1
|
Derks W, Rode J, Collin S, Rost F, Heinke P, Hariharan A, Pickel L, Simonova I, Lázár E, Graham E, Jashari R, Andrä M, Jeppsson A, Salehpour M, Alkass K, Druid H, Kyriakopoulos CP, Taleb I, Shankar TS, Selzman CH, Sadek H, Jovinge S, Brusch L, Frisén J, Drakos S, Bergmann O. A Latent Cardiomyocyte Regeneration Potential in Human Heart Disease. Circulation 2025; 151:245-256. [PMID: 39569515 PMCID: PMC11748904 DOI: 10.1161/circulationaha.123.067156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/05/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Cardiomyocytes in the adult human heart show a regenerative capacity, with an annual renewal rate of ≈0.5%. Whether this regenerative capacity of human cardiomyocytes is employed in heart failure has been controversial. METHODS We determined cardiomyocyte renewal in 52 patients with advanced heart failure, 28 of whom received left ventricular assist device support. We measured the concentration of nuclear bomb test-derived 14C in cardiomyocyte genomic DNA and performed mathematical modeling to establish cardiomyocyte renewal in heart failure with and without LVAD unloading. RESULTS We show that cardiomyocyte generation is minimal in end-stage heart failure patients at rates 18 to 50× lower compared with the healthy heart. However, patients receiving left ventricle support device therapy, who showed significant functional and structural cardiac improvement, had a >6-fold increase in cardiomyocyte renewal relative to the healthy heart. CONCLUSIONS Our findings reveal a substantial cardiomyocyte regeneration potential in human heart disease, which could be exploited therapeutically.
Collapse
Affiliation(s)
- Wouter Derks
- Centers for Regenerative Therapies Dresden (W.D., F.R., P.H., A.H., L.P., I.S., O.B.), Technische Universität Dresden, Germany
| | - Julian Rode
- Information Services and High-Performance Computing (J.R., F.R., L.B.), Technische Universität Dresden, Germany
| | - Sofia Collin
- Departments of Cell and Molecular Biology (S.C., E.L., E.G., J.F., O.B.), Stockholm, Sweden
| | - Fabian Rost
- Centers for Regenerative Therapies Dresden (W.D., F.R., P.H., A.H., L.P., I.S., O.B.), Technische Universität Dresden, Germany
- Information Services and High-Performance Computing (J.R., F.R., L.B.), Technische Universität Dresden, Germany
- DRESDEN-Concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (F.R.), Technische Universität Dresden, Germany
| | - Paula Heinke
- Centers for Regenerative Therapies Dresden (W.D., F.R., P.H., A.H., L.P., I.S., O.B.), Technische Universität Dresden, Germany
| | - Anjana Hariharan
- Centers for Regenerative Therapies Dresden (W.D., F.R., P.H., A.H., L.P., I.S., O.B.), Technische Universität Dresden, Germany
| | - Lauren Pickel
- Centers for Regenerative Therapies Dresden (W.D., F.R., P.H., A.H., L.P., I.S., O.B.), Technische Universität Dresden, Germany
| | - Irina Simonova
- Centers for Regenerative Therapies Dresden (W.D., F.R., P.H., A.H., L.P., I.S., O.B.), Technische Universität Dresden, Germany
| | - Enikő Lázár
- Departments of Cell and Molecular Biology (S.C., E.L., E.G., J.F., O.B.), Stockholm, Sweden
| | - Evan Graham
- Departments of Cell and Molecular Biology (S.C., E.L., E.G., J.F., O.B.), Stockholm, Sweden
| | | | - Michaela Andrä
- Department of Cardiothoracic and Vascular Surgery, Klinikum Klagenfurt and Section for Surgical Research Medical University Graz, Austria (M.A.)
| | - Anders Jeppsson
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital (A.J.), Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg (A.J.), Gothenburg, Sweden
| | - Mehran Salehpour
- Department of Physics and Astronomy, Applied Nuclear Physics, Uppsala University, Uppsala, Sweden (M.S.)
| | - Kanar Alkass
- Oncology-Pathology (K.A., H.D.), Karolinska Institute, Stockholm, Sweden
- National Board of Forensic Medicine (K.A., H.D.), Stockholm, Sweden
| | - Henrik Druid
- Oncology-Pathology (K.A., H.D.), Karolinska Institute, Stockholm, Sweden
- National Board of Forensic Medicine (K.A., H.D.), Stockholm, Sweden
| | - Christos P. Kyriakopoulos
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health and School of Medicine (C.P.K., I.T., C.H.S., S.D.), Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah (C.P.K., I.T., T.S.S., C.H.S., S.D.), Salt Lake City
| | - Iosif Taleb
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health and School of Medicine (C.P.K., I.T., C.H.S., S.D.), Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah (C.P.K., I.T., T.S.S., C.H.S., S.D.), Salt Lake City
| | - Thirupura S. Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah (C.P.K., I.T., T.S.S., C.H.S., S.D.), Salt Lake City
| | - Craig H. Selzman
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health and School of Medicine (C.P.K., I.T., C.H.S., S.D.), Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah (C.P.K., I.T., T.S.S., C.H.S., S.D.), Salt Lake City
| | - Hesham Sadek
- The Sarver Heart Center and The Department of Internal Medicine/Cardiology, The University of Arizona College of Medicine Tucson, Arizona (H.S.)
| | - Stefan Jovinge
- Spectrum Health Frederik Meijer Heart and Vascular Institute and Van Andel Institute, Grand Rapids, MI (S.J.)
| | - Lutz Brusch
- Information Services and High-Performance Computing (J.R., F.R., L.B.), Technische Universität Dresden, Germany
| | - Jonas Frisén
- Departments of Cell and Molecular Biology (S.C., E.L., E.G., J.F., O.B.), Stockholm, Sweden
| | - Stavros Drakos
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health and School of Medicine (C.P.K., I.T., C.H.S., S.D.), Salt Lake City
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah (C.P.K., I.T., T.S.S., C.H.S., S.D.), Salt Lake City
| | - Olaf Bergmann
- Centers for Regenerative Therapies Dresden (W.D., F.R., P.H., A.H., L.P., I.S., O.B.), Technische Universität Dresden, Germany
- Departments of Cell and Molecular Biology (S.C., E.L., E.G., J.F., O.B.), Stockholm, Sweden
- Department of Pharmacology and Toxicology, University Medical Center Goettingen (O.B.), Germany
- DZHK (German Centre for Cardiovascular Research), Lower Saxony Partner Site (O.B.), Germany
| |
Collapse
|
2
|
Ju F, Zhang X, Zhao Z, Cao Y, Xie A, Xia L, Zhou D. Aloperine Regulates Inflammation, Apoptosis, and Autophagy in H9C2 Rat Cardiomyoblast Cells After Excessive Hypoxia. Int Heart J 2025; 66:157-163. [PMID: 39894544 DOI: 10.1536/ihj.24-454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Myocardial infarction (MI) is a cardiovascular condition that leads to increased morbidity and mortality, impacting the quality of life of individuals. Aloperine (ALO), derived from Sophora alopecuroides L, has been recognized for its beneficial effects in treating various diseases by showcasing therapeutic properties. However, the precise protective mechanisms of ALO on hypoxia/reoxygenation (H/R) -induced damage in cardiomyocytes in vitro remain unclear. In this study, it was manifested that cell proliferation was weakened after H/R treatment, but this impact was offset after ALO treatment. Furthermore, cell apoptosis was heightened after H/R treatment, but this phenomenon was neutralized after ALO treatment. ALO relieved inflammation in H/R-treated H9C2 rat cardiomyoblast cells. Moreover, ALO strengthened autophagy in H/R-triggered H9C2 rat cardiomyoblast cells through enhancing the LC3II/LC3I level and the LC3B fluorescence intensity. Lastly, it was testified that ALO can rescue the weakened autophagy, the heightened cell apoptosis, and the augmented inflammation after CC treatment in H/R-mediated H9C2 rat cardiomyoblast cells. In conclusion, ALO regulated inflammation, apoptosis, and autophagy through AMPK/Nrf2 pathway in H9C2 rat cardiomyoblast cells after excessive hypoxia. This study suggested that ALO may be an underlying drug for MI therapy.
Collapse
Affiliation(s)
- Feng Ju
- Department of Anesthesiology, People's Hospital of Deyang City
| | - Xianjie Zhang
- Department of Anesthesiology, People's Hospital of Deyang City
| | - Zhifu Zhao
- Department of Anesthesiology, People's Hospital of Deyang City
| | - Yuansheng Cao
- Department of Anesthesiology, People's Hospital of Deyang City
| | - An Xie
- Department of Anesthesiology, People's Hospital of Deyang City
| | - Leqiang Xia
- Department of Anesthesiology, People's Hospital of Deyang City
| | - Dan Zhou
- Department of Anesthesiology, People's Hospital of Deyang City
| |
Collapse
|
3
|
Gladka MM, Kohela A, de Leeuw AE, Molenaar B, Versteeg D, Kooijman L, van Geldorp M, van Ham WB, Caliandro R, Haigh JJ, van Veen TAB, van Rooij E. Hypoxia-responsive zinc finger E-box-binding homeobox 2 (ZEB2) regulates a network of calcium-handling genes in the injured heart. Cardiovasc Res 2024; 120:1869-1883. [PMID: 39308239 PMCID: PMC11630050 DOI: 10.1093/cvr/cvae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 12/11/2024] Open
Abstract
AIMS Intracellular calcium (Ca2+) overload is known to play a critical role in the development of cardiac dysfunction. Despite the remarkable improvement in managing the progression of heart disease, developing effective therapies for heart failure (HF) remains a challenge. A better understanding of molecular mechanisms that maintain proper Ca2+ levels and contractility in the injured heart could be of therapeutic value. METHODS AND RESULTS Here, we report that transcription factor zinc finger E-box-binding homeobox 2 (ZEB2) is induced by hypoxia-inducible factor 1-alpha (HIF1α) in hypoxic cardiomyocytes and regulates a network of genes involved in Ca2+ handling and contractility during ischaemic heart disease. Gain- and loss-of-function studies in genetic mouse models revealed that ZEB2 expression in cardiomyocytes is necessary and sufficient to protect the heart against ischaemia-induced diastolic dysfunction and structural remodelling. Moreover, RNA sequencing of ZEB2-overexpressing (Zeb2 cTg) hearts post-injury implicated ZEB2 in regulating numerous Ca2+-handling and contractility-related genes. Mechanistically, ZEB2 overexpression increased the phosphorylation of phospholamban at both serine-16 and threonine-17, implying enhanced activity of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), thereby augmenting SR Ca2+ uptake and contractility. Furthermore, we observed a decrease in the activity of Ca2+-dependent calcineurin/NFAT signalling in Zeb2 cTg hearts, which is the main driver of pathological cardiac remodelling. On a post-transcriptional level, we showed that ZEB2 expression can be regulated by the cardiomyocyte-specific microRNA-208a (miR-208a). Blocking the function of miR-208a with anti-miR-208a increased ZEB2 expression in the heart and effectively protected from the development of pathological cardiac hypertrophy. CONCLUSION Together, we present ZEB2 as a central regulator of contractility and Ca2+-handling components in the mammalian heart. Further mechanistic understanding of the role of ZEB2 in regulating Ca2+ homeostasis in cardiomyocytes is an essential step towards the development of improved therapies for HF.
Collapse
Affiliation(s)
- Monika M Gladka
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Arwa Kohela
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- School of Biotechnology, Nile University, Giza, Egypt
| | - Anne E de Leeuw
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bas Molenaar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Lieneke Kooijman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mariska van Geldorp
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Rocco Caliandro
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jody J Haigh
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Centre Utrecht (UMCU), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Froese N, Szaroszyk M, Galuppo P, Visker JR, Werlein C, Korf‐Klingebiel M, Berliner D, Reboll MR, Hamouche R, Gegel S, Wang Y, Hofmann W, Tang M, Geffers R, Wende AR, Kühnel MP, Jonigk DD, Hansmann G, Wollert KC, Abel ED, Drakos SG, Bauersachs J, Riehle C. Hypoxia Attenuates Pressure Overload-Induced Heart Failure. J Am Heart Assoc 2024; 13:e033553. [PMID: 38293923 PMCID: PMC11056135 DOI: 10.1161/jaha.123.033553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Alveolar hypoxia is protective in the context of cardiovascular and ischemic heart disease; however, the underlying mechanisms are incompletely understood. The present study sought to test the hypothesis that hypoxia is cardioprotective in left ventricular pressure overload (LVPO)-induced heart failure. We furthermore aimed to test that overlapping mechanisms promote cardiac recovery in heart failure patients following left ventricular assist device-mediated mechanical unloading and circulatory support. METHODS AND RESULTS We established a novel murine model of combined chronic alveolar hypoxia and LVPO following transverse aortic constriction (HxTAC). The HxTAC model is resistant to cardiac hypertrophy and the development of heart failure. The cardioprotective mechanisms identified in our HxTAC model include increased activation of HIF (hypoxia-inducible factor)-1α-mediated angiogenesis, attenuated induction of genes associated with pathological remodeling, and preserved metabolic gene expression as identified by RNA sequencing. Furthermore, LVPO decreased Tbx5 and increased Hsd11b1 mRNA expression under normoxic conditions, which was attenuated under hypoxic conditions and may induce additional hypoxia-mediated cardioprotective effects. Analysis of samples from patients with advanced heart failure that demonstrated left ventricular assist device-mediated myocardial recovery revealed a similar expression pattern for TBX5 and HSD11B1 as observed in HxTAC hearts. CONCLUSIONS Hypoxia attenuates LVPO-induced heart failure. Cardioprotective pathways identified in the HxTAC model might also contribute to cardiac recovery following left ventricular assist device support. These data highlight the potential of our novel HxTAC model to identify hypoxia-mediated cardioprotective mechanisms and therapeutic targets that attenuate LVPO-induced heart failure and mediate cardiac recovery following mechanical circulatory support.
Collapse
Affiliation(s)
- Natali Froese
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | | | - Paolo Galuppo
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Joseph R. Visker
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) and Division of Cardiovascular MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | | | | | - Dominik Berliner
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Marc R. Reboll
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) and Division of Cardiovascular MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Simona Gegel
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Yong Wang
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Winfried Hofmann
- Department of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Ming Tang
- Department of Human GeneticsHannover Medical SchoolHannoverGermany
- L3S Research CenterLeibniz UniversityHannoverGermany
| | - Robert Geffers
- Helmholtz Center for Infection ResearchResearch Group Genome AnalyticsBraunschweigGermany
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mark P. Kühnel
- Institute of PathologyHannover Medical SchoolHannoverGermany
- Biomedical Research in End‐stage and Obstructive Lung Disease Hannover (BREATH)German Lung Research Center (DZL)HannoverGermany
| | - Danny D. Jonigk
- Institute of PathologyHannover Medical SchoolHannoverGermany
- Biomedical Research in End‐stage and Obstructive Lung Disease Hannover (BREATH)German Lung Research Center (DZL)HannoverGermany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical CareHannover Medical SchoolHannoverGermany
- Department of Pediatric CardiologyUniversity Medical Center Erlangen, Friedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Kai C. Wollert
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - E. Dale Abel
- Department of MedicineDavid Geffen School of Medicine and UCLA HealthLos AngelesCAUSA
| | - Stavros G. Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) and Division of Cardiovascular MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Johann Bauersachs
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Christian Riehle
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
6
|
Shridhar P, Glennon MS, Pal S, Waldron CJ, Chetkof EJ, Basak P, Clavere NG, Banerjee D, Gingras S, Becker JR. MDM2 Regulation of HIF Signaling Causes Microvascular Dysfunction in Hypertrophic Cardiomyopathy. Circulation 2023; 148:1870-1886. [PMID: 37886847 PMCID: PMC10691664 DOI: 10.1161/circulationaha.123.064332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Microvasculature dysfunction is a common finding in pathologic remodeling of the heart and is thought to play an important role in the pathogenesis of hypertrophic cardiomyopathy (HCM), a disease caused by sarcomere gene mutations. We hypothesized that microvascular dysfunction in HCM was secondary to abnormal microvascular growth and could occur independent of ventricular hypertrophy. METHODS We used multimodality imaging methods to track the temporality of microvascular dysfunction in HCM mouse models harboring mutations in the sarcomere genes Mybpc3 (cardiac myosin binding protein C3) or Myh6 (myosin heavy chain 6). We performed complementary molecular methods to assess protein quantity, interactions, and post-translational modifications to identify mechanisms regulating this response. We manipulated select molecular pathways in vivo using both genetic and pharmacological methods to validate these mechanisms. RESULTS We found that microvascular dysfunction in our HCM models occurred secondary to reduced myocardial capillary growth during the early postnatal time period and could occur before the onset of myocardial hypertrophy. We discovered that the E3 ubiquitin protein ligase MDM2 (murine double minute 2) dynamically regulates the protein stability of both HIF1α (hypoxia-inducible factor 1 alpha) and HIF2α (hypoxia-inducible factor 2 alpha)/EPAS1 (endothelial PAS domain protein 1) through canonical and noncanonical mechanisms. The resulting HIF imbalance leads to reduced proangiogenic gene expression during a key period of myocardial capillary growth. Reducing MDM2 protein levels by genetic or pharmacological methods normalized HIF protein levels and prevented the development of microvascular dysfunction in both HCM models. CONCLUSIONS Our results show that sarcomere mutations induce cardiomyocyte MDM2 signaling during the earliest stages of disease, and this leads to long-term changes in the myocardial microenvironment.
Collapse
Affiliation(s)
- Puneeth Shridhar
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA (P.S., J.R.B.)
| | - Michael S. Glennon
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Soumojit Pal
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Christina J. Waldron
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Ethan J. Chetkof
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Payel Basak
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Nicolas G. Clavere
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Dipanjan Banerjee
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Sebastien Gingras
- Department of Immunology (S.G.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Jason R. Becker
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA (P.S., J.R.B.)
| |
Collapse
|
7
|
Sun B, Wang L, Guo W, Chen S, Ma Y, Wang D. New treatment methods for myocardial infarction. Front Cardiovasc Med 2023; 10:1251669. [PMID: 37840964 PMCID: PMC10569499 DOI: 10.3389/fcvm.2023.1251669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
For a long time, cardiovascular clinicians have focused their research on coronary atherosclerotic cardiovascular disease and acute myocardial infarction due to their high morbidity, high mortality, high disability rate, and limited treatment options. Despite the continuous optimization of the therapeutic methods and pharmacological therapies for myocardial ischemia-reperfusion, the incidence rate of heart failure continues to increase year by year. This situation is speculated to be caused by the current therapies, such as reperfusion therapy after ischemic injury, drugs, rehabilitation, and other traditional treatments, that do not directly target the infarcted myocardium. Consequently, these therapies cannot fundamentally solve the problems of myocardial pathological remodeling and the reduction of cardiac function after myocardial infarction, allowing for the progression of heart failure after myocardial infarction. Coupled with the decline in mortality caused by acute myocardial infarction in recent years, this combination leads to an increase in the incidence of heart failure. As a new promising therapy rising at the beginning of the twenty-first century, cardiac regenerative medicine provides a new choice and hope for the recovery of cardiac function and the prevention and treatment of heart failure after myocardial infarction. In the past two decades, regeneration engineering researchers have explored and summarized the elements, such as cells, scaffolds, and cytokines, required for myocardial regeneration from all aspects and various levels day and night, paving the way for our later scholars to carry out relevant research and also putting forward the current problems and directions for us. Here, we describe the advantages and challenges of cardiac tissue engineering, a contemporary innovative therapy after myocardial infarction, to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Bingbing Sun
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, China
| | - Long Wang
- Department of General Internal Medicine, Beijing Dawanglu Emergency Hospital, Beijing, China
| | - Wenmin Guo
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, China
| | - Shixuan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yujie Ma
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, China
| | - Dongwei Wang
- Department of Cardiac Rehabilitation, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Derks W, Rode J, Collin S, Rost F, Heinke P, Hariharan A, Pickel L, Simonova I, Lázár E, Graham E, Jashari R, Andrä M, Jeppsson A, Salehpour M, Alkass K, Druid H, Kyriakopoulos CP, Taleb I, Shankar TS, Selzman CH, Sadek H, Jovinge S, Brusch L, Frisén J, Drakos S, Bergmann O. A latent cardiomyocyte regeneration potential in human heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557681. [PMID: 37745322 PMCID: PMC10515906 DOI: 10.1101/2023.09.14.557681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cardiomyocytes in the adult human heart show a regenerative capacity, with an annual renewal rate around 0.5%. Whether this regenerative capacity of human cardiomyocytes is employed in heart failure has been controversial. Using retrospective 14C birth dating we analyzed cardiomyocyte renewal in patients with end-stage heart failure. We show that cardiomyocyte generation is minimal in end-stage heart failure patients at rates 18-50 times lower compared to the healthy heart. However, patients receiving left ventricle support device therapy, who showed significant functional and structural cardiac improvement, had a >6-fold increase in cardiomyocyte renewal relative to the healthy heart. Our findings reveal a substantial cardiomyocyte regeneration potential in human heart disease, which could be exploited therapeutically.
Collapse
Affiliation(s)
- Wouter Derks
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Julian Rode
- Center of Information Services and High-Performance Computing, TU Dresden, Dresden, Germany
| | - Sofia Collin
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Fabian Rost
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
- Center of Information Services and High-Performance Computing, TU Dresden, Dresden, Germany
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Paula Heinke
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Anjana Hariharan
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Lauren Pickel
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Irina Simonova
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Evan Graham
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | - Michaela Andrä
- Department of Cardiothoracic and Vascular Surgery, Klinikum Klagenfurt and Section for Surgical Research Medical University Graz, 9020 Graz, Austria
| | - Anders Jeppsson
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mehran Salehpour
- Department of Physics and Astronomy, Applied Nuclear Physics, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Kanar Alkass
- Department of Oncology-Pathology, Karolinska Institute, SE-171 77 Stockholm and National Board of Forensic Medicine, SE-171 65 Stockholm, Sweden
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institute, SE-171 77 Stockholm and National Board of Forensic Medicine, SE-171 65 Stockholm, Sweden
| | - Christos P. Kyriakopoulos
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, Utah, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Iosif Taleb
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, Utah, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Thirupura S. Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Craig H. Selzman
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, Utah, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Hesham Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stefan Jovinge
- Spectrum Health Frederik Meijer Heart & Vascular Institute and Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lutz Brusch
- Center of Information Services and High-Performance Computing, TU Dresden, Dresden, Germany
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Stavros Drakos
- Divisions of Cardiovascular Medicine and Cardiothoracic Surgery, University of Utah Health & School of Medicine, Salt Lake City, Utah, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
- Pharmacology and Toxicology, Department of Pharmacology and Toxicology University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
9
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
10
|
Kuwabara JT, Hara A, Heckl JR, Peña B, Bhutada S, DeMaris R, Ivey MJ, DeAngelo LP, Liu X, Park J, Jahansooz JR, Mestroni L, McKinsey TA, Apte SS, Tallquist MD. Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. J Mol Cell Cardiol 2022; 169:84-95. [PMID: 35569524 PMCID: PMC10149041 DOI: 10.1016/j.yjmcc.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cardiac fibroblasts are the main non-myocyte population responsible for extracellular matrix (ECM) production. During perinatal development, fibroblast expansion coincides with the transition from hyperplastic to hypertrophic myocardial growth. Therefore, we investigated the consequences of fibroblast loss at the time of cardiomyocyte maturation by depleting fibroblasts in the perinatal mouse. METHODS AND RESULTS We evaluated the microenvironment of the perinatal heart in the absence of fibroblasts and the potential functional impact of fibroblast loss in regulation of cardiomyocyte cell cycle arrest and binucleation. Cre-mediated expression of diphtheria toxin A in PDGFRα expressing cells immediately after birth eliminated 70-80% of the cardiac fibroblasts. At postnatal day 5, hearts lacking fibroblasts appeared similar to controls with normal morphology and comparable numbers of endothelial and smooth muscle cells, despite a pronounced reduction in fibrillar collagen. Immunoblotting and proteomic analysis of control and fibroblast-deficient hearts identified differential abundance of several ECM proteins. In addition, fibroblast loss decreased tissue stiffness and resulted in increased cardiomyocyte mitotic index, DNA synthesis, and cytokinesis. Moreover, decellularized matrix from fibroblast-deficient hearts promoted cardiomyocyte DNA replication. While cardiac architecture was not overtly affected by fibroblast reduction, few pups survived past postnatal day 11, suggesting an overall requirement for PDGFRα expressing fibroblasts. CONCLUSIONS These studies demonstrate the key role of fibroblasts in matrix production and cardiomyocyte cross-talk during mouse perinatal heart maturation and revealed that fibroblast-derived ECM may modulate cardiomyocyte maturation in vivo. Neonatal depletion of fibroblasts demonstrated that although hearts can tolerate reduced ECM composition, fibroblast loss eventually leads to perinatal death as the approach simultaneously reduced fibroblast populations in other organs.
Collapse
Affiliation(s)
- Jill T Kuwabara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Akitoshi Hara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Jack R Heckl
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Brisa Peña
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States of America
| | - Regan DeMaris
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Malina J Ivey
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - Lydia P DeAngelo
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Xiaoting Liu
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Juwon Park
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Julia R Jahansooz
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Luisa Mestroni
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States of America
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America.
| |
Collapse
|
11
|
Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. BIOLOGY 2022; 11:biology11060880. [PMID: 35741401 PMCID: PMC9220194 DOI: 10.3390/biology11060880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Death from injury to the heart from a variety of causes remains a major cause of mortality worldwide. The cardiomyocyte, the major contracting cell of the heart, is responsible for pumping blood to the rest of the body. During fetal development, these immature cardiomyocytes are small and rapidly divide to complete development of the heart by birth when they develop structural and functional characteristics of mature cells which prevent further division. All further growth of the heart after birth is due to an increase in the size of cardiomyocytes, hypertrophy. Following the loss of functional cardiomyocytes due to coronary artery occlusion or other causes, the heart is unable to replace the lost cells. One of the significant research goals has been to induce adult cardiomyocytes to reactivate the cell cycle and repair cardiac injury. This review explores the developmental, structural, and functional changes of the growing cardiomyocyte, and particularly the sarcomere, responsible for force generation, from the early fetal period of reproductive cell growth through the neonatal period and on to adulthood, as well as during pathological response to different forms of myocardial diseases or injury. Multiple issues relative to cardiomyocyte cell-cycle regulation in normal or diseased conditions are discussed. Abstract The cardiomyocyte undergoes dramatic changes in structure, metabolism, and function from the early fetal stage of hyperplastic cell growth, through birth and the conversion to hypertrophic cell growth, continuing to the adult stage and responding to various forms of stress on the myocardium, often leading to myocardial failure. The fetal cell with incompletely formed sarcomeres and other cellular and extracellular components is actively undergoing mitosis, organelle dispersion, and formation of daughter cells. In the first few days of neonatal life, the heart is able to repair fully from injury, but not after conversion to hypertrophic growth. Structural and metabolic changes occur following conversion to hypertrophic growth which forms a barrier to further cardiomyocyte division, though interstitial components continue dividing to keep pace with cardiac growth. Both intra- and extracellular structural changes occur in the stressed myocardium which together with hemodynamic alterations lead to metabolic and functional alterations of myocardial failure. This review probes some of the questions regarding conditions that regulate normal and pathologic growth of the heart.
Collapse
|
12
|
Gara E, Ong SG, Winkler J, Zlabinger K, Lukovic D, Merkely B, Emmert MY, Wolint P, Hoerstrup SP, Gyöngyösi M, Wu JC, Pavo N. Cell-Based HIF1α Gene Therapy Reduces Myocardial Scar and Enhances Angiopoietic Proteome, Transcriptomic and miRNA Expression in Experimental Chronic Left Ventricular Dysfunction. Front Bioeng Biotechnol 2022; 10:767985. [PMID: 35646882 PMCID: PMC9133350 DOI: 10.3389/fbioe.2022.767985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Recent preclinical investigations and clinical trials with stem cells mostly studied bone-marrow-derived mononuclear cells (BM-MNCs), which so far failed to meet clinically significant functional study endpoints. BM-MNCs containing small proportions of stem cells provide little regenerative potential, while mesenchymal stem cells (MSCs) promise effective therapy via paracrine impact. Genetic engineering for rationally enhancing paracrine effects of implanted stem cells is an attractive option for further development of therapeutic cardiac repair strategies. Non-viral, efficient transfection methods promise improved clinical translation, longevity and a high level of gene delivery. Hypoxia-induced factor 1α is responsible for pro-angiogenic, anti-apoptotic and anti-remodeling mechanisms. Here we aimed to apply a cellular gene therapy model in chronic ischemic heart failure in pigs. A non-viral circular minicircle DNA vector (MiCi) was used for in vitro transfection of porcine MSCs (pMSC) with HIF1α (pMSC-MiCi-HIF-1α). pMSCs-MiCi-HIF-1α were injected endomyocardially into the border zone of an anterior myocardial infarction one month post-reperfused-infarct. Cell injection was guided via 3D-guided NOGA electro-magnetic catheter delivery system. pMSC-MiCi-HIF-1α delivery improved cardiac output and reduced myocardial scar size. Abundances of pro-angiogenic proteins were analyzed 12, 24 h and 1 month after the delivery of the regenerative substances. In a protein array, the significantly increased angiogenesis proteins were Activin A, Angiopoietin, Artemin, Endothelin-1, MCP-1; and remodeling factors ADAMTS1, FGFs, TGFb1, MMPs, and Serpins. In a qPCR analysis, increased levels of angiopeptin, CXCL12, HIF-1α and miR-132 were found 24 h after cell-based gene delivery, compared to those in untreated animals with infarction and in control animals. Expression of angiopeptin increased already 12 h after treatment, and miR-1 expression was reduced at that time point. In total, pMSC overexpressing HIF-1α showed beneficial effects for treatment of ischemic injury, mediated by stimulation of angiogenesis.
Collapse
Affiliation(s)
- Edit Gara
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Johannes Winkler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bela Merkely
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Wolint
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Zhong N, Nong X, Diao J, Yang G. piRNA-6426 increases DNMT3B-mediated SOAT1 methylation and improves heart failure. Aging (Albany NY) 2022; 14:2678-2694. [PMID: 35354120 PMCID: PMC9004576 DOI: 10.18632/aging.203965] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Previous studies found that piRNAs could participate in disease progression by regulating DNA methylation, but there are few reports on their roles in heart failure (HF). METHODS The level of piRNA-6426 in the venous blood of HF patients and volunteers was detected by RT-qPCR. Hypoxia-induced cardiomyocytes were transfected with lentiviral-mediated piRNA-6426 overexpression vector (LV-piRNA-6426) or together with LV-DNMT3B, and then cell viability and apoptosis, glucose uptake, ROS production, LDH activity and secretion of inflammatory factors were detected. Also, cardiomyocytes were transfected with LV-piRNA-6426, sh-piRNA-6426 or sh-SOAT1, as well as LV-piRNA-6426 or together with LV-DNMT3B or sh-DNMT3B. The interaction between piRNA-6426 and methyltransferase 3B (DNMT3B) was detected with RNA immunoprecipitation (RIP). And the methylation level of sterol o-acyltransferase 1 (SOAT1) and the enrichment of DNMT3B in the SOAT1 promoter were detected with Methylation-specific PCR (MSP) and ChIP assays. Then a HF rat model constructed with coronary artery occlusion method was injected with LV-piRNA-6426, and heart function index and infarcted area of rat heart were detected. RESULTS piRNA-6426 expression was decreased in the blood of HF patients. LV-piRNA-6426 transfection increased the enrichment of DNMT3B in SOAT1 promoter, thereby inhibiting the expression level of SOAT1, and decreased hypoxia-induced oxidative stress and inflammation in cardiomyocytes, while sh-piRNA-6426 transfection had the opposite effect. And LV-DNMT3B transfection enhanced the effect of LV-piRNA-6426 transfection on SOAT1 expression and cardiomyocyte dysfunction. Injection of LV-piRNA-6426 significantly inhibited the heart dysfunction of rats. CONCLUSIONS piRNA-6426 overexpression inhibits hypoxia-induced cardiomyocyte dysfunction and HF by promoting DNMT3B-mediated methylation of SOAT1 promoter.
Collapse
Affiliation(s)
- Nier Zhong
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiting Nong
- Department of Endocrinology, Xi’an Central Hospital, Xi’an, China
| | - Jiayu Diao
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Guang Yang
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
14
|
Li Y, Yang M, Tan J, Shen C, Deng S, Fu X, Gao S, Li H, Zhang X, Cai W. Targeting ACSL1 promotes cardiomyocyte proliferation and cardiac regeneration. Life Sci 2022; 294:120371. [PMID: 35122795 DOI: 10.1016/j.lfs.2022.120371] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/19/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neonatal hearts have considerable regenerative potential within 7 days post birth (P7), but the rate of regeneration is extremely low after P7. Interestingly, lipid metabolism increases dramatically after P7. The similarities in these age profiles suggests a possible link between cardiac regeneration and lipid metabolism. Acyl CoA synthase long chain family member 1 (ACSL1) is the key enzyme that regulates lipid metabolism. The aim of this study was to identify the role of ACSL1 in the regeneration of cardiomyocytes. METHODS AND RESULTS The uptake of fatty acids in hearts increased after P7; however, myocardial regeneration was decreased. We profiled an RNA-sequence array of hearts from mice of different ages, including E10.5 (embryonic stage)-, 3-, 7-, 21-, 30-, and 60-day-old mice, and found that the expression of ACSL1 was significantly increased after P7. By establishing ACSL1 knockdown mice with adeno-associated virus (AAV9). Then, we verified that knockdown of ACSL1 enhanced the capacity for myocardial regeneration both in mice and in primary cardiomyocytes. Indeed, ACSL1 knockdown in primary cardiomyocytes promoted the cell cycle progression from G0 to G2 phase by regulating specific factors, which may correlate with the activation of AKT by ACSL1 and withdrawal of FOXO1 from the nucleus. In vivo, knockdown of ACSL1 effectively restored cardiac function and myocardial regeneration in adult mice with myocardial infarction (MI). CONCLUSIONS ACSL1 possibly induces the loss of the myocardial regenerative potential beginning at P7 in mice, and inhibition of ACSL1 effectively promoted myocardial repair after MI in mice.
Collapse
Affiliation(s)
- Yuanlong Li
- Institute of Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Ming Yang
- Institute of Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jing Tan
- Institute of Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Conghui Shen
- Institute of Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shijie Deng
- Institute of Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xinlu Fu
- Institute of Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Saifei Gao
- Institute of Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hui Li
- Institute of Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaoxue Zhang
- The Second Department of Cardiology, Guangdong Second Provincial General Hospital & Guangdong Provincial Emergency Hospital, Guangzhou 510317, Guangdong, China.
| | - Weibin Cai
- Institute of Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
15
|
Costa A, Cushman S, Haubner BJ, Derda AA, Thum T, Bär C. Neonatal injury models: integral tools to decipher the molecular basis of cardiac regeneration. Basic Res Cardiol 2022; 117:26. [PMID: 35503383 PMCID: PMC9064850 DOI: 10.1007/s00395-022-00931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023]
Abstract
Myocardial injury often leads to heart failure due to the loss and insufficient regeneration of resident cardiomyocytes. The low regenerative potential of the mammalian heart is one of the main drivers of heart failure progression, especially after myocardial infarction accompanied by large contractile muscle loss. Preclinical therapies for cardiac regeneration are promising, but clinically still missing. Mammalian models represent an excellent translational in vivo platform to test drugs and treatments for the promotion of cardiac regeneration. Particularly, short-lived mice offer the possibility to monitor the outcome of such treatments throughout the life span. Importantly, there is a short period of time in newborn mice in which the heart retains full regenerative capacity after cardiac injury, which potentially also holds true for the neonatal human heart. Thus, in vivo neonatal mouse models of cardiac injury are crucial to gain insights into the molecular mechanisms underlying the cardiac regenerative processes and to devise novel therapeutic strategies for the treatment of diseased adult hearts. Here, we provide an overview of the established injury models to study cardiac regeneration. We summarize pioneering studies that demonstrate the potential of using neonatal cardiac injury models to identify factors that may stimulate heart regeneration by inducing endogenous cardiomyocyte proliferation in the adult heart. To conclude, we briefly summarize studies in large animal models and the insights gained in humans, which may pave the way toward the development of novel approaches in regenerative medicine.
Collapse
Affiliation(s)
- Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Bernhard J. Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria ,Department of Cardiology, University Heart Center, University Hospital Zurich, Zürich, Switzerland
| | - Anselm A. Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| |
Collapse
|
16
|
Abstract
Heart regeneration is a remarkable process whereby regrowth of damaged cardiac tissue rehabilitates organ anatomy and function. Unfortunately, the human heart is highly resistant to regeneration, which creates a shortage of cardiomyocytes in the wake of ischemic injury, and explains, in part, why coronary artery disease remains a leading cause of death worldwide. Luckily, a detailed blueprint for achieving therapeutic heart regeneration already exists in nature because several lower vertebrate species successfully regenerate amputated or damaged heart muscle through robust cardiomyocyte proliferation. A growing number of species are being interrogated for cardiac regenerative potential, and several commonalities have emerged between those animals showing high or low innate capabilities. In this review, we provide a historical perspective on the field, discuss how regenerative potential is influenced by cardiomyocyte properties, mitogenic signals, and chromatin accessibility, and highlight unanswered questions under active investigation. Ultimately, delineating why heart regeneration occurs preferentially in some organisms, but not in others, will uncover novel therapeutic inroads for achieving cardiac restoration in humans.
Collapse
Affiliation(s)
- Hui-Min Yin
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
17
|
Li H, Niu N, Yang J, Dong F, Zhang T, Li S, Zhao W. Nuclear respiratory factor 1 protects H9C2 cells against hypoxia-induced apoptosis via the death receptor pathway and mitochondrial pathway. Cell Biol Int 2021; 45:1784-1796. [PMID: 33913583 DOI: 10.1002/cbin.11619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Hypoxia-induced cardiomyocyte apoptosis is one of the leading causes of heart failure. Nuclear respiratory factor 1 (NRF-1) was suggested as a protector against cell apoptosis; However, the mechanism is not clear. Therefore, the aim of this study was to elucidate the role of NRF-1 in hypoxia-induced H9C2 cardiomyocyte apoptosis and to explore its effect on regulating the death receptor pathway and mitochondrial pathway. NRF-1 was overexpressed or knocked down in H9C2 cells, which were then exposed to a hypoxia condition for 0, 3, 6, 12, and 24 h. Changes in cell proliferation, cell viability, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were investigated. The activities of caspase-3, -8, and -9, apoptosis rate, and the gene and protein expression levels of the death receptor pathway and mitochondrial pathway were analyzed. Under hypoxia exposure, NRF-1 overexpression improved the proliferation and viability of H9C2 cells and decreased ROS generation, MMP loss, caspase activities, and the apoptosis rate. However, the NRF-1 knockdown group showed the opposite results. Additionally, NRF-1 upregulated the expression of antiapoptotic molecules involved in the death receptor and mitochondrial pathways, such as CASP8 and FADD-like apoptosis regulator, B-cell lymphoma 2, B-cell lymphoma-extra-large, and cytochrome C. Conversely, the expression of proapoptotic molecules, such as caspase-8, BH3-interacting domain death agonist, Bcl-2-associated X protein, caspase-9, and caspase-3 was downregulated by NRF-1 overexpression in hypoxia-induced H9C2 cells. These results suggest that NRF-1 functions as an antiapoptotic factor in the death receptor and mitochondrial pathways to mitigate hypoxia-induced apoptosis in H9C2 cardiomyocytes.
Collapse
Affiliation(s)
- Hui Li
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Nan Niu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Jihui Yang
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Fei Dong
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Tingrui Zhang
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Shasha Li
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Wei Zhao
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
18
|
Bo B, Li S, Zhou K, Wei J. The Regulatory Role of Oxygen Metabolism in Exercise-Induced Cardiomyocyte Regeneration. Front Cell Dev Biol 2021; 9:664527. [PMID: 33937268 PMCID: PMC8083961 DOI: 10.3389/fcell.2021.664527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
During heart failure, the heart is unable to regenerate lost or damaged cardiomyocytes and is therefore unable to generate adequate cardiac output. Previous research has demonstrated that cardiac regeneration can be promoted by a hypoxia-related oxygen metabolic mechanism. Numerous studies have indicated that exercise plays a regulatory role in the activation of regeneration capacity in both healthy and injured adult cardiomyocytes. However, the role of oxygen metabolism in regulating exercise-induced cardiomyocyte regeneration is unclear. This review focuses on the alteration of the oxygen environment and metabolism in the myocardium induced by exercise, including the effects of mild hypoxia, changes in energy metabolism, enhanced elimination of reactive oxygen species, augmentation of antioxidative capacity, and regulation of the oxygen-related metabolic and molecular pathway in the heart. Deciphering the regulatory role of oxygen metabolism and related factors during and after exercise in cardiomyocyte regeneration will provide biological insight into endogenous cardiac repair mechanisms. Furthermore, this work provides strong evidence for exercise as a cost-effective intervention to improve cardiomyocyte regeneration and restore cardiac function in this patient population.
Collapse
Affiliation(s)
- Bing Bo
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Shuangshuang Li
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China
| | - Ke Zhou
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
19
|
Querdel E, Reinsch M, Castro L, Köse D, Bähr A, Reich S, Geertz B, Ulmer B, Schulze M, Lemoine MD, Krause T, Lemme M, Sani J, Shibamiya A, Stüdemann T, Köhne M, Bibra CV, Hornaschewitz N, Pecha S, Nejahsie Y, Mannhardt I, Christ T, Reichenspurner H, Hansen A, Klymiuk N, Krane M, Kupatt C, Eschenhagen T, Weinberger F. Human Engineered Heart Tissue Patches Remuscularize the Injured Heart in a Dose-Dependent Manner. Circulation 2021; 143:1991-2006. [PMID: 33648345 PMCID: PMC8126500 DOI: 10.1161/circulationaha.120.047904] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Human engineered heart tissue (EHT) transplantation represents a potential regenerative strategy for patients with heart failure and has been successful in preclinical models. Clinical application requires upscaling, adaptation to good manufacturing practices, and determination of the effective dose.
Collapse
Affiliation(s)
- Eva Querdel
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Marina Reinsch
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Liesa Castro
- Department of Cardiovascular Surgery, University Heart Center (L.C., S.P., H.R.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.).,Now with Department of Cardiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Germany (L.C.)
| | - Deniz Köse
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Andrea Bähr
- I. Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar (A.B., N.H., N.K., C.K.), Technical University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich (A.B., N.H., N.K., C.K.).,Center for Innovative Medical Models, LMU Munich, Oberschleissheim, Germany (A.B., N.K.)
| | - Svenja Reich
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany
| | - Bärbel Ulmer
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Mirja Schulze
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Marc D Lemoine
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.).,Department of Cardiology-Electrophysiology (M.D.L.), University Heart Center, Hamburg, Germany
| | - Tobias Krause
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Marta Lemme
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Jascha Sani
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Aya Shibamiya
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Tim Stüdemann
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Maria Köhne
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.).,Department of Pediatric Cardiac Surgery (M. Köhne), University Heart Center, Hamburg, Germany
| | - Constantin von Bibra
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Nadja Hornaschewitz
- I. Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar (A.B., N.H., N.K., C.K.), Technical University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich (A.B., N.H., N.K., C.K.)
| | - Simon Pecha
- Department of Cardiovascular Surgery, University Heart Center (L.C., S.P., H.R.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Yusuf Nejahsie
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart Center (L.C., S.P., H.R.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Nikolai Klymiuk
- I. Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar (A.B., N.H., N.K., C.K.), Technical University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich (A.B., N.H., N.K., C.K.).,Center for Innovative Medical Models, LMU Munich, Oberschleissheim, Germany (A.B., N.K.)
| | - M Krane
- Department of Cardiovascular Surgery, German Heart Centre Munich (M. Krane), Technical University Munich, Germany.,INSURE (Institute for Translational Cardiac Surgery), Cardiovascular Surgery, Munich, Germany (M. Krane)
| | - C Kupatt
- I. Medizinische Klinik & Poliklinik, University Clinic Rechts der Isar (A.B., N.H., N.K., C.K.), Technical University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich (A.B., N.H., N.K., C.K.)
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology (E.Q., M.R., D.K., S.R., B.G., B.U., M.S., T.K., M.L., J.S., A.S., T.S., C.v.B., Y.N., I.M., T.C., A.H., T.E., F.W.), University Medical Center, Hamburg-Eppendorf, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck (E.Q., M.R., L.C., D.K., B.U., M.S., M.D.L., T.K., M.L., J.S., A.S., T.S., M. Köhne, C.v.B., S.P., I.M., T.C., H.R., A.H., T.E., F.W.)
| |
Collapse
|
20
|
Helston O, Amaya E. Reactive oxygen species during heart regeneration in zebrafish: Lessons for future clinical therapies. Wound Repair Regen 2021; 29:211-224. [PMID: 33471940 PMCID: PMC8611801 DOI: 10.1111/wrr.12892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
In humans, myocardial infarction (MI) is associated with irreversible damage to heart tissue, resulting in increased morbidity and mortality in patients. By comparison, the zebrafish (Danio rerio) is capable of repairing damaged and injured hearts by activating a full regenerative response. By studying model organisms that can regenerate loss heart tissue following injury, such as the zebrafish, a greater insight will be gained into the molecular pathways that can induce and sustain a regenerative response following injury. There is hope that such information may lead to new treatments or therapies aimed at stimulating a better regenerative response in humans that have suffered heart attacks. Recent findings in zebrafish have highlighted an important role for sustained elevated levels of Reactive Oxygen Species (ROS), including hydrogen peroxide (H2O2) in the promotion of a regenerative response. Given that elevated levels of H2O2 can be harmful, simply elevating ROS levels directly may not be easy or practical to translate clinically. An alternative approach would be to identify the critical downstream targets of ROS in the promotion of heart regeneration, and then target these clinically using drugs. One such family of potential downstream targets of ROS during heart regeneration are the family of protein tyrosine phosphatases (PTPs), which are known to be exquisitely sensitive to redox regulation and whose inhibition have been linked to the promotion of heart regeneration in zebrafish. In this review, we present an overview of the zebrafish as a model organism for studying cardiac regeneration, including the molecular mechanisms by which cardiac regeneration occurs in response to injury. We then present recent findings linking elevated ROS levels to heart regeneration and their potential downstream targets, the PTPs, including protein tyrosine phosphatase 1B (PTP1B) and the dual specificity phosphatase 6 (DUSP6) in the promotion of heart regeneration.
Collapse
Affiliation(s)
- Olivia Helston
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Limper U, Tank J, Jordan J. Erythrocyte metabolism, oxygen delivery, and hypertensive kidney disease. Int J Cardiol Hypertens 2020; 7:100049. [PMID: 33447774 PMCID: PMC7803014 DOI: 10.1016/j.ijchy.2020.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/04/2022] Open
|
22
|
Liang W, Chen X, Dong Y, Zhou P, Xu F. Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People’s Hospital, Shaoxing, P. R. China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| |
Collapse
|
23
|
Translatome and Transcriptome Profiling of Hypoxic-Induced Rat Cardiomyocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1016-1024. [PMID: 33294289 PMCID: PMC7689039 DOI: 10.1016/j.omtn.2020.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/18/2020] [Indexed: 01/09/2023]
Abstract
Adult cardiac hypoxia as a crucial pathogenesis factor can induce detrimental effects on cardiac injury and dysfunction. The global transcriptome and translatome reflecting the cellular response to hypoxia have not yet been extensively studied in myocardium. In this study, we conducted RNA sequencing (RNA-seq) and ribosome profiling technique (polyribo-seq) in rat heart tissues and H9C2 cells exposed to different periods of hypoxia stress in vivo and in vitro. The temporal gene-expression profiling displayed the distinction of transcriptome and translatome, which were mainly concentrated in cell apoptosis, autophagy, DNA repair, angiogenesis, vascular process, and cardiac cell proliferation and differentiation. A large number of genes such as GNAI3, SEPT4, FANCL, BNIP3, TBX3, ESR2, PTGS2, KLF4, and ADRB2, whose transcript and translation levels are closely correlated, were identified to own a common RNA motif “5′-GAAGCUGCC-3′” in 5′ UTR. NCBP3 was further determined to recognize this RNA motif and facilitate translational process in myocardium under hypoxia stress. Taken together, our data show the close connection between alterations of transcriptome and translatome after hypoxia exposure, emphasizing the significance of translational regulation in related studies. The profiled molecular responses in current study may be valuable resources for advanced understanding of the mechanisms underlying hypoxia-induced effect on heart diseases.
Collapse
|
24
|
Fair BJ, Blake LE, Sarkar A, Pavlovic BJ, Cuevas C, Gilad Y. Gene expression variability in human and chimpanzee populations share common determinants. eLife 2020; 9:59929. [PMID: 33084571 PMCID: PMC7644215 DOI: 10.7554/elife.59929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Inter-individual variation in gene expression has been shown to be heritable and is often associated with differences in disease susceptibility between individuals. Many studies focused on mapping associations between genetic and gene regulatory variation, yet much less attention has been paid to the evolutionary processes that shape the observed differences in gene regulation between individuals in humans or any other primate. To begin addressing this gap, we performed a comparative analysis of gene expression variability and expression quantitative trait loci (eQTLs) in humans and chimpanzees, using gene expression data from primary heart samples. We found that expression variability in both species is often determined by non-genetic sources, such as cell-type heterogeneity. However, we also provide evidence that inter-individual variation in gene regulation can be genetically controlled, and that the degree of such variability is generally conserved in humans and chimpanzees. In particular, we found a significant overlap of orthologous genes associated with eQTLs in both species. We conclude that gene expression variability in humans and chimpanzees often evolves under similar evolutionary pressures.
Collapse
Affiliation(s)
| | - Lauren E Blake
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Abhishek Sarkar
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Bryan J Pavlovic
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, United States
| | - Claudia Cuevas
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Yoav Gilad
- Department of Medicine, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| |
Collapse
|
25
|
Sen DG, Mettler BA. Commentary: An idea with some muscle behind it. J Thorac Cardiovasc Surg 2020; 162:989-990. [PMID: 32868057 DOI: 10.1016/j.jtcvs.2020.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Danielle Gottlieb Sen
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Md.
| | - Bret A Mettler
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Md
| |
Collapse
|
26
|
Mendelsohn AR, Larrick JW. Epigenetic Age Reversal by Cell-Extrinsic and Cell-Intrinsic Means. Rejuvenation Res 2020; 22:439-446. [PMID: 31578938 DOI: 10.1089/rej.2019.2271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reversal of aging by factors or drugs that reprogram adult cells to induced pluripotent stem cells suggests that at least at the cellular level aging may be reversible by resetting somatic cell state to a "ground state." An open question has been whether such rejuvenation is possible in whole organisms, especially in mammals. A related key question is whether rejuvenation can be dissociated from dedifferentiation. Several recent reports suggest that one prominent biomarker of mammalian aging, age-associated DNA methylation (DNAm) state that has been used to create DNAm age (DNAma) clocks, can be partially reversed by intrinsic treatment of cells with sets of reprogramming factors without affecting cell fate. Partial reprogramming using a superset of reprogramming factors applied transiently or subset of Yamanaka factors applied continually can increase regenerative potential, and reverse DNAma, while maintaining cell identity. Alternatively, a cell-extrinsic manipulation can accomplish something similar. A small preliminary clinical trial in humans suggests that systemic treatment with a cocktail of growth hormone, dehydroepiandrosterone, and metformin could also partially reverse DNAma and at the same time regenerate the thymus, which shrinks with age. Important questions are raised: How completely does reversing DNAma clocks embody a reversal of other age-related phenotypes, such as functional decline in strength, cognition, or immunity? How universal are these epigenetic changes at the tissue and cell levels? For example, do populations of younger stem cells exist that respond to these manipulations and then only confer the appearance of decreasing DNAma as they proliferate and differentiate? Together, these studies have profound implications for the development of antiaging and healthspan-enhancing therapies. A combination of both intrinsic and extrinsic modalities will most likely provide an optimal benefit.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California.,Regenerative Sciences Institute, Sunnyvale, California
| | - James W Larrick
- Panorama Research Institute, Sunnyvale, California.,Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
27
|
How to Stimulate Myocardial Regeneration in Adult Mammalian Heart: Existing Views and New Approaches. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7874109. [PMID: 32190680 PMCID: PMC7073483 DOI: 10.1155/2020/7874109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Stem cell-based therapy has been considered as a promising option in the treatment of ischemic heart disease. Although stem cell administration resulted in the temporary improvement of myocardial contractility in the majority of studies, the formation of new cardiomyocytes within the injured myocardium has not been conclusively demonstrated. Consequently, the focus of research in the field has since shifted to stem cell-derived paracrine factors, including cytokines, growth factors, mRNA, and miRNA. Notably, both mRNA and miRNA can enter into the extracellular space either in soluble form or packed into membrane vesicles. Stem cell-derived paracrine factors have been shown to suppress inflammation and apoptosis, stimulate angiogenesis, and amplify the proliferation and differentiation of resident cardiac stem cells (CSCs). Such features have led to exosomes being considered as potential drug candidates affording myocardial regeneration. The search for chemical signals capable of stimulating cardiomyogenesis is ongoing despite continuous debates regarding the ability of mature cardiomyocytes to divide or dedifferentiate, transdifferentiation of other cells into cardiomyocytes, and the ability of CSCs to differentiate into cardiomyocytes. Future research is aimed at identifying novel cell candidates capable of differentiating into cardiomyocytes. The observation that CSCs can undergo intracellular development with the formation of “cell-in-cell structure” and subsequent release of transitory amplifying cells with the capacity to differentiate into cardiomyocytes may provide clues for stimulating regenerative cardiomyogenesis.
Collapse
|
28
|
Limper U, Hartmann B. Hypoxemia During One-Lung Ventilation: Does it Really Matter? CURRENT ANESTHESIOLOGY REPORTS 2019. [DOI: 10.1007/s40140-019-00354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Talman V, Teppo J, Pöhö P, Movahedi P, Vaikkinen A, Karhu ST, Trošt K, Suvitaival T, Heikkonen J, Pahikkala T, Kotiaho T, Kostiainen R, Varjosalo M, Ruskoaho H. Molecular Atlas of Postnatal Mouse Heart Development. J Am Heart Assoc 2019; 7:e010378. [PMID: 30371266 PMCID: PMC6474944 DOI: 10.1161/jaha.118.010378] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background The molecular mechanisms mediating postnatal loss of cardiac regeneration in mammals are not fully understood. We aimed to provide an integrated resource of mRNA, protein, and metabolite changes in the neonatal heart for identification of metabolism‐related mechanisms associated with cardiac regeneration. Methods and Results Mouse ventricular tissue samples taken on postnatal day 1 (P01), P04, P09, and P23 were analyzed with RNA sequencing and global proteomics and metabolomics. Gene ontology analysis, KEGG pathway analysis, and fuzzy c‐means clustering were used to identify up‐ or downregulated biological processes and metabolic pathways on all 3 levels, and Ingenuity pathway analysis (Qiagen) was used to identify upstream regulators. Differential expression was observed for 8547 mRNAs and for 1199 of 2285 quantified proteins. Furthermore, 151 metabolites with significant changes were identified. Differentially regulated metabolic pathways include branched chain amino acid degradation (upregulated at P23), fatty acid metabolism (upregulated at P04 and P09; downregulated at P23) as well as the HMGCS (HMG‐CoA [hydroxymethylglutaryl‐coenzyme A] synthase)–mediated mevalonate pathway and ketogenesis (transiently activated). Pharmacological inhibition of HMGCS in primary neonatal cardiomyocytes reduced the percentage of BrdU‐positive cardiomyocytes, providing evidence that the mevalonate and ketogenesis routes may participate in regulating the cardiomyocyte cell cycle. Conclusions This study is the first systems‐level resource combining data from genomewide transcriptomics with global quantitative proteomics and untargeted metabolomics analyses in the mouse heart throughout the early postnatal period. These integrated data of molecular changes associated with the loss of cardiac regeneration may open up new possibilities for the development of regenerative therapies.
Collapse
Affiliation(s)
- Virpi Talman
- 1 Drug Research Program and Division of Pharmacology and Pharmacotherapy Faculty of Pharmacy University of Helsinki Finland
| | - Jaakko Teppo
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland.,3 Institute of Biotechnology and HiLIFE Helsinki Institute of Life Science University of Helsinki Finland
| | - Päivi Pöhö
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland
| | - Parisa Movahedi
- 4 Department of Future Technologies Faculty of Mathematics and Natural Sciences University of Turku Finland
| | - Anu Vaikkinen
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland
| | - S Tuuli Karhu
- 1 Drug Research Program and Division of Pharmacology and Pharmacotherapy Faculty of Pharmacy University of Helsinki Finland
| | | | | | - Jukka Heikkonen
- 4 Department of Future Technologies Faculty of Mathematics and Natural Sciences University of Turku Finland
| | - Tapio Pahikkala
- 4 Department of Future Technologies Faculty of Mathematics and Natural Sciences University of Turku Finland
| | - Tapio Kotiaho
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland.,6 Department of Chemistry Faculty of Science University of Helsinki Finland
| | - Risto Kostiainen
- 2 Drug Research Program and Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland
| | - Markku Varjosalo
- 3 Institute of Biotechnology and HiLIFE Helsinki Institute of Life Science University of Helsinki Finland
| | - Heikki Ruskoaho
- 1 Drug Research Program and Division of Pharmacology and Pharmacotherapy Faculty of Pharmacy University of Helsinki Finland
| |
Collapse
|
30
|
The Role of Reactive Oxygen Species in In Vitro Cardiac Maturation. Trends Mol Med 2019; 25:482-493. [PMID: 31080142 DOI: 10.1016/j.molmed.2019.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/27/2022]
Abstract
Recent advances in developmental biology and biomedical engineering have significantly improved the efficiency and purity of cardiomyocytes (CMs) generated from pluripotent stem cells (PSCs). Regardless of the protocol used to derive CMs, these cells exhibit hallmarks of functional immaturity. In this Opinion, we focus on reactive oxygen species (ROS), signaling molecules that can potentially modulate cardiac maturation. We outline how ROS impacts nearly every aspect associated with cardiac maturation, including contractility, calcium handling, metabolism, and hypertrophy. Though the precise role of ROS in cardiac maturation has yet to be elucidated, ROS may provide a valuable perspective for understanding the molecular mechanisms for cardiac maturation under various conditions.
Collapse
|
31
|
Lai SL, Marín-Juez R, Stainier DYR. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell Mol Life Sci 2019; 76:1365-1380. [PMID: 30578442 PMCID: PMC6420886 DOI: 10.1007/s00018-018-2995-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Immediately after cardiac injury, the immune system plays major roles in repair and regeneration as it becomes involved in a number of processes including damage-associated signaling, inflammation, revascularization, cardiomyocyte dedifferentiation and replenishment, and fibrotic scar formation/resolution. Recent studies have revealed that different immune responses occur in the various experimental models capable or incapable of cardiac regeneration, and that harnessing these immune responses might improve cardiac repair. In light of this concept, this review analyzes current knowledge about the immune responses to cardiac injury from a comparative perspective. Insights gained from such comparative analyses may provide ways to modulate the immune response as a potential therapeutic strategy for cardiac disease.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
32
|
Sayed A, Valente M, Sassoon D. Does cardiac development provide heart research with novel therapeutic approaches? F1000Res 2018; 7. [PMID: 30450195 PMCID: PMC6221076 DOI: 10.12688/f1000research.15609.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
Embryonic heart progenitors arise at specific spatiotemporal periods that contribute to the formation of distinct cardiac structures. In mammals, the embryonic and fetal heart is hypoxic by comparison to the adult heart. In parallel, the cellular metabolism of the cardiac tissue, including progenitors, undergoes a glycolytic to oxidative switch that contributes to cardiac maturation. While oxidative metabolism is energy efficient, the glycolytic-hypoxic state may serve to maintain cardiac progenitor potential. Consistent with this proposal, the adult epicardium has been shown to contain a reservoir of quiescent cardiac progenitors that are activated in response to heart injury and are hypoxic by comparison to adjacent cardiac tissues. In this review, we discuss the development and potential of the adult epicardium and how this knowledge may provide future therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Angeliqua Sayed
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - David Sassoon
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| |
Collapse
|
33
|
Roach RC, Wagner PD, Ainslie PN, Hackett PH. Translation in Progress: Hypoxia 2017. J Appl Physiol (1985) 2017; 123:922-925. [PMID: 29025903 DOI: 10.1152/japplphysiol.00846.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Robert C Roach
- University of Colorado Altitude Research Center, Department of Medicine, Anschutz Medical Campus, Aurora, Colorado;
| | - Peter D Wagner
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Canada; and
| | - Peter H Hackett
- University of Colorado Altitude Research Center, Department of Medicine, Anschutz Medical Campus, Aurora, Colorado.,Institute for Altitude Medicine, Telluride, Colorado
| |
Collapse
|