1
|
Huang X, Chen Y, Huang X, Tang J. Case report: management of a young male patient with diabetic ketoacidosis and thyroid storm. Front Endocrinol (Lausanne) 2024; 15:1403893. [PMID: 38952386 PMCID: PMC11215015 DOI: 10.3389/fendo.2024.1403893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
This report describes a case of concomitant diabetic ketoacidosis (DKA) and thyroid storm (TS) in a 20-year-old male patient that presented both diagnostic and management challenges owing to their intricate interrelationship in endocrine-metabolic disorders. The patient, previously diagnosed with type 1 diabetes mellitus (T1DM) and hyperthyroidism, was admitted to the emergency department with symptoms of DKA and progressive exacerbation of TS. Initial treatment focused on correcting DKA; as the disease progressed to TS, it was promptly recognized and treated. This case emphasizes the rarity of simultaneous occurrence of DKA and TS, as well as the challenges in clinical diagnosis posed by the interacting pathophysiological processes and overlapping clinical manifestations of DKA and TS. The patient's treatment process involved multiple disciplines, and after treatment, the patient's critical condition of both endocrine metabolic diseases was alleviated, after which he recovered and was eventually discharged from the hospital. This case report aims to emphasize the need for heightened awareness in patients with complex clinical presentations, stress the possibility of concurrent complications, and underscore the importance of prompt and collaborative treatment strategies.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Emergency & Disaster Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Chen
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinwei Huang
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiahao Tang
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Domínguez-Oliva A, Hernández-Ávalos I, Olmos-Hernández A, Villegas-Juache J, Verduzco-Mendoza A, Mota-Rojas D. Thermal Response of Laboratory Rats ( Rattus norvegicus) during the Application of Six Methods of Euthanasia Assessed by Infrared Thermography. Animals (Basel) 2023; 13:2820. [PMID: 37760220 PMCID: PMC10526081 DOI: 10.3390/ani13182820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Refinement is one of the principles aiming to promote welfare in research animals. The techniques used during an experimental protocol, including euthanasia selection, must prevent and minimize suffering. Although the current euthanasia methods applied to laboratory rodents are accepted, the controversial findings regarding the potential stress/distress they can cause is a field of research. The objective was to assess the thermal response of Wistar rats during various euthanasia methods using infrared thermography (IRT) to determine the method that prevents or diminishes the stress response and prolonged suffering. Pentobarbital (G1), CO2 (G2), decapitation (G3), isoflurane (G4), ketamine + xylazine (G5), and ketamine + CO2 (G6) were evaluated at five evaluation times with IRT to identify changes in the surface temperature of four anatomical regions: ocular (T°ocu), auricular (T°ear), interscapular (T°dor), and caudal (T°tai). Significant differences (p < 0.05) were found in G2 and G4, registering temperature increases from the administration of the drug to the cessation of respiratory rate and heart rate. Particularly, isoflurane showed a marked thermal response in T°ocu, T°ear, T°dor, and T°tai, suggesting that, in general, inhalant euthanasia methods induce stress in rats and that isoflurane might potentially cause distress, an effect that must be considered when deciding humane euthanasia methods in laboratory rodents.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Juan Villegas-Juache
- Bioterio and Experimental Surgery, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| |
Collapse
|
3
|
Ji J, Hong X, Su L, Liu Z. Proteomic identification of hippocalcin and its protective role in heatstroke-induced hypothalamic injury in mice. J Cell Physiol 2018; 234:3775-3789. [PMID: 30256386 DOI: 10.1002/jcp.27143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Heatstroke is a devastating condition that is characterized by severe hyperthermia and central nervous system dysfunction. However, the mechanism of thermoregulatory center dysfunction of the hypothalamus in heatstroke is unclear. In this study, we established a heatstroke mouse model and a heat-stressed neuronal cellular model on the pheochromocytoma-12 (PC12) cell line. These models revealed that HS promoted obvious neuronal injury in the hypothalamus, with high pathological scores. In addition, PC12 cell apoptosis was evident by decreased cell viability, increased caspase-3 activity, and high apoptosis rates. Furthermore, 14 differentially expressed proteins in the hypothalamus were analyzed by fluorescence two-dimensional difference gel electrophoresis and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Expression changes in hippocalcin (HPAC), a downregulated neuron-specific calcium-binding protein, were confirmed in the hypothalamus of the heatstroke mice and heat-stressed PC12 cells by immunochemistry and western blot. Moreover, HPAC overexpression and HPAC-targeted small interfering RNA experiments revealed that HPAC functioned as an antiapoptotic protein in heat-stressed PC12 cells and hypothalamic injury. Lastly, ulinastatin (UTI), a cell-protective drug that is clinically used to treat patients with heatstroke, was used in vitro and in vivo to confirm the role of HPAC; UTI inhibited heat stress (HS)-induced downregulation of HPAC expression, protected hypothalamic neurons and PC12 cells from HS-induced apoptosis and increased heat tolerance in the heatstroke animals. In summary, our study has uncovered and demonstrated the protective role of HPAC in heatstroke-induced hypothalamic injury in mice.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Departement of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xinxin Hong
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Department of Graduate School, Guangzhou University of Chinese Medicine, China
| | - Lei Su
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, China
| |
Collapse
|
4
|
Tang Y, Sun Y, Xu R, Huang X, Gu S, Hong C, Liu M, Jiang H, Yang Y, Shi J. Arginine vasopressin differentially modulates
GABA
ergic synaptic transmission onto temperature‐sensitive and temperature‐insensitive neurons in the rat preoptic area. Eur J Neurosci 2018; 47:866-886. [DOI: 10.1111/ejn.13868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Yu Tang
- Department of Neurobiology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
- Key Laboratory of Thermoregulatory and Inflammation of Sichuan Higher Education Institutes Chengdu Medical College Chengdu Sichuan China
- Department of Physiology Chengdu Medical College Chengdu Sichuan China
| | - Yan‐Ni Sun
- Department of Medical Laboratory Chengdu Medical College Chengdu Sichuan China
| | - Run Xu
- Department of Medical Laboratory Chengdu Medical College Chengdu Sichuan China
| | - Xiao Huang
- Department of Public Health Chengdu Medical College Chengdu Sichuan China
| | - Shuang Gu
- Department of Public Health Chengdu Medical College Chengdu Sichuan China
| | - Cheng‐Cheng Hong
- Department of Public Health Chengdu Medical College Chengdu Sichuan China
| | - Mi‐Jia Liu
- School of Clinical Medicine Chengdu Medical College Chengdu Sichuan China
| | - Heng Jiang
- Department of Medical Laboratory Chengdu Medical College Chengdu Sichuan China
| | - Yong‐Lu Yang
- Key Laboratory of Thermoregulatory and Inflammation of Sichuan Higher Education Institutes Chengdu Medical College Chengdu Sichuan China
| | - Jing Shi
- Department of Neurobiology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
5
|
Arginine vasopressin antagonizes the effects of prostaglandin E 2 on the spontaneous activity of warm-sensitive and temperature-insensitive neurons in the medial preoptic area in rats. Neurosci Lett 2017; 662:59-64. [PMID: 28988972 DOI: 10.1016/j.neulet.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
Arginine vasopressin (AVP) plays an important role in thermoregulation and antipyresis. We have demonstrated that AVP could change the spontaneous activity of thermosensitive and temperature insensitive neurons in the preoptic area. However, whether AVP influences the effects of prostaglandin E2 (PGE2) on the spontaneous activity of neurons in the medial preoptic area (MPO) remains unclear. Our experiment showed that PGE2 decreased the spontaneous activity of warm-sensitive neurons, and increased that of low-slope temperature-insensitive neurons in the MPO. AVP attenuated the inhibitory effect of PGE2 on warm-sensitive neurons, and reversed the excitatory effect of PGE2 on low-slope temperature-insensitive neurons, demonstrating that AVP antagonized the effects of PGE2 on the spontaneous activity of these neurons. The effect of AVP was suppressed by an AVP V1a receptor antagonist, suggesting that V1a receptor mediated the action of AVP. We also demonstrated that AVP attenuated the PGE2-induced decrease in the prepotential's rate of rise in warm-sensitive neurons and the PGE2-induced increase in that in low-slope temperature-insensitive neurons through the V1a receptor. Together, these data indicated that AVP antagonized the PGE2-induced change in the spontaneous activity of warm-sensitive and low-slope temperature-insensitive neurons in the MPO partly by reducing the PGE2-induced change in the prepotential of these neurons in a V1a receptor-dependent manner.
Collapse
|
6
|
Abstract
Heat stroke is a life-threatening condition clinically diagnosed as a severe elevation in body temperature with central nervous system dysfunction that often includes combativeness, delirium, seizures, and coma. Classic heat stroke primarily occurs in immunocompromised individuals during annual heat waves. Exertional heat stroke is observed in young fit individuals performing strenuous physical activity in hot or temperature environments. Long-term consequences of heat stroke are thought to be due to a systemic inflammatory response syndrome. This article provides a comprehensive review of recent advances in the identification of risk factors that predispose to heat stroke, the role of endotoxin and cytokines in mediation of multi-organ damage, the incidence of hypothermia and fever during heat stroke recovery, clinical biomarkers of organ damage severity, and protective cooling strategies. Risk factors include environmental factors, medications, drug use, compromised health status, and genetic conditions. The role of endotoxin and cytokines is discussed in the framework of research conducted over 30 years ago that requires reassessment to more clearly identify the role of these factors in the systemic inflammatory response syndrome. We challenge the notion that hypothalamic damage is responsible for thermoregulatory disturbances during heat stroke recovery and highlight recent advances in our understanding of the regulated nature of these responses. The need for more sensitive clinical biomarkers of organ damage is examined. Conventional and emerging cooling methods are discussed with reference to protection against peripheral organ damage and selective brain cooling.
Collapse
Affiliation(s)
- Lisa R Leon
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Abderrezak Bouchama
- King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Experimental Medicine Department-King Abdulaziz Medical City-Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Vehviläinen T, Lindholm H, Rintamäki H, Pääkkönen R, Hirvonen A, Niemi O, Vinha J. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2016; 13:19-29. [PMID: 26273786 DOI: 10.1080/15459624.2015.1076160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of this study is to perform a multiparametric analysis on the environmental factors, the physiological stress reactions in the body, the measured alertness, and the subjective symptoms during simulated office work. Volunteer male subjects were monitored during three 4-hr work meetings in an office room, both in a ventilated and a non-ventilated environment. The environmental parameters measured included CO(2), temperature, and relative humidity. The physiological test battery consisted of measuring autonomic nervous system functions, salivary stress hormones, blood's CO(2)- content and oxygen saturation, skin temperatures, thermal sensations, vigilance, and sleepiness. The study shows that we can see physiological changes caused by high CO(2) concentration. The findings support the view that low or moderate level increases in concentration of CO(2) in indoor air might cause elevation in the blood's transcutaneously assessed CO(2). The observed findings are higher CO(2) concentrations in tissues, changes in heart rate variation, and an increase of peripheral blood circulation during exposure to elevated CO(2) concentration. The subjective parameters and symptoms support the physiological findings. This study shows that a high concentration of CO(2) in indoor air seem to be one parameter causing physiological effects, which can decrease the facility user's functional ability. The correct amount of ventilation with relation to the number of people using the facility, functional air distribution, and regular breaks can counteract the decrease in functional ability. The findings of the study suggest that merely increasing ventilation is not necessarily a rational solution from a technical-economical viewpoint. Instead or in addition, more comprehensive, anthropocentric planning of space is needed as well as instructions and new kinds of reference values for the design and realization of office environments.
Collapse
Affiliation(s)
- Tommi Vehviläinen
- a Sirate Group Ltd. , Tampere , Finland
- b Department of Civil Engineering , Tampere University of Technology , Tampere , Finland
| | - Harri Lindholm
- c Finnish Institute of Occupational Health, Centre of Excellence of Health and Work Ability, Physical Work Capacity , Helsinki , Finland
| | - Hannu Rintamäki
- d Finnish Institute of Occupational Health, Centre of Excellence of Health and Work Ability, Physical Work Capacity , Oulu , Finland
| | - Rauno Pääkkönen
- e Finnish Institute of Occupational Health, Theme Well-being Solutions for the Workplace , Tampere , Finland
| | - Ari Hirvonen
- f Finnish Institute of Occupational Health, Centre of Excellence of Health and Work Ability, Systems Toxicology , Helsinki , Finland
| | - Olli Niemi
- b Department of Civil Engineering , Tampere University of Technology , Tampere , Finland
- g University Properties of Finland Ltd. , Tampere , Finland
| | - Juha Vinha
- b Department of Civil Engineering , Tampere University of Technology , Tampere , Finland
| |
Collapse
|
8
|
Tang Y, Yang YL, Wang N, Shen ZL, Zhang J, Hu HY. Effects of arginine vasopressin on firing activity and thermosensitivity of rat PO/AH area neurons. Neuroscience 2012; 219:10-22. [DOI: 10.1016/j.neuroscience.2012.05.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 11/28/2022]
|
9
|
Abstract
The increasing popularity of mass participation endurance events necessitates that on-site medical teams be well versed in the management of both common and life-threatening conditions. Exertional heat stroke is one such condition, which if left untreated can be fatal.
Collapse
|
10
|
Thogmartin JR, Wilson CI, Palma NA, Ignacio SS, Shuman MJ, Flannagan LM. Sickle Cell Trait-Associated Deaths: A Case Series with a Review of the Literature*,†. J Forensic Sci 2011; 56:1352-60. [DOI: 10.1111/j.1556-4029.2011.01774.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Gonzalez R, Halford C, Keach E. Environmental and physiological simulation of heat stroke: A case study analysis andvalidation. J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2010.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Hodges MR, Richerson GB. Interaction between defects in ventilatory and thermoregulatory control in mice lacking 5-HT neurons. Respir Physiol Neurobiol 2008; 164:350-7. [PMID: 18775520 DOI: 10.1016/j.resp.2008.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 11/28/2022]
Abstract
We have previously shown that mice with near-complete absence of 5-HT neurons (Lmx1bf/f/p) display a blunted hypercapnic ventilatory response (HCVR) and impaired cold-induced thermogenesis, but have normal baseline ventilation (), core body temperature (TCore) and hypoxic ventilatory responses (HVR) at warm ambient temperatures (TAmb; 30 degrees C). These results suggest that 5-HT neurons are an important site for integration of ventilatory, metabolic and temperature control. To better define this integrative role, we now determine how a moderate cold stress (TAmb of 25 degrees C) influences ventilatory control in adult Lmx1bf/f/p mice. During whole animal plethysmographic recordings at 25 degreesC, baseline , metabolic rate , and TCore of Lmx1bf/f/p mice were reduced (P < 0.001) compared to wild type (WT) mice. Additionally, the HCVR was reduced in Lmx1bf/f/p mice during normoxic (-33.1%) and hyperoxic (-40.9%) hypercapnia. However, in Lmx1bf/f/p mice was equal to that in WT mice while breathing 10% CO2, indicating that non-5-HT neurons may play a dominant role during extreme hypercapnia. Additionally, ventilation was decreased during hypoxia in Lmx1bf/f/p mice compared to WT mice at 25 degrees C due to decreased TCore. These data suggest that a moderate cold stress in Lmx1bf/f/p mice leads to further dysfunction in ventilatory control resulting from failure to adequately maintain TCore. We conclude that 5-HT neurons contribute to the hypercapnic ventilatory response under physiologic, more than during extreme levels of CO2, and that mild cold stress further compromises ventilatory control in Lmx1bf/f/p mice as a result of defective thermogenesis.
Collapse
Affiliation(s)
- Matthew R Hodges
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, United States.
| | | |
Collapse
|
13
|
Niaki SEA, Shafaroodi H, Ghasemi M, Shakiba B, Fakhimi A, Dehpour AR. Mouth breathing increases the pentylenetetrazole-induced seizure threshold in mice: a role for ATP-sensitive potassium channels. Epilepsy Behav 2008; 13:284-9. [PMID: 18508411 DOI: 10.1016/j.yebeh.2008.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/13/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Nasal obstruction and consequent mouth breathing have been shown to change the acid-base balance, producing respiratory acidosis. Additionally, there exists a large body of evidence maintaining that acidosis affects the activity of ATP-sensitive potassium (K(ATP)) channels, which play a crucial role in the function of the central nervous system (CNS), for example, in modulating seizure threshold. Thus, in the study described here, we examined whether mouth breathing, induced by surgical ligation of nostrils, could affect the seizure threshold induced by pentylenetetrazole in male NMRI mice. Using the selective K(ATP) channel opener (diazoxide) and blocker (glibenclamide), we also evaluated the possible role of K(ATP) channels in this process. Our data revealed that seizure threshold was increased 6 to 72 hours after nasal obstruction, reaching a peak 48 hours afterward, compared with either control or sham-operated mice (P<0.01). There was a significant decrease in pH of arterial blood samples and increase in CO(2) partial pressure (PCO(2)) during this time. Systemic injection of glibenclamide (1 and 2mg/kg, ip, daily) significantly prevented the increase in seizure threshold in 48-hour bilaterally nasally obstructed mice, whereas it had no effect on seizure threshold in sham-operated mice. Systemic injection of diazoxide (25mg/kg, ip, daily) had no effect on seizure threshold in all groups, whereas higher doses (50 and 100mg/kg, ip, daily) significantly increased seizure threshold in both 48-hour-obstructed and sham-operated mice. The decrease in seizure threshold induced by glibenclamide (2mg/kg, ip, daily) was prevented by diazoxide (25mg/kg, ip, daily). These results demonstrate for the first time that mouth breathing, which could result in respiratory acidosis, increases seizure threshold in mice and K(ATP) channels may play a role in this effect.
Collapse
|
14
|
Wright CL, Burgoon PW, Bishop GA, Boulant JA. Cyclic GMP alters the firing rate and thermosensitivity of hypothalamic neurons. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1704-15. [PMID: 18321955 DOI: 10.1152/ajpregu.00714.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rostral hypothalamus, especially the preoptic-anterior hypothalamus (POAH), contains temperature-sensitive and -insensitive neurons that form synaptic networks to control thermoregulatory responses. Previous studies suggest that the cyclic nucleotide cGMP is an important mediator in this neuronal network, since hypothalamic microinjections of cGMP analogs produce hypothermia in several species. In the present study, immunohistochemisty showed that rostral hypothalamic neurons contain cGMP, guanylate cyclase (necessary for cGMP synthesis), and CNG A2 (an important cyclic nucleotide-gated channel). Extracellular electrophysiological activity was recorded from different types of neurons in rat hypothalamic tissue slices. Each recorded neuron was classified according to its thermosensitivity as well as its firing rate response to 2-100 microM 8-bromo-cGMP (a membrane-permeable cGMP analog). cGMP has specific effects on different neurons in the rostral hypothalamus. In the POAH, the cGMP analog decreased the spontaneous firing rate in 45% of temperature-sensitive and -insensitive neurons, an effect that is likely due to cGMP-enhanced hyperpolarizing K(+) currents. This decreased POAH activity could attenuate thermoregulatory responses and produce hypothermia during exposures to cool or neutral ambient temperatures. Although 8-bromo-cGMP did not affect the thermosensitivity of most POAH neurons, it did increase the warm sensitivity of neurons in other hypothalamic regions located dorsal, lateral, and posterior to the POAH. This increased thermosensitivity may be due to pacemaker currents that are facilitated by cyclic nucleotides. If some of these non-POAH thermosensitive neurons promote heat loss or inhibit heat production, then their increased thermosensitivity could contribute to cGMP-induced decreases in body temperature.
Collapse
Affiliation(s)
- Chadwick L Wright
- Department of Physiology & Cell Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
15
|
Hodges MR, Tattersall GJ, Harris MB, McEvoy SD, Richerson DN, Deneris ES, Johnson RL, Chen ZF, Richerson GB. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci 2008; 28:2495-505. [PMID: 18322094 PMCID: PMC6671195 DOI: 10.1523/jneurosci.4729-07.2008] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/21/2008] [Accepted: 01/21/2008] [Indexed: 01/28/2023] Open
Abstract
Serotonergic neurons project widely throughout the CNS and modulate many different brain functions. Particularly important, but controversial, are the contributions of serotonin (5-HT) neurons to respiratory and thermoregulatory control. To better define the roles of 5-HT neurons in breathing and thermoregulation, we took advantage of a unique conditional knock-out mouse in which Lmx1b is genetically deleted in Pet1-expressing cells (Lmx1b(f/f/p)), resulting in near-complete absence of central 5-HT neurons. Here, we show that the hypercapnic ventilatory response in adult Lmx1b(f/f/p) mice was decreased by 50% compared with wild-type mice, whereas baseline ventilation and the hypoxic ventilatory response were normal. In addition, Lmx1b(f/f/p) mice rapidly became hypothermic when exposed to an ambient temperature of 4 degrees C, decreasing core temperature to 30 degrees C within 120 min. This failure of thermoregulation was caused by impaired shivering and nonshivering thermogenesis, whereas thermosensory perception and heat conservation were normal. Finally, intracerebroventricular infusion of 5-HT stimulated baseline ventilation, and rescued the blunted hypercapnic ventilatory response. These data identify a previously unrecognized role of 5-HT neurons in the CO(2) chemoreflex, whereby they enhance the response of the rest of the respiratory network to CO(2). We conclude that the proper function of the 5-HT system is particularly important under conditions of environmental stress and contributes significantly to the hypercapnic ventilatory response and thermoregulatory cold defense.
Collapse
Affiliation(s)
- Matthew R Hodges
- Department of Neurology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ramanantsoa N, Vaubourg V, Matrot B, Vardon G, Dauger S, Gallego J. Effects of temperature on ventilatory response to hypercapnia in newborn mice heterozygous for transcription factor Phox2b. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2027-35. [PMID: 17715184 DOI: 10.1152/ajpregu.00349.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare disease with variable severity, generally present from birth and chiefly characterized by impaired chemosensitivity to hypercapnia. The main cause of CCHS is a mutation in the PHOX2B gene, which encodes a transcription factor involved in the development of autonomic medullary reflex pathways. Temperature regulation is abnormal in many patients with CCHS. Here, we examined whether ambient temperature influenced CO2sensitivity in a mouse model of CCHS. A weak response to CO2at thermoneutrality (32°C) was noted previously in 2-day-old mice with an invalidated Phox2b allele ( Phox2b+/−), compared with wild-type littermates. We exposed Phox2b+/− pups to 8% CO2at three ambient temperatures (TAs): 29°C, 32°C, and 35°C. We measured breathing variables and heart rate (HR) noninvasively using a novel whole body flow plethysmograph equipped with contact electrodes. Body temperature and baseline breathing increased similarly with TA in mutant and wild-type pups. The hypercapnic ventilatory response increased linearly with TA in both groups, while remaining smaller in mutant than in wild-type pups at all TAs. The differences between the absolute increases in ventilation in mutant and wild-type pups become more pronounced as temperature increased above 29°C. The ventilatory abnormalities in mutant pups were not associated with significant impairments of heart rate control. In both mutant and wild-type pups, baseline HR increased with TA. In conclusion, TA strongly influenced the hypercapnic ventilatory response in Phox2b+/− mutant mice. These findings suggest that abnormal temperature regulation may contribute to the severity of respiratory impairments in CCHS patients.
Collapse
Affiliation(s)
- N Ramanantsoa
- Institut National de la Santé et de la Recherche Médicale, U676, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | |
Collapse
|
17
|
Biancardi V, Bícego KC, Almeida MC, Gargaglioni LH. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch 2007; 455:1119-28. [PMID: 17851683 DOI: 10.1007/s00424-007-0338-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 08/08/2007] [Accepted: 08/27/2007] [Indexed: 01/17/2023]
Abstract
The Locus coeruleus (LC) has been suggested as a CO(2) chemoreceptor site in mammals. In the present study, we assessed the role of LC noradrenergic neurons in the cardiorespiratory and thermal responses to hypercapnia. To selectively destroy LC noradrenergic neurons, we administered 6-hydroxydopamine (6-OHDA) bilaterally into the LC of male Wistar rats. Control animals had vehicle (ascorbic acid) injected (sham group) into the LC. Pulmonary ventilation (plethysmograph), mean arterial pressure (MAP), heart rate (HR), and body core temperature (T (c), data loggers) were measured followed by 60 min of hypercapnic exposure (7% CO(2) in air). To verify the correct placement and effectiveness of the chemical lesions, tyrosine hydroxylase immunoreactivity was performed. Hypercapnia caused an increase in pulmonary ventilation in all groups, which resulted from increases in respiratory frequency and tidal volume (V (T)) in sham-operated and 6-OHDA-lesioned groups. The hypercapnic ventilatory response was significantly decreased in 6-OHDA-lesioned rats compared with sham group. This difference was due to a decreased V (T) in 6-OHDA rats. LC chemical lesion or hypercapnia did not affect MAP, HR, and T (c). Thus, we conclude that LC noradrenergic neurons modulate hypercapnic ventilatory response but play no role in cardiovascular and thermal regulation under resting conditions.
Collapse
Affiliation(s)
- Vivian Biancardi
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP FCAV, Jaboticabal, SP, Brazil
| | | | | | | |
Collapse
|
18
|
Dean JB. Metabolic acidosis inhibits hypothalamic warm-sensitive receptors: a potential causative factor in heat stroke. J Appl Physiol (1985) 2007; 102:1312. [PMID: 17204570 DOI: 10.1152/japplphysiol.00014.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|