PH rats without affecting pulmonary artery narrowing. CONCLUSION AND IMPLICATIONS We demonstrate for the first time that imatinib aggravates RV failure under pressure overload through JNK/Runx2 pathway, and JNK inhibition improves the therapeutic effects of imatinib on RV function in PH.
Collapse
Affiliation(s)
- Xiaohui Zeng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuoji Ma
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Wen
- Chinese Academy of Sciences Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Liang Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanxian Hong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhixiong Wu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunxian Cen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianwen Bai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shangwei Ding
- Department of Ultrasound, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingdan Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Venet M, Malik A, Gold S, Zhang N, Gopaul J, Dauz J, Yazaki K, Ponzoni M, Coles JG, Maynes JT, Sun M, Howell A, Chaturvedi R, Mertens L, Mroczek D, Uike K, Baranger J, Friedberg MK, Villemain O. Impact of Right Ventricular Pressure Overload on Myocardial Stiffness Assessed by Natural Wave Imaging. JACC Cardiovasc Imaging 2025; 18:211-225. [PMID: 39177563 DOI: 10.1016/j.jcmg.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Right ventricular (RV) hemodynamic performance determines the prognosis of patients with RV pressure overload. Using ultrafast ultrasound, natural wave velocity (NWV) induced by cardiac valve closure was proposed as a new surrogate to quantify myocardial stiffness. OBJECTIVES This study aimed to assess RV NWV in rodent models and children with RV pressure overload vs control subjects and to correlate NWV with RV hemodynamic parameters. METHODS Six-week-old rats were randomized to pulmonary artery banding (n = 6), Sugen hypoxia-induced pulmonary arterial hypertension (n = 7), or sham (n = 6) groups. They underwent natural wave imaging, echocardiography, and hemodynamic assessment at baseline and 6 weeks postoperatively. The authors analyzed NWV after tricuspid and after pulmonary valve closure (TVC and PVC, respectively). Conductance catheters were used to generate pressure-volume loops. In parallel, the authors prospectively recruited 14 children (7 RV pressure overload; 7 age-matched control subjects) and compared RV NWV with echocardiographic and invasive hemodynamic parameters. RESULTS NWV significantly increased in RV pressure overload rat models (4.99 ± 0.27 m/s after TVC and 5.03 ± 0.32 m/s after PVC in pulmonary artery banding at 6 weeks; 4.89 ± 0.26 m/s after TVC and 4.84 ± 0.30 m/s after PVC in Sugen hypoxia at 6 weeks) compared with control subjects (2.83 ± 0.15 m/s after TVC and 2.72 ± 0.34 m/s after PVC). NWV after TVC correlated with both systolic and diastolic parameters including RV dP/dtmax (r = 0.75; P < 0.005) and RV Ees (r = 0.81; P < 0.005). NWV after PVC correlated with both diastolic and systolic parameters and notably with RV end-diastolic pressure (r = 0.65; P < 0.01). In children, NWV after both right valves closure in RV pressure overload were higher than in healthy volunteers (P < 0.01). NWV after PVC correlated with RV E/E' (r = 0.81; P = 0.008) and with RV chamber stiffness (r = 0.97; P = 0.03). CONCLUSIONS Both RV early-systolic and early-diastolic myocardial stiffness show significant increase in response to pressure overload. Based on physiology and our observations, early-systolic myocardial stiffness may reflect contractility, whereas early-diastolic myocardial stiffness might be indicative of diastolic function.
Collapse
Affiliation(s)
- Maelys Venet
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Bordeaux University Hospital, Department of Pediatric and Adult Congenital Cardiology, Pessac, France; Electrophysiology and Heart Modeling Institute, Institut Hospital-Universitaire Liryc, Fondation Bordeaux Université, Bordeaux, France.
| | - Aimen Malik
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Samantha Gold
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Naiyuan Zhang
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Josh Gopaul
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John Dauz
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kana Yazaki
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matteo Ponzoni
- Department of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Coles
- Department of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Sun
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alison Howell
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rajiv Chaturvedi
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Luc Mertens
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dariusz Mroczek
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kiyoshi Uike
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jerome Baranger
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olivier Villemain
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Bordeaux University Hospital, Department of Pediatric and Adult Congenital Cardiology, Pessac, France; Electrophysiology and Heart Modeling Institute, Institut Hospital-Universitaire Liryc, Fondation Bordeaux Université, Bordeaux, France. https://twitter.com/Villemain_Team
| |
Collapse
|
7
|
Rzepka MF, Raschzok S, Lee XA, Yazaki K, Dauz J, Sun M, Meister T, Nghiem L, Kabir G, Desjardins JF, Kuebler WM, Kapus A, Connelly KA, Friedberg MK. Inhibition of Myocardin-related Transcription Factor A Ameliorates Pathological Remodeling of the Pressure-loaded Right Ventricle. Am J Respir Cell Mol Biol 2025; 72:158-168. [PMID: 39163574 DOI: 10.1165/rcmb.2023-0465oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024] Open
Abstract
Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions in which RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor-β1 signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. In this study, we investigated whether MRTF-A inhibition improves RV profibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure loading. Rats were assigned into either sham or PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75 mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6 weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and profibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, whereas diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of Yes-associated protein (YAP) and its paralog transcriptional coactivator with PDZ-binding motif (TAZ). We also confirmed, using a second-generation MRTF-A inhibitor CCG-203971, that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to transforming growth factor-β1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of profibrotic signaling in RV pressure loading and as potential targets to improve RV profibrotic remodeling.
Collapse
Affiliation(s)
- Mark F Rzepka
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Sonja Raschzok
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Xavier A Lee
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kana Yazaki
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - John Dauz
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Mei Sun
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Theo Meister
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| | - Linda Nghiem
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Francois Desjardins
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Surgery, St. Michael's Hospital and the University of Toronto, Toronto, Ontario, Canada; and
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andras Kapus
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Surgery, St. Michael's Hospital and the University of Toronto, Toronto, Ontario, Canada; and
| | - Kim A Connelly
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Androshchuk V, Chehab O, Wilcox J, McDonaugh B, Montarello N, Rajani R, Prendergast B, Patterson T, Redwood S. Evolving perspectives on aortic stenosis: the increasing importance of evaluating the right ventricle before aortic valve intervention. Front Cardiovasc Med 2025; 11:1506993. [PMID: 39844905 PMCID: PMC11750849 DOI: 10.3389/fcvm.2024.1506993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Aortic stenosis (AS) was historically considered a disease of the left side of the heart, with the main pathophysiological impact being predominantly on the left ventricle (LV). However, progressive pressure overload in AS can initiate a cascade of extra-valvular myocardial remodeling that could also precipitate maladaptive alterations in the structure and function of the right ventricle (RV). The haemodynamic and clinical importance of these changes in patients with AS have been largely underappreciated in the past. Contemporary data indicates that RV dilatation or impairment identifies the AS patients who are at increased risk of adverse clinical outcomes after aortic valve replacement (AVR). It is now increasingly recognised that effective quantitative assessment of the RV plays a key role in delineating the late clinical stage of AS, which could improve patient risk stratification. Despite the increasing emphasis on the pathological significance of RV changes in AS, it remains to be established if earlier detection of these changes can improve the timing for intervention. This review will summarise the features of normal RV physiology and the mechanisms responsible for RV impairment in AS. In addition, we will discuss the multimodality approach to the comprehensive assessment of RV size, function and mechanics in AS patients. Finally, we will review the emerging evidence reinforcing the negative impact of RV dysfunction on clinical outcomes in AS patients treated with AVR.
Collapse
Affiliation(s)
- Vitaliy Androshchuk
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Omar Chehab
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Joshua Wilcox
- Cardiovascular Directorate, St Thomas’ Hospital, London, United Kingdom
| | | | | | - Ronak Rajani
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Bernard Prendergast
- Heart, Vascular & Thoracic Institute, Cleveland Clinic London, London, United Kingdom
| | - Tiffany Patterson
- Cardiovascular Directorate, St Thomas’ Hospital, London, United Kingdom
| | - Simon Redwood
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
9
|
Yazaki K, Dewar M, Dauz J, Akazawa Y, Hui L, Sun M, Hui W, Kabir G, Dejardin JF, Connelly KA, Heximer SP, Friedberg MK. Serial and regional assessment of the right ventricular molecular and functional response to pressure loading. Am J Physiol Heart Circ Physiol 2025; 328:H58-H74. [PMID: 39422363 DOI: 10.1152/ajpheart.00322.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Right ventricular (RV) function determines outcomes in RV pressure loading. A better understanding of the time-course and regional distribution of RV remodeling may help optimize targets and timing for therapeutic intervention. We sought to characterize RV remodeling between zero and 6 wk after the initiation of RV pressure loading. Thirty-six rats were randomized to either sham surgery or to pulmonary artery banding (PAB). After echocardiography and conductance catheter studies, groups of rats were euthanized at 1 wk, 3 wk, and 6 wk after sham surgery, or induction of RV pressure loading, for RV histological, RNA, and molecular analysis. A vigorous inflammatory response characterized by increased RV inflammatory cytokines, chemokines, and macrophage markers was observed at 1 wk following PAB. Metabolic changes, transforming growth factor-β (TGF-β)1 canonical signaling, collagenous fibrosis deposition, and apoptosis were already significantly increased by 1 wk after PAB. Genes marking fibroblast activation were upregulated at 1 wk but not at 6 wk post-PAB surgery. Mitochondrial dysfunction was evidenced by increased pyruvate dehydrogenase kinase (PDK) activity and decreased pyruvate dehydrogenase (PDH) phosphorylation significantly at 6-wk post-PAB. These processes preceded the development of overt myocardial hypertrophy and impaired echo parameters of systolic and diastolic function that occurred significantly from 3 wk after PAB. RV myocardial inflammation, metabolic shift, metabolic gene transcription, and profibrotic signaling occur early after initiation of pressure loading when RV pressures are only moderately elevated, before the development of overt myocardial hypertrophy and dysfunction, suggesting that adaptive hypertrophy and maladaptive remodeling occur simultaneously. These results suggest that therapeutic intervention to reduce adverse RV remodeling may be needed earlier and at lower thresholds than currently used.NEW & NOTEWORTHY Exploring the dynamics of right ventricular remodeling: unveiling the intricate interplay between inflammation, metabolic shifts, and fibrotic signaling in response to pressure loading. Through a comprehensive study spanning from initiation to 6 wk post-pressure loading, our research sheds light on the early onset of crucial molecular processes preceding overt hypertrophy and dysfunction. These findings challenge conventional intervention timing, advocating for early, targeted therapeutic strategies to mitigate adverse remodeling in right ventricular pressure loading.
Collapse
MESH Headings
- Animals
- Ventricular Remodeling
- Male
- Ventricular Function, Right
- Rats, Sprague-Dawley
- Fibrosis
- Rats
- Ventricular Pressure
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Disease Models, Animal
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/etiology
- Time Factors
- Apoptosis
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Signal Transduction
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/genetics
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Cytokines/metabolism
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
Collapse
Affiliation(s)
- Kana Yazaki
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael Dewar
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John Dauz
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yohei Akazawa
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lucy Hui
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mei Sun
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Wei Hui
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Golam Kabir
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Francois Dejardin
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kim A Connelly
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Scott P Heximer
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Venugopal S, Dan Q, Sri Theivakadadcham VS, Wu B, Kofler M, Layne MD, Connelly KA, Rzepka MF, Friedberg MK, Kapus A, Szászi K. Regulation of the RhoA exchange factor GEF-H1 by profibrotic stimuli through a positive feedback loop involving RhoA, MRTF, and Sp1. Am J Physiol Cell Physiol 2024; 327:C387-C402. [PMID: 38912734 DOI: 10.1152/ajpcell.00088.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-β1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.
Collapse
Affiliation(s)
- Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Veroni S Sri Theivakadadcham
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark F Rzepka
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Kesumarini D, Widyastuti Y, Boom CE, Dinarti LK. Effectiveness of Dexmedetomidine as Myocardial Protector in Children With Classic Tetralogy of Fallot Having Corrective Surgery: A Randomized Controlled Trial. J Cardiothorac Vasc Anesth 2024; 38:1369-1377. [PMID: 38555217 DOI: 10.1053/j.jvca.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Efficacy of dexmedetomidine (DEX) as a cardioprotective agent in Indonesian children undergoing classic tetralogy of Fallot (TOF) repair with cardiopulmonary bypass (CPB). DESIGN A prospective, parallel trial using block randomization along with double-blinded preparation of treatment agents by other parties. SETTING National Cardiovascular Center Harapan Kita, Indonesia. PARTICIPANTS Sixty-six children with classic TOF scheduled for corrective surgery. No children were excluded. All patients had fulfilled the criteria for analysis. INTERVENTIONS A total of 0.5 µg/kg bolus of DEX was added to the CPB priming solution, followed by 0.25 µg/kg/h maintenance during bypass. The placebo group used normal saline. Follow-ups were up to 30 days. MEASUREMENTS AND MAIN RESULTS Troponin I was lower in the DEX group at 6 hours (30.48 ± 19.33 v 42.73 ± 27.16, p = 0.039) and 24 hours after CPB (8.89 ± 5.42 v 14.04 ± 11.17, p = 0.02). Within a similar timeframe, DEX successfully lowered interleukin-6 (p = 0.03; p = 0.035, respectively). Lactate was lower in the Dex group at 1, 6, and 24 hours after CPB (p < 0.01; p = 0.048; p = 0.035; respectively). Dexmedetomidine increased cardiac output and index from 6 hours after bypass, but vice versa in systemic vascular resistance. Reduction of vasoactive inotropic score was seen during intensive care unit monitoring in the Dex group (p = 0.049). Nevertheless, DEX did not significantly affect the length of ventilation (p = 0.313), intensive care unit stay (p = 0.087), and mortality (p > 0.99). CONCLUSIONS Dexmedetomidine during CPB is an effective cardioprotective agent in TOF children having surgery. Postoperative mortality was comparable across groups.
Collapse
Affiliation(s)
- Dian Kesumarini
- Department of Anesthesia and Intensive Therapy, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia.
| | - Yunita Widyastuti
- Department of Anesthesia and Intensive Therapy, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Cindy Elfira Boom
- Department of Anesthesia and Intensive Therapy, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Lucia Kris Dinarti
- Department of Cardiology and Vascular Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Connelly KA, Wu E, Visram A, Friedberg MK, Batchu SN, Yerra VG, Thai K, Nghiem L, Zhang Y, Kabir G, Desjardins JF, Advani A, Gilbert RE. The SGLT2i Dapagliflozin Reduces RV Mass Independent of Changes in RV Pressure Induced by Pulmonary Artery Banding. Cardiovasc Drugs Ther 2024; 38:57-68. [PMID: 36173474 DOI: 10.1007/s10557-022-07377-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Sodium glucose linked transporter 2 (SGLT2) inhibition not only reduces morbidity and mortality in patients with diagnosed heart failure but also prevents the development of heart failure hospitalization in those at risk. While studies to date have focused on the role of SGLT2 inhibition in left ventricular failure, whether this drug class is efficacious in the treatment and prevention of right heart failure has not been explored. HYPOTHESIS We hypothesized that SGLT2 inhibition would reduce the structural, functional, and molecular responses to pressure overload of the right ventricle. METHODS Thirteen-week-old Fischer F344 rats underwent pulmonary artery banding (PAB) or sham surgery prior to being randomized to receive either the SGLT2 inhibitor: dapagliflozin (0.5 mg/kg/day) or vehicle by oral gavage. After 6 weeks of treatment, animals underwent transthoracic echocardiography and invasive hemodynamic studies. Animals were then terminated, and their hearts harvested for structural and molecular analyses. RESULTS PAB induced features consistent with a compensatory response to increased right ventricular (RV) afterload with elevated mass, end systolic pressure, collagen content, and alteration in calcium handling protein expression (all p < 0.05 when compared to sham + vehicle). Dapagliflozin reduced RV mass, including both wet and dry weight as well as normalizing the protein expression of SERCA 2A, phospho-AMPK and LC3I/II ratio expression (all p < 0.05). SIGNIFICANCE Dapagliflozin reduces the structural, functional, and molecular manifestations of right ventricular pressure overload. Whether amelioration of these early changes in the RV may ultimately lead to a reduction in RV failure remains to be determined.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada.
| | - Ellen Wu
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Aylin Visram
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Toronto, ON, Canada
- Physiology and Experimental Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Veera Ganesh Yerra
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Kerri Thai
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Linda Nghiem
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Yanling Zhang
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Golam Kabir
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - J F Desjardins
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Andrew Advani
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada
| | - Richard E Gilbert
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 bond St, Toronto, ON, M5B1W8, Canada.
| |
Collapse
|
13
|
Avesani M, Jalal Z, Friedberg MK, Villemain O, Venet M, Di Salvo G, Thambo JB, Iriart X. Adverse remodelling in tetralogy of Fallot: From risk factors to imaging analysis and future perspectives. Hellenic J Cardiol 2024; 75:48-59. [PMID: 37495104 DOI: 10.1016/j.hjc.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Although contemporary outcomes of initial surgical repair of tetralogy of Fallot (TOF) are excellent, the survival of adult patients remains significantly lower than that of the normal population due to the high incidence of heart failure, ventricular arrhythmias, and sudden cardiac death. The underlying mechanisms are only partially understood but involve an adverse biventricular response, so-called remodelling, to key stressors such as right ventricular (RV) pressure-and/or volume-overload, myocardial fibrosis, and electro-mechanical dyssynchrony. In this review, we explore risk factors and mechanisms of biventricular remodelling, from histological to electro-mechanical aspects, and the role of imaging in their assessment. We discuss unsolved challenges and future directions to better understand and treat the long-term sequelae of this complex congenital heart disease.
Collapse
Affiliation(s)
- Martina Avesani
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France; Paediatric Cardiology Unit, Department of Woman's and Child's Health, University-Hospital of Padova, University of Padua, Padua, Italy
| | - Zakaria Jalal
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France
| | - Mark K Friedberg
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olivier Villemain
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maeyls Venet
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giovanni Di Salvo
- Paediatric Cardiology Unit, Department of Woman's and Child's Health, University-Hospital of Padova, University of Padua, Padua, Italy
| | - Jean-Benoît Thambo
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France
| | - Xavier Iriart
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France.
| |
Collapse
|
14
|
Yogeswaran A, Mamazhakypov A, Schermuly RT, Weiß A. Right ventricular failure in pulmonary hypertension: recent insights from experimental models. Herz 2023; 48:285-290. [PMID: 37079028 DOI: 10.1007/s00059-023-05180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/21/2023]
Abstract
Right ventricular (RV) function is a critical determinant of the prognosis of patients with pulmonary hypertension (PH). Upon establishment of PH, RV dysfunction develops, leading to a gradual worsening of the condition over time, culminating in RV failure and premature mortality. Despite this understanding, the underlying mechanisms of RV failure remain obscure. As a result, there are currently no approved therapies specifically targeting the right ventricle. One contributing factor to the lack of RV-directed therapies is the complexity of the pathogenesis of RV failure as observed in animal models and clinical studies. In recent years, various research groups have begun utilizing multiple models, including both afterload-dependent and afterload-independent models, to investigate specific targets and pharmacological agents in RV failure. In this review, we examine various animal models of RV failure and the recent advancements made utilizing these models to study the mechanisms of RV failure and the potential efficacy of therapeutic interventions, with the ultimate goal of translating these findings into clinical practice to enhance the management of individuals with PH.
Collapse
Affiliation(s)
- Athiththan Yogeswaran
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Gießen, Germany
| | - Argen Mamazhakypov
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Gießen, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Gießen, Germany
| | - Astrid Weiß
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Gießen, Germany.
| |
Collapse
|
15
|
McNair BD, Shorthill SK, Bruns DR. More than just a small left ventricle: the right ventricular fibroblast and ECM in health and disease. Am J Physiol Heart Circ Physiol 2023; 325:H385-H397. [PMID: 37389951 PMCID: PMC10396282 DOI: 10.1152/ajpheart.00213.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Fibroblasts intricately organize and regulate the extracellular matrix (ECM) in cardiac health and disease. Excess deposition of ECM proteins causes fibrosis, resulting in disrupted signaling conduction and contributing to the development of arrhythmias and impaired cardiac function. Fibrosis is causally involved in cardiac failure in the left ventricle (LV). Fibrosis likely occurs in right ventricle (RV) failure, yet mechanisms remain unclear. Indeed, RV fibrosis is poorly understood with mechanisms often extrapolated from the LV to the RV. However, emerging data suggest that the LV and RV are distinct cardiac chambers and differ in regulation of the ECM and response to fibrotic stimuli. In the present review, we will discuss differences in ECM regulation in the healthy RV and LV. We will discuss the importance of fibrosis in the development of RV disease in pressure overload, inflammation, and aging. During this discussion, we will highlight mechanisms of fibrosis with respect to the synthesis of ECM proteins while acknowledging the importance of considering collagen breakdown. We will also discuss current knowledge of antifibrotic therapies in the RV and the need for additional research to help delineate the shared and distinct mechanisms of RV and LV fibrosis.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Samantha K Shorthill
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
- Wyoming WWAMI Medical Education, Laramie, Wyoming, United States
| |
Collapse
|
16
|
Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci 2023; 10:1103229. [PMID: 37051509 PMCID: PMC10083377 DOI: 10.3389/fvets.2023.1103229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Heart failure (HF) is a serious health and economic burden worldwide, and its prevalence is continuously increasing. Current medications effectively moderate the progression of symptoms, and there is a need for novel preventative and reparative treatments. The development of novel HF treatments requires the testing of potential therapeutic procedures in appropriate animal models of HF. During the past decades, murine models have been extensively used in fundamental and translational research studies to better understand the pathophysiological mechanisms of HF and develop more effective methods to prevent and control congestive HF. Proper surgical approaches and anesthetic protocols are the first steps in creating these models, and each successful approach requires a proper anesthetic protocol that maintains good recovery and high survival rates after surgery. However, each protocol may have shortcomings that limit the study's outcomes. In addition, the ethical regulations of animal welfare in certain countries prohibit the use of specific anesthetic agents, which are widely used to establish animal models. This review summarizes the most common and recent surgical models of HF and the anesthetic protocols used in rat models. We will highlight the surgical approach of each model, the use of anesthesia, and the limitations of the model in the study of the pathophysiology and therapeutic basis of common cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Ahmed S. Mandour
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Ryou Tanaka
| |
Collapse
|
17
|
Lemay SE, Grobs Y, Boucherat O. Right Ventricular Dysfunction in Pulmonary Hypertension: Is Resistin a Promising Target? J Am Heart Assoc 2023; 12:e8285. [PMID: 36892086 PMCID: PMC10111511 DOI: 10.1161/jaha.123.029503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Affiliation(s)
- Sarah-Eve Lemay
- Pulmonary Hypertension Research Group Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Québec City Québec Canada
| | - Yann Grobs
- Pulmonary Hypertension Research Group Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Québec City Québec Canada
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Québec City Québec Canada
- Department of Medicine Université Laval Québec City Québec Canada
| |
Collapse
|
18
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Shah S, Vishwakarma VK, Arava SK, Mridha AR, Yadav RK, Seth S, Bhatia J, Hote MP, Arya DS, Yadav HN. Differential effect of basal vitamin D status in monocrotaline induced pulmonary arterial hypertension in normal and vitamin D deficient rats: Possible involvement of eNOS/TGF-β/α-SMA signaling pathways. J Nutr Biochem 2023; 113:109246. [PMID: 36496061 DOI: 10.1016/j.jnutbio.2022.109246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 10/08/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Vitamin D deficiency is common and linked to poor prognosis in pulmonary arterial hypertension (PAH). We investigated the differential effect of basal vitamin D levels in monocrotaline (MCT) induced PAH in normal and vitamin D deficient (VDD) rats. Rats were fed a VDD diet and exposed to filtered fluorescent light to deplete vitamin D. Normal rats were pretreated with vitamin D 100 IU/d and treated with vitamin D 100 and 200 IU/d, while VDD rats received vitamin D 100 IU/d. Vitamin D receptor (VDR) silencing was done in human umbilical vein endothelial cells (HUVECs) using VDR siRNA. Calcitriol (50 nM/mL) was added to human pulmonary artery smooth muscle cells (HPASMCs) and HUVECs before and after the exposure to TGF-β (10 ng/mL). Vitamin D 100 IU/d pretreatment in normal rats up-regulated the expression of eNOS and inhibited endothelial to mesenchymal transition significantly and maximally. Vitamin D 100 IU/d treatment in VDD rats was comparable to vitamin D 200 IU/d treated normal rats. These effects were significantly attenuated by L-NAME (20 mg/kg), a potent eNOS inhibitor. Exposure to TGF- β significantly reduced the expression of eNOS and increased the mesenchymal marker expression in normal and VDR-silenced HUVECs and HPASMCs, which were averted by treatment and maximally inhibited by pretreatment with calcitriol (50 nM). To conclude, this study provided novel evidence suggesting the beneficial role of higher basal vitamin D levels, which are inversely linked with PAH severity.
Collapse
Affiliation(s)
- Sadia Shah
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Vishal Kumar Vishwakarma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Raj Kumar Yadav
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Milind P Hote
- Department of Cardiothoracic & Vascular Surgery, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, New Delhi, India.
| |
Collapse
|
20
|
Chen J, Huayu M, Su S, Wang S, Yang Z, Nan X, Lu D, Li Z. Vanillic Acid Alleviates Right Ventricular Function in Rats With MCT-Induced Pulmonary Arterial Hypertension. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221148896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study examined the molecular processes behind the effects of vanillic acid (VA) on right ventricular (RV) hypertrophy and function in rats with monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). There were 40 male Sprague‒Dawley (SD) rats that were separated into 4 groups: Control, PAH, MCT + VA (50 mg/kg/d), and MCT + VA (100 mg/kg/d). Male SD rats were injected with MCT once under the skin to create the PAH model (40 mg/kg). RV morphological properties were evaluated using Masson and hematoxylin and eosin (H&E) staining. Echocardiography was used to evaluate RV functioning and right ventricle–pulmonary artery (RV-PA) coupling. In addition, Rho-associated protein kinase (ROCK) pathway-related factors were evaluated using Western blotting. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory markers as well as atrial natriuretic peptide (ANP) and brain-type natriuretic peptide (BNP) in the blood of PAH rats. As a result, VA effectively reduced the development of RV cardiomyocyte hypertrophy and fibrosis in PAH rats; levels of ANP, BNP, and inflammatory markers in the blood of PAH rats were also significantly decreased by VA intervention. Additionally, VA enhanced RV functioning and RV-PA coupling in PAH rats. In response to VA, the expression of proteins related to the ROCK pathway (ROCK1, ROCK2, NFATc3, P-STAT3, and Bax) was downregulated, whereas Bcl-2 expression was elevated. This study found that VA could attenuate RV remodeling and improve RV-PA coupling in PAH rats. RV remodeling and dysfunction may be linked to the dysregulation of the ROCK pathway, and the protective action of VA on RV function may be due to a block in the ROCK signaling pathway or its downstream signaling molecules.
Collapse
Affiliation(s)
- Ju Chen
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- School of Ecological and Environmental Engineering, Qinghai University, Xining, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Shanshan Su
- Technical center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, China
| | - Shan Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | | | - Xingmei Nan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- School of Ecological and Environmental Engineering, Qinghai University, Xining, China
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Medical College, Qinghai University, Xining, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
- Medical College, Qinghai University, Xining, China
| |
Collapse
|
21
|
Mulvaney EP, Renzo F, Adão R, Dupre E, Bialesova L, Salvatore V, Reid HM, Conceição G, Grynblat J, Llucià-Valldeperas A, Michel JB, Brás-Silva C, Laurent CE, Howard LS, Montani D, Humbert M, Vonk Noordegraaf A, Perros F, Mendes-Ferreira P, Kinsella BT. The thromboxane receptor antagonist NTP42 promotes beneficial adaptation and preserves cardiac function in experimental models of right heart overload. Front Cardiovasc Med 2022; 9:1063967. [PMID: 36588576 PMCID: PMC9794752 DOI: 10.3389/fcvm.2022.1063967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary artery pressure leading to right ventricular (RV) failure. While current PAH therapies improve patient outlook, they show limited benefit in attenuating RV dysfunction. Recent investigations demonstrated that the thromboxane (TX) A2 receptor (TP) antagonist NTP42 attenuates experimental PAH across key hemodynamic parameters in the lungs and heart. This study aimed to validate the efficacy of NTP42:KVA4, a novel oral formulation of NTP42 in clinical development, in preclinical models of PAH while also, critically, investigating its direct effects on RV dysfunction. Methods The effects of NTP42:KVA4 were evaluated in the monocrotaline (MCT) and pulmonary artery banding (PAB) models of PAH and RV dysfunction, respectively, and when compared with leading standard-of-care (SOC) PAH drugs. In addition, the expression of the TP, the target for NTP42, was investigated in cardiac tissue from several other related disease models, and from subjects with PAH and dilated cardiomyopathy (DCM). Results In the MCT-PAH model, NTP42:KVA4 alleviated disease-induced changes in cardiopulmonary hemodynamics, pulmonary vascular remodeling, inflammation, and fibrosis, to a similar or greater extent than the PAH SOCs tested. In the PAB model, NTP42:KVA4 improved RV geometries and contractility, normalized RV stiffness, and significantly increased RV ejection fraction. In both models, NTP42:KVA4 promoted beneficial RV adaptation, decreasing cellular hypertrophy, and increasing vascularization. Notably, elevated expression of the TP target was observed both in RV tissue from these and related disease models, and in clinical RV specimens of PAH and DCM. Conclusion This study shows that, through antagonism of TP signaling, NTP42:KVA4 attenuates experimental PAH pathophysiology, not only alleviating pulmonary pathologies but also reducing RV remodeling, promoting beneficial hypertrophy, and improving cardiac function. The findings suggest a direct cardioprotective effect for NTP42:KVA4, and its potential to be a disease-modifying therapy in PAH and other cardiac conditions.
Collapse
Affiliation(s)
- Eamon P. Mulvaney
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fabiana Renzo
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Rui Adão
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | - Lucia Bialesova
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Viviana Salvatore
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Helen M. Reid
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Glória Conceição
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Julien Grynblat
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Aida Llucià-Valldeperas
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, Netherlands
| | | | - Carmen Brás-Silva
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Charles E. Laurent
- IPS Therapeutique Inc., Sherbrooke, QC, Canada,ToxiPharm Laboratories Inc., Ste-Catherine-de-Hatley, QC, Canada
| | - Luke S. Howard
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,AP-HP, Dept of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anton Vonk Noordegraaf
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC (Location VUMC), Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frédéric Perros
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France,Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), INSERM UMR_S 999, Université Paris-Saclay, Le Kremlin-Bicêtre, France,INSERM, INRAE, CarMeN Laboratory and Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Claude Bernard University Lyon 1, University of Lyon, Lyon, France
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal,Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), INSERM UMR_S 999, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - B. Therese Kinsella
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,UCD School of Biomolecular and Biomedical Research, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,*Correspondence: B. Therese Kinsella,
| |
Collapse
|
22
|
Yoshida K, Saku K, Jan Bogaard H, Abe K, Sunagawa K, Tsutsui H. Vagal nerve stimulation preserves right ventricular function in a rat model of right ventricular pressure overload. Pulm Circ 2022; 12:e12154. [PMID: 36419525 PMCID: PMC9677323 DOI: 10.1002/pul2.12154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Vagal nerve stimulation (VNS) ameliorates pulmonary vascular remodeling and improves survival in a rat model of pulmonary hypertension (PH). However, the direct impact of VNS on right ventricular (RV) function, which is the key predictor of PH patients, remains unknown. We evaluated the effect of VNS among the three groups: pulmonary artery banding (PAB) with sham stimulation (SS), PAB with VNS, and control (no PAB). We stimulated the right cervical vagal nerve with an implantable pulse generator, initiated VNS 2 weeks after PAB, and stimulated for 2 weeks. Compared to SS, VNS increased cardiac index (VNS: 130 ± 10 vs. SS: 93 ± 7 ml/min/kg; p < 0.05) and end-systolic elastance assessed by RV pressure-volume analysis (VNS: 1.1 ± 0.1 vs. SS: 0.7 ± 0.1 mmHg/μl; p < 0.01), but decreased RV end-diastolic pressure (VNS: 4.5 ± 0.7 vs. SS: 7.7 ± 1.0 mmHg; p < 0.05). Furthermore, VNS significantly attenuated RV fibrosis and CD68-positive cell migration. In PAB rats, VNS improved RV function, and attenuated fibrosis, and migration of inflammatory cells. These results provide a rationale for VNS therapy as a novel approach for RV dysfunction in PH patients.
Collapse
Affiliation(s)
- Keimei Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Pulmonary Medicine, Amsterdam UMCVrije UniversiteitAmsterdamNetherlands
| | - Keita Saku
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMCVrije UniversiteitAmsterdamNetherlands
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenji Sunagawa
- Circulatory System Research FoundationKyushu UniversityFukuokaJapan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
23
|
Hunter JD, Hancko A, Shakya P, Hill R, Saviola AJ, Hansen KC, Davis ME, Christman KL. Characterization of decellularized left and right ventricular myocardial matrix hydrogels and their effects on cardiac progenitor cells. J Mol Cell Cardiol 2022; 171:45-55. [PMID: 35780862 PMCID: PMC11091826 DOI: 10.1016/j.yjmcc.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Congenital heart defects are the leading cause of right heart failure in pediatric patients. Implantation of c-kit+ cardiac-derived progenitor cells (CPCs) is being clinically evaluated to treat the failing right ventricle (RV), but faces limitations due to reduced transplant cell survival, low engraftment rates, and low retention. These limitations have been exacerbated due to the nature of cell delivery (narrow needles) and the non-optimal recipient microenvironment (reactive oxygen species (ROS)). Extracellular matrix (ECM) hydrogels derived from porcine left ventricular (LV) myocardium have emerged as a potential therapy to treat the ischemic LV and have shown promise as a vehicle to deliver cells to injured myocardium. However, no studies have evaluated the combination of an injectable biomaterial, such as an ECM hydrogel, in combination with cell therapy for treating RV failure. In this study we characterized LV and RV myocardial matrix (MM) hydrogels and performed in vitro evaluations of their potential to enhance CPC delivery, including resistance to forces experienced during injection and exposure to ROS, as well as their potential to enhance angiogenic paracrine signaling. While physical properties of the two hydrogels are similar, the decellularized LV and RV have distinct protein signatures. Both materials were equally effective in protecting CPCs against needle forces and ROS. CPCs encapsulated in either the LV MM or RV MM exhibited similar enhanced potential for angiogenic paracrine signaling when compared to CPCs in collagen. The RV MM without cells, however, likewise improved tube formation, suggesting it should also be evaluated as a potential standalone treatment.
Collapse
Affiliation(s)
- Jervaughn D Hunter
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, UC San Diego, USA
| | - Arielle Hancko
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, UC San Diego, USA
| | - Preety Shakya
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, USA
| | - Ryan Hill
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, USA
| | - Karen L Christman
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, UC San Diego, USA.
| |
Collapse
|
24
|
Younes R, LeBlanc CA, Hiram R. Evidence of Failed Resolution Mechanisms in Arrhythmogenic Inflammation, Fibrosis and Right Heart Disease. Biomolecules 2022; 12:biom12050720. [PMID: 35625647 PMCID: PMC9138906 DOI: 10.3390/biom12050720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a complex program of active processes characterized by the well-orchestrated succession of an initiation and a resolution phase aiming to promote homeostasis. When the resolution of inflammation fails, the tissue undergoes an unresolved inflammatory status which, if it remains uncontrolled, can lead to chronic inflammatory disorders due to aggravation of structural damages, development of a fibrous area, and loss of function. Various human conditions show a typical unresolved inflammatory profile. Inflammatory diseases include cancer, neurodegenerative disease, asthma, right heart disease, atherosclerosis, myocardial infarction, or atrial fibrillation. New evidence has started to emerge on the role, including pro-resolution involvement of chemical mediators in the acute phase of inflammation. Although flourishing knowledge is available about the role of specialized pro-resolving mediators in neurodegenerative diseases, atherosclerosis, obesity, or hepatic fibrosis, little is known about their efficacy to combat inflammation-associated arrhythmogenic cardiac disorders. It has been shown that resolvins, including RvD1, RvE1, or Mar1, are bioactive mediators of resolution. Resolvins can stop neutrophil activation and infiltration, stimulate monocytes polarization into anti-inflammatory-M2-macrophages, and activate macrophage phagocytosis of inflammation-debris and neutrophils to promote efferocytosis and clearance. This review aims to discuss the paradigm of failed-resolution mechanisms (FRM) potentially promoting arrhythmogenicity in right heart disease-induced inflammatory status.
Collapse
Affiliation(s)
- Rim Younes
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Charles-Alexandre LeBlanc
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Roddy Hiram
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-376-3330 (ext. 5015)
| |
Collapse
|
25
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
26
|
Bejleri D, Robeson MJ, Brown ME, Hunter J, Maxwell JT, Streeter BW, Brazhkina O, Park HJ, Christman KL, Davis ME. In vivo evaluation of bioprinted cardiac patches composed of cardiac-specific extracellular matrix and progenitor cells in a model of pediatric heart failure. Biomater Sci 2022; 10:444-456. [PMID: 34878443 PMCID: PMC8772587 DOI: 10.1039/d1bm01539g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pediatric patients with congenital heart defects (CHD) often present with heart failure from increased load on the right ventricle (RV) due to both surgical methods to treat CHD and the disease itself. Patients with RV failure often require transplantation, which is limited due to lack of donor availability and rejection. Previous studies investigating the development and in vitro assessment of a bioprinted cardiac patch composed of cardiac extracellular matrix (cECM) and human c-kit + progenitor cells (hCPCs) showed that the construct has promise in treating cardiac dysfunction. The current study investigates in vivo cardiac outcomes of patch implantation in a rat model of RV failure. Patch parameters including cECM-inclusion and hCPC-inclusion are investigated. Assessments include hCPC retention, RV function, and tissue remodeling (vascularization, hypertrophy, and fibrosis). Animal model evaluation shows that both cell-free and neonatal hCPC-laden cECM-gelatin methacrylate (GelMA) patches improve RV function and tissue remodeling compared to other patch groups and controls. Inclusion of cECM is the most influential parameter driving therapeutic improvements, with or without cell inclusion. This study paves the way for clinical translation in treating pediatric heart failure using bioprinted GelMA-cECM and hCPC-GelMA-cECM patches.
Collapse
Affiliation(s)
- Donald Bejleri
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Matthew J Robeson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Milton E Brown
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Jervaughn Hunter
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA
| | - Joshua T Maxwell
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
| | - Benjamin W Streeter
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Olga Brazhkina
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Hyun-Ji Park
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Karen L Christman
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA
| | - Michael E Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
| |
Collapse
|
27
|
Sharifi Kia D, Shen Y, Bachman TN, Goncharova EA, Kim K, Simon MA. The Effects of Healthy Aging on Right Ventricular Structure and Biomechanical Properties: A Pilot Study. Front Med (Lausanne) 2022; 8:751338. [PMID: 35083230 PMCID: PMC8784691 DOI: 10.3389/fmed.2021.751338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Healthy aging has been associated with alterations in pulmonary vascular and right ventricular (RV) hemodynamics, potentially leading to RV remodeling. Despite the current evidence suggesting an association between aging and alterations in RV function and higher prevalence of pulmonary hypertension in the elderly, limited data exist on age-related differences in RV structure and biomechanics. In this work, we report our preliminary findings on the effects of healthy aging on RV structure, function, and biomechanical properties. Hemodynamic measurements, biaxial mechanical testing, constitutive modeling, and quantitative transmural histological analysis were employed to study two groups of male Sprague-Dawley rats: control (11 weeks) and aging (80 weeks). Aging was associated with increases in RV peak pressures (+17%, p = 0.017), RV contractility (+52%, p = 0.004), and RV wall thickness (+38%, p = 0.001). Longitudinal realignment of RV collagen (16.4°, p = 0.013) and myofibers (14.6°, p = 0.017) were observed with aging, accompanied by transmural cardiomyocyte loss and fibrosis. Aging led to increased RV myofiber stiffness (+141%, p = 0.003), in addition to a bimodal alteration in the biaxial biomechanical properties of the RV free wall, resulting in increased tissue-level stiffness in the low-strain region, while progressing into decreased stiffness at higher strains. Our results demonstrate that healthy aging may modulate RV remodeling via increased peak pressures, cardiomyocyte loss, fibrosis, fiber reorientation, and altered mechanical properties in male Sprague-Dawley rats. Similarities were observed between aging-induced remodeling patterns and those of RV remodeling in pressure overload. These findings may help our understanding of age-related changes in the cardiovascular fitness and response to disease.
Collapse
Affiliation(s)
- Danial Sharifi Kia
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuanjun Shen
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Davis School of Medicine Lung Center, University of California, Davis, Davis, CA, United States
| | - Timothy N. Bachman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elena A. Goncharova
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Davis School of Medicine Lung Center, University of California, Davis, Davis, CA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Cardiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marc A. Simon
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Novel Therapeutic Targets for the Treatment of Right Ventricular Remodeling: Insights from the Pulmonary Artery Banding Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168297. [PMID: 34444046 PMCID: PMC8391744 DOI: 10.3390/ijerph18168297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Right ventricular (RV) function is the main determinant of the outcome of patients with pulmonary hypertension (PH). RV dysfunction develops gradually and worsens progressively over the course of PH, resulting in RV failure and premature death. Currently, approved therapies for the treatment of left ventricular failure are not established for the RV. Furthermore, the direct effects of specific vasoactive drugs for treatment of pulmonary arterial hypertension (PAH, Group 1 of PH) on RV are not fully investigated. Pulmonary artery banding (PAB) allows to study the pathogenesis of RV failure solely, thereby testing potential therapies independently of pulmonary vascular changes. This review aims to discuss recent studies of the mechanisms of RV remodeling and RV-directed therapies based on the PAB model.
Collapse
|
29
|
Sharifi Kia D, Kim K, Simon MA. Current Understanding of the Right Ventricle Structure and Function in Pulmonary Arterial Hypertension. Front Physiol 2021; 12:641310. [PMID: 34122125 PMCID: PMC8194310 DOI: 10.3389/fphys.2021.641310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease resulting in increased right ventricular (RV) afterload and RV remodeling. PAH results in altered RV structure and function at different scales from organ-level hemodynamics to tissue-level biomechanical properties, fiber-level architecture, and cardiomyocyte-level contractility. Biomechanical analysis of RV pathophysiology has drawn significant attention over the past years and recent work has found a close link between RV biomechanics and physiological function. Building upon previously developed techniques, biomechanical studies have employed multi-scale analysis frameworks to investigate the underlying mechanisms of RV remodeling in PAH and effects of potential therapeutic interventions on these mechanisms. In this review, we discuss the current understanding of RV structure and function in PAH, highlighting the findings from recent studies on the biomechanics of RV remodeling at organ, tissue, fiber, and cellular levels. Recent progress in understanding the underlying mechanisms of RV remodeling in PAH, and effects of potential therapeutics, will be highlighted from a biomechanical perspective. The clinical relevance of RV biomechanics in PAH will be discussed, followed by addressing the current knowledge gaps and providing suggested directions for future research.
Collapse
Affiliation(s)
- Danial Sharifi Kia
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh - University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marc A Simon
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br J Pharmacol 2021; 179:811-837. [PMID: 33724447 DOI: 10.1111/bph.15444] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent therapeutic advances, pulmonary hypertension (PH) remains a fatal disease due to the development of right ventricular (RV) failure. At present, no treatments targeted at the right ventricle are available, and RV function is not widely considered in the preclinical assessment of new therapeutics. Several small animal models are used in the study of PH, including the classic models of exposure to either hypoxia or monocrotaline, newer combinational and genetic models, and pulmonary artery banding, a surgical model of pure RV pressure overload. These models reproduce selected features of the structural remodelling and functional decline seen in patients and have provided valuable insight into the pathophysiology of RV failure. However, significant reversal of remodelling and improvement in RV function remains a therapeutic obstacle. Emerging animal models will provide a deeper understanding of the mechanisms governing the transition from adaptive remodelling to a failing right ventricle, aiding the hunt for druggable molecular targets.
Collapse
Affiliation(s)
- Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Asymmetric Regional Work Contributes to Right Ventricular Fibrosis, Inefficiency, and Dysfunction in Pulmonary Hypertension versus Regurgitation. J Am Soc Echocardiogr 2020; 34:537-550.e3. [PMID: 33383122 DOI: 10.1016/j.echo.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Right ventricular (RV) pressure loading from pulmonary hypertension (PH) and volume loading from pulmonary regurgitation (PR) lead to RV dysfunction, a critical determinant of clinical outcomes, but their impact on regional RV mechanics and fibrosis is poorly characterized. The aim of this study was to test the hypothesis that regional myocardial mechanics and efficiency in RV pressure and volume loading are associated with RV fibrosis and dysfunction. METHODS Eight PH, six PR, and five sham-control rats were studied. The PH rat model was induced using Sugen5416, a vascular endothelial growth factor receptor 2 inhibitor, combined with chronic hypoxia. PR rats were established by surgical laceration of the pulmonary valve leaflets. Six (n = 4) or 9 (n = 4) weeks after Sugen5416 and hypoxia and 12 weeks after PR surgery, myocardial strain and RV pressure were measured and RV pressure-strain loops generated. We further studied RV regional mechanics in 11 patients with PH. Regional myocardial work was calculated as the pressure-strain loop area (mm Hg ∙ %). Regional myocardial work efficiency was quantified through wasted work (ratio of systolic lengthening to shortening work). The relation of regional myocardial work to RV fibrosis and dysfunction was analyzed. RESULTS In rats, PH and PR induced similar RV dilatation, but fractional area change (%) was lower in PH than in PR. RV lateral wall work was asymmetrically higher in PH compared with sham, while septal work was similar to sham. In PR, lateral and septal work were symmetrically higher versus sham. Myocardial wasted work ratio was asymmetrically increased in the PH septum versus sham. Fibrosis in the RV lateral wall, but not septum, was higher in PH than PR. RV fibrosis burden was linearly related to regional work and to measures of RV systolic and diastolic function but not to wasted myocardial work ratio. Patients with PH demonstrated similar asymmetric and inefficient regional myocardial mechanics. CONCLUSIONS Asymmetric RV work and increased wasted septal work in experimental PH are associated with RV fibrosis and dysfunction. Future investigation should examine whether assessment of asymmetric regional RV work and efficiency can predict clinical RV failure and influence patient management.
Collapse
|
32
|
Swietlik EM, Prapa M, Martin JM, Pandya D, Auckland K, Morrell NW, Gräf S. 'There and Back Again'-Forward Genetics and Reverse Phenotyping in Pulmonary Arterial Hypertension. Genes (Basel) 2020; 11:E1408. [PMID: 33256119 PMCID: PMC7760524 DOI: 10.3390/genes11121408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Although the invention of right heart catheterisation in the 1950s enabled accurate clinical diagnosis of pulmonary arterial hypertension (PAH), it was not until 2000 when the landmark discovery of the causative role of bone morphogenetic protein receptor type II (BMPR2) mutations shed new light on the pathogenesis of PAH. Since then several genes have been discovered, which now account for around 25% of cases with the clinical diagnosis of idiopathic PAH. Despite the ongoing efforts, in the majority of patients the cause of the disease remains elusive, a phenomenon often referred to as "missing heritability". In this review, we discuss research approaches to uncover the genetic architecture of PAH starting with forward phenotyping, which in a research setting should focus on stable intermediate phenotypes, forward and reverse genetics, and finally reverse phenotyping. We then discuss potential sources of "missing heritability" and how functional genomics and multi-omics methods are employed to tackle this problem.
Collapse
Affiliation(s)
- Emilia M. Swietlik
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Matina Prapa
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jennifer M. Martin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Divya Pandya
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Kathryn Auckland
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK
- Addenbrooke’s Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (E.M.S.); (M.P.); (J.M.M.); (D.P.); (K.A.); (N.W.M.)
- NIHR BioResource for Translational Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| |
Collapse
|