1
|
Brenner RJ, Balan KA, Andersen MPL, Dugrenot E, Vrijdag XCE, Van Waart H, Tillmans F. A review of nutritional recommendations for scuba divers. J Int Soc Sports Nutr 2024; 21:2402386. [PMID: 39314069 PMCID: PMC11423531 DOI: 10.1080/15502783.2024.2402386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Scuba diving is an increasingly popular activity that involves the use of specialized equipment and compressed air to breathe underwater. Scuba divers are subject to the physiological consequences of being immersed in a high-pressure environment, including, but not limited to, increased work of breathing and kinetic energy expenditure, decreased fluid absorption, and alteration of metabolism. Individual response to these environmental stressors may result in a differential risk of decompression sickness, a condition thought to result from excess nitrogen bubbles forming in a diver's tissues. While the mechanisms of decompression sickness are still largely unknown, it has been postulated that this response may further be influenced by the diver's health status. Nutritional intake has direct relevancy to inflammation status and oxidative stress resistance, both of which have been associated with increased decompression stress. While nutritional recommendations have been determined for saturation divers, these recommendations are likely overly robust for recreational divers, considering that the differences in time spent under pressure and the maximum depth could result nonequivalent energetic demands. Specific recommendations for recreational divers remain largely undefined. METHODS This narrative review will summarize existing nutritional recommendations and their justification for recreational divers, as well as identify gaps in research regarding connections between nutritional intake and the health and safety of divers. RESULTS Following recommendations made by the Institute of Medicine and the Naval Medical Research Institute of Bethesda, recreational divers are advised to consume ~170-210 kJ·kg-1 (40-50 kcal·kg-1) body mass, depending on their workload underwater, in a day consisting of 3 hours' worth of diving above 46 msw. Recommendations for macronutrient distribution for divers are to derive 50% of joules from carbohydrates and less than 30% of joules from fat. Protein consumption is recommended to reach a minimum of 1 g of protein·kg-1 of body mass a day to mitigate loss of appetite while meeting energetic requirements. All divers should take special care to hydrate themselves with an absolute minimum of 500 ml of fluid per hour for any dive longer than 3 hours, with more recent studies finding 0.69 liters of water two hours prior to diving is most effective to minimize bubble loads. While there is evidence that specialized diets may have specific applications in commercial or military diving, they are not advisable for the general recreational diving population considering the often extreme nature of these diets, and the lack of research on their effectiveness on a recreational diving population. CONCLUSIONS Established recommendations do not account for changes in temperature, scuba equipment, depth, dive time, work of breathing, breathing gas mix, or individual variation in metabolism. Individual recommendations may be more accurate when accounting for basal metabolic rate and physical activity outside of diving. However, more research is needed to validate these estimates against variation in dive profile and diver demographics.
Collapse
Affiliation(s)
| | | | - Marie P. L. Andersen
- Divers Alert Network, Research, Durham, NC, USA
- The University of North Carolina at Chapel Hill, Gillings School of Public Health, Chapel Hill, NC, USA
| | - Emmanuel Dugrenot
- Divers Alert Network, Research, Durham, NC, USA
- University of Brest, ORPHY’s Laboratory, Brest, France
- The University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, NC, USA
| | - Xavier C. E. Vrijdag
- The University of Auckland, Department of Anaesthesiology, Auckland, New Zealand
| | - Hanna Van Waart
- The University of Auckland, Department of Anaesthesiology, Auckland, New Zealand
| | - Frauke Tillmans
- Divers Alert Network, Research, Durham, NC, USA
- The University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Demir N, Kayhan B, Acar M, Sevincli S, Sonmez M. Retinal Layer and Choroidal Changes in Deep and Scuba Divers: Evidence of Pachychoroid Spectrum-Like Findings. J Ophthalmol 2024; 2024:1600148. [PMID: 39583640 PMCID: PMC11584252 DOI: 10.1155/2024/1600148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose: Diving is an intense physical activity under hyperbaric and hyperoxic conditions. The aim of this study is to evaluate the long-term effects of diving on the thicknesses of retinal layers and retinal anatomy in professional deep and scuba divers. Methods: The study included 52 eyes of deep divers who dive to depths of more than 130 feet (ft), 49 eyes of scuba divers who dive up to 130 ft, and 66 eyes of the control group, consisting of nondiving but regularly exercising males. Measurements of macular retinal layer thicknesses, peripapillary nerve fiber layer thickness, subfoveal choroidal thickness, and peripheral retinal examinations with scleral indentation were performed and statistically compared between the groups. Results: The mean diving duration was 455.00 ± 318.88 h in deep divers and 451.67 ± 281.10 h in scuba divers. The retinal pigment epithelium (RPE) was statistically significantly thicker in deep divers than in scuba divers and the control group on the 3 mm ring of the Early Treatment Diabetic Retinopathy Study grid. Subfoveal choroidal thickness was significantly thicker in deep divers than in scuba divers (p < 0.05). RPE abnormalities showed a significant increase in both the deep and scuba diver groups (p=0.01). Conclusion: An increased thickening of the subfoveal choroid and RPE, resembling pachychoroid pigment epitheliopathy, was detected in deep divers over a long-term duration.
Collapse
Affiliation(s)
- Nur Demir
- Ophthalmology Department, Sultan Abdulhamid Han Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Belma Kayhan
- Ophthalmology Department, Sultan Abdulhamid Han Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Mertan Acar
- Underwater and Hyperbaric Medicine Department, Marine Rescue and Underwater Command, Istanbul, Türkiye
| | - Sukru Sevincli
- Ophthalmology Department, Sultan Abdulhamid Han Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| | - Murat Sonmez
- Ophthalmology Department, Sultan Abdulhamid Han Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
3
|
Dugrenot E, Guernec A, Orsat J, Guerrero F. Gene expression of Decompression Sickness-resistant rats through a miRnome/transcriptome crossed approach. Commun Biol 2024; 7:1245. [PMID: 39358457 PMCID: PMC11446962 DOI: 10.1038/s42003-024-06963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Susceptibility to decompression sickness (DCS) is characterized by a wide inter-individual variability, the origins of which are still poorly understood. We selectively bred rats with at least a 3-fold greater resistance to DCS than standard rats after 6 generations. In order to better understand DCS mechanisms, we compared the static genome expression of these resistant rats from the 10th generation to their counterparts of the initial non-resistant Wistar strain, by a microarray transcriptomic approach coupled and crossed with a PCR plates miRnome study. Thus, we identified differentially expressed genes on selected males and females, as well as gender differences in those genes, and we crossed these transcripts with the respective targets of the differentially expressed microRNAs. Our results highlight pathways involved in inflammatory responses, circadian clock, cell signaling and motricity, phagocytosis or apoptosis, and they confirm the importance of inflammation in DCS pathophysiology.
Collapse
Affiliation(s)
- Emmanuel Dugrenot
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France.
- Tek Diving SAS, Brest, France.
- Divers Alert Network, Durham, NC, USA.
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC, USA.
| | - Anthony Guernec
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| | - Jérémy Orsat
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| | - François Guerrero
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| |
Collapse
|
4
|
Allam A, Ali AA, Abdel Baky NA, Balah A. Omeprazole induces profibrotic gene expression in rat kidney: implication of TGF-β/Smad signaling pathway. Drug Chem Toxicol 2024; 47:748-755. [PMID: 37982208 DOI: 10.1080/01480545.2023.2282377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Proton pump inhibitors (PPIs) are one of the most commonly prescribed medications. However, PPI usage is linked to a higher risk of both acute and chronic renal damage by mechanisms not entirely known. The present study demonstrates that omeprazole (10 mg/kg body weight, i.p.) causes TGF-β/Smad signaling activation and subsequent expression of the profibrotic genes CTGF and TIMP-1 in rat kidney. Increased production of CTGF and TIMP-1 accompany activation of the TGF-β/Smad signaling cascade. However, simultaneous treatment of omeprazole and the TGF-β inhibitor, disitertide (P144) (1 mg/kg body weight i.p.) suppresses the TGF-β/Smad signaling pathway and subsequent production of CTGF and TIMP-1. Additionally, TGF-β level in rat kidney was highly reduced in animals treated with the ROS (reactive oxygen species) scavenger, N-acetyl cysteine (NAC) (100 mg/kg body weight i.p.) before omeprazole administration. Furthermore, the reduction in SOD activity brought by omeprazole was returned to the normal level in those animals. However, MDA level increased by omeprazole was highly reduced in the presence of NAC. Collectively, the current findings demonstrate that omeprazole has the ability to promote the expression of the profibrotic genes CTGF and TIMP-1 in a ROS and TGF-β dependent manner. The present study suggests the co-use of ROS scavenger to improve the therapeutic use of the PPI omeprazole.
Collapse
Affiliation(s)
- Albatoul Allam
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Azza A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Naira A Abdel Baky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amany Balah
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Aziz N, Wal P, Sinha R, Shirode PR, Chakraborthy G, Sharma MC, Kumar P. A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke. Curr Protein Pept Sci 2024; 25:682-707. [PMID: 38766817 DOI: 10.2174/0113892037287215240424090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Rishika Sinha
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | | | | | | | - Pankaj Kumar
- Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh 6 University, NH-7, Barnala Road, Bathinda 151001, India
| |
Collapse
|
6
|
Velázquez-Wallraf A, Caballero MJ, Fernández A, Betancor MB, Saavedra P, Hemingway HW, Bernaldo de Quirós Y. Biomarkers related to gas embolism: Gas score, pathology, and gene expression in a gas bubble disease model. PLoS One 2023; 18:e0288659. [PMID: 37440588 DOI: 10.1371/journal.pone.0288659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Fish exposed to water supersaturated with dissolved gas experience gas embolism similar to decompression sickness (DCS), known as gas bubble disease (GBD) in fish. GBD has been postulated as an alternative to traditional mammals' models on DCS. Gas embolism can cause mechanical and biochemical damage, generating pathophysiological responses. Increased expression of biomarkers of cell damage such as the heat shock protein (HSP) family, endothelin 1 (ET-1) or intercellular adhesion molecule 1 (ICAM-1) has been observed, being a possible target for further studies of gas embolism. The GBD model consisted of exposing fish to supersaturation in water with approximately 170% total dissolved gas (TDG) for 18 hours, producing severe gas embolism. This diagnosis was confirmed by a complete histopathological exam and the gas score method. HSP70 showed a statistically significant upregulation compared to the control in all the studied organs (p <0.02). Gills and heart showed upregulation of HSP90 with statistical significance (p = 0.015 and p = 0.02, respectively). In addition, HSP70 gene expression in gills was positively correlated with gas score (p = 0.033). These results suggest that gas embolism modify the expression of different biomarkers, with HSP70 being shown as a strong marker of this process. Furthermore, gas score is a useful tool to study the abundance of gas bubbles, although individual variability always remains present. These results support the validity of the GBD model in fish to study gas embolism in diseases such as DCS.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Maria José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Mónica B Betancor
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Pedro Saavedra
- Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Holden W Hemingway
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
7
|
Vascular Function Recovery Following Saturation Diving. Medicina (B Aires) 2022; 58:medicina58101476. [PMID: 36295636 PMCID: PMC9610043 DOI: 10.3390/medicina58101476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Objectives: Saturation diving is a technique used in commercial diving. Decompression sickness (DCS) was the main concern of saturation safety, but procedures have evolved over the last 50 years and DCS has become a rare event. New needs have evolved to evaluate the diving and decompression stress to improve the flexibility of the operations (minimum interval between dives, optimal oxygen levels, etc.). We monitored this stress in saturation divers during actual operations. Materials and Methods: The monitoring included the detection of vascular gas emboli (VGE) and the changes in the vascular function measured by flow mediated dilatation (FMD) after final decompression to surface. Monitoring was performed onboard a diving support vessel operating in the North Sea at typical storage depths of 120 and 136 msw. A total of 49 divers signed an informed consent form and participated to the study. Data were collected on divers at surface, before the saturation and during the 9 h following the end of the final decompression. Results: VGE were detected in three divers at very low levels (insignificant), confirming the improvements achieved on saturation decompression procedures. As expected, the FMD showed an impairment of vascular function immediately at the end of the saturation in all divers but the divers fully recovered from these vascular changes in the next 9 following hours, regardless of the initial decompression starting depth. Conclusion: These changes suggest an oxidative/inflammatory dimension to the diving/decompression stress during saturation that will require further monitoring investigations even if the vascular impairement is found to recover fast.
Collapse
|
8
|
Constitutive Oxidative Stress by SEPHS1 Deficiency Induces Endothelial Cell Dysfunction. Int J Mol Sci 2021; 22:ijms222111646. [PMID: 34769076 PMCID: PMC8584027 DOI: 10.3390/ijms222111646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The primary function of selenophosphate synthetase (SEPHS) is to catalyze the synthesis of selenophosphate that serves as a selenium donor during selenocysteine synthesis. In eukaryotes, there are two isoforms of SEPHS (SEPHS1 and SEPHS2). Between these two isoforms, only SEPHS2 is known to contain selenophosphate synthesis activity. To examine the function of SEPHS1 in endothelial cells, we introduced targeted null mutations to the gene for SEPHS1, Sephs1, in cultured mouse 2H11 endothelial cells. SEPHS1 deficiency in 2H11 cells resulted in the accumulation of superoxide and lipid peroxide, and reduction in nitric oxide. Superoxide accumulation in Sephs1-knockout 2H11 cells is due to the induction of xanthine oxidase and NADPH oxidase activity, and due to the decrease in superoxide dismutase 1 (SOD1) and 3 (SOD3). Superoxide accumulation in 2H11 cells also led to the inhibition of cell proliferation and angiogenic tube formation. Sephs1-knockout cells were arrested at G2/M phase and showed increased gamma H2AX foci. Angiogenic dysfunction in Sephs1-knockout cells is mediated by a reduction in nitric oxide and an increase in ROS. This study shows for the first time that superoxide was accumulated by SEPHS1 deficiency, leading to cell dysfunction through DNA damage and inhibition of cell proliferation.
Collapse
|
9
|
Yu X, Xu J, Liu W, Zhang Z, He C, Xu W. Protective effects of pulmonary surfactant on decompression sickness in rats. J Appl Physiol (1985) 2020; 130:400-407. [PMID: 33270509 DOI: 10.1152/japplphysiol.00807.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Decompression sickness (DCS) is a systemic pathophysiological process featured by bubble load. Lung dysfunction plays a harmful effect on off-gassing, which contributes to bubble load and subsequent DCS occurrence. This study aimed to investigate the effects of pulmonary surfactant on DCS as it possesses multiple advantages on the lung. Rats were divided into three groups: the normal (n = 10), the surfactant (n = 36), and the saline (n = 36) group. Animals in surfactant or saline group were administered aerosol surfactant or saline 12 h before a stimulated diving, respectively. Signs of DCS were recorded and bubble load was detected. The contents of phospholipid and surfactant protein A (SPA), protein, IL-1 and IL-6 in bronchoalveolar lavage fluid (BALF), and lung wet/dry (W/D) ratio were determined. Serum levels of IL-6, ICAM-1, E-selectin, GSH, and GSSG were detected. In surfactant-treated rats, the morbidity and mortality of DCS markedly decreased (P < 0.01 and P < 0.05, respectively). Survival time prolonged and the latency to DCS dramatically delayed (P < 0.01). More importantly, bubble load markedly decreased (P < 0.01). The increases of protein, IL-1 and IL-6 in BALF, and lung W/D ratio were alleviated. Restoration of total phospholipid and SPA in BALF and ICAM-1 and E-selectin in serum was observed. The inflammation and oxidation were attenuated (P < 0.01). In conclusion, prediving administrating exogenous surfactant by aerosolization is an efficient, simple, and safe method for DCS prevention in rats.NEW & NOTEWORTHY This is the first study exploring the effects of aerosol surfactant on DCS prevention and it was proven to be an efficient and simple method. The role of surfactant in facilitating off-gassing was thought to be the critical mechanism in bubble degrading and subsequent DCS prevention.
Collapse
Affiliation(s)
- Xuhua Yu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Ze Zhang
- The 17th detachment of the frigate, Jiangmen, China
| | - Chunyang He
- Department of Hyperbaric Oxygen, General Hospital in Western Theater of Operations, Chengdu, China
| | - Weigang Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Wang Q, Guerrero F, Theron M. Pre-hydration strongly reduces decompression sickness occurrence after a simulated dive in the rat. Diving Hyperb Med 2020; 50:288-291. [PMID: 32957132 PMCID: PMC7819728 DOI: 10.28920/dhm50.3.288-291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Hydration status is considered a parameter likely to influence the risk of decompression sickness (DCS), but scientific evidence is scarce and conflicting. This experiment aimed to analyse the influence of pre-hydration on DCS occurrence in a rat model. METHODS Intra-peritoneal injections of saline solution were administered to rats (NaCl 0.9% 0 ml (Control), 0.1 ml (Group 1), or 1 ml·100g-1 body mass (Group 2) at each of 24 h, 12 h, and 30 min prior to simulated air dives (45 min at 1,010 kPa; compression and decompression rates 101 kPa·min-1; stops 5 min at 202 kPa, 5 min at 160 kPa, 10 min at 130 kPa). Evaluation of DCS occurrence and severity was made after decompression. RESULTS Pre-dive hydration reduced severe DCS from 47% (Control) to 29% (Group 1) and 0% (Group 2), and increased the proportion of animals without any signs of DCS from 40 (Control) to 57% (Group 1) and 93% (Group 2); Chi2 P = 0.041. CONCLUSIONS This experiment demonstrated that pre-hydration can drastically reduce the DCS occurrence in an animal model. In the context of scuba diving, this result highlights the importance of elucidating the mechanisms linking hydration status and DCS risk.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory ORPHY, European University of Bretagne, University of Brest, Brest, France
| | - François Guerrero
- Laboratory ORPHY, European University of Bretagne, University of Brest, Brest, France
| | - Michaël Theron
- Laboratory ORPHY, European University of Bretagne, University of Brest, Brest, France
- Corresponding author: Dr Michaël Theron, Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238 Brest, France,
| |
Collapse
|
11
|
Lautridou J, Dugrenot E, Amérand A, Guernec A, Pichavant-Rafini K, Goanvec C, Inizan M, Albacete G, Belhomme M, Galinat H, Lafère P, Balestra C, Moisan C, Buzzacott P, Guerrero F. Physiological characteristics associated with increased resistance to decompression sickness in male and female rats. J Appl Physiol (1985) 2020; 129:612-625. [PMID: 32702269 DOI: 10.1152/japplphysiol.00324.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Decompression sickness (DCS) is a complex and poorly understood systemic disease with wide interindividual resistance variability. We selectively bred rats with a threefold greater resistance to DCS than standard ones. To investigate possible physiological mechanisms underlying the resistance to DCS, including sex-related differences in these mechanisms, 15 males and 15 females resistant to DCS were compared with aged-matched standard Wistar males (n = 15) and females (n = 15). None of these individuals had been previously exposed to hyperbaric treatment. Comparison of the allelic frequencies of single nucleotide polymorphisms (SNPs) showed a difference of one SNP located on the X chromosome. Compared with nonresistant rats, the neutrophil-to-lymphocyte ratio and the plasmatic activity of coagulation factor X were significantly higher in DCS-resistant individuals regardless of their sex. The maximal relaxation elicited by sodium nitroprusside was lower in DCS-resistant individuals regardless of their sex. Males but not females resistant to DCS exhibited higher neutrophil and lymphocyte counts and higher prothrombin time but lower mitochondrial basal O2 consumption and citrate synthase activity. Principal components analysis showed that two principal components discriminate the DCS-resistant males but not females from the nonresistant ones. These components were loaded with activated partial thromboplastin time, monocyte-to-lymphocyte ratio, prothrombin time, factor X, and fibrinogen for PC1 and red blood cells count and neutrophils count for PC2. In conclusion, the mechanisms that drive the resistance to DCS appear different between males and females; lower coagulation tendency and enhanced inflammatory response to decompression stress might be key for resistance in males. The involvement of these physiological adaptations in resistance to DCS must now be confirmed.NEW & NOTEWORTHY By selective breeding of individuals resistant to decompression sickness (DCS) we previously obtained a rat model of inherited resistance to this pathology. Comparison of these individuals with nonresistant animals revealed differences in leukocyte counts, coagulation, and mitochondrial and vascular functions, but not resistance to oxidative stress. This study also reveals sex-related differences in the physiological changes associated with DCS resistance. A principal components analysis of our data allowed us to discriminate DCS-resistant males from standard ones, but not females. These differences represent possible mechanisms driving resistance to DCS. Although still far from the diver, this opens a pathway to future adaptation of personalized decompression procedures for "DCS-prone" individuals.
Collapse
Affiliation(s)
| | - Emmanuel Dugrenot
- University of Brest, ORPHY, IBSAM, Brest, France.,TEK Diving, Brest, France
| | | | | | | | | | - Manon Inizan
- University of Brest, ORPHY, IBSAM, Brest, France
| | | | | | - Hubert Galinat
- Hematology Laboratory, CHRU Cavale Blanche, Brest, France
| | - Pierre Lafère
- University of Brest, ORPHY, IBSAM, Brest, France.,DAN Europe Research Division, Brussels, Belgium
| | - Costantino Balestra
- Environmental & Occupational Physiology Laboratory, Haute Ecole Bruxelles-Brabant, Brussels, Belgium.,DAN Europe Research Division, Brussels, Belgium
| | | | - Peter Buzzacott
- School of Nursing, Midwifery and Paramedicine, Curtin University, Perth, Australia
| | | |
Collapse
|
12
|
Mayer D, Ferenz KB. Perfluorocarbons for the treatment of decompression illness: how to bridge the gap between theory and practice. Eur J Appl Physiol 2019; 119:2421-2433. [PMID: 31686213 PMCID: PMC6858394 DOI: 10.1007/s00421-019-04252-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Decompression illness (DCI) is a complex clinical syndrome caused by supersaturation of respiratory gases in blood and tissues after abrupt reduction in ambient pressure. The resulting formation of gas bubbles combined with pulmonary barotrauma leads to venous and arterial gas embolism. Severity of DCI depends on the degree of direct tissue damage caused by growing bubbles or indirect cell injury by impaired oxygen transport, coagulopathy, endothelial dysfunction, and subsequent inflammatory processes. The standard therapy of DCI requires expensive and not ubiquitously accessible hyperbaric chambers, so there is an ongoing search for alternatives. In theory, perfluorocarbons (PFC) are ideal non-recompressive therapeutics, characterized by high solubility of gases. A dual mechanism allows capturing of excess nitrogen and delivery of additional oxygen. Since the 1980s, numerous animal studies have proven significant benefits concerning survival and reduction in DCI symptoms by intravenous application of emulsion-based PFC preparations. However, limited shelf-life, extended organ retention and severe side effects have prevented approval for human usage by regulatory authorities. These negative characteristics are mainly due to emulsifiers, which provide compatibility of PFC to the aqueous medium blood. The encapsulation of PFC with amphiphilic biopolymers, such as albumin, offers a new option to achieve the required biocompatibility avoiding toxic emulsifiers. Recent studies with PFC nanocapsules, which can also be used as artificial oxygen carriers, show promising results. This review summarizes the current state of research concerning DCI pathology and the therapeutic use of PFC including the new generation of non-emulsified formulations based on nanocapsules.
Collapse
Affiliation(s)
- Dirk Mayer
- Department of Gastroenterology, REGIOMED Klinikum Coburg, 96450, Coburg, Germany
| | - Katja Bettina Ferenz
- Institute of Physiology, CENIDE, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| |
Collapse
|
13
|
Wang M, Zhang K, Nie S, Huang G, Yi H, He C, Buzzacott P, Xu W. Biphasic effects of autophagy on decompression bubble-induced endothelial injury. J Cell Mol Med 2019; 23:8058-8066. [PMID: 31515946 PMCID: PMC6850936 DOI: 10.1111/jcmm.14672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction induced by bubbles plays an important role in decompression sickness (DCS), but the mechanism of which has not been clear. The present study was to investigate the role of autophagy in bubble‐induced endothelial injury. Human umbilical vein endothelial cells (HUVECs) were treated with bubbles, autophagy markers and endothelial injury indices were determined, and relationship strengths were quantified. Effects of autophagy inhibitor 3‐methyladenine (3‐MA) were observed. Bubble contact for 1, 5, 10, 20 or 30 minutes induced significant autophagy with increases in LC3‐II/I ratio and Beclin‐1, and a decrease in P62, which correlated with bubble contact duration. Apoptosis rate, cytochrome C and cleaved caspase‐3 increased, and cell viability decreased following bubble contact for 10, 20 or 30 minutes, but not for 1 or 5 minutes. Injuries in HUVECs were correlated with LC3‐II/I ratio and partially reversed by 3‐MA in 10, 20 or 30 minutes contact, but worsened in 1 or 5 minutes. Bubble pre‐conditioning for 1 minutes resulted in increased cell viability and decreased apoptosis rate compared with no pre‐conditioning, and 30‐minutes pre‐conditioning induced opposing changes, all of which were inhibited by 3‐MA. In conclusion, autophagy was involved and played a biphasic role in bubble‐induced endothelial injury.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| | - Kun Zhang
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| | - Shaojie Nie
- Administration Office for Undergraduates, Naval Medical University, Shanghai, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| | - Hongjie Yi
- Department of Hyperbaric Oxygen, Changhai Hospital, Shanghai, China
| | - Chunyang He
- Department of Hyperbaric Oxygen, General Hospital in Western Theater of Operations, Chengdu, China
| | - Peter Buzzacott
- School of Sports Science, Exercise and Health, The University of Western Australia, Crawley, Perth, Australia
| | - Weigang Xu
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Qing L, Meng W, Zhang W, Yi HJ, Zhang K, Ariyadewa DK, Xu WG. Benefits of Escin for Decompression Sickness in Bama Pigs by Endothelial-Targeting Protection. Front Physiol 2019; 10:605. [PMID: 31178750 PMCID: PMC6537669 DOI: 10.3389/fphys.2019.00605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Endothelial dysfunction has been considered as pivotal in the pathogenesis of decompression sickness (DCS) and contributes substantively to subsequent inflammatory responses. Escin is well known for its endothelial protection and anti-inflammatory properties, and its protection against DCS has been proved in a rat model. This study aimed to further investigate the protection of escin against DCS in swine. Sixteen swine were subjected to a two-stage experiment with an interval of 7 days. In each stage, 7 days before a simulated air dive, the swine were treated with escin or saline. The first group received a successive administration of escin for 7 days prior to the first dive and saline for 7 days prior to the second; the second group was treated with saline and then escin. After decompression, signs of DCS and circulating bubbles were monitored, and blood was sampled for platelet count and determination of inflammatory and endothelial related indices. The death rate of DCS was markedly decreased in swine treated with escin compared with that in animals treated with saline, though not statistically significant due to the limited number of animals. Escin had no effect on bubble load but significantly ameliorated platelet reduction and endothelial dysfunction, as well as oxidative and inflammatory responses. The results further suggest the beneficial effects of escin on DCS by its endothelia-protective properties, and escin has the potential to be a candidate drug for DCS prevention and treatment.
Collapse
Affiliation(s)
- Long Qing
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| | - Wentao Meng
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| | - Hong-Jie Yi
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| | - Kun Zhang
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| | | | - Wei-Gang Xu
- Department of Diving and Hyperbaric Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Saadi A, Ferenczi EA, Reda H. Spinal Decompression Sickness in an Experienced Scuba Diver: A Case Report and Review of Literature. Neurohospitalist 2019; 9:235-238. [PMID: 31534615 DOI: 10.1177/1941874419828895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Decompression sickness from diving is a rare but potentially reversible cause of spinal injury. Early treatment with hyperbaric oxygen is associated with a better neurologic outcome, making prompt recognition and management clinically important. We describe a case of a 65-year-old diver who presented with thoracic back pain and bilateral leg weakness after a 70 feet of sea water (fsw) (21 meters of sea water [msw]) dive, with no acute abnormality on spinal magnetic resonance imaging (MRI). He made a partial recovery after extended hyperbaric oxygen therapy. We discuss the epidemiology and pathophysiology of central nervous system injury in decompression sickness, as well as acute management and prognostic factors for recovery, including the role of adjunctive therapies and the implications of negative MRI. Ultimately, clinicians should make the diagnosis of spinal cord decompression sickness based primarily on clinical evaluation, not on MRI findings.
Collapse
Affiliation(s)
- Altaf Saadi
- Partners Neurology Residency Program, Massachusetts General Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Emily A Ferenczi
- Partners Neurology Residency Program, Massachusetts General Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Haatem Reda
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
16
|
Kozakiewicz M, Slomko J, Buszko K, Sinkiewicz W, Klawe JJ, Tafil-Klawe M, Newton JL, Zalewski P. Acute Biochemical, Cardiovascular, and Autonomic Response to Hyperbaric (4 atm) Exposure in Healthy Subjects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5913176. [PMID: 29977313 PMCID: PMC5994282 DOI: 10.1155/2018/5913176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/01/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022]
Abstract
The aim of this study was to explore the effect of a hyperbaric environment alone on the cardiovascular system by ensuring elimination of factors that may mask the effect on hyperbaria. The research was performed in a hyperbaric chamber to eliminate the effect of physical activity and the temperature of the aquatic environment. Biochemical analysis and examination with the Task Force Monitor device were performed before and immediately after exposure. TFM was used for noninvasive examination of the cardiovascular system and the functional evaluation of the autonomic nervous system. Natriuretic peptides were measured as biochemical markers which were involved in the regulation of haemodynamic circulation vasoconstriction (urotensin II). L-arginine acted as a precursor of the level of the nitric oxide whereas angiotensin II and angiotensin (1-7) were involved in cardiac remodeling. The study group is comprised of 18 volunteers who were professional divers of similar age and experience. The results shown in our biochemical studies do not exceed reference ranges but a statistically significant increase indicates the hyperbaric environment is not without impact upon the human body. A decrease in HR, an increase in mBP, dBP, and TPR, and increase in parasympathetic heart nerves activity suggest an increase in heart afterload with a decrease in heart activity within almost one hour after hyperbaric exposure. Results confirm that exposure to a hyperbaric environment has significant impact on the cardiovascular system. This is confirmed both by changes in peptides associated with poorer cardiovascular outcomes, where a significant increase in the studied parameters was observed, and by noninvasive examination.
Collapse
Affiliation(s)
- Mariusz Kozakiewicz
- Department of Food Chemistry, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Dębowa 3, 85-626 Bydgoszcz, Poland
| | - Joanna Slomko
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Katarzyna Buszko
- Department of Theoretical Foundations of Bio-Medical Sciences and Medical Informatics, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Jagiellonska 13, 85-067 Bydgoszcz, Poland
| | - Wladyslaw Sinkiewicz
- 2nd Department of Cardiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Jacek J. Klawe
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Malgorzata Tafil-Klawe
- Department of Human Physiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland
| | - Julia L. Newton
- Institute for Ageing and Health, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | - Pawel Zalewski
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
17
|
Mazur A, Guernec A, Lautridou J, Dupas J, Dugrenot E, Belhomme M, Theron M, Guerrero F. Angiotensin Converting Enzyme Inhibitor Has a Protective Effect on Decompression Sickness in Rats. Front Physiol 2018; 9:64. [PMID: 29545754 PMCID: PMC5838564 DOI: 10.3389/fphys.2018.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/18/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction: Commercial divers, high altitude pilots, and astronauts are exposed to some inherent risk of decompression sickness (DCS), though the mechanisms that trigger are still unclear. It has been previously showed that diving may induce increased levels of serum angiotensin converting enzyme. The renin angiotensin aldosterone system (RAAS) is one of the most important regulators of blood pressure and fluid volume. The purpose of the present study was to control the influence of angiotensin II on the appearance of DCS. Methods: Sprague Dawley rats have been pre-treated with inhibitor of angiotensin II receptor type 1 (losartan; 10 mg/kg), angiotensin-converting enzyme (ACE) inhibitor (enalapril; 10 mg/kg), and calcium-entry blocker (nifedipine; 20 mg/kg). The experimental groups were treated for 4 weeks before exposure to hyperbaric pressure while controls were not treated. Seventy-five rats were subjected to a simulated dive at 1000 kPa absolute pressure for 45 min before starting decompression. Clinical assessment took place over a period of 60 min after surfacing. Blood samples were collected for measurements of TBARS, interleukin 6 (IL-6), angiotensin II (ANG II) and ACE. Results: The diving protocol induced 60% DCS in non-treated animals. This ratio was significantly decreased after treatment with enalapril, but not other vasoactive drugs. Enalapril did not change ANG II or ACE concentration, while losartant decreased post dive level of ACE but not ANG II. None of the treatment modified the effect of diving on TBARS and IL-6 values. Conclusion: Results suggests that the rennin angiotensin system is involved in a process of triggering DCS but this has to be further investigated. However, a vasorelaxation mediated process, which potentially could increase the load of inert gas during hyperbaric exposure, and antioxidant properties were excluded by our results.
Collapse
Affiliation(s)
- Aleksandra Mazur
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Anthony Guernec
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Jacky Lautridou
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Julie Dupas
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Emmanuel Dugrenot
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Marc Belhomme
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Michael Theron
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - François Guerrero
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
18
|
LAUTRIDOU JACKY, BUZZACOTT PETER, BELHOMME MARC, DUGRENOT EMMANUEL, LAFÈRE PIERRE, BALESTRA COSTANTINO, GUERRERO FRANÇOIS. Evidence of Heritable Determinants of Decompression Sickness in Rats. Med Sci Sports Exerc 2017; 49:2433-2438. [DOI: 10.1249/mss.0000000000001385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Walsh C, Ovenden N, Stride E, Cheema U. Quantification of cell-bubble interactions in a 3D engineered tissue phantom. Sci Rep 2017; 7:6331. [PMID: 28740100 PMCID: PMC5524813 DOI: 10.1038/s41598-017-06678-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/14/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding cell-bubble interactions is crucial for preventing bubble related pathologies and harnessing their potential therapeutic benefits. Bubbles can occur in the body as a result of therapeutic intravenous administration, surgery, infections or decompression. Subsequent interactions with living cells, may result in pathological responses such as decompression sickness (DCS). This work investigates the interactions that occur between bubbles formed during decompression and cells in a 3D engineered tissue phantom. Increasing the tissue phantoms' cellular density resulted in decreased dissolved O2 (DO) concentrations (p = 0.0003) measured using real-time O2 monitoring. Direct microscopic observation of these phantoms, revealed a significant (p = 0.0024) corresponding reduction in bubble nucleation. No significant difference in growth rate or maximum size of the bubbles was measured (p = 0.99 and 0.23). These results show that bubble nucleation is dominated by DO concentration (affected by cellular metabolism), rather than potential nucleation sites provided by cell-surfaces. Consequent bubble growth depends not only on DO concentration but also on competition for dissolved gas. Cell death was found to significantly increase (p = 0.0116) following a bubble-forming decompression. By comparison to 2D experiments; the more biomimetic 3D geometry and extracellular matrix in this work, provide data more applicable for understanding and developing models of in vivo bubble dynamics.
Collapse
Affiliation(s)
- C Walsh
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), UCL Physics Building Gower Street, London, WC1E 6BT, UK.
- UCL Institute of Orthopaedics and Musculoskeletal Science, London, UK.
- Department of Mathematics, University College London, London, UK.
| | - N Ovenden
- Department of Mathematics, University College London, London, UK
| | - E Stride
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - U Cheema
- UCL Institute of Orthopaedics and Musculoskeletal Science, London, UK
| |
Collapse
|
20
|
Einecke G, Beutel G, Hoeper MM, Kielstein JT. The answer is blowing in the wind: an uncommon cause for severe ARDS accompanied by circulatory insufficiency requiring extracorporeal membrane oxygenation. BMJ Case Rep 2017; 2017:bcr-2016-218079. [PMID: 28343152 DOI: 10.1136/bcr-2016-218079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We report a rare complication in an immunosuppressed patient with IgA nephropathy who suffered from severe acute respiratory distress syndrome, severe capillary leakage and shock after placement of a double lumen central venous catheter. He could be successfully treated by extracorporeal membrane oxygenation (ECMO) and therapeutic plasma exchange. This report highlights the severity of late-onset complications of catheter placements and shows the potential of ECMO treatment for the management of acute illnesses with bridge to recovery.
Collapse
Affiliation(s)
- Gunilla Einecke
- Department of Nephrology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Gernot Beutel
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jan T Kielstein
- Department of Nephrology, Stadtisches Klinikum Braunschweig GmbH, Braunschweig, Germany
| |
Collapse
|
21
|
Zhang K, Wang M, Wang H, Liu Y, Buzzacott P, Xu W. Time Course of Endothelial Dysfunction Induced by Decompression Bubbles in Rats. Front Physiol 2017; 8:181. [PMID: 28386238 PMCID: PMC5362629 DOI: 10.3389/fphys.2017.00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Decompression stress can cause endothelial injury, leading to systematic inflammation and prothrombotic phenomena. Our previous work found that endothelial injury following decompression correlated positively with bubble formation. This study aimed to investigate the time course of endothelial injury and the relationship with bubble amounts. Rats were subjected to a simulated air dive to 7 ATA for 90 min with rapid decompression. Bubbles were detected ultrasonically at the root of pulmonary arteries following decompression. Surviving rats were randomly divided into six groups according to sampling time following decompression (2, 6, 12, 24, 48, and 72 h). Three parameters, serum levels of malondialdehyde (MDA), endothelin-1 (ET-1), and intercellular cell adhesion molecule-1 (ICAM-1) were identified from our previous study and measured. The level of MDA reached a peak level at 12 h post decompression, and then decreased gradually to control level before 72 h. For both ET-1 and ICAM-1, the greatest expression appeared at 24 h following surfacing, and the increases lasted for more than 72 h. These changes correlated positively with bubble counts at most detection time points. This study reveals the progress of endothelial dysfunction following decompression which provides guidance for timing the determination at least for the current model. The results further verify that bubbles are the causative agents of decompression induced endothelial damage and bubble amounts are an objective and suitable parameter to predict endothelial dysfunction. Most importantly, levels of endothelial biomarkers post dive may serve as sensitive parameters for assessing bubble load and decompression stress.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University Shanghai, China
| | - Mengmeng Wang
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University Shanghai, China
| | - Haowen Wang
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University Shanghai, China
| | - Yinuo Liu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University Shanghai, China
| | - Peter Buzzacott
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical UniversityShanghai, China; School of Sports Science, Exercise and Health, University of Western AustraliaPerth, WA, Australia
| | - Weigang Xu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University Shanghai, China
| |
Collapse
|
22
|
Yu X, Xu J, Huang G, Zhang K, Qing L, Liu W, Xu W. Bubble-Induced Endothelial Microparticles Promote Endothelial Dysfunction. PLoS One 2017; 12:e0168881. [PMID: 28114372 PMCID: PMC5256891 DOI: 10.1371/journal.pone.0168881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Decompression sickness is a systemic pathophysiological process caused by bubbles and endothelial microparticles (EMPs) are established markers reflecting competency of endothelial function and vascular biology. Here, we investigated the effects of bubble-induced EMPs on endothelial cells in vitro and vivo. Rat pulmonary microvascular endothelial cells (PMVECs) were isolated and stimulated by bubbles and bubble-induced EMPs were collected and incubated with normal PMVECs in vitro. Cell viability and apoptosis were detected using Cell Counting Kit-8 assay and Annexin V FITC/PI double staining, respectively. Cell permeability and pro-inflammatory cytokines were determined by electric cell substrate impedance sensing and enzyme-linked immunosorbent assay, respectively. Intracellular nitric oxide and reactive oxygen species production were analyzed microscopically. In vivo study, bubble-induced EMPs were intravenously injected to the rats and soluble thrombomodulin, intercellular adhesion molecule 1, and vascullar adhesion molecule 1 were involved in evaluating endothelial dysfunction. In our study, bubble stimulus resulted in a significant increase of EMPs release by 3 fold. Bubble-induced EMPs significantly decreased cell viability and increased cell apoptosis. Moreover, bubble-induced EMPs induced abnormal increase of cell permeability and over-expression of pro-inflammatory cytokines. Intracellular ROS production increased while NO production decreased. These negative effects caused by bubble-induced EMPs were remarkably suppressed when EMPs pretreated with surfactant FSN-100. Finally, intravenous injection of bubble-induced EMPs caused elevations of soluble thrombomodulin and pro-inflammatory cytokines in the circulation. Altogether, our results demonstrated that bubble-induced EMPs can mediate endothelial dysfunction in vitro and vivo, which can be attenuated by EMPs abatement strategy. These data expanded our horizon of the detrimental effects of bubble-induced EMPs, which may be of great concern in DCS.
Collapse
Affiliation(s)
- Xuhua Yu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Kun Zhang
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Long Qing
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Weigang Xu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
23
|
Zhang K, Jiang Z, Ning X, Yu X, Xu J, Buzzacott P, Xu W. Endothelia-Targeting Protection by Escin in Decompression Sickness Rats. Sci Rep 2017; 7:41288. [PMID: 28112272 PMCID: PMC5256092 DOI: 10.1038/srep41288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is involved in the pathogenesis of decompression sickness (DCS) and contributes substantively to subsequent inflammatory responses. Escin, the main active compound in horse chestnut seed extract, is well known for its endothelial protection and anti-inflammatory properties. This study aimed to investigate the potential protection of escin against DCS in rats. Escin was administered orally to adult male rats for 7 d (1.8 mg/kg/day) before a simulated air dive. After decompression, signs of DCS were monitored, and blood and pulmonary tissue were sampled for the detection of endothelia related indices. The incidence and mortality of DCS were postponed and decreased significantly in rats treated with escin compared with those treated with saline (P < 0.05). Escin significantly ameliorated endothelial dysfunction (increased serum E-selectin and ICAM-1 and lung Wet/Dry ratio, decreased serum NO), and oxidative and inflammatory responses (increased serum MDA, MPO, IL-6 and TNF-α) (P < 0.05 or P < 0.01). The results suggest escin has beneficial effects on DCS related to its endothelia-protective properties and might be a drug candidate for DCS prevention and treatment.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Zhongxin Jiang
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Xiaowei Ning
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Xuhua Yu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| | - Peter Buzzacott
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China.,School of Sports Science, Exercise and Health, the University of Western Australia, Perth, Australia
| | - Weigang Xu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, the Second Military Medical University, Shanghai, China
| |
Collapse
|