1
|
Lucas A, Munoz CJ, Cabrales P. Hyperspectral Wide-Field-Of-View Imaging to Study Dynamic Microcirculatory Changes During Hypoxia. Am J Physiol Heart Circ Physiol 2022; 323:H49-H58. [PMID: 35522555 DOI: 10.1152/ajpheart.00624.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Hyperspectral imaging (HSI) provides a fast, reliable, and non-invasive way the study vascular microcirculation in animal models. Rapid hyperspectral imaging of large portions of the microcirculatory preparation is critical for understanding the function and regulation of vascular microcirculatory networks. METHODS This report presents the application of an off-the-shelf, benchtop, HSI linear scanning system to acquire larger field-of-view images of microcirculatory preparations. The HSI line detector was displaced perpendicular to the scanning direction to map larger areas, with a rate of displacement determined by the scanning rate and the exposure time. The collected image was analyzed to determine dynamic changes in the microcirculation. RESULTS The system records dynamic changes in microvascular hemoglobin (Hb) oxygen (O2) saturation and vascular morphology during hypoxia and reoxygenation and has similar acquisition speeds to commonly referenced spectral-scanning HSI systems. Additionally, the HbO2 saturations collected via HSI closely correlate with those collected by phosphorescence quenching microscopy. CONCLUSION The reported system enables dynamic functional microcirculation imaging for broad experimental and clinical applications.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Carlos Jose Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Lemieux P, Birot O. Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to Hypoxia: A Complex Story. Front Physiol 2021; 12:735557. [PMID: 34552509 PMCID: PMC8450406 DOI: 10.3389/fphys.2021.735557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia, defined as a reduced oxygen availability, can be observed in many tissues in response to various physiological and pathological conditions. As a hallmark of the altitude environment, ambient hypoxia results from a drop in the oxygen pressure in the atmosphere with elevation. A hypoxic stress can also occur at the cellular level when the oxygen supply through the local microcirculation cannot match the cells’ metabolic needs. This has been suggested in contracting skeletal myofibers during physical exercise. Regardless of its origin, ambient or exercise-induced, muscle hypoxia triggers complex angio-adaptive responses in the skeletal muscle tissue. These can result in the expression of a plethora of angio-adaptive molecules, ultimately leading to the growth, stabilization, or regression of muscle capillaries. This remarkable plasticity of the capillary network is referred to as angio-adaptation. It can alter the capillary-to-myofiber interface, which represent an important determinant of skeletal muscle function. These angio-adaptive molecules can also be released in the circulation as myokines to act on distant tissues. This review addresses the respective and combined potency of ambient hypoxia and exercise to generate a cellular hypoxic stress in skeletal muscle. The major skeletal muscle angio-adaptive responses to hypoxia so far described in this context will be discussed, including existing controversies in the field. Finally, this review will highlight the molecular complexity of the skeletal muscle angio-adaptive response to hypoxia and identify current gaps of knowledges in this field of exercise and environmental physiology.
Collapse
Affiliation(s)
- Pierre Lemieux
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
The Effects of Hypoxia on the Immune-Modulatory Properties of Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:2509606. [PMID: 31687031 PMCID: PMC6800910 DOI: 10.1155/2019/2509606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
The therapeutic repertoire for life-threatening inflammatory conditions like sepsis, graft-versus-host reactions, or colitis is very limited in current clinical practice and, together with chronic ones, like the osteoarthritis, presents growing economic burden in developed countries. This urges the development of more efficient therapeutic modalities like the mesenchymal stem cell-based approaches. Despite the encouraging in vivo data, however, clinical trials delivered ambiguous results. Since one of the typical features of inflamed tissues is decreased oxygenation, the success of cellular therapy in inflammatory pathologies seems to be affected by the impact of oxygen depletion on transplanted cells. Here, we examine our current knowledge on the effect of hypoxia on the physiology of bone marrow-derived mesenchymal stromal cells, one of the most popular tools of practical cellular therapy, in the context of their immune-modulatory capacity.
Collapse
|
4
|
Chronic kidney disease induces a systemic microangiopathy, tissue hypoxia and dysfunctional angiogenesis. Sci Rep 2018; 8:5317. [PMID: 29593228 PMCID: PMC5871820 DOI: 10.1038/s41598-018-23663-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with excessive mortality from cardiovascular disease (CVD). Endothelial dysfunction, an early manifestation of CVD, is consistently observed in CKD patients and might be linked to structural defects of the microcirculation including microvascular rarefaction. However, patterns of microvascular rarefaction in CKD and their relation to functional deficits in perfusion and oxygen delivery are currently unknown. In this in-vivo microscopy study of the cremaster muscle microcirculation in BALB/c mice with moderate to severe uremia, we show in two experimental models (adenine feeding or subtotal nephrectomy), that serum urea levels associate incrementally with a distinct microangiopathy. Structural changes were characterized by a heterogeneous pattern of focal microvascular rarefaction with loss of coherent microvascular networks resulting in large avascular areas. Corresponding microvascular dysfunction was evident by significantly diminished blood flow velocity, vascular tone, and oxygen uptake. Microvascular rarefaction in the cremaster muscle paralleled rarefaction in the myocardium, which was accompanied by a decrease in transcription levels not only of the transcriptional regulator HIF-1α, but also of its target genes Angpt-2, TIE-1 and TIE-2, Flkt-1 and MMP-9, indicating an impaired hypoxia-driven angiogenesis. Thus, experimental uremia in mice associates with systemic microvascular disease with rarefaction, tissue hypoxia and dysfunctional angiogenesis.
Collapse
|
5
|
Van Thienen R, Masschelein E, D'Hulst G, Thomis M, Hespel P. Twin Resemblance in Muscle HIF-1α Responses to Hypoxia and Exercise. Front Physiol 2017; 7:676. [PMID: 28149279 PMCID: PMC5241297 DOI: 10.3389/fphys.2016.00676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a master regulator of myocellular adaptation to exercise and hypoxia. However, the role of genetic factors in regulation of HIF-1 responses to exercise and hypoxia is unknown. We hypothesized that hypoxia at rest and during exercise stimulates the HIF-1 pathway and its downstream targets in energy metabolism regulation in a genotype-dependent manner. Eleven monozygotic twin (MZ) pairs performed an experimental trial in both normoxia and hypoxia (FiO2 10.7%). Biopsies were taken from m. vastus lateralis before and after a 20-min submaximal cycling bout @~30% of sea-level VO2max. Key-markers of the HIF-1 pathway and glycolytic and oxidative metabolism were analyzed using real-time PCR and Western Blot. Hypoxia increased HIF-1α protein expression by ~120% at rest vs. +150% during exercise (p < 0.05). Furthermore, hypoxia but not exercise increased muscle mRNA content of HIF-1α (+50%), PHD2 (+45%), pVHL (+45%; p < 0.05), PDK4 (+1200%), as well as PFK-M (+20%) and PPAR-γ1 (+60%; p < 0.05). Neither hypoxia nor exercise altered PHD1, LDH-A, PDH-A1, COX-4, and CS mRNA expressions. The hypoxic, but not normoxic exercise-induced increment of muscle HIF-1α mRNA content was about 10-fold more similar within MZ twins than between the twins (p < 0.05). Furthermore, in resting muscle the hypoxia-induced increments of muscle HIF-1α protein content, and HIF-1α and PDK4 mRNA content were about 3-4-fold more homogeneous within than between the twins pairs (p < 0.05). The present observations in monozygotic twins for the first time clearly indicate that the HIF-1α protein as well as mRNA responses to submaximal exercise in acute hypoxia are at least partly regulated by genetic factors.
Collapse
Affiliation(s)
- Ruud Van Thienen
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| | - Evi Masschelein
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| | - Gommaar D'Hulst
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| | - Martine Thomis
- Physical Activity, Sports and Health Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| |
Collapse
|
6
|
Jackson WF. Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action? J Physiol 2016; 594:5055-77. [PMID: 27324312 PMCID: PMC5023707 DOI: 10.1113/jp270192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/13/2016] [Indexed: 01/02/2023] Open
Abstract
Arterioles in the peripheral microcirculation are exquisitely sensitive to changes in PO2 in their environment: increases in PO2 cause vasoconstriction while decreases in PO2 result in vasodilatation. However, the cell type that senses O2 (the O2 sensor) and the signalling pathway that couples changes in PO2 to changes in arteriolar tone (the mechanism of action) remain unclear. Many (but not all) ex vivo studies of isolated cannulated resistance arteries and large, first-order arterioles support the hypothesis that these vessels are intrinsically sensitive to PO2 with the smooth muscle, endothelial cells, or red blood cells serving as the O2 sensor. However, in situ studies testing these hypotheses in downstream arterioles have failed to find evidence of intrinsic O2 sensitivity, and instead have supported the idea that extravascular cells sense O2 . Similarly, ex vivo studies of isolated, cannulated resistance arteries and large first-order arterioles support the hypotheses that O2 -dependent inhibition of production of vasodilator cyclooxygenase products or O2 -dependent destruction of nitric oxide mediates O2 reactivity of these upstream vessels. In contrast, most in vivo studies of downstream arterioles have disproved these hypotheses and instead have provided evidence supporting the idea that O2 -dependent production of vasoconstrictors mediates arteriolar O2 reactivity, with significant regional heterogeneity in the specific vasoconstrictor involved. Oxygen-induced vasoconstriction may serve as a protective mechanism to reduce the oxidative burden to which a tissue is exposed, a process that is superimposed on top of the local mechanisms which regulate tissue blood flow to meet a tissue's metabolic demand.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Zhang L, Ma C, Zhang C, Ma M, Zhang F, Zhang L, Chen Y, Cao F, Li S, Zhu D. Reactive oxygen species effect PASMCs apoptosis via regulation of dynamin-related protein 1 in hypoxic pulmonary hypertension. Histochem Cell Biol 2016; 146:71-84. [DOI: 10.1007/s00418-016-1424-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 01/27/2023]
|
8
|
Favier FB, Britto FA, Freyssenet DG, Bigard XA, Benoit H. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology. Cell Mol Life Sci 2015; 72:4681-96. [PMID: 26298291 PMCID: PMC11113128 DOI: 10.1007/s00018-015-2025-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is a metabolically active tissue and the major body protein reservoir. Drop in ambient oxygen pressure likely results in a decrease in muscle cells oxygenation, reactive oxygen species (ROS) overproduction and stabilization of the oxygen-sensitive hypoxia-inducible factor (HIF)-1α. However, skeletal muscle seems to be quite resistant to hypoxia compared to other organs, probably because it is accustomed to hypoxic episodes during physical exercise. Few studies have observed HIF-1α accumulation in skeletal muscle during ambient hypoxia probably because of its transient stabilization. Nevertheless, skeletal muscle presents adaptations to hypoxia that fit with HIF-1 activation, although the exact contribution of HIF-2, I kappa B kinase and activating transcription factors, all potentially activated by hypoxia, needs to be determined. Metabolic alterations result in the inhibition of fatty acid oxidation, while activation of anaerobic glycolysis is less evident. Hypoxia causes mitochondrial remodeling and enhanced mitophagy that ultimately lead to a decrease in ROS production, and this acclimatization in turn contributes to HIF-1α destabilization. Likewise, hypoxia has structural consequences with muscle fiber atrophy due to mTOR-dependent inhibition of protein synthesis and transient activation of proteolysis. The decrease in muscle fiber area improves oxygen diffusion into muscle cells, while inhibition of protein synthesis, an ATP-consuming process, and reduction in muscle mass decreases energy demand. Amino acids released from muscle cells may also have protective and metabolic effects. Collectively, these results demonstrate that skeletal muscle copes with the energetic challenge imposed by O2 rarefaction via metabolic optimization.
Collapse
Affiliation(s)
- F B Favier
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060, Montpellier, France.
- Université de Montpellier, 34090, Montpellier, France.
| | - F A Britto
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060, Montpellier, France
- Université de Montpellier, 34090, Montpellier, France
| | - D G Freyssenet
- Laboratoire de Physiologie de l'Exercice EA 4338, Université de Lyon, Université Jean Monnet, 42000, Saint Etienne, France
| | - X A Bigard
- Agence Française de Lutte contre le Dopage, 75007, Paris, France
| | - H Benoit
- INSERM, U1042 Hypoxie Physio-Pathologie, 38000, Grenoble, France
- Université Joseph Fourier, 38000, Grenoble, France
| |
Collapse
|
9
|
Effects of perfluorocarbon emulsions on microvascular blood flow and oxygen transport in a model of severe arterial gas embolism. J Surg Res 2014; 187:324-33. [DOI: 10.1016/j.jss.2013.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022]
|
10
|
Liu X, Tong J, Zweier JR, Follmer D, Hemann C, Ismail RS, Zweier JL. Differences in oxygen-dependent nitric oxide metabolism by cytoglobin and myoglobin account for their differing functional roles. FEBS J 2013; 280:3621-31. [PMID: 23710929 DOI: 10.1111/febs.12352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/06/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022]
Abstract
The endogenous vasodilator nitric oxide (NO) is metabolized in tissues in an oxygen-dependent manner. In skeletal and cardiac muscle, high concentrations of myoglobin (Mb) function as a potent NO scavenger. However, the Mb concentration is very low in vascular smooth muscle, where low concentrations of cytoglobin (Cygb) may play a major role in metabolizing NO. Questions remain regarding how low concentrations of Cygb and Mb differ in terms of NO metabolism, and the basis for their different cellular roles and functions. In this study, electrode techniques were used to perform comparative measurements of the kinetics of NO consumption by Mb and Cygb. UV/Vis spectroscopic methods and computer simulations were performed to study the reaction of Mb and Cygb with ascorbate (Asc) and the underlying mechanism. It was observed that the initial rate of Cygb(3+) reduction by Asc was 415-fold greater than that of Mb(3+). In the low [O2] range (0-50 μM), the Cygb-mediated NO consumption rate is ~ 500 times more sensitive to changes in O2 concentration than that of Mb. The reduction of Cygb(3+) by Asc follows a reversible kinetic model, but that of Mb(3+) is irreversible. A reaction mechanism for Cygb(3+) reduction by Asc is proposed, and the reaction equilibrium constants are determined. Our results suggest that the rapid reduction of Cygb by cellular reductants enables Cygb to efficiently regulate NO metabolism in the vascular wall in an oxygen-dependent manner, but the slow rate of Mb reduction does not show this oxygen dependence.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ngo AT, Riemann M, Holstein-Rathlou NH, Torp-Pedersen C, Jensen LJ. Significance of K(ATP) channels, L-type Ca²⁺ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles in vivo. BMC PHYSIOLOGY 2013; 13:8. [PMID: 23663730 PMCID: PMC3663688 DOI: 10.1186/1472-6793-13-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
Abstract
Background ATP-sensitive K+ channels (KATP channels), NO, prostaglandins, 20-HETE and L-type Ca2+ channels have all been suggested to be involved in oxygen sensing in skeletal muscle arterioles, but the role of the individual mechanisms remain controversial. We aimed to establish the importance of these mechanisms for oxygen sensing in arterioles in an in vivo model of metabolically active skeletal muscle. For this purpose we utilized the exteriorized cremaster muscle of anesthetized mice, in which the cremaster muscle was exposed to controlled perturbation of tissue PO2. Results Change from “high” oxygen tension (PO2 = 153.4 ± 3.4 mmHg) to “low” oxygen tension (PO2 = 13.8 ± 1.3 mmHg) dilated cremaster muscle arterioles from 11.0 ± 0.4 μm to 32.9 ± 0.9 μm (n = 28, P < 0.05). Glibenclamide (KATP channel blocker) caused maximal vasoconstriction, and abolished the dilation to low oxygen, whereas the KATP channel opener cromakalim caused maximal dilation and prevented the constriction to high oxygen. When adding cromakalim on top of glibenclamide or vice versa, the reactivity to oxygen was gradually restored. Inhibition of L-type Ca2+ channels using 3 μM nifedipine did not fully block basal tone in the arterioles, but rendered them unresponsive to changes in PO2. Inhibition of the CYP450-4A enzyme using DDMS blocked vasoconstriction to an increase in PO2, but had no effect on dilation to low PO2. Conclusions We conclude that: 1) L-type Ca2+ channels are central to oxygen sensing, 2) KATP channels are permissive for the arteriolar response to oxygen, but are not directly involved in the oxygen sensing mechanism and 3) CYP450-4A mediated 20-HETE production is involved in vasoconstriction to high PO2.
Collapse
Affiliation(s)
- Anh Thuc Ngo
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark.
| | | | | | | | | |
Collapse
|
12
|
Dyson A, Simon F, Seifritz A, Zimmerling O, Matallo J, Calzia E, Radermacher P, Singer M. Bladder tissue oxygen tension monitoring in pigs subjected to a range of cardiorespiratory and pharmacological challenges. Intensive Care Med 2012; 38:1868-76. [PMID: 23052956 DOI: 10.1007/s00134-012-2712-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE A fall in tissue oxygen tension (tPO(2)) is an early indicator of organ hypoxia in both patients and animal models. We previously demonstrated the utility of bladder tPO(2) in various rodent shock models. As a prelude to clinical testing, we aimed to provide further validation of bladder tPO(2) monitoring in a large animal model undergoing a range of cardiorespiratory insults and vasoactive drug interventions. METHODS Anaesthetized, mechanically ventilated, instrumented female pigs (n = 8) were subjected to a range of short-term cardiorespiratory (changes in inspired oxygen concentration (FiO(2)), haemorrhage, positive end-expiratory pressure) and pharmacologic (inotrope, pressor) challenges. Global haemodynamics, arterial and pulmonary blood gases and bladder tPO(2) were measured before and after each challenge. RESULTS Bladder tPO(2) values fell in line with increasing degrees of hypoxaemia and haemorrhage, and were restored during resuscitation. These changes often preceded those seen in global haemodynamics, arterial base excess and lactate. The rise in bladder tPO(2) with hyperoxia, performed as an oxygen challenge test, was incrementally blunted by progressive haemorrhage. Dobutamine and norepinephrine both increased cardiac output and global O(2) delivery, but had no effect on bladder tPO(2) or lactataemia in these healthy pigs. CONCLUSIONS In this pig model bladder tPO(2) provides a sensitive indicator of organ hypoxia compared to traditional biochemical markers during various cardiorespiratory challenges. This technique offers a potentially useful tool for clinical monitoring.
Collapse
Affiliation(s)
- Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Cruciform Building, Gower St, London, WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chimenti I, Forte E, Angelini F, Messina E, Giacomello A. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells. Biochim Biophys Acta Gen Subj 2012; 1830:2459-69. [PMID: 22921810 DOI: 10.1016/j.bbagen.2012.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. SCOPE OF REVIEW In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. MAJOR CONCLUSIONS Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. GENERAL SIGNIFICANCE Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, Sapienza University, Italy
| | | | | | | | | |
Collapse
|
14
|
Dasika SK, Kinsey ST, Locke BR. Sensitivity analysis of reaction-diffusion constraints in muscle energetics. Biotechnol Bioeng 2011; 109:559-71. [PMID: 21956284 DOI: 10.1002/bit.23347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 11/10/2022]
Abstract
Theoretical and experimental studies of aerobic metabolism on a wide range of skeletal muscle fibers have shown that while all fibers normally function within the reaction control regime, some fibers operate near the transition region where reaction control switches to diffusion control. Thus, the transition region between reaction and diffusion control may define the limits of muscle function, and analysis of factors that affect this transition is therefore needed. In order to assess the role of all important model parameters, a sensitivity analysis (SA) was performed to define the parameter space where muscle fibers transition from reaction to diffusion control. SA, performed on a previously developed reaction-diffusion model, shows that the maximum rate for the ATPase reaction (V(max,ATPase)), boundary oxygen concentration in the capillary supply (O ₂⁰), the mitochondrial volume fraction (ε(mito)), and the diffusion coefficient of oxygen (DO ₂) are the most sensitive parameters affecting this transition to diffusion control. It is demonstrated that fibers are not limited by diffusion for slow reactions (V(max,ATPase) < 25 mM/min), high oxygen supply for the capillaries (O ₂⁰ ≥ 35 µM), and large amounts of mitochondria (ε(mito) ≥ 0.1). These conditions are applicable to muscle cells spanning a very broad range of animals. Within the diffusion-controlled region, the overall metabolic rate and ATP concentrations have much higher sensitivity to the diffusion coefficient of oxygen than to the diffusion coefficients of the other metabolites (ATP, ADP, P(i)).
Collapse
Affiliation(s)
- S K Dasika
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310, USA
| | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The holy grail of circulatory monitoring is an accurate, continuous and relatively noninvasive means of assessing the adequacy of organ perfusion. This could be then advantageously used to direct therapeutic interventions to prevent both under-treatment and over-treatment and thus improve outcomes. However, in view of the heterogeneous response (adaptive or maladaptive) of different organs to various shock states, any monitor of perfusion adequacy cannot reflect every organ system, but should at least detect early deterioration in a 'canary' organ. Tissue oxygen tension reflects the balance between local oxygen supply and demand, and could thus be a potentially useful monitoring modality. This article examines the different technologies available and reviews the current literature regarding its utility as a monitor. RECENT FINDINGS Tissue oxygen tension, measured at a variety of sites in both human and laboratory studies, does appear to be a sensitive indicator of organ perfusion in different shock states. However, responses can vary not only between organs and between different shock states, but also over time. These changes reflect the particular oxygen supply-demand balance present in that tissue bed at that specific time point in the disease process. The response to a dynamic oxygen challenge test provides further information that allows severity to be more readily differentiated. SUMMARY Monitoring of tissue oxygen tension may offer a potentially useful tool for clinical management though significant validation needs to be first performed to confirm its promise.
Collapse
|
16
|
Hiesinger W, Vinogradov SA, Atluri P, Fitzpatrick JR, Frederick JR, Levit RD, McCormick RC, Muenzer JR, Yang EC, Marotta NA, MacArthur JW, Wilson DF, Woo YJ. Oxygen-dependent quenching of phosphorescence used to characterize improved myocardial oxygenation resulting from vasculogenic cytokine therapy. J Appl Physiol (1985) 2011; 110:1460-5. [PMID: 21292844 DOI: 10.1152/japplphysiol.01138.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study evaluates a therapy for infarct modulation and acute myocardial rescue and utilizes a novel technique to measure local myocardial oxygenation in vivo. Bone marrow-derived endothelial progenitor cells (EPCs) were targeted to the heart with peri-infarct intramyocardial injection of the potent EPC chemokine stromal cell-derived factor 1α (SDF). Myocardial oxygen pressure was assessed using a noninvasive, real-time optical technique for measuring oxygen pressures within microvasculature based on the oxygen-dependent quenching of the phosphorescence of Oxyphor G3. Myocardial infarction was induced in male Wistar rats (n = 15) through left anterior descending coronary artery ligation. At the time of infarction, animals were randomized into two groups: saline control (n = 8) and treatment with SDF (n = 7). After 48 h, the animals underwent repeat thoracotomy and 20 μl of the phosphor Oxyphor G3 was injected into three areas (peri-infarct myocardium, myocardial scar, and remote left hindlimb muscle). Measurements of the oxygen distribution within the tissue were then made in vivo by applying the end of a light guide to the beating heart. Compared with controls, animals in the SDF group exhibited a significantly decreased percentage of hypoxic (defined as oxygen pressure ≤ 15.0 Torr) peri-infarct myocardium (9.7 ± 6.7% vs. 21.8 ± 11.9%, P = 0.017). The peak oxygen pressures in the peri-infarct region of the animals in the SDF group were significantly higher than the saline controls (39.5 ± 36.7 vs. 9.2 ± 8.6 Torr, P = 0.02). This strategy for targeting EPCs to vulnerable peri-infarct myocardium via the potent chemokine SDF-1α significantly decreased the degree of hypoxia in peri-infarct myocardium as measured in vivo by phosphorescence quenching. This effect could potentially mitigate the vicious cycle of myocyte death, myocardial fibrosis, progressive ventricular dilatation, and eventual heart failure seen after acute myocardial infarction.
Collapse
Affiliation(s)
- William Hiesinger
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Measuring Oxygen in Living Tissue: Intravascular, Interstitial, and “Tissue” Oxygen Measurements. OXYGEN TRANSPORT TO TISSUE XXXII 2011; 701:53-9. [DOI: 10.1007/978-1-4419-7756-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Oxygen sensing and conducted vasomotor responses in mouse cremaster arterioles in situ. Pflugers Arch 2010; 460:41-53. [PMID: 20383716 DOI: 10.1007/s00424-010-0837-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/11/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
This study examines mechanisms by which changes in tissue oxygen tension elicit vasomotor responses and whether localized changes in oxygen tension initiates conducted vasomotor responses in mouse cremaster arterioles. Intravital microscopy was used to visualize the mouse cremaster microcirculation. The cremaster was superfused with Krebs' solution with different oxygen tensions, and a gas exchange chamber was used to induce localized changes in oxygen tension. In arterioles where red blood cells were removed by buffer perfusion, arterioles responded with same magnitudes of vasodilatation (DeltaD = 16.0 +/- 4.9 microm) when changing from high (PO(2) = 242.5 +/- 13.3 mm Hg) to low (PO(2) = 22.5 +/- 4.8 mm Hg) oxygen tension as seen in the intact cremaster circulation (DeltaD = 18.7 +/- 1.0 microm). Blockade of NO synthases by L: -NAME and adenosine receptors by DPCPX had no effects on vasomotor responses to low or high oxygen. Induction of localized low (PO(2) = 23.3 +/- 5.7 mmHg) or high (PO(2) = 300.0 +/- 25.7 mm Hg) oxygen tension caused vasodilatation or -constriction locally and at a site 1,000 microm upstream (distantly). Glibenclamide blocker of ATP-sensitive K(+) channels inhibited vasodilatation and -constriction to low (PO(2) = 16.0 +/- 6.4 mm Hg) and high (PO(2) = 337.4 +/- 12.8 mm Hg) oxygen tension. 1) ATP-sensitive K(+) channels seem to mediate, at least in part, vasodilatation and vasoconstriction to low and high oxygen tension; 2) Red blood cells are not necessary for inducing vasodilatation and vasoconstriction to low or high oxygen tension; 3) localized changes in the oxygen tension cause vasomotor responses, which are conducted upstream along arterioles in mouse cremaster microcirculation.
Collapse
|
19
|
Tsai AG, Cabrales P, Intaglietta M. The physics of oxygen delivery: facts and controversies. Antioxid Redox Signal 2010; 12:683-91. [PMID: 19757988 PMCID: PMC2834451 DOI: 10.1089/ars.2009.2519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 11/13/2022]
Abstract
At the microvascular level, the radial oxygen gradient is greater in arterioles than in any other vascular segment and thus drives the oxygen from the blood (high concentration, source) into the perivascular tissue (low concentration, sink). Thus, arterioles appear to be the main suppliers of oxygen to the tissue, in contrast to the capillaries, where the oxygen gradient is only a few millimeters of mercury. However, longitudinal oxygen loss from arteriolar blood is higher than can be solely accounted for by diffusion. This discrepancy becomes evident when determining how oxygen is distributed in the microvascular network, an approach that requires confirmation of the data in terms of mass balance and thermodynamic considerations. A fundamental difficulty is that measuring tissue Po 2 is complicated by methods, exposure of tissue, interpretation, and resolution. The literature reports mean tissue Po 2 as low as 5 and up to 50 mm Hg. This large variability is due to the differences in techniques, species, tissue, handling, and interpretation of signals used to resolve Po 2 levels. Improving measurement accuracy and physiological interpretation of the emerging Po 2 data is ongoing. We present an analysis of our current understanding of how tissue is supplied by oxygen at the microscopic level in terms of present results from laboratories using differing methods. Antioxid. Redox Signal. 12, 683–691.
Collapse
Affiliation(s)
- Amy G. Tsai
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | | | - Marcos Intaglietta
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
20
|
Almendros I, Montserrat JM, Torres M, González C, Navajas D, Farré R. Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea. Respir Res 2010; 11:3. [PMID: 20078851 PMCID: PMC2817656 DOI: 10.1186/1465-9921-11-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/15/2010] [Indexed: 12/03/2022] Open
Abstract
Background Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and non-invasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011). In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 ± 3.9 mmHg) and minimum (43.7 ± 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O2 supply induced by obstructive apneas mimicking OSA.
Collapse
|
21
|
Olson KR, Whitfield NL, Bearden SE, St Leger J, Nilson E, Gao Y, Madden JA. Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regul Integr Comp Physiol 2010; 298:R51-60. [PMID: 19889863 PMCID: PMC2806212 DOI: 10.1152/ajpregu.00576.2009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 10/28/2009] [Indexed: 11/22/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HVC), an intrinsic and assumed ubiquitous response of mammalian pulmonary blood vessels, matches regional ventilation to perfusion via an unknown O(2)-sensing mechanism. Global pulmonary hypoxia experienced by individuals suffering from chronic obstructive pulmonary disease or numerous hypoventilation syndromes, including sleep apnea, often produces maladaptive pulmonary hypertension, but pulmonary hypertension is not observed in diving mammals, where profound hypoxia is routine. Here we examined the response of cow and sea lion pulmonary arteries (PA) to hypoxia and observed the expected HVC in the former and a unique hypoxic vasodilation in resistance vessels in the latter. We then used this disparate response to examine the O(2)-sensing mechanism. In both animals, exogenous H(2)S mimicked the vasoactive effects of hypoxia in isolated PA. H(2)S-synthesizing enzymes, cystathionine beta-synthase, cystathionine gamma-lyase, and 3-mercaptopyruvate sulfur transferase, were identified in lung tissue from both animals by one-dimensional Western blot analysis and immunohistochemistry. The relationship between H(2)S production/consumption and O(2) was examined in real time by use of amperometric H(2)S and O(2) sensors. H(2)S was produced by sea lion and cow lung homogenate in the absence of O(2), but it was rapidly consumed when O(2) was present. Furthermore, consumption of exogenous H(2)S by cow lung homogenate, PA smooth muscle cells, and heart mitochondria was O(2) dependent and exhibited maximal sensitivity at physiologically relevant Po(2) levels. These studies show that HVC is not an intrinsic property of PA and provide further evidence for O(2)-dependent H(2)S metabolism in O(2) sensing.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana Univ. School of Medicine-South Bend, 131 Raclin Carmichael Hall, South Bend, IN 46617, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Although O(2) concentrations are considerably lowered in vivo, depending on the tissue and cell population in question (some cells need almost anoxic environment for their maintenance) the cell and tissue cultures are usually performed at atmospheric O(2) concentration (20-21%). As an instructive example, the relationship between stem cells and micro-environmental/culture oxygenation has been recapitulated. The basic principle of stem cell biology, "the generation-age hypothesis," and hypoxic metabolic properties of stem cells are considered in the context of the oxygen-dependent evolution of life and its transposition to ontogenesis and development. A hypothesis relating the self-renewal with the anaerobic and hypoxic metabolic properties of stem cells and the actual O(2) availability is elaborated ("oxygen stem cell paradigm"). Many examples demonstrated that the cellular response is substantially different at atmospheric O(2) concentration when compared to lower O(2) concentrations which better approximate the physiologic situation. These lower O(2) concentrations, traditionally called "hypoxia" represent, in fact, an in situ normoxia, and should be used in experimentation to get an insight of the real cell/cytokine physiology. The revision of our knowledge on cell/cytokine physiology, which has been acquired ex vivo at non physiological atmospheric (20-21%) O(2) concentrations representing a hyperoxic state for most primate cells, has thus become imperious.
Collapse
Affiliation(s)
- Zoran Ivanovic
- Aquitaine-Limousin Branch of French Blood Institute, Bordeaux, France.
| |
Collapse
|
23
|
ICS Medal Winners and Research Abstract Presentations. J Intensive Care Soc 2009. [DOI: 10.1177/175114370901000116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Golub AS, Pittman RN. Po2measurements in the microcirculation using phosphorescence quenching microscopy at high magnification. Am J Physiol Heart Circ Physiol 2008; 294:H2905-16. [DOI: 10.1152/ajpheart.01347.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In phosphorescence quenching microscopy (PQM), the multiple excitation of a reference volume produces the integration of oxygen consumption artifacts caused by individual flashes. We analyzed the performance of two types of PQM instruments to explain reported data on Po2in the microcirculation. The combination of a large excitation area (LEA) and high flash rate produces a large oxygen photoconsumption artifact manifested differently in stationary and flowing fluids. A LEA instrument strongly depresses Po2in a motionless tissue, but less in flowing blood, creating an apparent transmural Po2drop in arterioles. The proposed model explains the mechanisms responsible for producing apparent transmural and longitudinal Po2gradients in arterioles, a Po2rise in venules, a hypothetical high respiration rate in the arteriolar wall and mesenteric tissue, a low Po2in lymphatic microvessels, and both low and uniform tissue Po2. This alternative explanation for reported paradoxical results of Po2distribution in the microcirculation obviates the need to revise the dominant role of capillaries in oxygen transport to tissue. Finding a way to eliminate the photoconsumption artifact is crucial for accurate microscopic oxygen measurements in microvascular networks and tissue. The PQM technique that employs a small excitation area (SEA) together with a low flash rate was specially designed to avoid accumulated oxygen photoconsumption in flowing blood and lymph. The related scanning SEA instrument provides artifact-free Po2measurements in stationary tissue and motionless fluids. Thus the SEA technique significantly improves the accuracy of microscopic Po2measurements in the microcirculation using the PQM.
Collapse
|
25
|
Bruce EN, Bruce MC, Erupaka K. Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues. Respir Physiol Neurobiol 2008; 161:142-59. [PMID: 18313993 DOI: 10.1016/j.resp.2008.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/10/2008] [Accepted: 01/20/2008] [Indexed: 11/26/2022]
Abstract
Uptake of environmental carbon monoxide (CO) via the lungs raises the CO content of blood and of myoglobin (Mb)-containing tissues, but the blood-to-tissue diffusion coefficient for CO (DmCO) and tissue CO content are not easily measurable in humans. We used a multicompartment mathematical model to predict the effects of different values of DmCO on the time courses and magnitudes of CO content of blood and Mb-containing tissues when various published experimental studies were simulated. The model enhances our earlier model by adding mass balance equations for oxygen and by dividing the muscle compartment into two subcompartments. We found that several published experimental findings are compatible with either fast or slow rates of blood-tissue transfer of CO, whereas others are only compatible with slow rates of tissue uptake of CO. We conclude that slow uptake is most consistent with all of the experimental data. Slow uptake of CO by tissue is primarily due to the very small blood-to-tissue partial pressure gradients for CO.
Collapse
Affiliation(s)
- Eugene N Bruce
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA.
| | | | | |
Collapse
|
26
|
Abstract
Longitudinal Po2profiles in the microvasculature of the rat mesentery were studied using a novel phosphorescence quenching microscopy technique that minimizes the accumulated photoconsumption of oxygen by the method. Intravascular oxygen tension (Po2, in mmHg) and vessel diameter ( d, in μm) were measured in mesenteric microvessels ( n = 204) of seven anesthetized rats (275 g). The excitation parameters were as follows: 7 × 7-μm spot size; 410 nm laser; and 100 curves at 11 pulses/s, with pulse parameters of 2-μs duration and 80-pJ/μm2energy density. The mean Po2(± SE) was 65.0 ± 1.4 mmHg ( n = 78) for arterioles ( d = 18.8 ± 0.7 μm), 62.1 ± 2.0 mmHg ( n = 38) at the arteriolar end of capillaries ( d = 7.8 ± 0.3 μm), and 52.0 ± 1.0 mmHg ( n = 88) for venules ( d = 22.5 ± 1.0 μm). There was no apparent dependence of Po2on d in arterioles and venules. There were also no significant deviations in Po2based on d (bin width, 5 μm) from the general mean for both of these types of vessels. Results indicate that the primary site of oxygen delivery to tissue is located between the smallest arterioles and venules (change of 16.3 mmHg, P = 0.001). In conclusion, oxygen losses from mesenteric arterioles and venules are negligible, indicating low metabolic rates for both the vascular wall and the mesenteric tissue. Capillaries appear to be the primary site of oxygen delivery to the tissue in the mesenteric microcirculation. In light of the present results, previously reported data concerning oxygen consumption in the mesenteric microcirculation can be explained as artifacts of accumulated oxygen consumption due to the application of instrumentation having a large excitation area for Po2measurements in slow moving and stationary media.
Collapse
|
27
|
Oxygen pressures in the interstitial space of skeletal muscle and tumors in vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 614:53-62. [PMID: 18290314 DOI: 10.1007/978-0-387-74911-2_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new Oxyphor (Oxyphor G3) has been used to selectively determine the oxygen pressure in interstitial (pericellular) spaces. Oxyphor G3 is a Pd-tetrabenzoporphyrin, encapsulated inside generation 2 poly-arylglycine (AG) dendrimer, and therefore is a true near infrared oxygen sensor, having a strong absorption band at 636nm and emission near 800nm. The periphery of the dendrimer is modified with oligoethylene glycol residues (Av. MW 350) to make the probe water soluble and biologically inert. Oxyphor G3 was injected along "tracks" in the tissue using a small needle (30gage or less) and remained in the pericellular space, allowing oxygen measurements for several hours with a single injection. The oxygen pressure distributions (histograms) were compared with those for Oxyphor G2 in the intravascular (blood plasma) space. In normal muscle, in the lower oxygen pressure region of the histograms (capillary bed) the oxygen pressure difference was small. At higher oxygen pressures in the histograms there were differences consistent with the presence of high flow vessels with oxygen pressures substantially above those of the surrounding interstitial space. In tumors, the oxygen pressures in the two spaces were similar but with large differences among tumors. In mice, anesthesia with ketamine plus xylazine markedly decreased oxygen pressures in the interstitial and intravascular spaces compared to awake or isoflurane anesthetized mice.
Collapse
|
28
|
Ward JPT. Oxygen sensors in context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:1-14. [PMID: 18036551 DOI: 10.1016/j.bbabio.2007.10.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/21/2007] [Accepted: 10/24/2007] [Indexed: 01/02/2023]
Abstract
The ability to adapt to changes in the availability of O2 provides a critical advantage to all O2-dependent lifeforms. In mammals it allows optimal matching of the O2 requirements of the cells to ventilation and O2 delivery, underpins vital changes to the circulation during the transition from fetal to independent, air-breathing life, and provides a means by which dysfunction can be limited or prevented in disease. Certain tissues such as the carotid body, pulmonary circulation, neuroepithelial bodies and fetal adrenomedullary chromaffin cells are specialised for O2 sensing, though most others show for example alterations in transcription of specific genes during hypoxia. A number of mechanisms are known to respond to variations in PO2 over the physiological range, and have been proposed to fulfil the function as O2 sensors; these include modulation of mitochondrial oxidative phosphorylation and a number of O2-dependent synthetic and degradation pathways. There is however much debate as to their relative importance within and between specific tissues, whether their O2 sensitivity is actually appropriate to account for their proposed actions, and in particular their modus operandi. This review discusses our current understanding of how these mechanisms may operate, and attempts to put them into the context of the actual PO2 to which they are likely to be exposed. An important point raised is that the overall O2 sensitivity (P50) of any O2-dependent mechanism does not necessarily correlate with that of its O2 sensor, as the coupling function between the two may be complex and non-linear. In addition, although the bulk of the evidence suggests that mitochondria act as the key O2 sensor in carotid body, pulmonary artery and chromaffin cells, the signalling mechanisms by which alterations in their function are translated into a response appear to differ fundamentally, making a global unified theory of O2 sensing unlikely.
Collapse
Affiliation(s)
- Jeremy P T Ward
- King's College London School of Medicine, Division of Asthma, Allergy and Lung Biology, London SE1 9RT, UK
| |
Collapse
|
29
|
Abstract
Tissue Po2 (tPo2) reflects the balance between local O2 supply and demand and, thus, could be a useful monitoring modality. However, the consistency and amplitude of the tPo2 response in different organs during different cardiorespiratory insults is unknown. Therefore, we investigated the effects of endotoxemia, hemorrhage, and hypoxemia on tPo2 measured in deep and peripheral organ beds. We compared arterial pressure, blood gas and lactate levels, descending aortic and renal blood flow, and tPo2 in skeletal muscle, bladder epithelium, liver, and renal cortex during 1) LPS infusion (10 mg/kg), 2) sequential removal of 10% of circulating blood volume, and 3) reductions in inspired O2 concentration in an anesthetized Wistar rat model with values measured in sham-operated animals. Different patterns were seen in each of the shock states, with condition-specific variations in the degree of acidemia, lactatemia, and tissue O2 responses between organs. Endotoxemia resulted in a rise in bladder tPo2 and an early fall in liver tPo2 but no significant change in muscle and renal cortical tPo2. Progressive hemorrhage, however, produced proportional declines in liver, muscle, and bladder tPo2, but renal cortical tPo2 was maintained until profound blood loss had occurred. By contrast, progressive hypoxemia resulted in proportional decreases in tPo2 in all organ beds. This study highlights the heterogeneity of responses in different organ beds during different shock states that are likely related to local changes in O2 supply and utilization. Whole body monitoring is not generally reflective of these changes.
Collapse
Affiliation(s)
- Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, University College London, Gower Street, London, UK
| | | | | | | |
Collapse
|
30
|
Stupar V, Canet-Soulas E, Gaillard S, Alsaid H, Beckmann N, Crémillieux Y. Retrospective cine 3He ventilation imaging under spontaneous breathing conditions: a non-invasive protocol for small-animal lung function imaging. NMR IN BIOMEDICINE 2007; 20:104-12. [PMID: 16998954 DOI: 10.1002/nbm.1086] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A non-invasive and free-breathing hyperpolarized (HP) (3)He imaging protocol for small animals was implemented and validated on rats for lung function imaging. Animals were allowed to breathe a mixture of air and (3)He from a mask and a gas reservoir fitted to their heads. Radial imaging sequences were used, and MRI signal intensity changes were monitored for retrospective cine image reconstruction. The ventilation cycle of the animals was imaged with a 100 ms temporal resolution. The sliding window imaging technique was applied to reconstruct 5 ms time-shifted image series covering the complete breathing cycle. Image series were processed to extract quantitative ventilation parameters such as the gas arrival time. The reproducibility and the non-invasiveness of this ventilation imaging protocol were evaluated by multiple acquisitions on the same animals.
Collapse
Affiliation(s)
- Vasile Stupar
- Université Lyon 1, Laboratoire de RMN, UMR CNRS 5012, ESCPE, 43 boulevard du 11 Novembre, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|
31
|
Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. ACTA ACUST UNITED AC 2007; 209:4011-23. [PMID: 17023595 DOI: 10.1242/jeb.02480] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How vertebrate blood vessels sense acute hypoxia and respond either by constricting (hypoxic vasoconstriction) or dilating (hypoxic vasodilation) has not been resolved. In the present study we compared the mechanical and electrical responses of select blood vessels to hypoxia and H2S, measured vascular H2S production, and evaluated the effects of inhibitors of H2S synthesis and addition of the H2S precursor, cysteine, on hypoxic vasoconstriction and hypoxic vasodilation. We found that: (1) in all vertebrate vessels examined to date, hypoxia and H2S produce temporally and quantitatively identical responses even though the responses vary from constriction (lamprey dorsal aorta; lDA), to dilation (rat aorta; rA), to multi-phasic (rat and bovine pulmonary arteries; rPA and bPA, respectively). (2) The responses of lDA, rA and bPA to hypoxia and H2S appear competitive; in the presence of one stimulus, the response to the other stimulus is substantially or completely eliminated. (3) Hypoxia and H2S produce the same degree of cell depolarization in bPA. (4) H2S is constitutively synthesized by lDA and bPA vascular smooth muscle. (5) Inhibition of H2S synthesis inhibits the hypoxic response of lDA, rA, rPA and bPA. (6) Addition of the H2S precursor, cysteine, doubles hypoxic contraction in lDA, prolongs contraction in bPA and alters the re-oxygenation response of rA. These studies suggest that H2S may serve as an O2 sensor/transducer in the vascular responses to hypoxia. In this model, the concentration of vasoactive H2S in the vessel is governed by the balance between endogenous H2S production and its oxidation by available O2.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, 1234 Notre Dame Avenue, South Bend, IN 46617, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Wilson DF, Lee WMF, Makonnen S, Finikova O, Apreleva S, Vinogradov SA. Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle. J Appl Physiol (1985) 2006; 101:1648-56. [PMID: 16888050 DOI: 10.1152/japplphysiol.00394.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compared oxygen pressures (Po(2)), measured by oxygen-dependent quenching of phosphorescence, in the intravascular (blood plasma) space in the muscle with those in the interstitial (pericellular) space. Our hypothesis was that the capillary wall would not significantly impede oxygen diffusion from the blood plasma to the pericellular space. A new near-infrared oxygen sensitive probe, Oxyphor G3, was used to obtain oxygen distributions in the interstitial space. Oxyphor G3 is a Pd-tetrabenzoporphyrin encapsulated inside generation 2 poly-arylglycine (AG) dendrimer. The periphery of the dendrimer is modified with oligoethylene glycol residues (average molecular weight 350) to make the probe water soluble and biologically inert. Oxyphor G3 was injected into thigh muscle using a 30-gauge needle. Histograms of the Po(2) in the interstitial space were measured in awake and anesthetized animals and compared with those for Oxyphor G2 in the intravascular (blood plasma) space. For awake mice, the lowest 10% of Po(2) values for the interstitial and intravascular spaces (believed to represent capillary bed) were not significantly different [23.8 (SD 4.5) and 25 Torr (SD 4.3), respectively], whereas, in isoflurane-anesthetized mice, there was a small but significant (P = 0.01) difference [20.4 (SD 6.3) and 27.9 Torr (SD 3.5), respectively]. The peak values for the histograms for the interstitial space in awake and isoflurane-anesthetized mice were 40.8 (SD 7.5) and 36.9 Torr (SD 8.3), respectively, whereas those for the intravascular space were 52.2 (SD 4.9) and 55.9 Torr (SD 8.4), respectively, showing no significant difference due to isoflurane anesthesia. The histograms for the intravascular space were significantly wider, with more contribution at higher Po(2) values. A different anesthetic, ketamine plus xylazine injected intraperitoneally, caused a marked decrease in the tissue Po(2) values in both spaces, with the time course and extent of the decrease dependent on the time after injection and variable among mice. It was, therefore, not further used.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Wiernsperger N, Nivoit P, Bouskela E. Obstructive sleep apnea and insulin resistance: a role for microcirculation? Clinics (Sao Paulo) 2006; 61:253-66. [PMID: 16832559 DOI: 10.1590/s1807-59322006000300011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obstructive sleep apnea is an increasingly recognized medical problem. The recent attention to its frequency in the general population and its important role in metabolic, vascular, and behavioral aspects have sharply increased the number and nature of investigations, thereby revealing new aspects that open new approaches in research. Whereas obstructive sleep apnea is a well-known phenomenon accompanying obesity and diabetes, new findings strongly suggest that this close relationship may also operate in the opposite direction. Indeed obstructive sleep apnea may be a primary feature inducing or aggravating a series of vascular and metabolic disturbances closely resembling the metabolic syndrome. This review will discuss established and potential mechanisms responsible for these changes. Obstructive sleep apnea indeed appears to gather all the elements necessary to induce insulin resistance, hypertension, and possibly heart failure. After careful analysis of these modifications and considering how they are intertwined, we propose that microcirculation could represent the common denominator mediating the progression of this pathology, as it is eventually the case in the metabolic syndrome and diabetes domain. This plausible hypothesis is discussed in detail and should be verified by appropriate preclinical and clinical protocols, which are now achievable by using noninvasive techniques in humans.
Collapse
Affiliation(s)
- Nicolas Wiernsperger
- Department of Physiological Sciences, State University of Rio de Janeiro, Brazil
| | | | | |
Collapse
|