1
|
Dandel M. Monitoring of the right ventricular responses to pressure overload: prognostic value and usefulness of echocardiography for clinical decision-making. Cardiovasc Diagn Ther 2024; 14:193-222. [PMID: 38434557 PMCID: PMC10904302 DOI: 10.21037/cdt-23-380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/10/2023] [Indexed: 03/05/2024]
Abstract
Regardless of whether pulmonary hypertension (PH) results from increased pulmonary venous pressure in left-sided heart diseases or from vascular remodeling and/or obstructions in pre-capillary pulmonary vessels, overload-induced right ventricular (RV) dysfunction and its final transition into right-sided heart failure is a major cause of death in PH patients. Being particularly suited for non-invasive monitoring of the right-sided heart, echocardiography has become a useful tool for optimizing the therapeutic decision-making and evaluation of therapy results in PH. The review provides an updated overview on the pathophysiological insights of heart-lung interactions in PH of different etiology, as well as on the diagnostic and prognostic value of echocardiography for monitoring RV responses to pressure overload. The article focuses particularly on the usefulness of echocardiography for predicting life-threatening aggravation of RV dysfunction in transplant candidates with precapillary PH, as well as for preoperative prediction of post-operative RV failure in patients with primary end-stage left ventricular (LV) failure necessitating heart transplantation or a LV assist device implantation. In transplant candidates with refractory pulmonary arterial hypertension, a timely prediction of impending RV decompensation can contribute to reduce both the mortality risk on the transplant list and the early post-transplant complications caused by severe RV dysfunction, and also to avoid combined heart-lung transplantation. The review also focuses on the usefulness of echocardiography for monitoring the right-sided heart in patients with acute respiratory distress syndrome, particularly in those with refractory respiratory failure requiring extracorporeal membrane oxygenation support. Given the pathophysiologic particularity of severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection to be associated with a high incidence of thrombotic microangiopathy-induced increase in the pulmonary resistance, echocardiography can improve the selection of temporary mechanical cardio-respiratory support strategies and can therefore contribute to the reduction of mortality rates. On the whole, the review aims to provide a theoretical and practical basis for those who are or intend in the future to be engaged in this highly demanding field.
Collapse
|
2
|
Lingappan K, Olutoye OO, Cantu A, Cantu Gutierrez ME, Cortes-Santiago N, Hammond JD, Gilley J, Quintero JR, Li H, Polverino F, Gleghorn JP, Keswani SG. Molecular insights using spatial transcriptomics of the distal lung in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2023; 325:L477-L486. [PMID: 37605849 PMCID: PMC10639013 DOI: 10.1152/ajplung.00154.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Abnormal pulmonary vascular development and function in congenital diaphragmatic hernia (CDH) is a significant factor leading to pulmonary hypertension. The lung is a very heterogenous organ and has marked cellular diversity that is differentially responsive to injury and therapeutic agents. Spatial transcriptomics provides the unmatched capability of discerning the differences in the transcriptional signature of these distinct cell subpopulations in the lung with regional specificity. We hypothesized that the distal lung parenchyma (selected as a region of interest) would show a distinct transcriptomic profile in the CDH lung compared with control (normal lung). We subjected lung sections obtained from male and female CDH and control neonates to spatial transcriptomics using the Nanostring GeoMx platform. Spatial transcriptomic analysis of the human CDH and control lung revealed key differences in the gene expression signature. Increased expression of alveolar epithelial-related genes (SFTPA1 and SFTPC) and angiogenesis-related genes (EPAS1 and FHL1) was seen in control lungs compared with CDH lungs. Response to vitamin A was enriched in the control lungs as opposed to abnormality of the coagulation cascade and TNF-alpha signaling via NF-kappa B in the CDH lung parenchyma. In male patients with CDH, higher expression of COL1A1 (ECM remodeling) and CD163 was seen. Increased type 2 alveolar epithelial cells (AT-2) and arterial and lung capillary endothelial cells were seen in control lung samples compared with CDH lung samples. To the best of our knowledge, this is the first use of spatial transcriptomics in patients with CDH that identifies the contribution of different lung cellular subpopulations in CDH pathophysiology and highlights sex-specific differences.NEW & NOTEWORTHY This is the first use of spatial transcriptomics in patients with congenital diaphragmatic hernia (CDH) that identifies the contribution of different lung cellular subpopulations in CDH pathophysiology and highlights sex-specific differences.
Collapse
Affiliation(s)
- Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Oluyinka O Olutoye
- Department of Pediatric Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Abiud Cantu
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Manuel Eliezer Cantu Gutierrez
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Nahir Cortes-Santiago
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - J D Hammond
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Jamie Gilley
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Joselyn Rojas Quintero
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Hui Li
- Department of Pediatric Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States
| | - Sundeep G Keswani
- Department of Pediatric Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| |
Collapse
|
3
|
Jandl K, Radic N, Zeder K, Kovacs G, Kwapiszewska G. Pulmonary vascular fibrosis in pulmonary hypertension - The role of the extracellular matrix as a therapeutic target. Pharmacol Ther 2023; 247:108438. [PMID: 37210005 DOI: 10.1016/j.pharmthera.2023.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pulmonary hypertension (PH) is a condition characterized by changes in the extracellular matrix (ECM) deposition and vascular remodeling of distal pulmonary arteries. These changes result in increased vessel wall thickness and lumen occlusion, leading to a loss of elasticity and vessel stiffening. Clinically, the mechanobiology of the pulmonary vasculature is becoming increasingly recognized for its prognostic and diagnostic value in PH. Specifically, the increased vascular fibrosis and stiffening resulting from ECM accumulation and crosslinking may be a promising target for the development of anti- or reverse-remodeling therapies. Indeed, there is a huge potential in therapeutic interference with mechano-associated pathways in vascular fibrosis and stiffening. The most direct approach is aiming to restore extracellular matrix homeostasis, by interference with its production, deposition, modification and turnover. Besides structural cells, immune cells contribute to the level of ECM maturation and degradation by direct cell-cell contact or the release of mediators and proteases, thereby opening a huge avenue to target vascular fibrosis via immunomodulation approaches. Indirectly, intracellular pathways associated with altered mechanobiology, ECM production, and fibrosis, offer a third option for therapeutic intervention. In PH, a vicious cycle of persistent activation of mechanosensing pathways such as YAP/TAZ initiates and perpetuates vascular stiffening, and is linked to key pathways disturbed in PH, such as TGF-beta/BMPR2/STAT. Together, this complexity of the regulation of vascular fibrosis and stiffening in PH allows the exploration of numerous potential therapeutic interventions. This review discusses connections and turning points of several of these interventions in detail.
Collapse
Affiliation(s)
- Katharina Jandl
- Division of Pharmacology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria.
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Katarina Zeder
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
4
|
Grignola JC, Trujillo P. Proximal pulmonary arterial remodeling impairs right ventricular-arterial coupling in postcapillary pulmonary hypertension patients. J Appl Physiol (1985) 2022; 132:217-218. [PMID: 35030043 PMCID: PMC8759953 DOI: 10.1152/japplphysiol.00798.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Juan C. Grignola
- 1Department of Pathophysiology, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, and Unidad de Hipertensión Pulmonar, Hospital Maciel, Ministerio de Salud Pública, Montevideo, Uruguay
| | - Pedro Trujillo
- 2Cardiology Department, Centro Cardiovascular Universitario, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, and Unidad de Hipertensión Pulmonar, Hospital Maciel, Ministerio de Salud Pública, Montevideo, Uruguay
| |
Collapse
|
5
|
Ding Y, Tu P, Chen Y, Huang Y, Pan X, Chen W. CYP2J2 and EETs protect against pulmonary arterial hypertension with lung ischemia-reperfusion injury in vivo and in vitro. Respir Res 2021; 22:291. [PMID: 34774051 PMCID: PMC8590292 DOI: 10.1186/s12931-021-01891-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia–reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo. Methods CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by intraperitoneal injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with anoxia/reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs. Results CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by the activation of PPARγ; the anti-apoptotic effects might be mediated by the PI3K/AKT pathway. Conclusions CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Yun Ding
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Pengjie Tu
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yiyong Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yangyun Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Xiaojie Pan
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Wenshu Chen
- Department of Thoracic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
6
|
Grignola JC, Domingo E, López-Meseguer M, Trujillo P, Bravo C, Pérez-Hoyos S, Roman A. Pulmonary Arterial Remodeling Is Related to the Risk Stratification and Right Ventricular-Pulmonary Arterial Coupling in Patients With Pulmonary Arterial Hypertension. Front Physiol 2021; 12:631326. [PMID: 34012405 PMCID: PMC8126681 DOI: 10.3389/fphys.2021.631326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/08/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Pulmonary arterial (PA) stiffness has an essential contribution to the right ventricular (RV) failure pathogenesis. A comprehensive and multiparameter risk assessment allows predicting mortality and guiding treatment decisions in PA hypertension (PAH). We characterize PA remodeling with intravascular ultrasound (IVUS) in prevalent and stable patients with PAH according to the ESC/ERS risk table and analyze the RV-PA coupling consequences. METHODS Ten control subjects and 20 prevalent PAH adult patients underwent right heart catheterization (RHC) with simultaneous IVUS study. We estimated cardiac index (CI), pulmonary vascular resistance, and compliance (PVR, PAC) by standard formulas. From IVUS and RHC data, PA diameter, wall thickness/luminal diameter ratio, and indexes of stiffness (pulsatility, compliance, distensibility, incremental elastic modulus - Einc-, and the stiffness index β) were measured. We evaluated RV-PA coupling by the ratio of tricuspid annular plane systolic excursion to systolic pulmonary arterial pressure (TAPSE/sPAP). The individual average risk was calculated by assigning a score of 1 (low-risk -LR-), 2 (intermediate-risk -IR-), and 3 (high-risk -HR-) for each of seven variables (functional class, six-minute walking test, brain natriuretic peptide, right atrial area and pressure, CI, and PA oxygen saturation) and rounding the average value to the nearest integer. RESULTS All PA segments interrogated showed increased vessel diameter, wall cross-sectional area (WCSA), and stiffness in patients with PAH compared to control subjects. 45% corresponded to LR, and 55% corresponded to IR PAH patients. The different measurements of PA stiffness showed significant correlations with TAPSE/sPAP (r = 0.6 to 0.76) in PAH patients. The IR group had higher PA stiffness and lower relative WCSA than LR patients (P < 0.05), and it is associated with a lower PAC and TAPSE/sPAP (P < 0.05). CONCLUSION In prevalent PAH patients, the severity of proximal PA remodeling is related to the risk stratification and associated with PAC and RV-PA coupling impairment beyond the indirect effect of the mean PA pressure. The concomitant assessment of IVUS and hemodynamic parameters at diagnosis and follow-up of PAH patients could be a feasible and safe tool for risk stratification and treatment response of the PA vasculopathy during serial hemodynamic measurements.
Collapse
Affiliation(s)
- Juan C. Grignola
- Pathophysiology Department, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Enric Domingo
- Area del Cor, Hospital Vall d’Hebron, Barcelona, Spain
- Physiology Department, School of Medicine, Universitat Autonoma, Barcelona, Spain
| | - Manuel López-Meseguer
- Department of Pneumology, Hospital Vall d’Hebron, Barcelona, Spain
- Ciberes, IS Carlos III, Madrid, Spain
| | - Pedro Trujillo
- Centro Cardiovascular Universitario, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Bravo
- Department of Pneumology, Hospital Vall d’Hebron, Barcelona, Spain
- Ciberes, IS Carlos III, Madrid, Spain
| | | | - Antonio Roman
- Department of Pneumology, Hospital Vall d’Hebron, Barcelona, Spain
- Ciberes, IS Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Markvardsen LK, Sønderskov LD, Wandall-Frostholm C, Pinilla E, Prat-Duran J, Aalling M, Mogensen S, Andersen CU, Simonsen U. Cystamine Treatment Fails to Prevent the Development of Pulmonary Hypertension in Chronic Hypoxic Rats. J Vasc Res 2021; 58:237-251. [PMID: 33910208 DOI: 10.1159/000515511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. METHODS Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. RESULTS Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. DISCUSSION/CONCLUSIONS Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.
Collapse
MESH Headings
- Animals
- Arterial Pressure/drug effects
- Cystamine/pharmacology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Female
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/enzymology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/enzymology
- Hypoxia/physiopathology
- Male
- Mice, Inbred C57BL
- Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors
- Protein Glutamine gamma Glutamyltransferase 2/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Pulmonary Fibrosis/enzymology
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/physiopathology
- Pulmonary Fibrosis/prevention & control
- Rats, Wistar
- Vascular Remodeling/drug effects
- Ventricular Function, Right/drug effects
- Ventricular Remodeling/drug effects
- Mice
- Rats
Collapse
Affiliation(s)
- Lars K Markvardsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lene D Sønderskov
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christine Wandall-Frostholm
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Mathilde Aalling
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Charlotte U Andersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Nguyen‐Truong M, Liu W, Boon J, Nelson B, Easley J, Monnet E, Wang Z. Establishment of adult right ventricle failure in ovine using a graded, animal-specific pulmonary artery constriction model. Animal Model Exp Med 2020; 3:182-192. [PMID: 32613177 PMCID: PMC7323700 DOI: 10.1002/ame2.12124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Right ventricle failure (RVF) is associated with serious cardiac and pulmonary diseases that contribute significantly to the morbidity and mortality of patients. Currently, the mechanisms of RVF are not fully understood and it is partly due to the lack of large animal models in adult RVF. In this study, we aim to establish a model of RVF in adult ovine and examine the structure and function relations in the RV. METHODS RV pressure overload was induced in adult male sheep by revised pulmonary artery constriction (PAC). Briefly, an adjustable hydraulic occluder was placed around the main pulmonary artery trunk. Then, repeated saline injection was performed at weeks 0, 1, and 4, where the amount of saline was determined in an animal-specific manner. Healthy, age-matched male sheep were used as additional controls. Echocardiography was performed bi-weekly and on week 11 post-PAC, hemodynamic and biological measurements were obtained. RESULTS This PAC methodology resulted in a marked increase in RV systolic pressure and decreases in stroke volume and tricuspid annular plane systolic excursion, indicating signs of RVF. Significant increases in RV chamber size, wall thickness, and Fulton's index were observed. Cardiomyocyte hypertrophy and collagen accumulation (particularly type III collagen) were evident, and these structural changes were correlated with RV dysfunction. CONCLUSION In summary, the animal-specific, repeated PAC provided a robust approach to induce adult RVF, and this ovine model will offer a useful tool to study the progression and treatment of adult RVF that is translatable to human diseases.
Collapse
Affiliation(s)
| | - Wenqiang Liu
- School of Biomedical EngineeringColorado State UniversityFort CollinsCOUSA
| | - June Boon
- Veterinary Teaching HospitalColorado State UniversityFort CollinsCOUSA
| | - Brad Nelson
- Veterinary Teaching HospitalColorado State UniversityFort CollinsCOUSA
| | - Jeremiah Easley
- Veterinary Teaching HospitalColorado State UniversityFort CollinsCOUSA
- Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| | - Eric Monnet
- Veterinary Teaching HospitalColorado State UniversityFort CollinsCOUSA
- Department of Clinical SciencesColorado State UniversityFort CollinsCOUSA
| | - Zhijie Wang
- School of Biomedical EngineeringColorado State UniversityFort CollinsCOUSA
- Department of Mechanical EngineeringColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
9
|
Kang Y, Zhang G, Huang EC, Huang J, Cai J, Cai L, Wang S, Keller BB. Sulforaphane prevents right ventricular injury and reduces pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H853-H866. [PMID: 32108526 DOI: 10.1152/ajpheart.00321.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Right ventricular (RV) dysfunction is the main determinant of mortality in patients with pulmonary arterial hypertension (PAH) and while inflammation is pathogenic in PAH, there is limited information on the role of RV inflammation in PAH. Sulforaphane (SFN), a potent Nrf2 activator, has significant anti-inflammatory effects and facilitates cardiac protection in preclinical diabetic models. Therefore, we hypothesized that SFN might play a comparable role in reducing RV and pulmonary inflammation and injury in a murine PAH model. We induced PAH using SU5416 and 10% hypoxia (SuHx) for 4 wk in male mice randomized to SFN at a daily dose of 0.5 mg/kg 5 days per week for 4 wk or to vehicle control. Transthoracic echocardiography was performed to characterize chamber-specific ventricular function during PAH induction. At 4 wk, we measured RV pressure and relevant measures of histology and protein and gene expression. SuHx induced progressive RV, but not LV, diastolic and systolic dysfunction, and RV and pulmonary remodeling, fibrosis, and inflammation. SFN prevented SuHx-induced RV dysfunction and remodeling, reduced RV inflammation and fibrosis, upregulated Nrf2 expression and its downstream gene NQO1, and reduced the inflammatory mediator leucine-rich repeat and pyrin domain-containing 3 (NLRP3). SFN also reduced SuHx-induced pulmonary vascular remodeling, inflammation, and fibrosis. SFN alone had no effect on the heart or lungs. Thus, SuHx-induced RV and pulmonary dysfunction, inflammation, and fibrosis can be attenuated or prevented by SFN, supporting the rationale for further studies to investigate SFN and the role of Nrf2 and NLRP3 pathways in preclinical and clinical PAH studies.NEW & NOTEWORTHY Pulmonary arterial hypertension (PAH) in this murine model (SU5416 + hypoxia) is associated with early changes in right ventricular (RV) diastolic and systolic function. RV and lung injury in the SU5416 + hypoxia model are associated with markers for fibrosis, inflammation, and oxidative stress. Sulforaphane (SFN) alone for 4 wk has no effect on the murine heart or lungs. Sulforaphane (SFN) attenuates or prevents the RV and lung injury in the SUF5416 + hypoxia model of PAH, suggesting that Nrf2 may be a candidate target for strategies to prevent or reverse PAH.
Collapse
Affiliation(s)
- Yin Kang
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Guangyan Zhang
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Emma C Huang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Department of Anesthesiology, Jewish Hospital, Louisville, Kentucky
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bradley B Keller
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
10
|
Shavik SM, Tossas-Betancourt C, Figueroa CA, Baek S, Lee LC. Multiscale Modeling Framework of Ventricular-Arterial Bi-directional Interactions in the Cardiopulmonary Circulation. Front Physiol 2020; 11:2. [PMID: 32116737 PMCID: PMC7025512 DOI: 10.3389/fphys.2020.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/03/2020] [Indexed: 02/02/2023] Open
Abstract
Ventricular-arterial coupling plays a key role in the physiologic function of the cardiovascular system. We have previously described a hybrid lumped-finite element (FE) modeling framework of the systemic circulation that couples idealized FE models of the aorta and the left ventricle (LV). Here, we describe an extension of the lumped-FE modeling framework that couples patient-specific FE models of the left and right ventricles, aorta and the large pulmonary arteries in both the systemic and pulmonary circulations. Geometries of the FE models were reconstructed from magnetic resonance (MR) images acquired in a pediatric patient diagnosed with pulmonary arterial hypertension (PAH). The modeling framework was calibrated with pressure waveforms acquired in the heart and arteries by catheterization as well as ventricular volume and arterial diameter waveforms measured from MR images. The calibrated model hemodynamic results match well with the clinically-measured waveforms (volume and pressure) in the LV and right ventricle (RV) as well as with the clinically-measured waveforms (pressure and diameter) in the aorta and main pulmonary artery. The calibrated framework was then used to simulate three cases, namely, (1) an increase in collagen in the large pulmonary arteries, (2) a decrease in RV contractility, and (3) an increase in the total pulmonary arterial resistance, all characteristics of progressive PAH. The key finding from these simulations is that hemodynamics of the pulmonary vasculature and RV wall stress are more sensitive to vasoconstriction with a 10% of reduction in the lumen diameter of the distal vessels than a 67% increase in the proximal vessel's collagen mass.
Collapse
Affiliation(s)
- Sheikh Mohammad Shavik
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States.,Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | | | - C Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Bhedi CD, Nasirova S, Toksoz D, Warburton RR, Morine KJ, Kapur NK, Galper JB, Preston IR, Hill NS, Fanburg BL, Penumatsa KC. Glycolysis regulated transglutaminase 2 activation in cardiopulmonary fibrogenic remodeling. FASEB J 2020; 34:930-944. [PMID: 31914588 PMCID: PMC6956703 DOI: 10.1096/fj.201902155r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
The pathophysiology of pulmonary hypertension (PH) and heart failure (HF) includes fibrogenic remodeling associated with the loss of pulmonary arterial (PA) and cardiac compliance. We and others have previously identified transglutaminase 2 (TG2) as a participant in adverse fibrogenic remodeling. However, little is known about the biologic mechanisms that regulate TG2 function. We examined physiological mouse models of experimental PH, HF, and type 1 diabetes that are associated with altered glucose metabolism/glycolysis and report here that TG2 expression and activity are elevated in pulmonary and cardiac tissues under all these conditions. We additionally used PA adventitial fibroblasts to test the hypothesis that TG2 is an intermediary between enhanced tissue glycolysis and fibrogenesis. Our in vitro results show that glycolytic enzymes and TG2 are upregulated in fibroblasts exposed to high glucose, which stimulates cellular glycolysis as measured by Seahorse analysis. We examined the relationship of TG2 to a terminal glycolytic enzyme, pyruvate kinase M2 (PKM2), and found that PKM2 regulates glucose-induced TG2 expression and activity as well as fibrogenesis. Our studies further show that TG2 inhibition blocks glucose-induced fibrogenesis and cell proliferation. Our findings support a novel role for glycolysis-mediated TG2 induction and tissue fibrosis associated with experimental PH, HF, and hyperglycemia.
Collapse
Affiliation(s)
- Chinmayee D. Bhedi
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Sabina Nasirova
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Deniz Toksoz
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Rod R. Warburton
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin J. Morine
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Navin K. Kapur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Jonas B. Galper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Ioana R. Preston
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Nicholas S. Hill
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Barry L. Fanburg
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Krishna C. Penumatsa
- Pulmonary Division, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
12
|
Wang X, Lin L, Chai X, Wu Y, Li Y, Liu X. Hypoxic mast cells accelerate the proliferation, collagen accumulation and phenotypic alteration of human lung fibroblasts. Int J Mol Med 2020; 45:175-185. [PMID: 31746371 PMCID: PMC6889934 DOI: 10.3892/ijmm.2019.4400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary vascular remodeling and fibrosis are the critical pathological characteristics of hypoxic pulmonary hypertension. Our previous study demonstrated that hypoxia is involved in the functional alteration of lung fibroblasts, but the underlying mechanism has yet to be fully elucidated. The aim of the present study was to investigate the effect of mast cells on the proliferation, function and phenotype of fibroblasts under hypoxic conditions. Hypoxia facilitated proliferation and the secretion of proinflammatory cytokines, including tumor necrosis factor (TNF)‑α and interleukin (IL)‑6, in human mast cells (HMC‑1). RNA sequencing identified 2,077 upregulated and 2,418 downregulated mRNAs in human fetal lung fibroblasts (HFL‑1) cultured in hypoxic conditioned medium from HMC‑1 cells compared with normoxic controls, which are involved in various pathways, including extracellular matrix organization, cell proliferation and migration. Conditioned medium from hypoxic HMC‑1 cells increased the proliferation and migration capacity of HFL‑1 and triggered phenotypic transition from fibroblasts to myofibroblasts. A greater accumulation of collagen type I and III was also observed in an HFL‑1 cell culture in hypoxic conditioned medium from HMC‑1 cells, compared with HFL‑1 cells cultured in normoxic control medium. The expression of matrix metalloproteinase (MMP)‑9 and MMP‑13 was upregulated in HFL‑1 cells grown in hypoxic conditioned medium from HMC‑1 cells. Similar pathological phenomena, including accumulation of mast cells, activated collagen metabolism and vascular remodeling, were observed in a hypoxic rat model. The results of the present study provide direct evidence that the multiple effects of the hypoxic microenvironment and mast cells on fibroblasts contribute to pulmonary vascular remodeling, and this process appears to be among the most important mechanisms underlying hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinmin Liu
- Correspondence to: Professor Xinmin Liu, Department of Geriatrics, Peking University First Hospital, 8 Xishiku Street, Beijing 100034, P.R. China, E-mail:
| |
Collapse
|
13
|
Thenappan T, Chan SY, Weir EK. Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2018; 315:H1322-H1331. [PMID: 30141981 PMCID: PMC6297810 DOI: 10.1152/ajpheart.00136.2018] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/06/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by remodeling of the extracellular matrix (ECM) of the pulmonary arteries with increased collagen deposition, cross-linkage of collagen, and breakdown of elastic laminae. Extracellular matrix remodeling occurs due to an imbalance in the proteolytic enzymes, such as matrix metalloproteinases, elastases, and lysyl oxidases, and tissue inhibitor of matrix metalloproteinases, which, in turn, results from endothelial cell dysfunction, endothelial-to-mesenchymal transition, and inflammation. ECM remodeling and pulmonary vascular stiffness occur early in the disease process, before the onset of the increase in the intimal and medial thickness and pulmonary artery pressure, suggesting that the ECM is a cause rather than a consequence of distal pulmonary vascular remodeling. ECM remodeling and increased pulmonary arterial stiffness promote proliferation of pulmonary vascular cells (endothelial cells, smooth muscle cells, and adventitial fibroblasts) through mechanoactivation of various signaling pathways, including transcriptional cofactors YAP/TAZ, transforming growth factor-β, transient receptor potential channels, Toll-like receptor, and NF-κB. Inhibition of ECM remodeling and mechanotransduction prevents and reverses experimental pulmonary hypertension. These data support a central role for ECM remodeling in the pathogenesis of the PAH, making it an attractive novel therapeutic target.
Collapse
Affiliation(s)
- Thenappan Thenappan
- Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
- University of Pittsburgh Medical Center, Pennsylvania
| | - E Kenneth Weir
- Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|