1
|
Sarto F, Fry CS, Narici MV, Rubin LL, Price FD. Potential of synergist ablation to study mechanisms of skeletal muscle hypertrophy in rodent disease models. Am J Physiol Cell Physiol 2025; 328:C1389-C1393. [PMID: 40126526 DOI: 10.1152/ajpcell.00076.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/07/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Synergist ablation (SA) is a well-established model of mechanical overload-induced hypertrophy in rodents, commonly used to infer skeletal muscle adaptation to resistance training in humans. Given the critical role of skeletal muscle atrophy in chronic conditions such as neuromuscular, metabolic, and cardiopulmonary disorders, SA represents a promising preclinical tool to study muscle hypertrophy mechanisms in pathological states. However, although extensively characterized in healthy animals, the potential applications of SA in disease models remain largely overlooked. This Mini-Review summarizes existing studies employing SA in rodent disease models, highlighting the diverse hypertrophic responses observed across conditions, including Duchenne muscular dystrophy, obesity, diabetes, cancer cachexia, and chronic kidney disease. Although hypertrophy gains are generally attenuated in diseased animals compared to healthy controls, SA-induced overload provides valuable insights into disease-specific regulatory mechanisms, including alterations in intracellular signaling, fiber type transitions, and disease phenotype. We also discuss the strengths and limitations of SA as a preclinical model for resistance training in disease contexts and propose its broader adoption for mechanistic investigations into skeletal muscle plasticity under pathological conditions.
Collapse
Affiliation(s)
- Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Marco V Narici
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- CIR-MYO Myology Centre, University of Padova, Padua, Italy
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Feodor D Price
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
L C, P M, I B, A R, H D, D S. Obesity-driven musculotendinous remodeling impairs tissue resilience to mechanical damage. Cell Tissue Res 2025:10.1007/s00441-025-03967-1. [PMID: 40163175 DOI: 10.1007/s00441-025-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Obesity has been associated with lower muscle strength-to-body mass ratio. Here, we evaluated the effects of diet-induced obesity on the mechano-structural properties of isolated muscles and tendons. Thirty 10-week-old male C57BL/6 J mice were randomly assigned to either an obesogenic high-fat diet group (OB) for 24 weeks or a control group (CN) maintained on a standard chow diet. Soleus muscle (SOL) and Achilles tendon (AT) specimens were isolated and subjected either to failure testing, 300 cycles of passive stretch-destretch, or isometric twitch contractions. Morpho-structural and protein expression analyses were conducted to assess collagen and adipose tissue accumulation, concentrations of cross-linking factors, and any alterations in the POSTN-TGFβ1-Akt signaling pathway. OB SOL and AT tissues were more fragile than those from CN (p < 0.05). A piecewise linear regression model revealed a tendency for OB tissues to exhibit steeper mechanical property changes within the first 20 cycles compared to CN, followed by a similar plateau phase in both groups. OB SOL-AT complexes showed a slower twitch-contraction-relaxation pattern than CN (p < 0.05). OB tendons and muscles were larger than those of the CN, with muscles featuring bigger fibers, and higher collagen area fraction (p < 0.05). Elevated TGFβ1 and POSTN concentrations were observed in OB tissues (p < 0.05), alongside increased P-Akt and P-4EBP1 expression (p < 0.05). These findings highlight the detrimental effects of obesity on the structural integrity of muscle and tendon tissues and suggest a significant role of POSTN-TGFβ1-Akt signaling in obesity-associated musculotendinous remodeling.
Collapse
Affiliation(s)
- Cesanelli L
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.
| | - Minderis P
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Balnyte I
- Department of Histology and Embryology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ratkevicius A
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Sports and Exercise Medicine Centre, Queen Mary University of London, London, UK
| | - Degens H
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Satkunskiene D
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
3
|
Banerjee M, Pandey VP. Diet-induced Obesity: Pathophysiology, Consequences and Target Specific Therapeutic Strategies. Curr Protein Pept Sci 2025; 26:113-124. [PMID: 39225225 DOI: 10.2174/0113892037329528240827180820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Diet has emerged as a pivotal factor in the current time for diet-induced obesity (DIO). A diet overloaded with fats and carbohydrates and unhealthy dietary habits contribute to the development of DIO through several mechanisms. The prominent ones include the transition of normal gut microbiota to obese microbiota, under-expression of AMPK, and abnormally high levels of adipogenesis. DIO is the root of many diseases. The present review deals with various aspects of DIO and its target proteins that can be specifically used for its treatment. Also, the currently available treatment strategies have been explored. It was found that the expression of five proteins, namely, PPARγ, FTO, CDK4, 14-3-3 ζ protein, and Galectin-1, is upregulated in DIO. They can be used as potential targets for drug-designing studies. Thus, with these targets, the treatment strategy for DIO using natural bioactive compounds can be a safer alternative to medications and bariatric surgeries.
Collapse
Affiliation(s)
- Munmun Banerjee
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
- Institute of Food Processing and Technology, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow 226007, India (Pesent Address)
| |
Collapse
|
4
|
Proença AB, Alexandre‐Santos B, Giori IG, Alex‐Marques JSF, Machado‐Santos C, Machado M, Magliano DC, da Nobrega ACL, Frantz EDC. Obesity-induced skeletal muscle remodeling: A comparative analysis of exercise training and ACE-inhibitory drug in male mice. Physiol Rep 2024; 12:e16025. [PMID: 38684378 PMCID: PMC11058004 DOI: 10.14814/phy2.16025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity over-activates the classical arm of the renin-angiotensin system (RAS), impairing skeletal muscle remodeling. We aimed to compare the effect of exercise training and enalapril, an angiotensin-converting enzyme inhibitor, on RAS modulation in the skeletal muscle of obese animals. Thus, we divided C57BL/6 mice into two groups: standard chow (SC) and high-fat (HF) diet for 16 weeks. At the eighth week, the HF-fed animals were divided into four subgroups-sedentary (HF), treated with enalapril (HF-E), exercise training protocol (HF-T), and combined interventions (HF-ET). After 8 weeks of treatment, we evaluated body mass and index (BMI), body composition, exercise capacity, muscle morphology, and skeletal muscle molecular markers. All interventions resulted in lower BMI and attenuation of overactivation in the classical arm, while favoring the B2R in the bradykinin receptors profile. This was associated with reduced apoptosis markers in obese skeletal muscles. The HF-T group showed an increase in muscle mass and expression of biosynthesis markers and a reduction in expression of degradation markers and muscle fiber atrophy due to obesity. These findings suggest that the combination intervention did not have a synergistic effect against obesity-induced muscle remodeling. Additionally, the use of enalapril impaired muscle's physiological adaptations to exercise training.
Collapse
Affiliation(s)
- Ana Beatriz Proença
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Beatriz Alexandre‐Santos
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Isabele Gomes Giori
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Jaime Silva Filho Alex‐Marques
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Clarice Machado‐Santos
- Laboratory of Teaching and Research in Histology and Compared EmbryologyFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Marcus Machado
- Biomedical Science DepartmentRoss University School of Veterinary MedicineBasseterreSt. Kitts & Nevis
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
| | - Antonio Claudio Lucas da Nobrega
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- National Institute for Science & Technology—INCT Physical (in)Activity & Exercise, CNPqNiteroiRio de JaneiroBrazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- Research Center on Morphology and Metabolism, Biomedical InstituteFluminense Federal UniversityNiteroiRio de JaneiroBrazil
- National Institute for Science & Technology—INCT Physical (in)Activity & Exercise, CNPqNiteroiRio de JaneiroBrazil
| |
Collapse
|
5
|
Ofosu-Boateng M, Shaik F, Choi S, Ekuban FA, Gebreyesus LH, Twum E, Nnamani D, Yeyeodu ST, Yadak N, Collier DM, Gyamfi MA. High-fat diet induced obesity promotes inflammation, oxidative stress, and hepatotoxicity in female FVB/N mice. Biofactors 2024; 50:572-591. [PMID: 38183321 PMCID: PMC11178471 DOI: 10.1002/biof.2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/04/2023] [Indexed: 01/08/2024]
Abstract
Although obesity and subsequent liver injury are increasingly prevalent in women, female mouse models have generally shown resistance to high-fat diet (HFD)-induced obesity. We evaluated control and HFD-fed male and female FVB/N mice, a strain well-suited to transgenic analyses, for phenotypic, histological, and molecular markers related to control of glucose, lipids, and inflammation in serum, liver, and perigonadal white adipose tissues. Unlike many mouse models, HFD-fed FVB/N females gained more perigonadal and mesenteric fat mass and overall body weight than their male counterparts, with increased hepatic expression of lipogenic PPARγ target genes (Cd36, Fsp27, and Fsp27β), oxidative stress genes and protein (Nqo1 and CYP2E1), inflammatory gene (Mip-2), and the pro-fibrotic gene Pai-1, along with increases in malondialdehyde and serum ALT levels. Further, inherent to females (independently of HFD), hepatic antioxidant heme oxygenase-1 (HMOX1, HO-1) protein levels were reduced compared to their male counterparts. In contrast, males may have been relatively protected from HFD-induced oxidative stress and liver injury by elevated mRNA and protein levels of hepatic antioxidants BHMT and Gpx2, increased fatty acid oxidation genes in liver and adipocytes (Pparδ), despite disorganized and inflamed adipocytes. Thus, female FVB/N mice offer a valuable preclinical, genetically malleable model that recapitulates many of the features of diet-induced obesity and liver damage observed in human females.
Collapse
Affiliation(s)
- Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Fathima Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, 27707, NC
| | - Frederick A. Ekuban
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Lidya H. Gebreyesus
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Elizabeth Twum
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Daniel Nnamani
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Susan T. Yeyeodu
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, 27707, NC
- Charles River Discovery Services, Durham, NC, 27709
| | - Nour Yadak
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Maxwell A. Gyamfi
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, 27707, NC
| |
Collapse
|
6
|
Krishna S, Echevarria KG, Reed CH, Eo H, Wintzinger M, Quattrocelli M, Valentine RJ, Selsby JT. A fat- and sucrose-enriched diet causes metabolic alterations in mdx mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R692-R711. [PMID: 37811713 PMCID: PMC11178302 DOI: 10.1152/ajpregu.00246.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
Duchenne muscular dystrophy (DMD), a progressive muscle disease caused by the absence of functional dystrophin protein, is associated with multiple cellular, physiological, and metabolic dysfunctions. As an added complication to the primary insult, obesity/insulin resistance (O/IR) is frequently reported in patients with DMD; however, how IR impacts disease severity is unknown. We hypothesized a high-fat, high-sucrose diet (HFHSD) would induce O/IR, exacerbate disease severity, and cause metabolic alterations in dystrophic mice. To test this hypothesis, we treated 7-wk-old mdx (disease model) and C57 mice with a control diet (CD) or an HFHSD for 15 wk. The HFHSD induced insulin resistance, glucose intolerance, and hyperglycemia in C57 and mdx mice. Of note, mdx mice on CD were also insulin resistant. In addition, visceral adipose tissue weights were increased with HFHSD in C57 and mdx mice though differed by genotype. Serum creatine kinase activity and histopathological analyses using Masson's trichrome staining in the diaphragm indicated muscle damage was driven by dystrophin deficiency but was not augmented by diet. In addition, markers of inflammatory signaling, mitochondrial abundance, and autophagy were impacted by disease but not diet. Despite this, in addition to disease signatures in CD-fed mice, metabolomic and lipidomic analyses demonstrated a HFHSD caused some common changes in C57 and mdx mice and some unique signatures of O/IR within the context of dystrophin deficiency. In total, these data revealed that in mdx mice, 15 wk of HFHSD did not overtly exacerbate muscle injury but further impaired the metabolic status of dystrophic muscle.
Collapse
Affiliation(s)
- Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | | | - Carter H Reed
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
7
|
Tagawa T, Eshima H, Kakehi S, Kawamori R, Watada H, Tamura Y. A chronic high-fat diet does not exacerbate muscle atrophy in fast-twitch skeletal muscle of aged mice. Exp Physiol 2023; 108:940-945. [PMID: 37074636 PMCID: PMC10988437 DOI: 10.1113/ep091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
NEW FINDINGS What is the central question of this study? Ageing leads to a loss of mass in skeletal muscle, but the effect of obesity on ageing-related muscle wasting is unclear. In this study, we aimed to demonstrate the specific effect of obesity on fast-twitch skeletal muscle in ageing. What is the main finding and its importance? Our findings show that the obesity induced by long-term ingestion of a high-fat diet does not aggravate muscle wasting in fast-twitch skeletal muscle of aged mice, indicating that the present study provides morphological characteristics for skeletal muscle of sarcopenic obesity. ABSTRACT Obesity and ageing reduce muscle mass and lead to deficits in muscle maintenance, but it is not known whether obesity accelerates muscle wasting additively in the setting of ageing. We investigated morphological characteristics in fast-twitch extensor digitorum longus (EDL) muscle of mice fed a low-fat diet (LFD) or a high-fat diet (HFD) for 4 or 20 months. The fast-twitch EDL muscle was harvested, and the muscle fibre-type composition, individual muscle cross-sectional area and myotube diameter were measured. We found an increase in the percentage of type IIa and IIx myosin heavy chain fibres in the whole EDL muscle, but a decrease in type IIB myosin heavy chain in both HFD protocols. The cross-sectional area and myofibre diameter were lower in both groups of aged mice (after 20 months of LFD or HFD) compared with young mice (after 4 months of the diets), but there were no differences between mice fed LFD or HFD for 20 months. These data suggest that long-term feeding of HFD does not aggravate muscle wasting in fast-twitch EDL muscle of male mice.
Collapse
Affiliation(s)
- Tsutomu Tagawa
- Department of International TourismNagasaki International UniversityNagasakiJapan
| | - Hiroaki Eshima
- Department of International TourismNagasaki International UniversityNagasakiJapan
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Saori Kakehi
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Ryuzo Kawamori
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Hirotaka Watada
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
- Center for Therapeutic Innovations in DiabetesJuntendo University Graduate School of MedicineTokyoJapan
- Center for Identification of Diabetic Therapeutic TargetsJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoshifumi Tamura
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
8
|
Cho C, Ji M, Cho E, Yi S, Kim JG, Lee S. Chronic voluntary wheel running exercise ameliorates metabolic dysfunction via PGC-1α expression independently of FNDC5/irisin pathway in high fat diet-induced obese mice. J Physiol Sci 2023; 73:6. [PMID: 37041517 PMCID: PMC10717694 DOI: 10.1186/s12576-023-00864-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Exercise is an effective intervention to ameliorate metabolic diseases including obesity and insulin resistance, but the mechanisms involved in the metabolic amelioration have not yet been fully elucidated. This study aimed to determine whether AMPK-SIRT1-PGC-1α-FNDC5/Irisin-UCP1 expression is activated and whether metabolic dysfunction is ameliorated by chronic voluntary wheel running (VWR) in high-fat diet (HFD) induced obese mice. C57BL6J mice were randomly assigned into three groups at the age of 7 weeks for 10 weeks: normal chow diet (CON) group, HFD group, and HFD + VWR group. Chronic VWR ameliorates metabolic parameters and leads to increases in the expression of PGC-1α in the gastrocnemius muscle in HFD-induced obese mice. In contrast, the expression of AMPKα, SIRT1, and FNDC5, or circulating irisin levels did not lead to alteration. Improvement of metabolic health was partly mediated via PGC-1α expression by chronic VWR, but not FNDC5/Irisin pathway in HFD-induced obese mice.
Collapse
Affiliation(s)
- Chaeeun Cho
- Department of Human Movement Science, Graduate School, Incheon National University, Incheon, Republic of Korea
| | - Minje Ji
- Department of Human Movement Science, Graduate School, Incheon National University, Incheon, Republic of Korea
| | - Eunhee Cho
- Department of Human Movement Science, Graduate School, Incheon National University, Incheon, Republic of Korea
| | - Seon Yi
- Department of Life Science, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Jae Geun Kim
- Department of Life Science, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Sewon Lee
- Division of Sport Science, College of Arts & Physical Education, Incheon National University, Bldg# 16, Room# 423, (Songdo-Dong) 119 Academy-Ro, Yeonsu-Gu, Incheon, South Korea.
- Sport Science Institute, College of Arts & Physical Education, Incheon National University, Incheon, Republic of Korea.
- Health Promotion Center, College of Arts & Physical Education, Incheon National University, Incheon, Republic of Korea.
| |
Collapse
|
9
|
Fang LZ, Lily Vidal JA, Hawlader O, Hirasawa M. High-fat diet-induced elevation of body weight set point in male mice. Obesity (Silver Spring) 2023; 31:1000-1010. [PMID: 36811235 DOI: 10.1002/oby.23650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/15/2022] [Accepted: 10/20/2022] [Indexed: 02/24/2023]
Abstract
OBJECTIVE High-fat diets (HFD) are thought to disrupt energy homeostasis to drive overeating and obesity. However, weight loss resistance in individuals with obesity suggests that homeostasis is intact. This study aimed to reconcile this difference by systematically assessing body weight (BW) regulation under HFD. METHODS Male C57BL/6 N mice were fed diets with varying fat and sugar in different durations and patterns. BW and food intake were monitored. RESULTS BW gain was transiently accelerated by HFD (≥40%) prior to plateauing. The plateau was consistent regardless of starting age, HFD duration, or fat/sugar content. Reverting to a low-fat diet (LFD) caused transiently accelerated weight loss, which correlated with how heavy mice were before the diet relative to LFD-only controls. Chronic HFD attenuated the efficacy of single or repetitive dieting, revealing a defended BW higher than that of LFD-only controls. CONCLUSIONS This study suggests that dietary fat modulates the BW set point immediately upon switching from LFD to HFD. Mice defend a new elevated set point by increasing caloric intake and efficiency. This response is consistent and controlled, suggesting that hedonic mechanisms contribute to rather than disrupt energy homeostasis. An elevated floor of the BW set point after chronic HFD could explain weight loss resistance in individuals with obesity.
Collapse
Affiliation(s)
- Lisa Z Fang
- Division of Biomedical Sciences, Memorial University, St John's, Newfoundland, Canada
| | - Josué A Lily Vidal
- Division of Biomedical Sciences, Memorial University, St John's, Newfoundland, Canada
| | - Oishi Hawlader
- Division of Biomedical Sciences, Memorial University, St John's, Newfoundland, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Memorial University, St John's, Newfoundland, Canada
| |
Collapse
|
10
|
Jun L, Robinson M, Geetha T, Broderick TL, Babu JR. Prevalence and Mechanisms of Skeletal Muscle Atrophy in Metabolic Conditions. Int J Mol Sci 2023; 24:ijms24032973. [PMID: 36769296 PMCID: PMC9917738 DOI: 10.3390/ijms24032973] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle atrophy is prevalent in a myriad of pathological conditions, such as diabetes, denervation, long-term immobility, malnutrition, sarcopenia, obesity, Alzheimer's disease, and cachexia. This is a critically important topic that has significance in the health of the current society, particularly older adults. The most damaging effect of muscle atrophy is the decreased quality of life from functional disability, increased risk of fractures, decreased basal metabolic rate, and reduced bone mineral density. Most skeletal muscle in humans contains slow oxidative, fast oxidative, and fast glycolytic muscle fiber types. Depending on the pathological condition, either oxidative or glycolytic muscle type may be affected to a greater extent. This review article discusses the prevalence of skeletal muscle atrophy and several mechanisms, with an emphasis on high-fat, high-sugar diet patterns, obesity, and diabetes, but including other conditions such as sarcopenia, Alzheimer's disease, cancer cachexia, and heart failure.
Collapse
Affiliation(s)
- Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-223-844-3840
| |
Collapse
|
11
|
Nuthikattu S, Milenkovic D, Norman JE, Rutledge J, Villablanca A. High Glycemia and Soluble Epoxide Hydrolase in Females: Differential Multiomics in Murine Brain Microvasculature. Int J Mol Sci 2022; 23:13044. [PMID: 36361847 PMCID: PMC9655872 DOI: 10.3390/ijms232113044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2023] Open
Abstract
The effect of a high glycemic diet (HGD) on brain microvasculature is a crucial, yet understudied research topic, especially in females. This study aimed to determine the transcriptomic changes in female brain hippocampal microvasculature induced by a HGD and characterize the response to a soluble epoxide hydrolase inhibitor (sEHI) as a mechanism for increased epoxyeicosatrienoic acids (EETs) levels shown to be protective in prior models of brain injury. We fed mice a HGD or a low glycemic diet (LGD), with/without the sEHI (t-AUCB), for 12 weeks. Using microarray, we assessed differentially expressed protein-coding and noncoding genes, functional pathways, and transcription factors from laser-captured hippocampal microvessels. We demonstrated for the first time in females that the HGD had an opposite gene expression profile compared to the LGD and differentially expressed 506 genes, primarily downregulated, with functions related to cell signaling, cell adhesion, cellular metabolism, and neurodegenerative diseases. The sEHI modified the transcriptome of female mice consuming the LGD more than the HGD by modulating genes involved in metabolic pathways that synthesize neuroprotective EETs and associated with a higher EETs/dihydroxyeicosatrienoic acids (DHETs) ratio. Our findings have implications for sEHIs as promising therapeutic targets for the microvascular dysfunction that accompanies vascular dementia.
Collapse
Affiliation(s)
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Jennifer E. Norman
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
12
|
Obesity impairs skeletal muscle repair through NID-1 mediated extracellular matrix remodeling by mesenchymal progenitors. Matrix Biol 2022; 112:90-115. [PMID: 35963565 DOI: 10.1016/j.matbio.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
Obesity triggers skeletal muscle physio-pathological alterations. However, the crosstalk between adipose tissue and myogenic cells remains poorly understood during obesity. We identified NID-1 among the adipose tissue secreted factors impairing myogenic potential of human myoblasts and murine muscle stem cells in vitro. Mice under High Fat Diet (HFD) displayed increased NID-1 expression in the skeletal muscle endomysium associated with intramuscular fat adipose tissue expansion and compromised muscle stem cell function. We show that NID-1 is highly secreted by skeletal muscle fibro-adipogenic/mesenchymal progenitors (FAPs) during obesity. We demonstrate that increased muscle NID-1 impairs muscle stem cells proliferation and primes the fibrogenic differentiation of FAPs, giving rise to an excessive deposition of extracellular matrix. Finally, we propose a model in which obesity leads to skeletal muscle extracellular matrix remodeling by FAPs, mediating the alteration of myogenic function by adipose tissue and highlighting the key role of NID-1 in the crosstalk between adipose tissue and skeletal muscle.
Collapse
|
13
|
Wang Z, Li Q, Hao Y, Wang Z, Yang H, Liu J, Wang J. Protective effect of 5-heptadecylresorcinol against obesity-associated skeletal muscle dysfunction by modulating mitochondrial biogenesis via the activation of SIRT3/PGC-1α signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
14
|
Inhibition of Soluble Epoxide Hydrolase Is Protective against the Multiomic Effects of a High Glycemic Diet on Brain Microvascular Inflammation and Cognitive Dysfunction. Nutrients 2021; 13:nu13113913. [PMID: 34836168 PMCID: PMC8622784 DOI: 10.3390/nu13113913] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Diet is a modifiable risk factor for cardiovascular disease (CVD) and dementia, yet relatively little is known about the effect of a high glycemic diet (HGD) on the brain’s microvasculature. The objective of our study was to determine the molecular effects of an HGD on hippocampal microvessels and cognitive function and determine if a soluble epoxide hydrolase (sEH) inhibitor (sEHI), known to be vasculoprotective and anti-inflammatory, modulates these effects. Wild type male mice were fed a low glycemic diet (LGD, 12% sucrose/weight) or an HGD (34% sucrose/weight) with/without the sEHI, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), for 12 weeks. Brain hippocampal microvascular gene expression was assessed by microarray and data analyzed using a multi-omic approach for differential expression of protein and non-protein-coding genes, gene networks, functional pathways, and transcription factors. Global hippocampal microvascular gene expression was fundamentally different for mice fed the HGD vs. the LGD. The HGD response was characterized by differential expression of 608 genes involved in cell signaling, neurodegeneration, metabolism, and cell adhesion/inflammation/oxidation effects reversible by t-AUCB and hence sEH inhibitor correlated with protection against Alzheimer’s dementia. Ours is the first study to demonstrate that high dietary glycemia contributes to brain hippocampal microvascular inflammation through sEH.
Collapse
|
15
|
El Ayadi A, Tapking C, Prasai A, Rontoyanni VG, Abdelrahman DR, Cui W, Fang G, Bhattarai N, Murton AJ. Cafeteria Diet Impacts the Body Weight and Energy Expenditure of Brown Norway Rats in an Apparent Age Dependent Manner, but Has no Effect on Muscle Anabolic Sensitivity to Nutrition. Front Nutr 2021; 8:719612. [PMID: 34568406 PMCID: PMC8459992 DOI: 10.3389/fnut.2021.719612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
While obesity blunts the ability of muscle to mount a protein synthetic response to an amino acid infusion in older adults, it is unclear if this insensitivity to nutrition persists long term and in response to complete foods is unknown. To address this, young (2 months old) and old (17–20 months old) Brown Norway rats were randomized to receive either chow or a 12 wk diet of calorie-dense human foods. At wk 10 drinking water was supplemented with 2% heavy water, followed 2 weeks later by a flooding dose of [2H5]-phenylalanine and an oral leucine bolus, allowing the short and long-term effects of age and diet on muscle protein synthesis rates to be determined. The experimental diet increased energy intake in both young (7.4 ± 0.9%) and old (18.2 ± 1.8%) animals (P < 0.01), but only led to significant increases in body weight in the former (young: 10.2 ± 3.0% (P < 0.05) and old: 3.1 ± 5.1% (NS) vs. age-matched controls). Notably, energy expenditure in response to the cafeteria diet was increased in old animals only (chow: 5.1 ± 0.4; cafe: 8.2 ± 1.6 kcal.kg b.w−1.h−1; P < 0.05). Gastrocnemius protein fractional synthetic rates in response to either an acute leucine bolus or two weeks of feeding were equivalent across groups irrespective of age or diet. Rodents in old age appear capable of preventing weight gain in response to a calorie-dense diet by increasing energy expenditure while maintaining the anabolic sensitivity of muscle to nutrition; the mechanisms of which could have important implications for the aging obese human.
Collapse
Affiliation(s)
- Amina El Ayadi
- Department of Surgery, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Christian Tapking
- Department of Surgery, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Anesh Prasai
- Department of Surgery, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Victoria G Rontoyanni
- Department of Surgery, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Doaa R Abdelrahman
- Department of Surgery, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, United States
| | - Weihua Cui
- Department of Anesthesiology, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Geping Fang
- Department of Surgery, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Nisha Bhattarai
- Department of Surgery, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew J Murton
- Department of Surgery, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translation Sciences, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
16
|
Wei X, Yang B, Chen X, Wen L, Kan J. Zanthoxylum alkylamides ameliorate protein metabolism in type 2 diabetes mellitus rats by regulating multiple signaling pathways. Food Funct 2021; 12:3740-3753. [PMID: 33900301 DOI: 10.1039/d0fo02695f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) can easily induce insulin resistance (IR) in skeletal muscle, causing protein metabolism disorder and inflammation. The present study aimed to investigate whether Zanthoxylum alkylamides (ZA) could ameliorate T2DM through regulating protein metabolism disorder by using a rat model of T2DM. The predominant bioactive constituents found in ZA were hydroxyl-α-sanshool, hydroxyl-β-sanshool and hydroxyl-γ-sanshool. The results showed that ZA improved a series of biochemical indices associated with protein metabolism and inflammation in T2DM rats. Our mechanistic finding indicated that ZA promoted protein anabolism in T2DM rats by up-regulating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. ZA also promoted glucose transportation in skeletal muscle to ameliorate skeletal muscle IR and energy metabolism through regulating the AMP-activated protein kinase (AMPK) signaling pathway. Moreover, ZA inhibited protein degradation and improved protein catabolism disorder in T2DM rats by down-regulating the PI3K/Akt/forkhead box O (FoxO) signaling pathway, and ZA further ameliorated inflammation to inhibit protein catabolism via regulating the tumor necrosis factor α (TNF-α)/nuclear factor κB (NF-κB) pathway in the skeletal muscle of T2DM rats. Collectively, the ameliorating effect of ZA on protein metabolism disorder in T2DM rats was the common result of regulating multiple signaling pathways. ZA decreased skeletal muscle IR to promote protein anabolism and inhibit protein catabolism for improving protein metabolism disorder, thus ultimately ameliorating T2DM. In sum, our findings demonstrated that ZA treatment could effectively ameliorate T2DM through improving protein metabolism, providing a new treatment target for T2DM.
Collapse
Affiliation(s)
- Xunyu Wei
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China.
| | | | | | | | | |
Collapse
|