1
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Use of human airway smooth muscle in vitro and ex vivo to investigate drugs for the treatment of chronic obstructive respiratory disorders. Br J Pharmacol 2024; 181:610-639. [PMID: 37859567 DOI: 10.1111/bph.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Isolated airway smooth muscle has been extensively investigated since 1840 to understand the pharmacology of airway diseases. There has often been poor predictability from murine experiments to drugs evaluated in patients with asthma or chronic obstructive pulmonary disease (COPD). However, the use of isolated human airways represents a sensible strategy to optimise the development of innovative molecules for the treatment of respiratory diseases. This review aims to provide updated evidence on the current uses of isolated human airways in validated in vitro methods to investigate drugs in development for the treatment of chronic obstructive respiratory disorders. This review also provides historical notes on the pioneering pharmacological research on isolated human airway tissues, the key differences between human and animal airways, as well as the pivotal differences between human medium bronchi and small airways. Experiments carried out with isolated human bronchial tissues in vitro and ex vivo replicate many of the main anatomical, pathophysiological, mechanical and immunological characteristics of patients with asthma or COPD. In vitro models of asthma and COPD using isolated human airways can provide information that is directly translatable into humans with obstructive lung diseases. Regardless of the technique used to investigate drugs for the treatment of chronic obstructive respiratory disorders (i.e., isolated organ bath systems, videomicroscopy and wire myography), the most limiting factors to produce high-quality and repeatable data remain closely tied to the manual skills of the researcher conducting experiments and the availability of suitable tissue.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
2
|
Chitano P, Wang L, Tin GYY, Ikebe M, Paré PD, Seow CY. Smooth muscle function and myosin polymerization. J Cell Sci 2017; 130:2468-2480. [DOI: 10.1242/jcs.202812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/01/2017] [Indexed: 01/28/2023] Open
Abstract
Smooth muscle is able to function over a much broader length range than striated muscle. The ability to maintain contractility after a large length change is thought to be due to an adaptive process involving restructuring of the contractile apparatus to maximize overlap between the contractile filaments. The molecular mechanism for the length-adaptive behavior is largely unknown. In smooth muscle adapted to different lengths we quantified myosin monomers, basal and activation-induced myosin light chain (MLC) phosphorylation, shortening-velocity, power-output and active force. The muscle was able to generate a constant maximal force over a 2-fold length range when it was allowed to go through isometric contraction/relaxation cycles after each length change (length adaptation). In the relaxed state myosin monomer concentration and basal MLC phosphorylation decreased linearly, while in the activated state activation-induced MLC phosphorylation and shortening-velocity/power-output increased linearly with muscle length. The results suggest that recruitment of myosin monomers and oligomers into the actin filament lattice (where they form force-generating filaments) occurs during muscle adaptation to longer length with the opposite occurring during adaptation to shorter length.
Collapse
Affiliation(s)
- Pasquale Chitano
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Lu Wang
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gabrielle Y. Y. Tin
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, Texas, USA
| | - Peter D. Paré
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y. Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Stålhand J, Holzapfel GA. Length adaptation of smooth muscle contractile filaments in response to sustained activation. J Theor Biol 2016; 397:13-21. [PMID: 26925813 DOI: 10.1016/j.jtbi.2016.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/10/2016] [Accepted: 02/22/2016] [Indexed: 11/25/2022]
Abstract
Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adaptation of vascular smooth muscle has attracted very little attention and only a handful of studies have been reported. Although their results are conflicting on the existence of a length adaptation process in vascular smooth muscle, it seems that, at least, peripheral arteries and arterioles undergo such adaptation. This is of interest since peripheral vessels are responsible for pressure regulation, and a length adaptation will affect the function of the cardiovascular system. It has, e.g., been suggested that the inward remodelling of resistance vessels associated with hypertension disorders may be related to smooth muscle adaptation. In this study we develop a continuum mechanical model for vascular smooth muscle length adaptation by assuming that the muscle cells remodel the actomyosin network such that the peak of the active stress-stretch curve is shifted towards the operating point. The model is specialised to hamster cheek pouch arterioles and the simulated response to stepwise length changes under contraction. The results show that the model is able to recover the salient features of length adaptation reported in the literature.
Collapse
Affiliation(s)
- Jonas Stålhand
- Solid Mechanics, Department of Management and Engineering, Linköping University, Linköping, Sweden.
| | | |
Collapse
|
4
|
Mayne R, Adamatzky A, Jones J. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum. Commun Integr Biol 2015; 8:e1059007. [PMID: 26478782 PMCID: PMC4594612 DOI: 10.1080/19420889.2015.1059007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022] Open
Abstract
The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently ‘intelligent’ behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton—a ubiquitous cellular protein scaffold whose functions are manifold and essential to life—and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness.
Collapse
Affiliation(s)
- Richard Mayne
- International Center of Unconventional Computing; University of the West of England ; Bristol, UK
| | - Andrew Adamatzky
- International Center of Unconventional Computing; University of the West of England ; Bristol, UK
| | - Jeff Jones
- International Center of Unconventional Computing; University of the West of England ; Bristol, UK
| |
Collapse
|
5
|
Abstract
Imposed length changes of only a small percent produce transient reductions in active force in strips of airway smooth muscle (ASM) due to the temporary detachment of bound cross-bridges caused by the relative motion of the actin and myosin fibers. More dramatic and sustained reductions in active force occur following large changes in length. The Huxley two-state model of skeletal muscle originally proposed in 1957 and later adapted to include a four-state description of cross-bridge kinetics has been widely used to model the former phenomenon, but is unable to account for the latter unless modified to include mechanisms by which the contractile machinery in the ASM cell becomes appropriately rearranged. Even so, the Huxley model itself is based on the assumption that the contractile proteins are all aligned precisely in the direction of bulk force generation, which is not true for ASM. The present study derives a coarse-grained version of the Huxley model that is free of inherent assumptions about cross-bridge orientation. This simplified model recapitulates the key features observed in the force-length behavior of activated strips of ASM and, in addition, provides a mechanistically based way of accounting for the sustained force reductions that occur following large stretch.
Collapse
Affiliation(s)
- Jason H T Bates
- Vermont Lung Center, Department of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
6
|
Li Y, Huang G, Zhang X, Wang L, Du Y, Lu TJ, Xu F. Engineering cell alignment in vitro. Biotechnol Adv 2014; 32:347-65. [DOI: 10.1016/j.biotechadv.2013.11.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 01/03/2023]
|
7
|
Donovan GM. Modelling airway smooth muscle passive length adaptation via thick filament length distributions. J Theor Biol 2013; 333:102-8. [PMID: 23721681 DOI: 10.1016/j.jtbi.2013.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/28/2013] [Accepted: 05/18/2013] [Indexed: 11/16/2022]
Abstract
We present a new model of airway smooth muscle (ASM), which surrounds and constricts every airway in the lung and thus plays a central role in the airway constriction associated with asthma. This new model of ASM is based on an extension of sliding filament/crossbridge theory, which explicitly incorporates the length distribution of thick sliding filaments to account for a phenomenon known as dynamic passive length adaptation; the model exhibits good agreement with experimental data for ASM force-length behaviour across multiple scales. Principally these are (nonlinear) force-length loops at short timescales (seconds), parabolic force-length curves at medium timescales (minutes) and length adaptation at longer timescales. This represents a significant improvement on the widely-used crossbridge models which work so well in or near the isometric regime, and may have significant implications for studies which rely on crossbridge or other dynamic airway smooth muscle models, and thus both airway and lung dynamics.
Collapse
|
8
|
Ijpma G, Lauzon AM. The rise of passive airway smooth muscle mechanics. J Appl Physiol (1985) 2011; 112:335-6. [PMID: 22052866 DOI: 10.1152/japplphysiol.01338.2011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Ijpma G, Al-Jumaily AM, Cairns SP, Sieck GC. Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle. J Appl Physiol (1985) 2011; 111:735-42. [PMID: 21659490 DOI: 10.1152/japplphysiol.00114.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Length adaptation in airway smooth muscle (ASM) is attributed to reorganization of the cytoskeleton, and in particular the contractile elements. However, a constantly changing lung volume with tidal breathing (hence changing ASM length) is likely to restrict full adaptation of ASM for force generation. There is likely to be continuous length adaptation of ASM between states of incomplete or partial length adaption. We propose a new model that assimilates findings on myosin filament polymerization/depolymerization, partial length adaptation, isometric force, and shortening velocity to describe this continuous length adaptation process. In this model, the ASM adapts to an optimal force-generating capacity in a repeating cycle of events. Initially the myosin filament, shortened by prior length changes, associates with two longer actin filaments. The actin filaments are located adjacent to the myosin filaments, such that all myosin heads overlap with actin to permit maximal cross-bridge cycling. Since in this model the actin filaments are usually longer than myosin filaments, the excess length of the actin filament is located randomly with respect to the myosin filament. Once activated, the myosin filament elongates by polymerization along the actin filaments, with the growth limited by the overlap of the actin filaments. During relaxation, the myosin filaments dissociate from the actin filaments, and then the cycle repeats. This process causes a gradual adaptation of force and instantaneous adaptation of shortening velocity. Good agreement is found between model simulations and the experimental data depicting the relationship between force development, myosin filament density, or shortening velocity and length.
Collapse
Affiliation(s)
- Gijs Ijpma
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| | | | | | | |
Collapse
|
10
|
Kang J, Steward RL, Kim Y, Schwartz RS, LeDuc PR, Puskar KM. Response of an actin filament network model under cyclic stretching through a coarse grained Monte Carlo approach. J Theor Biol 2011; 274:109-19. [PMID: 21241710 PMCID: PMC3501734 DOI: 10.1016/j.jtbi.2011.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 02/03/2023]
Abstract
Cells are complex, dynamic systems that actively adapt to various stimuli including mechanical alterations. Central to understanding cellular response to mechanical stimulation is the organization of the cytoskeleton and its actin filament network. In this manuscript, we present a minimalistic network Monte Carlo based approach to model actin filament organization under cyclic stretching. Utilizing a coarse-grained model, a filament network is prescribed within a two-dimensional circular space through nodal connections. When cyclically stretched, the model demonstrates that a perpendicular alignment of the filaments to the direction of stretch emerges in response to nodal repositioning to minimize net nodal forces from filament stress states. In addition, the filaments in the network rearrange and redistribute themselves to reduce the overall stress by decreasing their individual stresses. In parallel, we cyclically stretch NIH 3T3 fibroblasts and find a similar cytoskeletal response. With this work, we test the hypothesis that a first-principles mechanical model of filament assembly in a confined space is by itself capable of yielding the remodeling behavior observed experimentally. Identifying minimal mechanisms sufficient to reproduce mechanical influences on cellular structure has important implications in a diversity of fields, including biology, physics, medicine, computer science, and engineering.
Collapse
Affiliation(s)
- John Kang
- Lane Center for Computational Biology, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
- Medical Scientist Training Program, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Robert L. Steward
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - YongTae Kim
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Russell S. Schwartz
- Lane Center for Computational Biology, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Philip R. LeDuc
- Lane Center for Computational Biology, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Kathleen M. Puskar
- Department of Mechanical Engineering, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, California 91768, USA
| |
Collapse
|
11
|
Kroon M. Optimal length of smooth muscle assessed by a microstructurally and statistically based constitutive model. Comput Methods Biomech Biomed Engin 2011; 14:43-52. [DOI: 10.1080/10255842.2010.493521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Kroon M. Influence of dispersion in myosin filament orientation and anisotropic filament contractions in smooth muscle. J Theor Biol 2010; 272:72-82. [PMID: 21130097 DOI: 10.1016/j.jtbi.2010.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/06/2010] [Accepted: 11/28/2010] [Indexed: 10/18/2022]
Abstract
A new constitutive model for the biomechanical behaviour of smooth muscle tissue is proposed. The active muscle contraction is accomplished by the relative sliding between actin and myosin filaments, comprising contractile units in the smooth muscle cells. The orientation of the myosin filaments, and thereby the contractile units, are taken to exhibit a statistical dispersion around a preferred direction. The number of activated cross-bridges between the actin and myosin filaments governs the contractile force generated by the muscle and also the contraction speed. A strain-energy function is used to describe the mechanical behaviour of the smooth muscle tissue. Besides the active contractile apparatus, the mechanical model also incorporates a passive elastic part. The constitutive model was compared to histological and isometric tensile test results for smooth muscle tissue from swine carotid artery. In order to be able to predict the active stress at different muscle lengths, a filament dispersion significantly larger than the one observed experimentally was required. Furthermore, a comparison of the predicted active stress for a case of uniaxially oriented myosin filaments and a case of filaments with a dispersion based on the experimental histological data shows that the difference in generated stress is noticeable but limited. Thus, the results suggest that myosin filament dispersion alone cannot explain the increase in active muscle stress with increasing muscle stretch.
Collapse
Affiliation(s)
- Martin Kroon
- Department of Solid Mechanics, Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
13
|
Almasri AM, Ratz PH, Speich JE. Length adaptation of the passive-to-active tension ratio in rabbit detrusor. Ann Biomed Eng 2010; 38:2594-605. [PMID: 20387122 DOI: 10.1007/s10439-010-0021-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/19/2010] [Indexed: 02/04/2023]
Abstract
The passive and active length-tension (L-T (p) and L-T (a)) relationships in airway, vascular, and detrusor smooth muscles can adapt with length changes and/or multiple contractions. The present objectives were to (1) determine whether short-term adaptation at one muscle length shifts the entire L-T (a) curve in detrusor smooth muscle (DSM), (2) compare adaptation at shorter versus longer lengths, and (3) determine the effect of adaptation on the T (p)/T (a) ratio. Results showed that multiple KCl-induced contractions on the descending limb of the original L-T (a) curve adapted DSM strips to that length and shifted the L-T (a) curve rightward. Peak T (a) at the new length was not different from the original peak T (a), and the L-T (p) curve shifted rightward with the L-T (a) curve. Multiple contractions on the ascending limb increased both T (a) and T (p). In contrast, multiple contractions on the descending limb increased T (a) but decreased T (p). The T (p)/T (a) ratio on the original descending limb adapted from 0.540 +/- 0.084 to 0.223 +/- 0.033 (mean +/- SE, n = 7), such that it was not different from the ratio of 0.208 +/- 0.033 at the original peak T (a) length, suggesting a role of length adaptation may be to maintain a desirable T (p)/T (a) ratio as the bladder fills and voids over a broad DSM length range.
Collapse
Affiliation(s)
- Atheer M Almasri
- Department of Mechanical Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA 23284-3015, USA
| | | | | |
Collapse
|
14
|
Speich JE, Almasri AM, Bhatia H, Klausner AP, Ratz PH. Adaptation of the length-active tension relationship in rabbit detrusor. Am J Physiol Renal Physiol 2009; 297:F1119-28. [PMID: 19675182 DOI: 10.1152/ajprenal.00298.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies have shown that the length-tension (L-T) relationships in airway and vascular smooth muscles are dynamic and can adapt to length changes over a period of time. Our prior studies have shown that the passive L-T relationship in rabbit detrusor smooth muscle (DSM) is also dynamic and that DSM exhibits adjustable passive stiffness (APS) characterized by a passive L-T curve that can shift along the length axis as a function of strain history and activation history. The present study demonstrates that the active L-T curve for DSM is also dynamic and that the peak active tension produced at a particular muscle length is a function of both strain and activation history. More specifically, this study reveals that the active L-T relationship, or curve, does not have a unique peak tension value with a single ascending and descending limb, but instead reveals that multiple ascending and descending limbs can be exhibited in the same DSM strip. This study also demonstrates that for DSM strips not stretched far enough to reveal a descending limb, the peak active tension produced by a maximal KCl-induced contraction at a short, passively slack muscle length of 3 mm was reduced by 58.6 +/- 4.1% (n = 15) following stretches to and contractions at threefold the original muscle length, 9 mm. Moreover, five subsequent contractions at the short muscle length displayed increasingly greater tension; active tension produced by the sixth contraction was 91.5 +/- 9.1% of that produced by the prestretch contraction at that length. Together, these findings indicate for the first time that DSM exhibits length adaptation, similar to vascular and airway smooth muscles. In addition, our findings demonstrate that preconditioning, APS and adaptation of the active L-T curve can each impact the maximum total tension observed at a particular DSM length.
Collapse
Affiliation(s)
- John E Speich
- Department of Mechanical Engineering, Virginia Commonwealth University, 401 W. Main St., PO Box 843015, Richmond, VA 23284-3015, USA.
| | | | | | | | | |
Collapse
|
15
|
Cooper PR, McParland BE, Mitchell HW, Noble PB, Politi AZ, Ressmeyer AR, West AR. Airway mechanics and methods used to visualize smooth muscle dynamics in vitro. Pulm Pharmacol Ther 2008; 22:398-406. [PMID: 19041411 DOI: 10.1016/j.pupt.2008.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 09/01/2008] [Indexed: 11/24/2022]
Abstract
Contraction of airway smooth muscle (ASM) is regulated by the physiological, structural and mechanical environment in the lung. We review two in vitro techniques, lung slices and airway segment preparations, that enable in situ ASM contraction and airway narrowing to be visualized. Lung slices and airway segment approaches bridge a gap between cell culture and isolated ASM, and whole animal studies. Imaging techniques enable key upstream events involved in airway narrowing, such as ASM cell signalling and structural and mechanical events impinging on ASM, to be investigated.
Collapse
Affiliation(s)
- P R Cooper
- Department of Medicine and the Airway Biology Initiative, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Ali F, Chin L, Paré PD, Seow CY. Mechanism of partial adaptation in airway smooth muscle after a step change in length. J Appl Physiol (1985) 2007; 103:569-77. [PMID: 17495118 DOI: 10.1152/japplphysiol.00216.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phenomenon of length adaptation in airway smooth muscle (ASM) is well documented; however, the underlying mechanism is less clear. Evidence to date suggests that the adaptation involves reassembly of contractile filaments, leading to reconfiguration of the actin filament lattice and polymerization or depolymerization of the myosin filaments within the lattice. The time courses for these events are unknown. To gain insights into the adaptation process, we examined ASM mechanical properties and ultrastructural changes during adaptation. Step changes in length were applied to isolated bundles of ASM cells; changes in force, shortening velocity, and myosin filament mass were then quantified. A greater decrease in force was found following an acute decrease in length, compared with that of an acute increase in length. A decrease in myosin filament mass was also found with an acute decrease in length. The shortening velocity measured immediately after the length change was the same as that measured after the muscle had fully adapted to the new length. These observations can be explained by a model in which partial adaptation of the muscle leads to an intermediate state in which reconfiguration of the myofilament lattice occurred rapidly, followed by a relatively slow process of polymerization of myosin filaments within the lattice. The partially adapted intermediate state is perhaps more physiologically relevant than the fully adapted state seen under static conditions, and it simulates a more realistic behavior for ASM in vivo.
Collapse
Affiliation(s)
- Farah Ali
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
17
|
An S, Bai T, Bates J, Black J, Brown R, Brusasco V, Chitano P, Deng L, Dowell M, Eidelman D, Fabry B, Fairbank N, Ford L, Fredberg J, Gerthoffer W, Gilbert S, Gosens R, Gunst S, Halayko A, Ingram R, Irvin C, James A, Janssen L, King G, Knight D, Lauzon A, Lakser O, Ludwig M, Lutchen K, Maksym G, Martin J, Mauad T, McParland B, Mijailovich S, Mitchell H, Mitchell R, Mitzner W, Murphy T, Paré P, Pellegrino R, Sanderson M, Schellenberg R, Seow C, Silveira P, Smith P, Solway J, Stephens N, Sterk P, Stewart A, Tang D, Tepper R, Tran T, Wang L. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 2007; 29:834-60. [PMID: 17470619 PMCID: PMC2527453 DOI: 10.1183/09031936.00112606] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not "cure" asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.
Collapse
Affiliation(s)
- S.S. An
- Division of Physiology, Dept of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health
| | - T.R. Bai
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - J.H.T. Bates
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT
| | - J.L. Black
- Dept of Pharmacology, University of Sydney, Sydney
| | - R.H. Brown
- Dept of Anesthesiology and Critical Care medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - V. Brusasco
- Dept of Internal Medicine, University of Genoa, Genoa
| | - P. Chitano
- Dept of Paediatrics, Duke University Medical Center, Durham, NC
| | - L. Deng
- Program in Molecular and Integrative Physiological Sciences, Dept of Environmental Health, Harvard School of Public Health
- Bioengineering College, Chongqing University, Chongqing, China
| | - M. Dowell
- Section of Pulmonary and Critical Care Medicine
| | - D.H. Eidelman
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - B. Fabry
- Center for Medical Physics and Technology, Erlangen, Germany
| | - N.J. Fairbank
- School of Biomedical Engineering, Dalhousie University, Halifax
| | | | - J.J. Fredberg
- Program in Molecular and Integrative Physiological Sciences, Dept of Environmental Health, Harvard School of Public Health
| | - W.T. Gerthoffer
- Dept of Pharmacology, University of Nevada School of Medicine, Reno, NV
| | | | - R. Gosens
- Dept of Physiology, University of Manitoba, Winnipeg
| | - S.J. Gunst
- Dept of Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - A.J. Halayko
- Dept of Physiology, University of Manitoba, Winnipeg
| | - R.H. Ingram
- Dept of Medicine, Emory University School of Medicine, Atlanta, GA
| | - C.G. Irvin
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT
| | - A.L. James
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands
| | - L.J. Janssen
- Dept of Medicine, McMaster University, Hamilton, Canada
| | - G.G. King
- Woolcock Institute of Medical Research, Camperdown
| | - D.A. Knight
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - A.M. Lauzon
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - O.J. Lakser
- Section of Paediatric Pulmonary Medicine, University of Chicago, Chicago, IL
| | - M.S. Ludwig
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - K.R. Lutchen
- Dept of Biomedical Engineering, Boston University, Boston
| | - G.N. Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax
| | - J.G. Martin
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - T. Mauad
- Dept of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | | | - S.M. Mijailovich
- Program in Molecular and Integrative Physiological Sciences, Dept of Environmental Health, Harvard School of Public Health
| | - H.W. Mitchell
- Discipline of Physiology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Perth
| | | | - W. Mitzner
- Division of Physiology, Dept of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health
| | - T.M. Murphy
- Dept of Paediatrics, Duke University Medical Center, Durham, NC
| | - P.D. Paré
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - R. Pellegrino
- Dept of Respiratory Physiopathology, S. Croce e Carle Hospital, Cuneo, Italy
| | - M.J. Sanderson
- Dept of Physiology, University of Massachusetts Medical School, Worcester, MA
| | - R.R. Schellenberg
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - C.Y. Seow
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - P.S.P. Silveira
- Dept of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - P.G. Smith
- Dept of Paediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - J. Solway
- Section of Pulmonary and Critical Care Medicine
| | - N.L. Stephens
- Dept of Physiology, University of Manitoba, Winnipeg
| | - P.J. Sterk
- Dept of Pulmonology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A.G. Stewart
- Dept of Pharmacology, University of Melbourne, Parkville, Australia
| | - D.D. Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY, USA
| | - R.S. Tepper
- Dept of Paediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - T. Tran
- Dept of Physiology, University of Manitoba, Winnipeg
| | - L. Wang
- Dept of Paediatrics, Duke University Medical Center, Durham, NC
| |
Collapse
|
18
|
Speich JE, Dosier C, Borgsmiller L, Quintero K, Koo HP, Ratz PH. Adjustable passive length-tension curve in rabbit detrusor smooth muscle. J Appl Physiol (1985) 2007; 102:1746-55. [PMID: 17234807 DOI: 10.1152/japplphysiol.00548.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Until the 1990s, the passive and active length-tension (L-T) relationships of smooth muscle were believed to be static, with a single passive force value and a single maximum active force value for each muscle length. However, recent studies have demonstrated that the active L-T relationship in airway smooth muscle is dynamic and adapts to length changes over a period of time. Furthermore, our prior work showed that the passive L-T relationship in rabbit detrusor smooth muscle (DSM) is also dynamic and that in addition to viscoelastic behavior, DSM displays strain-softening behavior characterized by a loss of passive stiffness at shorter lengths following a stretch to a new longer length. This loss of passive stiffness appears to be irreversible when the muscle is not producing active force and during submaximal activation but is reversible on full muscle activation, which indicates that the stiffness component of passive force lost to strain softening is adjustable in DSM. The present study demonstrates that the passive L-T curve for DSM is not static and can shift along the length axis as a function of strain history and activation history. This study also demonstrates that adjustable passive stiffness (APS) can modulate total force (35% increase) for a given muscle length, while active force remains relatively unchanged (4% increase). This finding suggests that the structures responsible for APS act in parallel with the contractile apparatus, and the results are used to further justify the configuration of modeling elements within our previously proposed mechanical model for APS.
Collapse
Affiliation(s)
- John E Speich
- Dept. of Mechanical Engineering, Virginia Commonwealth University, Richmond, VA 23284-3015, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Silveira PSP, Fredberg JJ. Smooth muscle length adaptation and actin filament length: a network model of the cytoskeletal dysregulation. Can J Physiol Pharmacol 2006; 83:923-31. [PMID: 16333364 DOI: 10.1139/y05-092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Length adaptation of the airway smooth muscle cell is attributable to cytoskeletal remodeling. It has been proposed that dysregulated actin filaments may become longer in asthma, and that such elongation would prevent a parallel-to-series transition of contractile units, thus precluding the well-known beneficial effects of deep inspirations and tidal breathing. To test the potential effect that actin filament elongation could have in overall muscle mechanics, we present an extremely simple model. The cytoskeleton is represented as a 2-D network of links (contractile filaments) connecting nodes (adhesion plaques). Such a network evolves in discrete time steps by forming and dissolving links in a stochastic fashion. Links are formed by idealized contractile units whose properties are either those from normal or elongated actin filaments. Oscillations were then imposed on the network to evaluate both the effects of breathing and length adaptation. In response to length oscillation, a network with longer actin filaments showed smaller decreases of force, smaller increases in compliance, and higher shortening velocities. Taken together, these changes correspond to a network that is refractory to the effects of breathing and therefore approximates an asthmatic scenario. Thus, an extremely simple model seems to capture some relatively complex mechanics of airway smooth muscle, supporting the idea that dysregulation of actin filament length may contribute to excessive airway narrowing.
Collapse
Affiliation(s)
- Paulo S P Silveira
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | |
Collapse
|