1
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Van Every DW, D’Souza AC, Phillips SM. Hormones, Hypertrophy, and Hype: An Evidence-Guided Primer on Endogenous Endocrine Influences on Exercise-Induced Muscle Hypertrophy. Exerc Sport Sci Rev 2024; 52:117-125. [PMID: 39190607 PMCID: PMC11460760 DOI: 10.1249/jes.0000000000000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We review the evidence indicating that endogenous changes in these hormones, including testosterone, growth hormone, insulin growth factor-1, and estrogen, and their proposed anabolic effects contribute to and augment resistance exercise training (RET)-induced hypertrophy. Additionally, we provide recommendations for gold-standard methodological rigor to establish best practices for verifying menstrual phases as part of their research, ultimately enhancing our understanding of the impact of ovarian hormones on RET-induced adaptations.
Collapse
|
3
|
Wright VJ, Schwartzman JD, Itinoche R, Wittstein J. The musculoskeletal syndrome of menopause. Climacteric 2024; 27:466-472. [PMID: 39077777 DOI: 10.1080/13697137.2024.2380363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Fifty-one percent of humans are born with ovaries. As the ovarian production of estrogen diminishes in midlife and ultimately stops, it is estimated that more than 47 million women worldwide enter the menopause transition annually. More than 70% will experience musculoskeletal symptoms and 25% will be disabled by them through the transition from perimenopause to postmenopause. This often-unrecognized collective of musculoskeletal symptoms, largely influenced by estrogen flux, includes arthralgia, loss of muscle mass, loss of bone density and progression of osteoarthritis, among others. In isolation, it can be difficult for clinicians and patients to adequately appreciate the substantial role of decreasing estrogen, anticipate the onset of related symptoms and actively treat to mitigate future detrimental processes. Thus, in this review we introduce a new term, the musculoskeletal syndrome of menopause, to describe the collective musculoskeletal signs and symptoms associated with the loss of estrogen. Given the significant effects of these processes on quality of life and the associated personal and financial costs, it is important for clinicians and the women they care for to be aware of this terminology and the constellation of musculoskeletal processes for which proper risk assessment and prophylactic management are of consequence.
Collapse
Affiliation(s)
- Vonda J Wright
- University of Central Florida College of Medicine, Orlando, FL, USA
| | | | - Rafael Itinoche
- University of Central Florida College of Medicine, Orlando, FL, USA
| | | |
Collapse
|
4
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
5
|
Beaudry K, De Lisio M. Sex-Based Differences in Muscle Stem Cell Regulation Following Exercise. Exerc Sport Sci Rev 2024; 52:87-94. [PMID: 38445901 DOI: 10.1249/jes.0000000000000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Sexual dimorphism, driven by the sex hormones testosterone and estrogen, influences body composition, muscle fiber type, and inflammation. Research related to muscle stem cell (MuSC) responses to exercise has mainly focused on males. We propose a novel hypothesis that there are sex-based differences in MuSC regulation following exercise, such that males have more MuSCs, whereas females demonstrate a greater capacity for regeneration.
Collapse
Affiliation(s)
- Kayleigh Beaudry
- School of Human Kinetics , Department of Cellular and Molecular Medicine, Regenerative Medicine Program, Centre on Neuromuscular Disease , University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
6
|
Fu M, Wang J, Xu D, Cao N, Li W, Li F, Liu Z, Li Y, Zhu C, Huang Y, Zhang X. Polysaccharide of Atractylodes macrocephala Koidz alleviates LPS-induced proliferation, differentiation inhibition and excessive apoptosis in chicken embryonic myogenic cells. Vet Med Sci 2024; 10:e1412. [PMID: 38504633 PMCID: PMC10951630 DOI: 10.1002/vms3.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) can induce systemic inflammation and affect the growth and development of poultry. As a kind of traditional Chinese medicine, polysaccharide of Atractylodes macrocephala Koidz (PAMK) can effectively improve the growth performance of animals and improve the immunity of animal bodies. OBJECTIVES The purpose of this study was to investigate the effects of PAMK on LPS-induced inflammatory response, proliferation, differentiation and apoptosis of chicken embryonic myogenic cells. METHODS We used chicken embryonic myogenic cells as a model by detecting EdU/MYHC immunofluorescence, the expression of inflammation, proliferation, differentiation-related genes and proteins and the number of apoptotic cells in the condition of adding LPS, PAMK, belnacasan (an inhibitor of Caspase1) or their combinations. RESULTS The results showed that LPS stimulation increased the expression of inflammatory factors, inhibited proliferation and differentiation, and excessive apoptosis in chicken embryonic myogenic cells, and PAMK alleviated these adverse effects induced by LPS. After the addition of belnacasan (inhibitor of Caspase1), apoptosis in myogenic cells was inhibited, and therefore, the number of apoptotic cells and the expression of pro-apoptotic genes Caspase1 and Caspase3 were increased. In addition, belnacasan inhibited the increased expression of inflammatory factors, inhibited proliferation, differentiation and excessive apoptosis in chicken embryonic myogenic cells induced by LPS. CONCLUSIONS This study provides a theoretical basis for further exploring the mechanism of action of PAMK and exogenous LPS on chicken embryonic myogenic cells and lays the foundation for the development and application of green feed additives in animal husbandry industry.
Collapse
Affiliation(s)
- Mengsi Fu
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Jinhui Wang
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Danning Xu
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Nan Cao
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Wanyan Li
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Fada Li
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Zhiyuan Liu
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Yong Li
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Chenyu Zhu
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Yunmao Huang
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Xumeng Zhang
- College of Animal Science & TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| |
Collapse
|
7
|
D'Souza AC, Wageh M, Williams JS, Colenso-Semple LM, McCarthy DG, McKay AKA, Elliott-Sale KJ, Burke LM, Parise G, MacDonald MJ, Tarnopolsky MA, Phillips SM. Menstrual cycle hormones and oral contraceptives: a multimethod systems physiology-based review of their impact on key aspects of female physiology. J Appl Physiol (1985) 2023; 135:1284-1299. [PMID: 37823207 PMCID: PMC10979803 DOI: 10.1152/japplphysiol.00346.2023] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Hormonal changes around ovulation divide the menstrual cycle (MC) into the follicular and luteal phases. In addition, oral contraceptives (OCs) have active (higher hormone) and placebo phases. Although there are some MC-based effects on various physiological outcomes, we found these differences relatively subtle and difficult to attribute to specific hormones, as estrogen and progesterone fluctuate rather than operating in a complete on/off pattern as observed in cellular or preclinical models often used to substantiate human data. A broad review reveals that the differences between the follicular and luteal phases and between OC active and placebo phases are not associated with marked differences in exercise performance and appear unlikely to influence muscular hypertrophy in response to resistance exercise training. A systematic review and meta-analysis of substrate oxidation between MC phases revealed no difference between phases in the relative carbohydrate and fat oxidation at rest and during acute aerobic exercise. Vascular differences between MC phases are also relatively small or nonexistent. Although OCs can vary in composition and androgenicity, we acknowledge that much more work remains to be done in this area; however, based on what little evidence is currently available, we do not find compelling support for the notion that OC use significantly influences exercise performance, substrate oxidation, or hypertrophy. It is important to note that the study of females requires better methodological control in many areas. Previous studies lacking such rigor have contributed to premature or incorrect conclusions regarding the effects of the MC and systemic hormones on outcomes. While we acknowledge that the evidence in certain research areas is limited, the consensus view is that the impact of the MC and OC use on various aspects of physiology is small or nonexistent.
Collapse
Affiliation(s)
- Alysha C D'Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mai Wageh
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Devin G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Iqbal AZ, Wu SK, Zailani H, Chiu WC, Liu WC, Su KP, Lee SD. Effects of Omega-3 Polyunsaturated Fatty Acids Intake on Vasomotor Symptoms, Sleep Quality and Depression in Postmenopausal Women: A Systematic Review. Nutrients 2023; 15:4231. [PMID: 37836515 PMCID: PMC10574492 DOI: 10.3390/nu15194231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The menopausal transition is often accompanied with distressing manifestations, such as vasomotor symptoms, sleep disruptions, and depressive syndrome. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have emerged as a potential intervention to alleviate these symptoms. This review aimed to comprehensively assess the impact of n-3 PUFAs supplementation on vasomotor symptoms, sleep quality, and depression among postmenopausal women. We conducted a systematic literature search of randomized controlled trials across the Cochrane Library, Web of Science, PubMed, CINAHL, EMBASE, and SCOPUS databases from inception to August 2023. Among the initial pool of 163 identified studies, nine studies met the inclusion criteria and were incorporated into this systematic review. Notably, four studies detected potential benefits of n-3 PUFAs in improving hot flashes and night sweats. On the contrary, sleep quality outcomes displayed heterogeneity across the studies. Incorporating diverse scales, such as the Hamilton Depression Rating Scale-21, the Patient Health Questionnaire depression scale, and Generalized Anxiety Disorder-7 for depression outcomes, we found inconclusive evidence of n-3 PUFA's impact on depression. Overall, the combined analysis of these studies did not provide substantial evidence to support the efficacy of n-3 PUFAs in improving vasomotor symptoms, sleep quality, and depression. Further well-designed randomized clinical trials with larger participant groups are crucial to validate and generalize these results. Review Registration: PROSPERO registration no: CRD42023421922.
Collapse
Affiliation(s)
- Ayesha Zafar Iqbal
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan; (A.Z.I.); (S.-K.W.); (H.Z.)
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
| | - Suet-Kei Wu
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan; (A.Z.I.); (S.-K.W.); (H.Z.)
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
| | - Halliru Zailani
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan; (A.Z.I.); (S.-K.W.); (H.Z.)
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Che Chiu
- Department of Psychiatry, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, Fu Jen Catholic University, Taipei 242, Taiwan
| | - Wen-Chun Liu
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan;
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan;
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Shin-Da Lee
- Ph.D. Program in Healthcare Science, Department of Physical Therapy, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
9
|
Khalafi M, Aria B, Symonds ME, Rosenkranz SK. The effects of resistance training on myostatin and follistatin in adults: A systematic review and meta-analysis. Physiol Behav 2023:114272. [PMID: 37328021 DOI: 10.1016/j.physbeh.2023.114272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION AND AIM Myostatin and follistatin are the main hormones for regulating muscle mass, and previous research suggests they are modulated by resistance training. We therefore performed a systematic review and meta-analysis to investigate the impact of resistance training on circulating myostatin and follistatin in adults. METHODS A search was conducted in PubMed and Web of science from inception until October 2022 to identify original studies investigating the effects of resistance training compared with controls that did not exercise. Standardized mean differences and 95% confidence intervals (CIs) were calculated using random effects models. RESULTS A total 26 randomized studies, including 36 interventions, and involving 768 participants (aged ∼18 to 82 years), were included in the meta-analysis. Resistance training effectively decreased myostatin [-1.31 (95% CI -1.74 to -0.88, p=0.001, 26 studies] and increased follistatin [2.04 (95% CI: 1.51 to 2.52), p=0.001, 14 studies]. Subgroup analyses revealed a significant decrease in myostatin and increase in follistatin regardless of age. CONCLUSION Resistance training in adults is effective for reducing myostatin and increasing follistatin which may contribute to the beneficial effects of resistance training on muscle mass and metabolic outcomes.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Michael E Symonds
- Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham, Nottingham NG72UH, United Kingdom
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
10
|
Zhu Q, Ping P, Zhang P, Ning C, Zhao Y, Yao Y, Li X, Fu S. Sex hormones and physical function among the Chinese oldest-old and centenarian women. J Transl Med 2022; 20:340. [PMID: 35902963 PMCID: PMC9331572 DOI: 10.1186/s12967-022-03539-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
Background Physical independence is crucial for overall health in the elderly individuals. The life expectancy of women has been shown to be higher than that of men, which is also known as the “male–female health-survival paradox”. Sex hormones may be one of the explanations. However, the relationships between sex hormones and physical function remain unclear in the elderly females. This study was designed to explore these relationships among the Chinese oldest-old and centenarian women. Methods Data from 1226 women were obtained from the China Hainan Centenarian Cohort Study. Home interviews, physical examinations and blood analyses were conducted using standardized procedures. Variables including age, Han ethnicity, illiteracy, smoker, drinker, estradiol (E2), testosterone (T), follicle-stimulating hormone, and luteinizing hormone were used in the multivariate logistic and linear regression analyses. Results In all the participants, age [beta (95% confidence interval): − 0.84 (− 0.98, − 0.71)] and E2 levels [beta (95% confidence interval): − 0.22 (− 0.28, − 0.17)] were negatively associated with activities of daily living (ADLs) in the multivariate linear regression analyses (P < 0.05 for all). We also observed significantly negative associations of age [odds ratio (95% confidence interval): 0.90 (0.88, 0.91)] and E2 levels [odds ratio (95% confidence interval): 0.98 (0.98, 0.99)] with physical normality in the multivariate logistic regression analyses (P < 0.05 for all). Age and E2 levels gradually decreased with increases in the ADL quartiles across all the participants (P < 0.05 for all). Conclusions This study demonstrated that E2 levels were negatively associated with physical function among the Chinese oldest-old and centenarian women.
Collapse
Affiliation(s)
- Qiao Zhu
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Ping Ping
- Main Station of Drug Instrument Supervision and Inspection, Joint Logistic Support Force of Chinese People's Liberation Army, Beijing, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chaoxue Ning
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China.
| | - Yao Yao
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, USA. .,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China.
| | - Xiubing Li
- Department of Urology Medicine, The Third Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China. .,Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
11
|
Guo Y, Piasecki J, Swiecicka A, Ireland A, Phillips BE, Atherton PJ, Stashuk D, Rutter MK, McPhee JS, Piasecki M. Circulating testosterone and dehydroepiandrosterone are associated with individual motor unit features in untrained and highly active older men. GeroScience 2022; 44:1215-1228. [PMID: 34862585 PMCID: PMC9213614 DOI: 10.1007/s11357-021-00482-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 10/31/2022] Open
Abstract
Long-term exercise training has been considered as an effective strategy to counteract age-related hormonal declines and minimise muscle atrophy. However, human data relating circulating hormone levels with motor nerve function are scant. The aims of the study were to explore associations between circulating sex hormone levels and motor unit (MU) characteristics in older men, including masters athletes competing in endurance and power events. Forty-three older men (mean ± SD age: 69.9 ± 4.6 years) were studied based on competitive status. The serum concentrations of dehydroepiandrosterone (DHEA), total testosterone (T) and estradiol were quantified using liquid chromatography mass spectrometry. Intramuscular electromyographic signals were recorded from vastus lateralis (VL) during 25% of maximum voluntary isometric contractions and processed to extract MU firing rate (FR), and motor unit potential (MUP) features. After adjusting for athletic status, MU FR was positively associated with DHEA levels (p = 0.019). Higher testosterone and estradiol were associated with lower MUP complexity; these relationships remained significant after adjusting for athletic status (p = 0.006 and p = 0.019, respectively). Circulating DHEA was positively associated with MU firing rate in these older men. Higher testosterone levels were associated with reduced MUP complexity, indicating reduced electrophysiological temporal dispersion, which is related to decreased differences in conduction times along axonal branches and/or MU fibres. Although evident in males only, this work highlights the potential of hormone administration as a therapeutic interventional strategy specifically targeting human motor units in older age.
Collapse
Affiliation(s)
- Yuxiao Guo
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Agnieszka Swiecicka
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Alex Ireland
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Daniel Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON Canada
| | - Martin K. Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Mathew Piasecki
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Oxfeldt M, Dalgaard LB, Farup J, Hansen M. Sex Hormones and Satellite Cell Regulation in Women. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:9065923. [PMID: 38655160 PMCID: PMC11022763 DOI: 10.1155/2022/9065923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 04/26/2024]
Abstract
Recent years have seen growing scholarly interest in female physiology in general. Moreover, particular attention has been devoted to how concentrations of female sex hormones vary during the menstrual cycle and menopausal transition and how hormonal contraception and hormonal therapy influence skeletal muscle tissue. While much effort has been paid to macro outcomes, such as muscle function or mass, rather less attention has been paid to mechanistic work that may help explain the underlying mechanism through which sex hormones regulate skeletal muscle tissue. Evidence from animal studies shows a strong relationship between the female sex hormone estrogen and satellite cells (SCs), a population of muscle stem cells involved in skeletal muscle regulation. A few human studies investigating this relationship have been published only recently. Thus, the purpose of this study was to bring an updated review on female sex hormones and their role in SC regulation. First, we describe how SCs regulate skeletal muscle maintenance and repair and introduce sex hormone signaling within the muscle. Second, we present evidence from animal studies elucidating how estrogen deficiency and supplementation influence SCs. Third, we present results from investigations from human trials including women whose concentrations of female hormones differ due to menopause, hormone therapy, hormonal contraceptives, and the menstrual cycle. Finally, we discuss research and methodological recommendations for future studies aiming at elucidating the link between female sex hormones and SCs with respect to aging and training.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Cho EJ, Choi Y, Jung SJ, Kwak HB. Role of exercise in estrogen deficiency-induced sarcopenia. J Exerc Rehabil 2022; 18:2-9. [PMID: 35356136 PMCID: PMC8934617 DOI: 10.12965/jer.2244004.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 11/22/2022] Open
Abstract
A decline in estrogen levels during menopause is associated with the loss of muscle mass and function, and it can accelerate sarcopenia. However, with the growing number of postmenopausal women due to the increase in life expectancy, the effects of estrogen on skeletal muscle are not completely understood. This article reviews the relationship between estrogen deficiency and skeletal muscle, its potential mechanisms, including those involving mitochondria, and the effects of exercise on estrogen deficiency-induced skeletal muscle impairment. In particular, mitochondrial dysfunction induced by estrogen deficiency accelerates sarcopenia via mitochondrial dynamics, mitophagy, and mitochondrial-mediated apoptosis. It is well known that exercise training is essential for health, including for the improvement of sarcopenia. This review highlights the importance of exercise training (aerobic and resistance exercise) as a therapeutic intervention against estrogen deficiency-induced sarcopenia.
Collapse
Affiliation(s)
- Eun-Jeong Cho
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon,
Korea
| | - Youngju Choi
- Institute of Sports & Arts Convergence, Inha University, Incheon,
Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul,
Korea
| | - Hyo-Bum Kwak
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon,
Korea
- Institute of Sports & Arts Convergence, Inha University, Incheon,
Korea
- Corresponding author: Hyo-Bum Kwak, Department of Biomedical Science, Program in Biomedical Science and Engineering Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea,
| |
Collapse
|
14
|
Jaén-Carrillo D, Roche-Seruendo LE, Felton L, Cartón-Llorente A, García-Pinillos F. Stiffness in Running: A Narrative Integrative Review. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Samad N, Nguyen HH, Scott D, Ebeling PR, Milat F. Musculoskeletal Health in Premature Ovarian Insufficiency. Part One: Muscle. Semin Reprod Med 2021; 38:277-288. [PMID: 33418593 DOI: 10.1055/s-0040-1721797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accelerated bone loss and muscle decline coexist in women with premature ovarian insufficiency (POI), but there are significant gaps in our understanding of musculoskeletal health in POI. This article is the first of a two-part review which describes estrogen signaling in muscle and its role in musculoskeletal health and disease. Current evidence regarding the utility of available diagnostic tests and therapeutic options is also discussed. A literature review from January 2000 to March 2020 was conducted to identify relevant studies. Women with POI experience significant deterioration in musculoskeletal health due to the loss of protective effects of estrogen. In addition to bone loss, muscle decay and dysfunction is now increasingly recognized. Nevertheless, there is a paucity of validated tools to assess muscle parameters. There is a growing need to acknowledge bone-muscle codependence to design new therapies which target both muscle and bone, resulting in improved physical performance and reduced morbidity and mortality. More high-quality research and international collaborations are needed to address the deficiencies in our understanding and management of musculoskeletal health in women with POI.
Collapse
Affiliation(s)
- Navira Samad
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria, Australia
| |
Collapse
|
16
|
Priego T, Martín AI, González-Hedström D, Granado M, López-Calderón A. Role of hormones in sarcopenia. VITAMINS AND HORMONES 2021; 115:535-570. [PMID: 33706961 DOI: 10.1016/bs.vh.2020.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging involves numerous changes in body composition that include a decrease in skeletal muscle mass. The gradual reduction in muscle mass is associated with a simultaneous decrease in muscle strength, which leads to reduced mobility, fragility and loss of independence. This process called sarcopenia is secondary to several factors such as sedentary lifestyle, inadequate nutrition, chronic inflammatory state and neurological alterations. However, the endocrine changes associated with aging seem to be of special importance in the development of sarcopenia. On one hand, advancing age is associated with a decreased secretion of the main hormones that stimulate skeletal muscle mass and function (growth hormone, insulin-like growth factor 1 (IGFI), testosterone and estradiol). On the other hand, the alteration of the IGF-I signaling along with decreased insulin sensitivity also have an important impact on myogenesis. Other hormones that decline with aging such as the adrenal-derived dehydroepiandrosterone, thyroid hormones and vitamin D seem to also be involved in sarcopenia. Adipokines released by adipose tissue show important changes during aging and can affect muscle physiology and metabolism. In addition, catabolic hormones such as cortisol and angiotensin II can accelerate aged-induced muscle atrophy, as they are involved in muscle wasting and their levels increase with age. The role played by all of these hormones and the possible use of some of them as therapeutic tools for treating sarcopenia will be discussed.
Collapse
Affiliation(s)
- T Priego
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - A I Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - D González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Pharmactive Biotech Products S.L. Parque Científico de Madrid. Avenida del Doctor Severo Ochoa, 37 Local 4J, 28108 Alcobendas, Madrid, Spain
| | - M Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, Madrid, Spain
| | - A López-Calderón
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Dawson JK, Dorff TB, Tuzon C, Rice JC, Schroeder ET, Lane CJ, Gross ME, Dieli-Conwright CM. Effect of Periodized Resistance Training on Skeletal Muscle During Androgen Deprivation Therapy for Prostate Cancer: A Pilot Randomized Trial. Integr Cancer Ther 2021; 20:15347354211035442. [PMID: 34301165 PMCID: PMC8312192 DOI: 10.1177/15347354211035442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Prostate cancer survivors (PCS) receive androgen deprivation therapy (ADT) as treatment for recurrent cancer, yet ADT is associated with loss of skeletal muscle and physical function. Resistance training can counter both muscle and physical function loss; however, an understanding of the molecular responses of skeletal muscle to resistance training during ADT is still undefined. This sub-analysis of the original randomized, controlled pilot trial investigated effects of 12 weeks of periodized resistance training on mRNA expression of the anabolic genes IGF-1, myogenin, PGC-1α4 and the catabolic genes myostatin and MuRF-1 in skeletal muscle of PCS on ADT. Secondary aims investigated if changes in lean mass and physical function correlated with changes in mRNA expression. METHODS PCS on ADT (n = 17) were randomized to 12 weeks of supervised resistance training (EXE, n = 9) or home-based stretching (STRETCH, n = 8) 3 days per week. Outcomes were assessed at baseline and post-intervention. Muscle biopsies were analyzed by RT-PCR for mRNA expression. Body composition was assessed through dual-energy X-ray absorptiometry, and physical function through muscular strength, timed up and go, stair climb, and 400 m walk. RESULTS MuRF-1 mRNA expression was significantly greater in EXE compared to STRETCH post-intervention (P = .005). Change in MuRF-1 mRNA expression significantly correlated with improvements in strength and physical function (P < .05), while change in IGF-1 expression correlated with change in lean mass (P = .015). CONCLUSION Twelve weeks of resistance training increased mRNA expression of MuRF-1 in skeletal muscle of PCS on ADT. Elevations in resting mRNA expression of IGF-1, myogenin and PGC-1α4, and reduction in mRNA expression of myostatin that are typically expected following resistance training were not observed.
Collapse
Affiliation(s)
- Jacqueline K. Dawson
- California State University, Long Beach, Long Beach, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Judd C. Rice
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
18
|
Oxfeldt M, Dalgaard LB, Jørgensen EB, Johansen FT, Dalgaard EB, Ørtenblad N, Hansen M. Molecular markers of skeletal muscle hypertrophy following 10 wk of resistance training in oral contraceptive users and nonusers. J Appl Physiol (1985) 2020; 129:1355-1364. [PMID: 33054662 DOI: 10.1152/japplphysiol.00562.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The objective was to determine whether skeletal muscle molecular markers and SC number were influenced differently in users and nonusers of oral contraceptives (OCs) following 10 wk of resistance training. Thirty-eight young healthy untrained users (n = 20) and nonusers of OC (n = 18) completed a 10-wk supervised progressive resistance training program. Before and after the intervention, a muscle tissue sample was obtained from the vastus lateralis muscle for analysis of muscle fiber cross-sectional area (fCSA) and satellite cell (SC) and myonuclei number using immunohistochemistry, gene expression using PCR, protein expression, and myosin heavy chain composition. Following the training period, quadriceps fCSA (P < 0.05), SCs/type I fiber (P = 0.05), and MURF-1 mRNA (P < 0.01) were significantly increased with no difference between the groups. However, SCs/total fiber and SCs/type II fiber increased in OC users only, and SCs/type II fCSA tended (P = 0.055) to be greater in the OC users. Furthermore, in OC users there were a fiber type shift from myosin heavy chain (MHC) IIx to MHC IIa (P < 0.01), and expression of muscle regulatory factor 4 (MRF4) mRNA (P < 0.001) was significantly greater than in non-OC users. Use of second-generation OCs in young untrained women increased skeletal muscle MRF4 expression and SC number following 10 wk of resistance training compared with nonusers.NEW & NOTEWORTHY The effect of oral contraceptive use on the skeletal muscle regulatory pathways in response to resistance training has not been investigated previously. Here we present novel data, demonstrating that use of second-generation oral contraceptives in young untrained women increased skeletal muscle regulatory factor 4 expression and satellite cell number following 10 wk of resistance training compared with nonusers.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | | | | | - Emil Barner Dalgaard
- Department of Clinical Medicine, Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Valladares-Ide D, Peñailillo L, Collao N, Marambio H, Deldicque L, Zbinden-Foncea H. Activation of protein synthesis, regeneration, and MAPK signaling pathways following repeated bouts of eccentric cycling. Am J Physiol Endocrinol Metab 2019; 317:E1131-E1139. [PMID: 31593504 DOI: 10.1152/ajpendo.00216.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to examine the activation of skeletal muscle signaling pathways related to protein synthesis and the gene expression of regeneration/degradation markers following repeated bouts of eccentric cycling. Nine untrained men (25.4 ± 1.9 yr) performed two 30-min eccentric cycling bouts (ECC1, ECC2) at 85% of maximal concentric workload, separated by 2 wk. Muscle biopsies were taken from the vastus lateralis before and 2 h after each bout. Indirect markers of muscle damage were assessed before and 24-48 h after exercise. Changes in the Akt/mammalian target of rapamycin (mTOR)/rbosomal protein S6 kinase 1 (S6K1)/ribosomal protein S6 (rpS6) and MAPK signaling pathways were measured by Western blot and changes in mRNA expression of IL-6 and IL-1β, and myogenic regulatory factors (MRFs) were measured by real-time PCR. ECC1 induced greater increases in indirect markers of muscle damage compared with ECC2. Phosphorylation of S6K1 and rpS6 increased after both exercise bouts (P < 0.05), whereas phosphorylation of mTOR increased after ECC2 only (P = 0.03). Atrogin-1 mRNA expression decreased after ECC1 and ECC2 (P < 0.05) without changes in muscle RING-finger protein-1 mRNA. Basal mRNA levels of myoblast determination protein-1 (MyoD), MRF4, and myogenin were higher 2 wk after ECC1 (P < 0.05). MRF4 mRNA increased after ECC1 and ECC2 (P < 0.05), whereas MyoD mRNA expression increased only after ECC1 (P = 0.03). Phosphorylation of JNK and p38 MAPK increased after both exercise bouts (P < 0.05), similar to IL-6 and IL-1β mRNA expression. All together, these results suggest that differential regulation of the mTOR pathway and MRF expression could mediate the repeated bout effect observed between an initial and secondary bout of eccentric exercise.
Collapse
Affiliation(s)
- Denisse Valladares-Ide
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Luis Peñailillo
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Nicolás Collao
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Hugo Marambio
- Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hermann Zbinden-Foncea
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| |
Collapse
|
20
|
Abstract
The health-promoting effects of physical activity to prevent and treat metabolic disorders are numerous. However, the underlying molecular mechanisms are not yet completely deciphered. In recent years, studies have referred to the liver as an endocrine organ, since it releases specific proteins called hepatokines. Some of these hepatokines are involved in whole body metabolic homeostasis and are theorized to participate in the development of metabolic disease. In this regard, the present review describes the role of Fibroblast Growth Factor 21, Fetuin-A, Angiopoietin-like protein 4, and Follistatin in metabolic disease and their production in response to acute exercise. Also, we discuss the potential role of hepatokines in mediating the beneficial effects of regular exercise and the future challenges to the discovery of new exercise-induced hepatokines.
Collapse
Affiliation(s)
- Gaël Ennequin
- PEPITE EA4267, EPSI, Université de Bourgogne Franche-Comté , Besançon , France
| | - Pascal Sirvent
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), CRNH Auvergne, Clermont-Ferrand , France
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| |
Collapse
|
21
|
Park YM, Keller AC, Runchey SS, Miller BF, Kohrt WM, Van Pelt RE, Kang C, Jankowski CM, Moreau KL. Acute estradiol treatment reduces skeletal muscle protein breakdown markers in early- but not late-postmenopausal women. Steroids 2019; 146:43-49. [PMID: 30928279 PMCID: PMC6679593 DOI: 10.1016/j.steroids.2019.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Menopause and decline in estradiol (E2) may contribute to sarcopenia (i.e., age-related decline in muscle mass and strength) in women. E2 may directly impact skeletal muscle protein breakdown via estrogen receptor (ER) signaling, primarily ERα. It is not yet known whether: 1) E2 regulates pathways of skeletal muscle protein breakdown; 2) E2-mediated changes in protein breakdown markers are associated with ERα activation and insulin sensitivity; and 3) the effects of E2 on protein breakdown markers differ by increasing time since menopause. STUDY DESIGN We studied 27 women who were ≤6 years past menopause (early postmenopausal, EPM; n = 13) or ≥10 years past menopause (late postmenopausal, LPM; n = 14). Fasted skeletal muscle samples were collected following 1 week of transdermal E2 or placebo treatment in a randomized cross-over design. MAIN OUTCOME MEASURES We analyzed for cytosolic protein content of the: 1) structural proteins myosin heavy chain (MHC) and tropomyosin; and 2) protein regulatory markers: protein kinase B (Akt), muscle-specific ring finger protein1 (MuRF1), atrogin1, and forkhead box O3 (FOXO3) using Western blot. RESULTS In response to acute E2, FOXO3 activation (dephosphorylation) and MuRF1 protein expression decreased in EPM but increased in LPM women (p < 0.05). ERα activation was not associated with these protein breakdown markers, but FOXO3 activation tended to be inversely correlated (r = -0.318, p = 0.065) to insulin sensitivity. CONCLUSIONS These preliminary studies suggest the effects of E2 on skeletal muscle protein breakdown markers were dependent on time since menopause, which is consistent with our previous study on insulin sensitivity.
Collapse
Affiliation(s)
- Young-Min Park
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amy C Keller
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shauna S Runchey
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Wendy M Kohrt
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; VA Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, CO, USA
| | - Rachael E Van Pelt
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; VA Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, CO, USA
| | - Chounghun Kang
- Department of Physical Education, Inha University, Incheon, South Korea
| | - Catherine M Jankowski
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; VA Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, CO, USA.
| |
Collapse
|
22
|
Collins BC, Laakkonen EK, Lowe DA. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone 2019; 123:137-144. [PMID: 30930293 PMCID: PMC6491229 DOI: 10.1016/j.bone.2019.03.033] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Skeletal muscle weakness occurs with aging and in females this is compounded by the loss of estrogen with ovarian failure. Estrogen deficiency mediates decrements in muscle strength from both inadequate preservation of skeletal muscle mass and decrements in the quality of the remaining skeletal muscle. Processes and components of skeletal muscle that are affected by estrogens are beginning to be identified. This review focuses on mechanisms that contribute to the loss of muscle force generation when estrogen is low in females, and conversely the maintenance of strength by estrogen. Evidence is accumulating that estrogen deficiency induces apoptosis in skeletal muscle contributing to loss of mass and thus strength. Estrogen sensitive processes that affect quality, i.e., force generating capacity of muscle, include myosin phosphorylation and satellite cell function. Further detailing these mechanisms and identifying additional mechanisms that underlie estrogenic effects on skeletal muscle is important foundation for the design of therapeutic strategies to minimize skeletal muscle pathologies, such as sarcopenia and dynapenia.
Collapse
Affiliation(s)
- Brittany C Collins
- Department of Human Genetics, Medical School, University of Utah, United States of America
| | - Eija K Laakkonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, United States of America.
| |
Collapse
|
23
|
Martignani E, Miretti S, Vincenti L, Baratta M. Correlation between estrogen plasma level and miRNAs in muscle of Piedmontese cattle. Domest Anim Endocrinol 2019; 67:37-41. [PMID: 30690256 DOI: 10.1016/j.domaniend.2018.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/21/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
A loss-of-function mutation of the myostatin gene has a very high prevalence in the Piedmontese cattle breed. The effect of such mutation is a double-muscle phenotype because of hypertrophy. However, differences in muscle mass development can still be detected in individuals of this breed. Such differences must be generated by other factors controlling skeletal muscle development. MicroRNAs are short noncoding RNA molecules that modulate gene expression at a post-transcriptional level. MicroRNAs have been demonstrated to be involved in skeletal muscle development, and some of them are controlled by steroid hormone signaling. Data on estrogen signaling are lacking, whereas more studies have been carried out on the effect of androgens. We aimed at identifying putative estrogen responsive miRNAs that might be involved in skeletal muscle development. At a slaughterhouse, we collected muscle samples from longissimus dorsi and blood samples. Blood 17β-estradiol concentration was assessed, and RNA was extracted from muscle samples. The animals we sampled were divided into groups according to estrogen blood concentration, and through qPCR expression, levels of 7 muscle-related miRNAs were evaluated. We found that miR-26b (P < 0.01), miR-27a-5p (P < 0.05), miR-27b (P < 0.05), and miR-199a-3p (P < 0.01) were differentially expressed among experimental groups. Expression levels of miR-26b were reduced approximately 50% in samples with a low blood estrogen concentrations, and the other miRNAs showed a tendency to increase their expression levels when blood estrogen levels were higher. The variations of the circulating concentrations of estrogen in Piedmontese cattle might influence muscle mass development through miRNAs and thus contribute to individual variability in a breed with a high prevalence of a myostatin point mutation.
Collapse
Affiliation(s)
- E Martignani
- Department of Veterinary Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy.
| | - S Miretti
- Department of Veterinary Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - L Vincenti
- Department of Veterinary Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - M Baratta
- Department of Veterinary Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
24
|
Shi R, Tian X, Feng Y, Cheng Z, Lu J, Brann DW, Zhang Q. Expression of aromatase and synthesis of sex steroid hormones in skeletal muscle following exercise training in ovariectomized rats. Steroids 2019; 143:91-96. [PMID: 30664864 DOI: 10.1016/j.steroids.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/21/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Age-related muscle wasting (sarcopenia) is accompanied by a decrease in estrogen levels which can compromise the health of aging women. Recent studies have shown that the key enzyme of estrogen synthesis (aromatase) is detected in the skeletal muscle. The purpose of this study was to investigate the effects of exercise on the expression of aromatase and the synthesis of sex steroid hormones in skeletal muscle following exercise training. Ovariectomized rats were divided into two groups, treadmill running group (25 m/min, 60 min/day, 6 days/week) and sedentary group. We found that in ovariectomized rats, exercise training significantly increased the soleus and plantar muscles mass. The level of aromatase expression and 17-β-estradiol (E2) were increased significantly in skeletal muscle following exercise training. In addition, activation of the down-stream Akt-FoxO1-MyoD signaling pathway was significantly increased in both soleus and plantaris muscles following exercise. These results demonstrate that exercise training increased the expression of aromatase and local estrogen production in skeletal muscle, which potentially influences skeletal muscle in ovariectomized rats through activation of the Akt-FoxO1-MyoD signaling pathway.
Collapse
Affiliation(s)
- Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China.
| | - Xiangyang Tian
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China
| | - Yu Feng
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China
| | - Zepeng Cheng
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China
| | - Jianqiang Lu
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Shanghai 200438, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
25
|
Chidi-Ogbolu N, Baar K. Effect of Estrogen on Musculoskeletal Performance and Injury Risk. Front Physiol 2019; 9:1834. [PMID: 30697162 PMCID: PMC6341375 DOI: 10.3389/fphys.2018.01834] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Estrogen has a dramatic effect on musculoskeletal function. Beyond the known relationship between estrogen and bone, it directly affects the structure and function of other musculoskeletal tissues such as muscle, tendon, and ligament. In these other musculoskeletal tissues, estrogen improves muscle mass and strength, and increases the collagen content of connective tissues. However, unlike bone and muscle where estrogen improves function, in tendons and ligaments estrogen decreases stiffness, and this directly affects performance and injury rates. High estrogen levels can decrease power and performance and make women more prone for catastrophic ligament injury. The goal of the current work is to review the research that forms the basis of our understanding how estrogen affects muscle, tendon, and ligament and how hormonal manipulation can be used to optimize performance and promote female participation in an active lifestyle at any age.
Collapse
Affiliation(s)
- Nkechinyere Chidi-Ogbolu
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States
| | - Keith Baar
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
26
|
Cole CL, Kleckner IR, Jatoi A, Schwarz E, Dunne RF. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM CLINICAL REPORTS 2018. [DOI: 10.17987/jcsm-cr.v3i2.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progressive skeletal muscle wasting in cancer cachexia involves a process of dysregulated protein synthesis and breakdown. This catabolism may be the result of mal-nutrition, and an upregulation of both pro-inflammatory cytokines and the ubiquitin proteasome pathway (UPP), which can subsequently increase myostatin and activin A release. The skeletal muscle wasting associated with cancer cachexia is clinically significant, it can contribute to treatment toxicity or the premature discontinuation of treatments resulting in increases in morbidity and mortality. Thus, there is a need for further investigation into the pathophysiology of muscle wasting in cancer cachexia to develop effective prophylactic and therapeutic interventions. Several studies have identified a central role for chronic-systemic inflammation in initiating and perpetuating muscle wasting in patients with cancer. Interestingly, while exercise has shown efficacy in improving muscle quality, only recently have investigators begun to assess the impact that exercise has on chronic-systemic inflammation. To put this new information into context with established paradigms, here we review several biological pathways (e.g. dysfunctional inflammatory response, hypothalamus pituitary adrenal axis, and increased myostatin/activin A activity) that may be responsible for the muscle wasting in patients with cancer. Additionally, we discuss the potential impact that exercise has on these pathways in the treatment of cancer cachexia. Exercise is an attractive intervention for muscle wasting in this population, partially because it disrupts chronic-systemic inflammation mediated catabolism. Most importantly, exercise is a potent stimulator of muscle synthesis, and therefore this therapy may reverse muscle damage caused by cancer cachexia.
Collapse
|
27
|
Cole CL, Kleckner IR, Jatoi A, Schwarz EM, Dunne RF. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM CLINICAL REPORTS 2018; 3:e00065. [PMID: 31134216 PMCID: PMC6534125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Progressive skeletal muscle wasting in cancer cachexia involves a process of dysregulated protein synthesis and breakdown. This catabolism may be the result of mal-nutrition, and an upregulation of both pro-inflammatory cytokines and the ubiquitin proteasome pathway (UPP), which can subsequently increase myostatin and activin A release. The skeletal muscle wasting associated with cancer cachexia is clinically significant, it can contribute to treatment toxicity or the premature discontinuation of treatments resulting in increases in morbidity and mortality. Thus, there is a need for further investigation into the pathophysiology of muscle wasting in cancer cachexia to develop effective prophylactic and therapeutic interventions. Several studies have identified a central role for chronic-systemic inflammation in initiating and perpetuating muscle wasting in patients with cancer. Interestingly, while exercise has shown efficacy in improving muscle quality, only recently have investigators begun to assess the impact that exercise has on chronic-systemic inflammation. To put this new information into context with established paradigms, here we review several biological pathways (e.g. dysfunctional inflammatory response, hypothalamus pituitary adrenal axis, and increased myostatin/activin A activity) that may be responsible for the muscle wasting in patients with cancer. Additionally, we discuss the potential impact that exercise has on these pathways in the treatment of cancer-related muscle wasting. Exercise is an attractive intervention for muscle wasting in this population, partially because it disrupts chronic-systemic inflammation mediated catabolism. Most importantly, exercise is a potent stimulator of muscle synthesis, and therefore this therapy may reverse muscle damage caused by cancer cachexia.
Collapse
Affiliation(s)
- Calvin L. Cole
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, 14642
| | - Ian R. Kleckner
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, New York, 14642
| | - Aminah Jatoi
- Department of Oncology, Mayo Medical School, Rochester, Minnesota, 55905
| | - Edward M. Schwarz
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, 14642
| | - Richard F. Dunne
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, New York, 14642,Division of Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, 14642
| |
Collapse
|
28
|
Marty E, Liu Y, Samuel A, Or O, Lane J. A review of sarcopenia: Enhancing awareness of an increasingly prevalent disease. Bone 2017; 105:276-286. [PMID: 28931495 DOI: 10.1016/j.bone.2017.09.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
Sarcopenia is defined as an age associated decline in skeletal muscle mass. The pathophysiology of sarcopenia is multifactorial, with decreased caloric intake, muscle fiber denervation, intracellular oxidative stress, hormonal decline, and enhanced myostatin signaling all thought to contribute. Prevalence rates are as high as 29% and 33% in elderly community dwelling and long-term care populations, respectively, with advanced age, low body mass index, and low physical activity as significant risk factors. Sarcopenia shares many characteristics with other disease states typically associated with risk of fall and fracture, including osteoporosis, frailty, and obesity. There is no current universally accepted definition of sarcopenia. Diagnosing sarcopenia with contemporary operational definitions requires assessments of muscle mass, muscle strength, and physical performance. Screening is recommended for both elderly patients and those with conditions that noticeably reduce physical function. Sarcopenia is highly prevalent in orthopedic patient populations and correlates with higher hospital costs and rates of falling, fracture, and mortality. As no muscle building agents are currently approved in the United States, resistance training and nutritional supplementation are the primary methods for treating sarcopenia. Trials with various agents, including selective androgen receptor modulators and myostatin inhibitors, show promise as future treatment options. Increased awareness of sarcopenia is of great importance to begin reaching consensus on diagnosis and to contribute to finding a cure for this condition.
Collapse
Affiliation(s)
- Eric Marty
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States
| | - Yi Liu
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States
| | - Andre Samuel
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States
| | - Omer Or
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States
| | - Joseph Lane
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, United States.
| |
Collapse
|
29
|
Abstract
Due to increased longevity, women can expect to live more than one-third of their lives in a post-menopausal state, which is characterised by low circulating levels of oestrogen and progesterone. The aim of this review is to provide insights into current knowledge of the effect of female hormones (or lack of female hormones) on skeletal muscle protein turnover at rest and in response to exercise. This review is primarily based on data from human trials. Many elderly post-menopausal women experience physical disabilities and loss of independence related to sarcopenia, which reduces life quality and is associated with substantial financial costs. Resistance training and dietary optimisation can counteract or at least decelerate the degenerative ageing process, but lack of oestrogen in post-menopausal women may reduce their sensitivity to these anabolic stimuli and accelerate muscle loss. Tendons and ligaments are also affected by sex hormones, but the effect seems to differ between endogenous and exogenous female hormones. Furthermore, the effect seems to depend on the age, and as a result influence the biomechanical properties of the ligaments and tendons differentially. Based on the present knowledge oestrogen seems to play a significant role with regard to skeletal muscle protein turnover. Therefore, oestrogen/hormonal replacement therapy may counteract the degenerative changes in skeletal muscle. Nevertheless, there is a need for greater insight into the direct and indirect mechanistic effects of female hormones before any evidence-based recommendations regarding type, dose, duration and timing of hormone replacement therapy can be provided.
Collapse
|
30
|
Kitajima Y, Ogawa S, Egusa S, Ono Y. Soymilk Improves Muscle Weakness in Young Ovariectomized Female Mice. Nutrients 2017; 9:nu9080834. [PMID: 28777295 PMCID: PMC5579627 DOI: 10.3390/nu9080834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
Estrogens play a key role in an extensive range of physiological functions in various types of tissues throughout the body in females. We previously showed that estrogen insufficiency caused muscle weakness that could be rescued by estrogen administration in a young female ovariectomized (OVX) mouse model. However, long-term estrogen replacement therapy increases risks of breast cancer and cardiovascular diseases. Soymilk contains plant-based protein and isoflavones that exert estrogen-like activity. Here we examined the effects of prolonged soymilk intake on muscle and its resident stem cells, called satellite cells, in the estrogen-insufficient model. Six-week-old C57BL/6 OVX female mice were fed with a dried soymilk-containing diet. We found that prolonged soymilk intake upregulated grip strength in OVX mice. Correspondingly, cross-sectional area of tibialis anterior muscle was significantly increased in OVX mice fed with soymilk. Furthermore, soymilk diet mitigated dysfunction of satellite cells isolated from OVX mice. Thus, these results indicated that prolonged soymilk intake is beneficial for improving muscle weakness in an estrogen-insufficient state in females.
Collapse
Affiliation(s)
- Yuriko Kitajima
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Shizuka Ogawa
- Research and Development Division, Marusanai Co., Ltd., Aichi 444-2193, Japan.
| | - Shintaro Egusa
- Research and Development Division, Marusanai Co., Ltd., Aichi 444-2193, Japan.
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| |
Collapse
|
31
|
Kiwata JL, Dorff TB, Todd Schroeder E, Salem GJ, Lane CJ, Rice JC, Gross ME, Dieli-Conwright CM. A pilot randomised controlled trial of a periodised resistance training and protein supplementation intervention in prostate cancer survivors on androgen deprivation therapy. BMJ Open 2017; 7:e016910. [PMID: 28698349 PMCID: PMC5726104 DOI: 10.1136/bmjopen-2017-016910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Prostate cancer survivors (PCS) receiving androgen deprivation therapy (ADT) experience deleterious side effects such as unfavourable changes in cardiometabolic factors that lead to sarcopenic obesity and metabolic syndrome (MetS). While loss of lean body mass (LBM) compromises muscular strength and quality of life, MetS increases the risk of cardiovascular disease and may influence cancer recurrence. Exercise can improve LBM and strength, and may serve as an alternative to the pharmacological management of MetS in PCS on ADT. Prior exercise interventions in PCS on ADT have been effective at enhancing strength, but only marginally effective at enhancing body composition and ameliorating cardiometabolic risk factors. This pilot trial aims to improve on existing interventions by employing periodised resistance training (RT) to counter sarcopenic obesity in PCS on ADT. Secondary aims compare intervention effects on cardiometabolic, physical function, quality of life and molecular skeletal muscle changes. An exploratory aim examines if protein supplementation (PS) in combination with RT elicits greater changes in these outcomes. METHODS AND ANALYSIS A 2×2 experimental design is used in 32 PCS on ADT across a 12-week intervention period. Participants are randomised to resistance training and protein supplementation (RTPS), RT, PS or control. RT and RTPS groups perform supervised RT three times per week for 12 weeks, while PS and RTPS groups receive 50 g whey protein per day. This pilot intervention applies a multilayered approach to ameliorate detrimental cardiometabolic effects of ADT while investigating molecular mechanisms underlying skeletal muscle changes in PCS. ETHICS AND DISSEMINATION This trial was approved by the University of Southern California Institutional Review Board (HS-13-00315). Results from this trial will be communicated in peer-reviewed publications and scientific presentations. TRIAL REGISTRATION NUMBER NCT01909440; Pre-results.
Collapse
Affiliation(s)
- Jacqueline L Kiwata
- Division of Biokinesiology and Physical Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Tanya B Dorff
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - E Todd Schroeder
- Division of Biokinesiology and Physical Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - George J Salem
- Division of Biokinesiology and Physical Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Christianne J Lane
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Judd C Rice
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mitchell E Gross
- Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christina M Dieli-Conwright
- Division of Biokinesiology and Physical Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Schneider SM, Lee SMC, Feiveson AH, Watenpaugh DE, Macias BR, Hargens AR. Treadmill exercise within lower body negative pressure protects leg lean tissue mass and extensor strength and endurance during bed rest. Physiol Rep 2017; 4:4/15/e12892. [PMID: 27495299 PMCID: PMC4985554 DOI: 10.14814/phy2.12892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 01/26/2023] Open
Abstract
Leg muscle mass and strength are decreased during reduced activity and non‐weight‐bearing conditions such as bed rest (BR) and spaceflight. Supine treadmill exercise within lower body negative pressure (LBNPEX) provides full‐body weight loading during BR and may prevent muscle deconditioning. We hypothesized that a 40‐min interval exercise protocol performed against LBNPEX 6 days week−1 would attenuate losses in leg lean mass (LLM), strength, and endurance during 6° head‐down tilt BR, with similar benefits for men and women. Fifteen pairs of healthy monozygous twins (8 male and 7 female pairs) completed 30 days of BR with one sibling of each twin pair assigned randomly as the non‐exercise control (CON) and the other twin as the exercise subject (EX). Before and after BR, LLM and isokinetic leg strength and endurance were measured. Mean knee and ankle extensor and flexor strength and endurance and LLM decreased from pre‐ to post‐BR in the male CON subjects (P < 0.01), but knee extensor strength and endurance, ankle extensor strength, and LLM were maintained in the male EX subjects. In contrast, no pre‐ to post‐BR changes were significant in the female subjects, either CON or EX, likely due to their lower pre‐BR values. Importantly, the LBNPEX countermeasure prevents or attenuates declines in LLM as well as extensor leg strength and endurance. Individuals who are stronger, have higher levels of muscular endurance, and/or have greater LLM are likely to experience greater losses during BR than those who are less fit.
Collapse
Affiliation(s)
| | - Stuart M C Lee
- Wyle Science, Technology, and Engineering Group, Houston, Texas
| | | | | | | | | |
Collapse
|
33
|
Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats. MENOPAUSE REVIEW 2017; 15:193-201. [PMID: 28250722 PMCID: PMC5327620 DOI: 10.5114/pm.2016.65663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/24/2016] [Indexed: 12/03/2022]
Abstract
Objective We studied the effect of resistance exercise (RE) on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF). Material and methods Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams) were randomly allocated into five groups: control group (CT-Sham; n = 6); group with rheumatoid arthritis (RA; n = 6); group with rheumatoid arthritis subjected to RE (RAEX; n = 6); ovariectomy group with rheumatoid arthritis (RAOV; n = 6); and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6). After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA) of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV), but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1). However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF.
Collapse
|
34
|
Rashidlamir A, Attarzadeh Hosseini SR, Hejazi K, Motevalli Anberani SM. The effect of eight weeks resistance and aerobic training on myostatin and follistatin expression in cardiac muscle of rats. J Cardiovasc Thorac Res 2016; 8:164-169. [PMID: 28210472 PMCID: PMC5304099 DOI: 10.15171/jcvtr.2016.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/23/2016] [Indexed: 01/14/2023] Open
Abstract
Introduction: The clinical studies have shown that the myostatin gene expression and its serum density occur more frequently in heart patients than in healthy individuals. The purpose of this study is to investigate the influence of 8-week resistance and aerobic exercise on the myostatin and follistatin gene expression of myocardium muscle of healthy male Wistar rats.
Methods: In this experimental study, 20 five-week-old adult Wistar rats (250 ± 26.5 g) were divided into three groups: healthy control group (n = 6), resistance exercise group (n = 7), and aerobic exercise group (n = 7). The resistance and aerobic exercise plan consisted of 8 weeks and 3 sessions per week. The resistance exercise group performed climbing a one-meter 26-stair ladder with a slope of 85 degrees for 3 sets of 5 repetitions per session. The aerobic exercise group performed running at a speed of 12 meters per minute for 30 minutes during the first sessions gradually increasing up to a speed of 30 meters per minute for 60 minutes during the final sessions (equivalent to 70% to 80% of maximum oxygen consumption). The differences between the groups were evaluated using a one-way analysis of variance (ANOVA) test. When appropriate, LSD post-hoc test was used. The significance level for the study was less than 0.05.
Results: The results of this study shows that after 8 weeks of exercise, there is no significant difference between myostatin mRNA gene expression levels of the heart muscle among the three groups of control, resistance exercise, and aerobic exercise (P = 0.172, F = 1.953). However, the mean differences between follistatin mRNA levels of the heart muscle among the three groups of control, resistance exercise, and aerobic exercise are statistically significant (F = 38.022, P = 0.001). Furthermore, the ratio of follistatin to myostatin mRNA gene expression of the heart muscle (P = 0.001, F = 10.288) shows significant difference among the three groups.
Conclusion: Our results indicate that the resistance and aerobic exercise could cause a decrease in myostatin and an increase in follistatin levels, thus preventing many muscular physiological disorders such as arthritis and muscle weakness.
Collapse
Affiliation(s)
- Amir Rashidlamir
- Faculty of Physical Education and Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyyed Reza Attarzadeh Hosseini
- Professor in Sport Physiology, Faculty of Physical Education and Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Keyvan Hejazi
- PhD Student of Physical Education and Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
35
|
Dieli-Conwright CM, Kiwata JL, Tuzon CT, Spektor TM, Sattler FR, Rice JC, Schroeder ET. Acute Response of PGC-1α and IGF-1 Isoforms to Maximal Eccentric Exercise in Skeletal Muscle of Postmenopausal Women. J Strength Cond Res 2016; 30:1161-70. [PMID: 26340467 DOI: 10.1519/jsc.0000000000001171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PGC-1α4, a novel isoform of the transcriptional coactivator PGC-1α, was recently postulated to modulate the expression of anabolic and catabolic genes and therefore regulate skeletal muscle hypertrophy. Resting levels of PGC-1α4 messenger RNA (mRNA) expression were found to increase in healthy adults after resistance training. However, the acute effect of resistance exercise (RE) on PGC-1α4 expression in populations prone to progressive muscle loss, such as postmenopausal women, has not been evaluated. Here, we investigated alterations in mRNA expression of PGC-1α4 and PGC-1α1, a regulator of muscle oxidative changes, in postmenopausal women after high-intensity eccentric RE and analyzed these findings with respect to changes in insulin-like growth factor (IGF)-1 and catabolic gene expression. Nine postmenopausal women (age, 57.9 ± 3.2 years) performed 10 sets of 10 maximal eccentric repetitions of single-leg extension with 20-second rest periods between sets. Muscle biopsies were obtained from the vastus lateralis of the exercised leg before and 4 hours after the RE bout with mRNA expression determined by quantitative real-time polymerase chain reaction. No significant changes in the mRNA expression of either PGC-1α isoform were observed after acute eccentric RE (p > 0.05). IGF-1Ea mRNA expression significantly increased (p ≤ 0.05), whereas IGF-1Eb and mechano-growth factor (MGF) did not significantly change (p > 0.05). PGC-1α4 mRNA expression was associated with reduced mRNA expression of the catabolic gene myostatin (R = -0.88, p < 0.01), whereas MGF mRNA expression was associated with reduced mRNA expression of the catabolic gene FOXO3A (R = -0.81, p ≤ 0.05). These data demonstrate an attenuated response of PGC-1α isoforms to an acute bout of maximal eccentric exercise with short rest periods in postmenopausal women.
Collapse
Affiliation(s)
- Christina M Dieli-Conwright
- 1Women's Health and Exercise Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California; 2Clinical Exercise Research Center, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California; 3Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California; 4Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California; and 5Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
36
|
Hoppeler H. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality. Front Physiol 2016; 7:483. [PMID: 27899894 PMCID: PMC5110564 DOI: 10.3389/fphys.2016.00483] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/07/2016] [Indexed: 12/25/2022] Open
Abstract
Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400-500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20-30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery.
Collapse
Affiliation(s)
- Hans Hoppeler
- Department of Anatomy, University of BernBern, Switzerland
| |
Collapse
|
37
|
Smith GI, Mittendorfer B. Sexual dimorphism in skeletal muscle protein turnover. J Appl Physiol (1985) 2015; 120:674-82. [PMID: 26702024 DOI: 10.1152/japplphysiol.00625.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle is the major constituent of lean body mass and essential for the body's locomotor function. Women have less muscle mass (and more body fat) than men and are therefore not able to exert the same absolute maximal force as men. The difference in body composition between the sexes is evident from infancy but becomes most marked after puberty (when boys experience an accelerated growth spurt) and persists into old age. During early adulthood until approximately the fourth decade of life, muscle mass is relatively stable, both in men and women, but then begins to decline, and the rate of loss is slower in women than in men. In this review we discuss the underlying mechanisms responsible for the age-associated sexual dimorphism in muscle mass (as far as they have been elucidated to date) and highlight areas that require more research to advance our understanding of the control of muscle mass throughout life.
Collapse
Affiliation(s)
- Gordon I Smith
- Washington University, School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
38
|
Sung E, Han A, Hinrichs T, Vorgerd M, Manchado C, Platen P. Effects of follicular versus luteal phase-based strength training in young women. SPRINGERPLUS 2014; 3:668. [PMID: 25485203 PMCID: PMC4236309 DOI: 10.1186/2193-1801-3-668] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 11/07/2014] [Indexed: 11/13/2022]
Abstract
Hormonal variations during the menstrual cycle (MC) may influence trainability of strength. We investigated the effects of a follicular phase-based strength training (FT) on muscle strength, muscle volume and microscopic parameters, comparing it to a luteal phase-based training (LT). Eumenorrheic women without oral contraception (OC) (N = 20, age: 25.9 ± 4.5 yr, height: 164.2 ± 5.5 cm, weight: 60.6 ± 7.8 kg) completed strength training on a leg press for three MC, and 9 of them participated in muscle biopsies. One leg had eight training sessions in the follicular phases (FP) and only two sessions in the luteal phases (LP) for follicular phase-based training (FT), while the other leg had eight training sessions in LP and only two sessions in FP for luteal phase-based training (LT). Estradiol (E2), progesterone (P4), total testosterone (T), free testosterone (free T) and DHEA-s were analysed once during FP (around day 11) and once during LP (around day 25). Maximum isometric force (Fmax), muscle diameter (Mdm), muscle fibre composition (No), fibre diameter (Fdm) and cell nuclei-to-fibre ratio (N/F) were analysed before and after the training intervention. T and free T were higher in FP compared to LP prior to the training intervention (P < 0.05). The increase in Fmax after FT was higher compared to LT (P <0.05). FT also showed a higher increase in Mdm than LT (P < 0.05). Moreover, we found significant increases in Fdm of fibre type ΙΙ and in N/F only after FT; however, there was no significant difference from LT. With regard to change in fibre composition, no differences were observed between FT and LT. FT showed a higher gain in muscle strength and muscle diameter than LT. As a result, we recommend that eumenorrheic females without OC should base the periodization of their strength training on their individual MC.
Collapse
Affiliation(s)
- Eunsook Sung
- />Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord, Bochum, Haus 10, 44801 Germany
- />Department of Health and Fitness Management, Woosong University, Deajeon, South Korea
| | - Ahreum Han
- />Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord, Bochum, Haus 10, 44801 Germany
| | - Timo Hinrichs
- />Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord, Bochum, Haus 10, 44801 Germany
- />Swiss Paraplegic Research, Nottwil, Switzerland
| | - Matthias Vorgerd
- />Department of Neurology, Ruhr-University Bochum, Kliniken Bergmannsheil, Bochum, Germany
| | - Carmen Manchado
- />Department of General and Specific Didactics, Faculty of Education, University of Alicante, Alicante, Spain
| | - Petra Platen
- />Department of Sports Medicine and Sports Nutrition, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord, Bochum, Haus 10, 44801 Germany
| |
Collapse
|
39
|
Hansen M, Kjaer M. Influence of Sex and Estrogen on Musculotendinous Protein Turnover at Rest and After Exercise. Exerc Sport Sci Rev 2014; 42:183-92. [DOI: 10.1249/jes.0000000000000026] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Mangan G, Bombardier E, Mitchell AS, Quadrilatero J, Tiidus PM. Oestrogen-dependent satellite cell activation and proliferation following a running exercise occurs via the PI3K signalling pathway and not IGF-1. Acta Physiol (Oxf) 2014; 212:75-85. [PMID: 24862866 DOI: 10.1111/apha.12317] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/24/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022]
Abstract
AIM The purpose of this study was to determine whether 17β-estradiol (E2) enhances the activation, proliferation and differentiation of muscle satellite cells (SC) following eccentric exercise either via insulin-like growth factor-1 (IGF-1) or through phosphatidylinositol 3-kinase (PI3K) signalling. METHODS This study used 64, 9-week-old, ovariectomized Sprague-Dawley rats that were divided into eight treatments groups based on oestrogen status (0.25 mg oestrogen pellet or sham), exercise status (90 min run @ 17 m min(-1), -13.5° or unexercised) and PI3K signalling inhibition (0.7 mg wortmannin kg(-1) body weight or DMSO control). RESULTS Significant increases in total SCs were found in both soleus and white gastrocnemius muscles (immunofluorescent co-localization of Pax7(+) nuclei) 72 h following eccentric exercise (P < 0.05). Oestrogen supplementation caused a further enhancement in total SCs in exercised rats (P < 0.05). In animals where the PI3K pathway was inhibited, regardless of oestrogen or exercise status, there was no significant enhancement of SC number in both the soleus or white gastrocnemius muscles. Interestingly, oestrogen supplementation lowered muscle levels of IGF-1 with this effect being most prominent in the soleus muscle. While IGF-1 was increased following exercise (P < 0.05), oestrogen supplementation abrogated this increase back to sedentary levels. CONCLUSION These data suggest that the increase in SC population following exercise in oestrogen-supplemented females may be mediated via PI3K pathway signalling and not IGF-1.
Collapse
Affiliation(s)
- G. Mangan
- Departments of Kinesiology and Physical Education and Health Sciences; Wilfrid Laurier University; Waterloo ON Canada
| | - E. Bombardier
- Department of Kinesiology; University of Waterloo; Waterloo ON Canada
| | - A. S. Mitchell
- Department of Kinesiology; University of Waterloo; Waterloo ON Canada
| | - J. Quadrilatero
- Department of Kinesiology; University of Waterloo; Waterloo ON Canada
| | - P. M. Tiidus
- Departments of Kinesiology and Physical Education and Health Sciences; Wilfrid Laurier University; Waterloo ON Canada
| |
Collapse
|
41
|
Yu SY, Yoon BR, Lee YJ, Lee JS, Hong HD, Lee YC, Kim YC, Cho CW, Kim KT, Lee OH. Inhibitory effect of high temperature- and high pressure-treated red ginseng on exercise-induced oxidative stress in ICR mouse. Nutrients 2014; 6:1003-15. [PMID: 24609134 PMCID: PMC3967174 DOI: 10.3390/nu6031003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/13/2022] Open
Abstract
As previously reported, high temperature- and high pressure-treated red ginseng (HRG) contain higher contents of phenolic compounds and protect C2C12 muscle cells and 3T3-L1 adipocytes against oxidative stress. This study investigated the effect of HRG on oxidative stress using a mouse model. Our results show that the levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, hepatic malondialdehyde in the HRG group were significantly lower than those of the exercise groups supplemented with commercial red ginseng (CRG) or not supplemented. The muscular glycogen level, glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities of the HGR group were higher than that of the CGR group. Furthermore, the HRG treatment group displayed upregulated mRNA expression of Cu/Zn-SOD and muscle regulatory factor 4. These results indicate that HRG may protect oxidative stress induced by exercise as well as improve exercise performance capacity.
Collapse
Affiliation(s)
- Seok-Yeong Yu
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Bo-Ra Yoon
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Young-Jun Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Jong Seok Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Hee-Do Hong
- Korea Food Research Institute, Gyeonggi 463-746, Korea.
| | | | | | - Chang-Won Cho
- Korea Food Research Institute, Gyeonggi 463-746, Korea.
| | | | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| |
Collapse
|
42
|
|
43
|
Tiidus PM, Lowe DA, Brown M. Estrogen replacement and skeletal muscle: mechanisms and population health. J Appl Physiol (1985) 2013; 115:569-78. [PMID: 23869062 DOI: 10.1152/japplphysiol.00629.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is a growing body of information supporting the beneficial effects of estrogen and estrogen-based hormone therapy (HT) on maintenance and enhancement of muscle mass, strength, and connective tissue. These effects are also evident in enhanced recovery from muscle atrophy or damage and have significant implications particularly for the muscular health of postmenopausal women. Evidence suggests that HT will also help maintain or increase muscle mass, improve postatrophy muscle recovery, and enhance muscle strength in aged females. This is important because this population, in particular, is at risk for a rapid onset of frailty. The potential benefits of estrogen and HT relative to skeletal muscle function and composition combined with other health-related enhancements associated with reduced risk of cardiovascular events, overall mortality, and metabolic dysfunction, as well as enhanced cognition and bone health cumulate in a strong argument for more widespread and prolonged consideration of HT if started proximal to menopausal onset in most women. Earlier reports of increased health risks with HT use in postmenopausal women has led to a decline in HT use. However, recent reevaluation regarding the health effects of HT indicates a general lack of risks and a number of significant health benefits of HT use when initiated at the onset of menopause. Although further research is still needed to fully delineate its mechanisms of action, the general use of HT by postmenopausal women, to enhance muscle mass and strength, as well as overall health, with initiation soon after the onset of menopause should be considered.
Collapse
Affiliation(s)
- Peter M Tiidus
- Department of Kinesology and Physical Education, Wilfrid Laurier University, Waterloo Ontario, Canada
| | | | | |
Collapse
|
44
|
Qaisar R, Renaud G, Hedstrom Y, Pöllänen E, Ronkainen P, Kaprio J, Alen M, Sipilä S, Artemenko K, Bergquist J, Kovanen V, Larsson L. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs. J Physiol 2013; 591:2333-44. [PMID: 23459759 DOI: 10.1113/jphysiol.2012.250092] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ageing is associated with a decline in muscle mass and strength leading to increased physical dependency in old age. Postmenopausal women experience a greater decline than men of similar age in parallel with the decrease in female sex steroid hormone production. We recruited six monozygous female twin pairs (55-59 years old) where only one twin pair was on hormone replacement therapy (HRT use = 7.8 ± 4.3 years) to investigate the association of HRT with the cytoplasmic volume supported by individual myonuclei (myonuclear domain (MND) size,) together with specific force at the single fibre level. HRT use was associated with a significantly smaller (∼27%; P < 0.05) mean MND size in muscle fibres expressing the type I but not the IIa myosin heavy chain (MyHC) isoform. In comparison to non-users, higher specific force was recorded in HRT users both in muscle fibres expressing type I (∼27%; P < 0.05) and type IIa (∼23%; P < 0.05) MyHC isoforms. These differences were fibre-type dependent, i.e. the higher specific force in fast-twitch muscle fibres was primarily caused by higher force per cross-bridge while slow-twitch fibres relied on both a higher number and force per cross-bridge. HRT use had no effect on fibre cross-sectional area (CSA), velocity of unloaded shortening (V0) and relative proportion of MyHC isoforms. In conclusion, HRT appears to have significant positive effects on both regulation of muscle contraction and myonuclei organization in postmenopausal women.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mathers JL, Farnfield MM, Garnham AP, Caldow MK, Cameron-Smith D, Peake JM. Early inflammatory and myogenic responses to resistance exercise in the elderly. Muscle Nerve 2012; 46:407-12. [PMID: 22907232 DOI: 10.1002/mus.23317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION AND METHODS This study compared changes in myokine and myogenic genes following resistance exercise (3 sets of 12 repetitions of maximal unilateral knee extension) in 20 elderly men (67.8 ± 1.0 years) and 15 elderly women (67.2 ± 1.5 years). RESULTS Monocyte chemotactic protein (MCP)-1, macrophage inhibitory protein (MIP)-1β, interleukin (IL)-6 and MyoD mRNA increased significantly (P < 0.05), whereas myogenin and myostatin mRNA decreased significantly after exercise in both groups. Macrophage-1 (Mac-1) and MCP-3 mRNA did not change significantly after exercise in either group. MIP-1β, Mac-1 and myostatin mRNA were significantly higher before and after exercise in men compared with women. In contrast, MCP-3 and myogenin mRNA were significantly higher before and after exercise in the women compared with the men. CONCLUSIONS In elderly individuals, gender influences the mRNA expression of certain myokines and growth factors, both at rest and after resistance exercise. These differences may influence muscle regeneration following muscle injury.
Collapse
Affiliation(s)
- Jessica L Mathers
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Ahtiainen M, Pöllänen E, Ronkainen PHA, Alen M, Puolakka J, Kaprio J, Sipilä S, Kovanen V. Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1249-1260. [PMID: 21845403 PMCID: PMC3448994 DOI: 10.1007/s11357-011-9298-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
A thorough understanding of the role of estrogens on aging-related muscle weakness is lacking. To clarify the molecular mechanisms underlying the effects of hormone replacement therapy (HRT) on skeletal muscle, we analyzed systemic protein and local mRNA levels of factors related to interleukin 6 (IL-6) and insulin-like growth factor 1 (IGF-1) pathways in 30- to 35-year-old (n = 14) women (without hormonal contraceptives) and in 54- to 62-year-old monozygotic female twin pairs discordant for HRT (n = 11 pairs, mean duration of HRT 7.3 ± 3.7 years). Biopsies were taken from vastus lateralis muscle and from abdominal adipose tissue. We found, first, that the systemic levels of IL-6 receptors sIL-6R and sgp130 are sensitive to both age and HRT concomitant with the changes in body composition. The serum levels of sgp130 and sIL-6R were 16% and 52% (p ≤ 0.001 for both variables) higher in postmenopausal women than in premenopausal women, and 10% and 9% lower (p = 0.033 and p < 0.001, respectively) in the HRT using than in their non using co-twins. After adjustment for body fat amount, the differences were no more significant. Second, the transcript analyses emphasize the impact of adipose tissue on systemic levels of IL-6, sgp130 and sIL6R, both at pre- and postmenopausal age. In muscle, the most notable changes were 28% lower gene expression of IGF-1 splice variant Ea (IGF-1Ea) and 40% lower expression of splice variant Ec (IGF-1Ec) in the postmenopausal non-users than in premenopausal women (p = 0.016 and 0.019, respectively), and 28% higher expression of IGF1-receptor in HRT users than in non-users (p = 0.060). The results tend to demonstrate that HRT has positive anti-catabolic effect on aging skeletal muscle.
Collapse
Affiliation(s)
- Maarit Ahtiainen
- Gerontology Research Center, Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Arthur ST, Cooley ID. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int J Biol Sci 2012; 8:731-60. [PMID: 22701343 PMCID: PMC3371570 DOI: 10.7150/ijbs.4262] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/06/2012] [Indexed: 12/17/2022] Open
Abstract
The age-related loss of skeletal muscle mass and function that is associated with sarcopenia can result in ultimate consequences such as decreased quality of life. The causes of sarcopenia are multifactorial and include environmental and biological factors. The purpose of this review is to synthesize what the literature reveals in regards to the cellular regulation of sarcopenia, including impaired muscle regenerative capacity in the aged, and to discuss if physiological stimuli have the potential to slow the loss of myogenic potential that is associated with sarcopenia. In addition, this review article will discuss the effect of aging on Notch and Wnt signaling, and whether physiological stimuli have the ability to restore Notch and Wnt signaling resulting in rejuvenated aged muscle repair. The intention of this summary is to bring awareness to the benefits of consistent physiological stimulus (exercise) to combating sarcopenia as well as proclaiming the usefulness of contraction-induced injury models to studying the effects of local and systemic influences on aged myogenic capability.
Collapse
Affiliation(s)
- Susan Tsivitse Arthur
- Department of Kinesiology, Laboratory of Systems Physiology, University North Carolina - Charlotte, Charlotte, NC 28223, USA.
| | | |
Collapse
|
48
|
Dieli-Conwright CM, Spektor TM, Rice JC, Sattler FR, Schroeder ET. Hormone Therapy and Maximal Eccentric Exercise Alters Myostatin-Related Gene Expression in Postmenopausal Women. J Strength Cond Res 2012; 26:1374-82. [DOI: 10.1519/jsc.0b013e318251083f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Hansen M, Skovgaard D, Reitelseder S, Holm L, Langbjerg H, Kjaer M. Effects of Estrogen Replacement and Lower Androgen Status on Skeletal Muscle Collagen and Myofibrillar Protein Synthesis in Postmenopausal Women. J Gerontol A Biol Sci Med Sci 2012; 67:1005-13. [DOI: 10.1093/gerona/gls007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
50
|
Tiidus PM. Benefits of estrogen replacement for skeletal muscle mass and function in post-menopausal females: evidence from human and animal studies. Eurasian J Med 2011; 43:109-14. [PMID: 25610174 PMCID: PMC4261347 DOI: 10.5152/eajm.2011.24] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/24/2011] [Indexed: 12/21/2022] Open
Abstract
Age related loss of skeletal muscle mass and strength accelerates with the onset of menopause in women. Recent evidence from human and animal studies provides compelling evidence for the role of estrogen based hormone replacement therapy (HRT) in maintaining and enhancing muscle mass and strength and protecting against muscle damage. The physiological mechanisms by which estrogen can positively influence skeletal muscle mass and strength and protect against post-damage inflammation and disruption are also beginning to emerge. These less well known benefits of estrogen for skeletal muscle coupled with other benefits of estrogen to bone and metabolic health in older females provide further incentives for HRT use to enhance overall health in post-menopausal women. New research also attests to the safety of shorter term HRT in younger post-menopausal females. Overall the benefits of HRT to muscle health and function could assist in offsetting age related loss of muscle mass and function and delay age related morbidity and their use for overall health benefits in aging females should continue to be evaluated.
Collapse
Affiliation(s)
- Peter M. Tiidus
- Department of Kinesiology and Physical Education, Faculty of Science, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|