1
|
Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. The effect of dietary supplements on core temperature and sweating responses in hot environmental conditions: a meta-analysis and meta-regression. Am J Physiol Regul Integr Comp Physiol 2025; 328:R515-R555. [PMID: 39884667 DOI: 10.1152/ajpregu.00186.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/11/2024] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Dietary supplements are widely used among individuals exposed to hot environments, but whether their consumption confers any thermoregulatory effect is unclear. Therefore, we systematically evaluated the effect of dietary supplementation on key aspects of thermoregulation [core temperature (Tcore) and sweating responses] in the heat. Three databases were searched in April 2024. After screening, 124 peer-reviewed articles were identified for inclusion within three separate meta-analyses: 1) peak Tcore; 2) whole body sweat rate (WBSR); 3) local sweat rate (LSR). The moderating effect of several variables (e.g., training and heat acclimation status), known to influence thermoregulatory function, were assessed via subanalysis and meta-regression. There was no overall effect of the differing supplement types on WBSR (P = 0.405) and LSR (P = 0.769), despite taurine significantly increasing WBSR (n = 3, Hedges' g = 0.79, P = 0.006). Peak Tcore was significantly affected by supplement type (P = 0.011), primarily due to caffeine's "small" significant positive effect (n = 30; Hedges' g = 0.44, P < 0.001) and taurine's (n = 3, Hedges' g = -0.66, P = 0.043) and oligonol's (n = 3; Hedges' g = -0.50, P = 0.014) "medium" significant negative effects. Dietary supplements, such as amino acids (e.g., taurine), some antioxidants and anti-inflammatories (e.g., oligonol) conferred the greatest thermoregulatory benefits during heat exposure. Taurine ingestion in such conditions may lower heat strain, which is likely through its augmentation of thermal sweating. Conversely, caffeine intake may potentially pose the greatest risk in the heat due to its effect on Tcore.NEW & NOTEWORTHY The effects of dietary supplements on core temperature and sweating responses when ingested in the heat varied greatly. Some supplements demonstrated the potential to improve thermoregulatory capacity (e.g., select amino acids, anti-oxidants and anti-inflammatories), while others had no or even deleterious effects on thermal balance (e.g., caffeine). These findings have implications for those ingesting dietary supplements for their health and/or performance effects during exposure to hot environmental conditions. Certain supplements should possibly be avoided in the heat, while others may elicit a thermoregulatory benefit.
Collapse
Affiliation(s)
- Jennifer S Peel
- A-STEM Centre, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Melitta A McNarry
- A-STEM Centre, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Shane M Heffernan
- A-STEM Centre, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Venturino R Nevola
- A-STEM Centre, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
- Defence Science and Technology Laboratory, Fareham, Hampshire, United Kingdom
| | - Liam P Kilduff
- A-STEM Centre, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
- Welsh Institute of Performance Science, Swansea University, Swansea, United Kingdom
| | - Mark Waldron
- A-STEM Centre, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
- Welsh Institute of Performance Science, Swansea University, Swansea, United Kingdom
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
2
|
Okamoto Y, Otsuka J, Amano T. Partial involvement of nitric oxide synthase in increased pilocarpine-induced sweating in exercise-trained men. Appl Physiol Nutr Metab 2025; 50:1-4. [PMID: 39536305 DOI: 10.1139/apnm-2024-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The physiological mechanisms involved in augmented cholinergic agonist-induced sweating in exercise-trained individuals remain unclear. This study hypothesizes that nitric oxide synthase (NOS) contributes to augmented pilocarpine-induced sweating in habitually exercise-trained individuals. Endurance-trained and untrained men (n = 15 each) iontophoretically received 1% L-NAME, a NOS inhibitor, and saline (control) in the forearm and then administered 0.001% and 1% pilocarpine to evaluate sweat rate. L-NAME administration attenuated pilocarpine-induced sweating by 10% in the exercise-trained (P = 0.004) but not in untrained (P = 0.764) groups independent of pilocarpine concentrations. Results indicate that NOS partially contributes to increased cholinergic sweating in exercise-trained men.
Collapse
Affiliation(s)
- Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Junto Otsuka
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Maimaituxun G, Amano T, Kenny GP, Mündel T, Kajiki M, Tagawa K, Katagiri A, Tanabe Y, Watanabe K, Nishiyasu T, Kondo N, Fujii N. GH and IGF-1 in skin interstitial fluid and blood are associated with heat loss responses in exercising young adults. Eur J Appl Physiol 2024; 124:2285-2301. [PMID: 38446190 DOI: 10.1007/s00421-024-05448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Sweat glands and cutaneous vessels possess growth hormone (GH) and insulin-like growth factor 1 (IGF-1) receptors. Here, we assessed if exercise increases GH and IGF-1 in skin interstitial fluid, and whether baseline and exercise-induced increases in GH and IGF-1 concentrations in skin interstitial fluid/blood are associated with heat loss responses of sweating and cutaneous vasodilation. METHODS Sixteen young adults (7 women) performed a 50-min moderate-intensity exercise bout (50% VO2peak) during which skin dialysate and blood samples were collected. In a sub-study (n = 7, 4 women), we administered varying concentrations of GH (0.025-4000 ng/mL) and IGF-1 (0.000256-100 µg/mL) into skin interstitial fluid via intradermal microdialysis. Sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC) were measured continuously for both studies. RESULTS Exercise increased sweating and CVC (both P < 0.001), paralleled by increases of serum GH and skin dialysate GH and IGF-1 (all P ≤ 0.041) without changes in serum IGF-1. Sweating was positively correlated with baseline dialysate and serum GH levels, as well as exercise-induced increases in serum GH and IGF-1 (all P ≤ 0.044). Increases in CVC were not correlated with any GH and IGF-1 variables. Exogenous administration of GH and IGF-1 did not modulate resting sweat rate and CVC. CONCLUSION (1) Exercise increases GH and IGF-1 levels in the skin interstitial fluid, (2) exercise-induced sweating is associated with baseline GH in skin interstitial fluid and blood, as well as exercise-induced increases in blood GH and IGF-1, and (3) cutaneous vasodilation during exercise is not associated with GH and IGF-1 in skin interstitial fluid and blood.
Collapse
Affiliation(s)
- Gulinu Maimaituxun
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Masanobu Kajiki
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Kaname Tagawa
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Akira Katagiri
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Yoko Tanabe
- Japan Society for the Promotion of Science, Tokyo, Japan
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, Japan
| | - Koichi Watanabe
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Takeshi Nishiyasu
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Naoto Fujii
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan.
- Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
4
|
Wee J, Tan XR, Gunther SH, Ihsan M, Leow MKS, Tan DSY, Eriksson JG, Lee JKW. Effects of Medications on Heat Loss Capacity in Chronic Disease Patients: Health Implications Amidst Global Warming. Pharmacol Rev 2023; 75:1140-1166. [PMID: 37328294 DOI: 10.1124/pharmrev.122.000782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
Pharmacological agents used to treat or manage diseases can modify the level of heat strain experienced by chronically ill and elderly patients via different mechanistic pathways. Human thermoregulation is a crucial homeostatic process that maintains body temperature within a narrow range during heat stress through dry (i.e., increasing skin blood flow) and evaporative (i.e., sweating) heat loss, as well as active inhibition of thermogenesis, which is crucial to avoid overheating. Medications can independently and synergistically interact with aging and chronic disease to alter homeostatic responses to rising body temperature during heat stress. This review focuses on the physiologic changes, with specific emphasis on thermolytic processes, associated with medication use during heat stress. The review begins by providing readers with a background of the global chronic disease burden. Human thermoregulation and aging effects are then summarized to give an understanding of the unique physiologic changes faced by older adults. The effects of common chronic diseases on temperature regulation are outlined in the main sections. Physiologic impacts of common medications used to treat these diseases are reviewed in detail, with emphasis on the mechanisms by which these medications alter thermolysis during heat stress. The review concludes by providing perspectives on the need to understand the effects of medication use in hot environments, as well as a summary table of all clinical considerations and research needs of the medications included in this review. SIGNIFICANCE STATEMENT: Long-term medications modulate thermoregulatory function, resulting in excess physiological strain and predisposing patients to adverse health outcomes during prolonged exposures to extreme heat during rest and physical work (e.g., exercise). Understanding the medication-specific mechanisms of altered thermoregulation has importance in both clinical and research settings, paving the way for work toward refining current medication prescription recommendations and formulating mitigation strategies for adverse drug effects in the heat in chronically ill patients.
Collapse
Affiliation(s)
- Jericho Wee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Xiang Ren Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Samuel H Gunther
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Melvin Khee Shing Leow
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Doreen Su-Yin Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Johan G Eriksson
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Jason Kai Wei Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| |
Collapse
|
5
|
Okamoto Y, Otsuka J, Aoki M, Amano T. Transdermal iontophoretic application of l-NAME is available in sweating research induced by heat stress in young healthy adults. Nitric Oxide 2023; 138-139:96-103. [PMID: 37619814 DOI: 10.1016/j.niox.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Iontophoretic transdermal administration of NG-nitro-l-arginine methyl ester hydrochloride [l-NAME, a nitric oxide synthase (NOS) inhibitor] has been used as a non-invasive evaluation of NOS-dependent mechanisms in human skin. However, the availability has yet to be investigated in sweating research. Prior observations using invasive techniques (e.g., intradermal microdialysis technique) to administer l-NAME have implicated that NOS reduces sweating induced by heat stress but rarely influences the response induced by the administration of cholinergic muscarinic receptor agonists. Therefore, we investigated whether the transdermal iontophoretic administration of l-NAME modulates sweating similar to those prior observations. Twenty young healthy adults (10 males, 10 females) participated in two experimental protocols on separate days. Before each protocol, saline (control) and 1% l-NAME were bilaterally administered to the forearm skin via transdermal iontophoresis. In protocol 1, 0.001% and 1% pilocarpine were iontophoretically administered at l-NAME-treated and untreated sites. In protocol 2, passive heating was applied by immersing the lower limbs in hot water (43 °C) until the rectal temperature increased by 0.8 °C above baseline. The sweat rate was continuously measured throughout both protocols. Pilocarpine-induced sweat rate was not significantly different between the control and l-NAME-treated sites in both pilocarpine concentrations (P ≥ 0.316 for the treatment effect and interaction of treatment and pilocarpine concentration). The sweat rate during passive heating was attenuated at the l-NAME-treated site relative to the control (treatment effect, P = 0.020). Notably, these observations are consistent with prior sweating studies administrating l-NAME into human skin using intradermal microdialysis techniques. Based on the similarity of our results with already known observations, we conclude that transdermal iontophoresis of l-NAME is a valid non-invasive technique for the investigation of the mechanisms of sweating related to NOS during heat stress.
Collapse
Affiliation(s)
- Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Junto Otsuka
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Mao Aoki
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.
| |
Collapse
|
6
|
Fujii N, Amano T, Kenny GP, Mündel T, Lei TH, Honda Y, Kondo N, Nishiyasu T. TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation in humans in vivo. Exp Physiol 2022; 107:844-853. [PMID: 35688020 DOI: 10.1113/ep090521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do transmembrane member 16A (TMEM16A) blockers modulate the activation of heat loss responses of sweating and cutaneous vasodilatation? What are the main finding and its importance? Relative to the vehicle control site, TMEM16A blockers T16Ainh-A01 and benzbromarone had no effect on sweat rate or cutaneous vascular conductance during whole-body heating inducing a 1.1 ± 0.1°C increase in core temperature above baseline resting levels. These results suggest that TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation during whole-body heat stress. ABSTRACT Animal and in vitro studies suggest that transmembrane member 16A (TMEM16A), a Ca2+ -activated Cl- channel, contributes to regulating eccrine sweating. However, direct evidence supporting this possibility in humans is lacking. We assessed the hypothesis that TMEM16A blockers attenuate sweating during whole-body heating in humans. Additionally, we assessed the associated changes in the heat loss response of cutaneous vasodilatation to determine if a functional role of TMEM16A may exist. Twelve young (24 ± 2 years) adults (six females) underwent whole-body heating using a water-perfused suit to raise core temperature 1.1 ± 0.1°C above baseline. Sweat rate and cutaneous vascular conductance (normalized to maximal conductance via administration of sodium nitroprusside) were evaluated continuously at four forearm skin sites treated continuously by intradermal microdialysis with (1) lactated Ringer's solution (control), (2) 5% dimethyl sulfoxide (DMSO) serving as a vehicle control, or (3) TMEM16A blockers 1 mM T16Ainh-A01 or 2 mM benzbromarone dissolved in 5% DMSO solution. All drugs were administered continuously via intradermal microdialysis. Whole-body heating increased core temperature progressively and this was paralleled by an increase in sweat rate and cutaneous vascular conductance at all skin sites. However, sweat rate (all P > 0.318) and cutaneous vascular conductance (all P ≥ 0.073) did not differ between the vehicle control site relative to the TMEM16A blocker-treated sites. Collectively, our findings indicate that TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation during whole-body heating in young adults in vivo.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
TRPA1 channel activation with cinnamaldehyde induces cutaneous vasodilation through NOS, but not COX and KCa channel, mechanisms in humans. J Cardiovasc Pharmacol 2021; 79:375-382. [PMID: 34983913 DOI: 10.1097/fjc.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Transient receptor potential ankyrin 1 (TRPA1) channel activation induces cutaneous vasodilation in humans in vivo. However, the mechanisms underlying this response remains equivocal. We hypothesized that nitric oxide (NO) synthase (NOS) and Ca2+ activated K+ (KCa) channels contribute to the TRPA1 channel-induced cutaneous vasodilation with no involvement of cyclooxygenase (COX). Cutaneous vascular conductance (CVC) in 9 healthy young adults was assessed at four dorsal forearm skin sites treated by intradermal microdialysis with either: 1) vehicle control (98% propylene glycol + 1.985% dimethyl sulfoxide + 0.015% lactated Ringer solution), 2) 10 mM L-NAME, a non-selective NOS inhibitor, 3) 10 mM ketorolac, a non-selective COX inhibitor, or 4) 50 mM tetraethylammonium, a non-selective KCa channel blocker. Cinnamaldehyde, a TRPA1 channel activator, was administered to each skin site in a dose-dependent manner (2.9, 8.8, 26 and 80 %, each lasting ≥30min). Administration of ≥8.8% cinnamaldehyde increased CVC from baseline at the vehicle control site by as much as 27.4% [95 % confidence interval of 5.3] (P<0.001). NOS inhibitor attenuated the cinnamaldehyde induced-increases in CVC at the 8.8, 26.0, and 80.0% concentrations relative to the vehicle control site (all P≤0.05). In contrast, both the COX inhibitor and KCa channel blockers did not attenuate the cinnamaldehyde induced-increases in CVC relative to the vehicle control site for all concentrations (all P≥0.130). We conclude that in human skin in vivo, NOS plays a role in modulating the regulation of cutaneous vasodilation in response to TRPA1 channel activation with no detectable contributions of COX and KCa channels.
Collapse
|
8
|
Amano T, Fujii N, Kenny GP, Okamoto Y, Inoue Y, Kondo N. Effects of L-type voltage-gated Ca 2+ channel blockade on cholinergic and thermal sweating in habitually trained and untrained men. Am J Physiol Regul Integr Comp Physiol 2020; 319:R584-R591. [PMID: 32966123 DOI: 10.1152/ajpregu.00167.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We evaluated the hypothesis that the activation of L-type voltage-gated Ca2+ channels contributes to exercise training-induced augmentation in cholinergic sweating. On separate days, 10 habitually trained and 10 untrained men participated in two experimental protocols. Prior to each protocol, we administered 1% verapamil (Verapamil, L-type voltage-gated Ca2+ channel blocker) and saline (Control) at forearm skin sites on both arms via transdermal iontophoresis. In protocol 1, we administered low (0.001%) and high (1%) doses of pilocarpine at both the verapamil-treated and verapamil-untreated forearm sites. In protocol 2, participants were passively heated by immersing their limbs in hot water (43°C) until rectal temperature increased by 1.0°C above baseline resting levels. Sweat rate at all forearm sites was continuously measured throughout both protocols. Pilocarpine-induced sweating in Control was higher in trained than in untrained men for both the concentrations of pilocarpine (both P ≤ 0.001). Pilocarpine-induced sweating at the low-dose site was attenuated at the Verapamil versus the Control site in both the groups (both P ≤ 0.004), albeit the reduction was greater in trained as compared with in untrained men (P = 0.005). The verapamil-mediated reduction in sweating remained intact at the high-dose pilocarpine site in the untrained men (P = 0.004) but not the trained men (P = 0.180). Sweating did not differ between Control and Verapamil sites with increases in rectal temperature in both groups (interaction, P = 0.571). We show that activation of L-type voltage-gated Ca2+ channels modulates sweat production in habitually trained men induced by a low dose of pilocarpine. However, no effect on sweating was observed during passive heating in either group.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
9
|
Fujii N, McGarr GW, Amano T, Sigal RJ, Boulay P, Nishiyasu T, Kenny GP. Ageing augments β-adrenergic cutaneous vasodilatation differently in men and women, with no effect on β-adrenergic sweating. Exp Physiol 2020; 105:1720-1729. [PMID: 32818310 DOI: 10.1113/ep088583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/10/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? β-Adrenergic receptor activation modulates cutaneous vasodilatation and sweating in young adults. In this study, we assessed whether age-related differences in β-adrenergic regulation of these responses exist and whether they differ between men and women. What is the main finding and its importance? We showed that ageing augmented β-adrenergic cutaneous vasodilatation, although the pattern of response differed between men and women. Ageing had no effect on β-adrenergic sweating in men or women. Our findings advance our understanding of age-related changes in the regulation of cutaneous vasodilatation and sweating and provide new directions for research on the significance of enhanced β-adrenergic cutaneous vasodilatation in older adults. ABSTRACT β-Adrenergic receptor agonists, such as isoprenaline, can induce cutaneous vasodilatation and sweating in young adults. Given that cutaneous vasodilatation and sweating responses to whole-body heating and to pharmacological agonists, such as acetylcholine, ATP and nicotine, can differ in older adults, we assessed whether ageing also modulates β-adrenergic cutaneous vasodilatation and sweating and whether responses differ between men and women. In the context of the latter, prior reports showed that the effects of ageing on cutaneous vasodilatation (evoked with ATP and nicotine) and sweating (stimulated by acetylcholine) were sex dependent. Thus, in the present study, we assessed the role of β-adrenergic receptor activation on forearm cutaneous vasodilatation and sweating in 11 young men (24 ± 4 years of age), 11 young women (23 ± 5 years of age), 11 older men (61 ± 8 years of age) and 11 older women (60 ± 8 years of age). Initially, a high dose (100 µm) of isoprenaline was administered via intradermal microdialysis for 5 min to induce maximal β-adrenergic sweating. Approximately 60 min after the washout period, three incremental doses of isoprenaline were administered (1, 10 and 100 µm, each for 25 min) to assess dose-dependent cutaneous vasodilatation. Isoprenaline-mediated cutaneous vasodilatation was greater in both older men and older women relative to their young counterparts. Augmented cutaneous vasodilatory responses were observed at 1 and 10 µm in women and at 100 µm in men. Isoprenaline-mediated sweating was unaffected by ageing, regardless of sex. We show that ageing augments β-adrenergic cutaneous vasodilatation differently in men and women, without influencing β-adrenergic sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Niigata, Japan
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Abstract
The mechanism by which nitric oxide synthase (NOS) inhibition impacts human sweating is unknown. We tested the hypothesis that the activation of NOS and release on nitric oxide acts to open K+ channels and enhance sweat gland output. Local sweat rate (LSR) was measured with a small sweat capsule mounted on the skin while sweating was initiated by intradermal electrical stimulation. Sigmoid shape stimulus-response curves were generated by plotting the area under the LSR-time curve (LSR AUC) versus log10 stimulus frequency and normalized to the peak AUC response during control trials. NOS inhibition alone reduced the peak sweat rate response to 81.5 ± 4.5% peak LSR AUC of that seen with lactated Ringer's (P = 0.0004). Fifty mM of tetraethylammonium chloride (TEA) alone reduced peak LSR (0.317 ± 0.060 vs. 0.511 ± 0.104 mg·min-1·cm-2, P = 0.03) and the peak LSR AUC response from 0.193 ± 0.170 to 0.158 ± 0.127 mg·cm-2 (P = 0.004). Delivery of a 20 mM nitro-l-arginine methyl ester (l-NAME) following 50 mM TEA produced a further decrease in the peak LSR AUC response to 0.095 ± 0.064 mg·cm-2 (≈20% reduction, P = 0.0145). These data support the hypothesis that sudomotor control of sweat gland activity is locally modulated by a functioning NOS system that appears to be additive and independent to the effect of blockade of K+ channels with TEA.NEW & NOTEWORTHY The contribution of nitric oxide synthase (NOS) to the process of cholinergic-mediated human eccrine sweat production is unclear. Using a novel model for cholinergic-mediated sweating in humans, I demonstrate that blocking the NOS system led to a reduction in local sweat rate (LSR). This reduction in LSR was maintained in the presence of K+ channel blockade with tetraethylammonium.
Collapse
Affiliation(s)
- Gary W Mack
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| |
Collapse
|
11
|
McGarr GW, Ghassa R, Fujii N, Amano T, Kenny GP. Regional contributions of nitric oxide synthase to cholinergic cutaneous vasodilatation and sweating in young men. Exp Physiol 2019; 105:236-243. [PMID: 31821642 DOI: 10.1113/ep088295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/05/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We evaluated whether regional variations exist in NO-dependent cutaneous vasodilatation and sweating during cholinergic stimulation. What is the main finding and its importance? Peak cutaneous vasodilatation and sweating were greater on the torso than the forearm. Furthermore, we found that NO was an important modulator of cholinergic cutaneous vasodilatation, but not sweating, across body regions, with a greater contribution of NO to cutaneous vasodilatation in the limb compared with the torso. These findings advance our understanding of the mechanisms influencing regional variations in cutaneous vasodilator and sweating responses to pharmacological stimulation. ABSTRACT Regional variations in cutaneous vasodilatation and sweating exist across the body. Nitric oxide (NO) is an important modulator of these heat loss responses in the forearm. However, whether regional differences in NO-dependent cutaneous vasodilatation and sweating exist remain uncertain. In 14 habitually active young men (23 ± 4 years of age), cutaneous vascular conductance (CVC%max ) and local sweat rates were assessed at six skin sites. On each of the dorsal forearm, chest and upper back (trapezius), sites were continuously perfused with either lactated Ringer solution (control) or 10 mm Nω -nitro-l-arginine (l-NNA; an NO synthase inhibitor) dissolved in Ringer solution, via microdialysis. At all sites, cutaneous vasodilatation and sweating were induced by co-administration of the cholinergic agonist methacholine (1, 10, 100, 1000 and 2000 mm; 25 min per dose) followed by 50 mm sodium nitroprusside (20-25 min) to induce maximal vasodilatation. The l-NNA attenuated CVC%max relative to the control conditions for all regions (all P < 0.05), and NO-dependent vasodilatation was greater at the forearm compared with the back and chest (both P < 0.05). Furthermore, maximal vasodilatation was higher at the back and chest relative to the forearm (both P < 0.05). Conversely, l-NNA had negligible effects on sweating across the body (all P > 0.05). Peak local sweat rate was higher at the back relative to the forearm (P < 0.05), with a similar trend observed for the chest. In habitually active young men, NO-dependent cholinergic cutaneous vasodilatation varied across the body, and the contribution to cholinergic sweating was negligible. These findings advance our understanding of the mechanisms influencing regional variations in cutaneous vasodilatation and sweating during pharmacological stimulation.
Collapse
Affiliation(s)
- Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Reem Ghassa
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Fujii N, McGarr GW, Sigal RJ, Boulay P, Nishiyasu T, Kenny GP. Ageing augments nicotinic and adenosine triphosphate-induced, but not muscarinic, cutaneous vasodilatation in women. Exp Physiol 2019; 104:1801-1807. [PMID: 31602716 DOI: 10.1113/ep088144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does ageing augment muscarinic, nicotinic and/or ATP-mediated cutaneous vasodilatation in women? What is the main finding and its importance? Ageing augments nicotinic and ATP-induced, but not muscarinic, cutaneous vasodilatation in women. This will stimulate future studies assessing the pathophysiological significance of the augmented microvascular responsiveness in older women compared to their young counterparts. ABSTRACT We previously reported that ageing attenuates adenosine triphosphate (ATP)-induced, but not muscarinic and nicotinic, cutaneous vasodilatation in men, and that ageing may augment cutaneous vascular responses in women. In the present study, we evaluated the hypothesis that ageing augments muscarinic, nicotinic and/or ATP-mediated cutaneous vasodilatation in healthy women. In 11 young (23 ± 5 years) and 11 older (60 ± 8 years) women, cutaneous vascular conductance was evaluated at three forearm skin sites that were perfused with (1) methacholine (muscarinic receptor agonist, 5 doses: 0.0125, 0.25, 5, 100, 2000 mm), (2) nicotine (nicotinic receptor agonist, 5 doses: 1.2, 3.6, 11, 33, 100 mm), or (3) ATP (purinergic receptor agonist, 5 doses: 0.03, 0.3, 3, 30, 300 mm). Each agonist was administered for 25 min per dose. Methacholine-induced increases in cutaneous vascular conductance were not different between groups at all doses (all P > 0.05). However, a nicotine-induced elevation in cutaneous vascular conductance at the lowest concentration (1.2 mm) was greater in older vs. young women (43 ± 15 vs. 26 ± 10%max, P = 0.04). ATP-induced increases in cutaneous vascular conductance at moderate and high doses (3 and 30 mm) were also greater in older relative to young women (3 mm, 44 ± 11 vs. 28 ± 10%max, P = 0.02; 30 mm, 83 ± 14 vs. 64 ± 17%max, P = 0.05). Therefore, ageing augments nicotinic and ATP-induced, but not muscarinic, cutaneous vasodilatation in women.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Mack GW, Smith BS, Rowland B. TEA-sensitive K + channels and human eccrine sweat gland output. J Appl Physiol (1985) 2019; 127:921-929. [PMID: 31465715 DOI: 10.1152/japplphysiol.00308.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cholinergic-activated sweating depends on an influx of Ca2+ from extracellular fluid. It is thought that the opening of K+ channels on secretory epithelial cells facilitates Ca2+ entry. We examined the hypothesis that tetraethylammonium (TEA)-sensitive K+ channels participate in sweat production. We used a pre-post experimental design and initiated cholinergic-mediated sweating with intradermal electrical stimulation, monitored local sweat rate (SR) with a small sweat capsule mounted on the skin, and delivered 50 mM TEA via intradermal microdialysis. Local SR was activated by intradermal stimulation frequencies of 0.2-64 Hz, and we generated a sigmoid-shaped stimulus-response curve by plotting the area under the SR-time curve versus log10 stimulus frequency. Peak local SR was reduced from 0.372 ± 0.331 to 0.226 ± 0.190 mg·min-1·cm-2 (P = 0.0001) during application of 50 mM TEA, whereas the EC50 and Hill slopes were not altered. The global sigmoid-shaped stimulus-response curves for control and 50 mM TEA were significantly different (P < 0.0001), and the plateau region was significantly reduced (P = 0.0023) with the TEA treatment. The effect of TEA on peak local SR was similar in male and female subjects. However, we did note a small effect of sex on the shape of the stimulus-response curves during intradermal electrical stimulation. Overall, these data support the hypothesis that cholinergic control of sweat gland activity is modulated by the presence of TEA-sensitive K+ channels in human sweat gland epithelial cells.NEW & NOTEWORTHY The contribution of various potassium channels to the process of cholinergic-mediated human eccrine sweat production is unclear. Using a novel model for cholinergic-mediated sweating in humans, we provide evidence that tetraethylammonium-sensitive K+ channels (KCa1.1 and Kv channels) contribute to eccrine sweat production.
Collapse
Affiliation(s)
- Gary W Mack
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Benjamin S Smith
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Benjamin Rowland
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| |
Collapse
|
14
|
Evidence for TRPV4 channel induced skin vasodilatation through NOS, COX, and KCa channel mechanisms with no effect on sweat rate in humans. Eur J Pharmacol 2019; 858:172462. [DOI: 10.1016/j.ejphar.2019.172462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
15
|
McGarr GW, Fujii N, Muia CM, Nishiyasu T, Kenny GP. Separate and combined effects of K Ca and K ATP channel blockade with NOS inhibition on cutaneous vasodilation and sweating in older men during heat stress. Am J Physiol Regul Integr Comp Physiol 2019; 317:R113-R120. [PMID: 31091157 DOI: 10.1152/ajpregu.00075.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective in this study was to examine the separate and combined effects of potassium (K+) channels and nitric oxide synthase (NOS) on cutaneous vasodilation and sweating in older men during rest and exercise in the heat. In 13 habitually active men (61 ± 4 yr), cutaneous vascular conductance and local sweat rate were assessed at six dorsal forearm skin sites continuously perfused with either 1) lactated Ringer (control), 2) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, NOS inhibitor), 3) 50 mM tetraethylammonium (TEA; Ca2+-activated K+ channel blocker), 4) 5 mM glybenclamide (GLY; ATP-sensitive K+ channel blocker), 5) 50 mM TEA + 10 mM l-NAME, and 6) 5 mM GLY + 10 mM l-NAME via microdialysis. Participants rested in non-heat stress (25°C) and heat stress (35°C) conditions for ∼60 min each, followed by 50 min of moderate-intensity cycling (∼55% V̇o2peak) and 30 min of recovery in the heat. During rest and exercise in the heat, l-NAME, TEA + l-NAME, and GLY + l-NAME attenuated CVC relative to control (all P ≤ 0.05), although l-NAME was not different from TEA + l-NAME or GLY + l-NAME (all P > 0.05). TEA attenuated CVC during rest, whereas GLY attenuated CVC during exercise (both P ≤ 0.05). Additionally, whereas neither l-NAME nor TEA altered sweating throughout the protocol (all P > 0.05), combined TEA + l-NAME attenuated sweating during exercise in the heat (P ≤ 0.05). We conclude that in habitually active older men blockade of KCa and KATP channels attenuates cutaneous vasodilation during rest and exercise in the heat, respectively, and these effects are NOS dependent. Furthermore, combined NOS inhibition and KCa channel blockade attenuates sweating during exercise in the heat.
Collapse
Affiliation(s)
- Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada.,Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba City , Japan
| | - Caroline M Muia
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba City , Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| |
Collapse
|
16
|
Meade RD, Fujii N, McGarr GW, Alexander LM, Boulay P, Sigal RJ, Kenny GP. Local arginase inhibition does not modulate cutaneous vasodilation or sweating in young and older men during exercise. J Appl Physiol (1985) 2019; 126:1129-1137. [PMID: 30653418 PMCID: PMC6485684 DOI: 10.1152/japplphysiol.00657.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/19/2023] Open
Abstract
Age-related impairments in cutaneous vascular conductance (CVC) and sweat rate (SR) during exercise may result from increased arginase activity, which can attenuate endogenous nitric oxide (NO) production. We therefore evaluated whether arginase inhibition modulates these heat-loss responses in young (n = 9, 23 ± 3 yr) and older (n = 9, 66 ± 6 yr) men during two 30-min bouts of moderate-intensity cycling (Ex1 and Ex2) in the heat (35°C). CVC and SR were measured at forearm skin sites perfused with 1) lactated Ringer's (control), 2) NG-nitro-L-arginine methyl ester (L-NAME; NO synthase-inhibited), or 3) Nω-hydroxy-nor-arginine and S-(2-boronoethyl)-l-cysteine (Nor-NOHA + BEC; arginase-inhibited). In both groups, CVC was reduced at L-NAME relative to control and Nor-NOHA + BEC (both P < 0.01). Likewise, SR was attenuated with L-NAME compared with control and Nor-NOHA + BEC during each exercise bout in the young men (all P ≤ 0.05); however, no influence of treatment on SR in the older men was observed (P = 0.14). Based on these findings, we then evaluated responses in 7 older men (64 ± 7 yr) during passively induced elevations in esophageal temperature (∆Tes) equal to those in Ex1 (0.6°C) and Ex2 (0.8°C). L-NAME reduced CVC by 18 ± 20% CVCmax at a ∆Tes of 0.8°C (P = 0.03) compared with control, whereas Nor-NOHA + BEC augmented CVC by 20 ± 18% CVCmax, on average, throughout heating (both P ≤ 0.03). SR was not influenced by either treatment (P = 0.80) Thus, arginase inhibition does not modulate CVC or SR during exercise in the heat but, consistent with previous findings, does augment CVC in older men during passive heating. NEW & NOTEWORTHY In the current study, we demonstrate that local arginase inhibition does not influence forearm cutaneous vasodilatory and sweating responses in young or older men during exercise-heat stress. Consistent with previous findings, however, we observed augmented cutaneous blood flow with arginase inhibition during whole-body passive heat stress. Thus, arginase differentially affects cutaneous vasodilation depending on the mode of heat stress but does not influence sweating during exercise or passive heating.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba City , Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University , University Park, Pennsylvania
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke , Sherbrooke, QC , Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary , Calgary, AB , Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada
| |
Collapse
|
17
|
Fujii N, Pastore OL, McGarr GW, Meade RD, McNeely BD, Nishiyasu T, Kenny GP. Cyclooxygenase-1 and -2 modulate sweating but not cutaneous vasodilation during exercise in the heat in young men. Physiol Rep 2018; 6:e13844. [PMID: 30175553 PMCID: PMC6119687 DOI: 10.14814/phy2.13844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
We recently reported that the nonselective cyclooxygenase (COX) inhibitor ketorolac attenuated sweating but not cutaneous vasodilation during moderate-intensity exercise in the heat. However, the specific contributions of COX-1 and COX-2 to the sweating response remained to be determined. We tested the hypothesis that COX-1 but not COX-2 contributes to sweating with no role for either COX isoform in cutaneous vasodilation during moderate-intensity exercise in the heat. In thirteen young males (22 ± 2 years), sweat rate and cutaneous vascular conductance were measured at three forearm skin sites that were continuously treated with (1) lactated Ringer's solution (Control), (2) 150 μmmol·L-1 celecoxib, a selective COX-2 inhibitor, or (3) 10 mmol L-1 ketorolac, a nonselective COX inhibitor. Participants first rested in a non heat stress condition (≥85 min, 25°C) followed by a further 70-min rest period in the heat (35°C). They then performed 50 min of moderate-intensity cycling (~55% peak oxygen uptake) followed by a 30-min recovery period. At the end of exercise, sweat rate was lower at the 150 μmol·L-1 celecoxib (1.51 ± 0.25 mg·min-1 ·cm-2 ) and 10 mmol·L-1 ketorolac (1.30 ± 0.30 mg·min-1 ·cm-2 ) treated skin sites relative to the Control site (1.89 ± 0.27 mg·min-1 ·cm-2 ) (both P ≤ 0.05). Additionally, sweat rate at the ketorolac site was attenuated relative to the celecoxib site (P ≤ 0.05). Neither celecoxib nor ketorolac influenced cutaneous vascular conductance throughout the experiment (both P > 0.05). We showed that both COX-1 and COX-2 contribute to sweating but not cutaneous vasodilation during moderate-intensity exercise in the heat in young men.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Olivia L. Pastore
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Gregory W. McGarr
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Robert D. Meade
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Brendan D. McNeely
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| |
Collapse
|
18
|
Postsynaptic cutaneous vasodilation and sweating: influence of adiposity and hydration status. Eur J Appl Physiol 2018; 118:1703-1713. [PMID: 29855792 DOI: 10.1007/s00421-018-3902-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Obesity and hypohydration independently affect postsynaptic endothelial function, but it is unknown if hypohydration affects lean and obese individuals differently. PURPOSE To examine the effect of hypohydration on postsynaptic cutaneous vasodilation and sweating in men with high and low adiposity (HI- and LO-BF, respectively). METHODS Ten males with LO-BF and ten with HI-BF were instrumented for forearm microdialysis when euhydrated and hypohydrated. Changes in cutaneous vascular conductance (CVC) with intradermal infusion of sodium nitroprusside (SNP) and methacholine chloride (MCh) were assessed. Local sweat rate (LSR) was simultaneously assessed at the MCh site. At the end of the last dose, maximal CVC was elicited by delivering a maximal dose of SNP for 30 min to both sites with simultaneous local heating at the SNP site. The concentration of drug needed to elicit 50% of the maximal response (EC50) was compared between groups and hydration conditions. RESULTS When euhydrated, EC50 of MCh-induced CVC was not different between LO- vs. HI-BF [- 3.04 ± 0.12 vs. - 2.98 ± 0.19 log (MCh) M, P = 0.841]. EC50 of SNP-induced CVC was higher in euhydrated HI- vs. LO-BF (- 1.74 ± 0.17 vs. - 2.13 ± 0.06 log (SNP) M, P = 0.034). Within each group, hydration status did not change MCh- or SNP-induced CVC (P > 0.05). LSR was not different between groups or hydration condition (P > 0.05). CONCLUSIONS These data suggest reduced sensitivity of endothelium-independent vasodilation in individuals with high adiposity when euhydrated. However, hypohydration does not affect cutaneous vasodilation or local sweat rate differently between individuals with low or high adiposity.
Collapse
|
19
|
Agrawal K, Bosviel R, Piccolo BD, Newman JW. Oral ibuprofen differentially affects plasma and sweat lipid mediator profiles in healthy adult males. Prostaglandins Other Lipid Mediat 2018; 137:1-8. [PMID: 29778785 DOI: 10.1016/j.prostaglandins.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Sweat contains a variety of lipid mediators, but whether they originate from the plasma filtrate or from the cutaneous sweat glandular tissues themselves is unknown. To explore this knowledge gap, we collected plasma and sweat from healthy men (n = 9) immediately before and 0.5, 2 and 4 h after oral administration of 400 mg ibuprofen. Of the over 100 lipid mediators assayed by liquid chromatography-tandem mass spectrometry, ∼45 were detected in both plasma and sweat, and 36 were common to both matrices. However, baseline concentrations in each matrix were not correlated and metabolite relative abundances between matrices differed. Oral ibuprofen administration altered sweat lipid mediators, reducing prostaglandin E2, linoleoylethanolamide, and oleoylethanolamide, while increasing 11-hydroxyeicosatetraenoic acid, and causing transient changes in 9-nitrooleate, N-arachidonylglycine and 20-hydroxyeicosatetraenoic acid. Meanwhile, plasma N-acylethanolamide concentrations increased with ibuprofen administration. These results suggest that sweat and plasma differentially reflect biochemical changes due to oral ibuprofen administration, and that plasma is unlikely to be the predominant source of the sweat lipid mediator profile.
Collapse
Affiliation(s)
- Karan Agrawal
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Rémy Bosviel
- West Coast Metabolomics Center, Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, 15 Children's Way, Little Rock, AR 72202, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, USA.
| | - John W Newman
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA; Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, 430 W Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Fujii N, Meade RD, McNeely BD, Nishiyasu T, Sigal RJ, Kenny GP. Type 2 diabetes specifically attenuates purinergic skin vasodilatation without affecting muscarinic and nicotinic skin vasodilatation and sweating. Exp Physiol 2018; 103:212-221. [DOI: 10.1113/ep086694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/28/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences; University of Tsukuba; Tsukuba Japan
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
| | - Brendan D. McNeely
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences; University of Tsukuba; Tsukuba Japan
| | - Ronald J. Sigal
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
- Department of Medicine; Cumming School of Medicine, University of Calgary; Calgary Alberta Canada
- Clinical Epidemiology Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit; University of Ottawa; Ottawa Ontario Canada
- Clinical Epidemiology Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada
| |
Collapse
|
21
|
Meade RD, Fujii N, Poirier MP, Boulay P, Sigal RJ, Kenny GP. Oxidative stress does not influence local sweat rate during high-intensity exercise. Exp Physiol 2017; 103:172-178. [PMID: 29152797 DOI: 10.1113/ep086746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 01/13/2023]
Abstract
NEW FINDINGS What is the central question of this study? We evaluated whether oxidative stress attenuates the contribution of nitric oxide to sweating during high-intensity exercise. What is the main finding and its importance? In contrast to our previous report of an oxidative stress-mediated reduction in nitric oxide-dependent cutaneous vasodilatation in this cohort during intense exercise, we demonstrated no influence of local ascorbate administration on the sweating response during moderate- (∼51% peak oxygen uptake) or high-intensity exercise (∼72% peak oxygen uptake). These new findings provide important mechanistic insight into how exercise-induced oxidative stress impacts sudomotor activity. Nitric oxide (NO)-dependent sweating is diminished during high- but not moderate-intensity exercise. We evaluated whether this impairment stems from increased oxidative stress during high-intensity exercise. On two separate days, 11 young (24 ± 4 years) men cycled in the heat (35°C) at a moderate [500 W; 52 ± 6% peak oxygen uptake (V̇O2 peak )] or high (700 W; 71 ± 5% V̇O2 peak ) rate of metabolic heat production. Each session included two 30 min exercise bouts separated by a 20 min recovery period. Local sweat rate was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with the following: (i) lactated Ringer solution (Control); (ii) 10 mm ascorbate (Ascorbate; non-selective antioxidant); (iii) 10 mm NG -nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor); or (iv) 10 mm ascorbate plus 10 mm l-NAME (Ascorbate + l-NAME). During moderate exercise, sweat rate was attenuated at the l-NAME and Ascorbate + l-NAME sites (both ∼1.0 mg min-1 cm-2 ; all P < 0.05) but not at the Ascorbate site (∼1.1 mg min-1 cm-2 ; both P ≥ 0.28) in comparison to the Control site (∼1.1 mg min-1 cm-2 ). However, no differences were observed between treatment sites (∼1.4 mg min-1 cm-2 ; P = 0.75) during high-intensity exercise. We conclude that diminished NO-dependent sweating during intense exercise occurs independent of oxidative stress.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Martin P Poirier
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Departments of Medicine, Cardiac Sciences and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
McNeely BD, Meade RD, Fujii N, Seely AJE, Sigal RJ, Kenny GP. Fluid replacement modulates oxidative stress- but not nitric oxide-mediated cutaneous vasodilation and sweating during prolonged exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2017; 313:R730-R739. [PMID: 28931548 PMCID: PMC5814697 DOI: 10.1152/ajpregu.00284.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/29/2023]
Abstract
The roles of nitric oxide synthase (NOS), reactive oxygen species (ROS), and angiotensin II type 1 receptor (AT1R) activation in regulating cutaneous vasodilation and sweating during prolonged (≥60 min) exercise are currently unclear. Moreover, it remains to be determined whether fluid replacement (FR) modulates the above thermoeffector responses. To investigate, 11 young men completed 90 min of continuous moderate intensity (46% V̇o2peak) cycling performed at a fixed rate of metabolic heat production of 600 W (No FR condition). On a separate day, participants completed a second session of the same protocol while receiving FR to offset sweat losses (FR condition). Cutaneous vascular conductance (CVC) and local sweat rate (LSR) were measured at four intradermal microdialysis forearm sites perfused with: 1) lactated Ringer (Control); 2) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, NOS inhibition); 3) 10 mM ascorbate (nonselective antioxidant); or 4) 4.34 nM losartan (AT1R inhibition). Relative to Control (71% CVCmax at both time points), CVC with ascorbate (80% and 83% CVCmax) was elevated at 60 and 90 min of exercise during FR (both P < 0.02) but not at any time during No FR (all P > 0.31). In both conditions, CVC was reduced at end exercise with l-NAME (60% CVCmax; both P < 0.02) but was not different relative to Control at the losartan site (76% CVCmax; both P > 0.19). LSR did not differ between sites in either condition (all P > 0.10). We conclude that NOS regulates cutaneous vasodilation, but not sweating, irrespective of FR, and that ROS influence cutaneous vasodilation during prolonged exercise with FR.
Collapse
Affiliation(s)
- Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Andrew J E Seely
- Thoracic Surgery and Critical Care Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology University of Calgary, Calgary, Alberta, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
| |
Collapse
|
23
|
Fujii N, McNeely BD, Nishiyasu T, Kenny GP. Intradermal administration of atrial natriuretic peptide has no effect on sweating and cutaneous vasodilator responses in young male adults. Temperature (Austin) 2017; 4:406-413. [PMID: 29435479 DOI: 10.1080/23328940.2017.1356433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 01/27/2023] Open
Abstract
Atrial natriuretic peptide (ANP) increases during exercise in the heat wherein heat loss responses of sweating and cutaneous vasodilatation are activated. Hence ANP might be involved in the regulation of sweating and cutaneous vasodilatation. However, whether ANP directly mediates sweating and cutaneous vasodilatation needs to be clarified. Also, muscarinic receptor activation induces sweating and cutaneous vasodilatation, however, it remains to be determined whether ANP modulates these responses. In this study, in 11 young males (25 ± 5 years), cutaneous vascular conductance and sweat rate were assessed at intradermal microdialysis sites that were continuously perfused with either lactated Ringer (Control) or 3 different concentrations of ANP (0.1, 1, 10 µM). All 4 sites were co-administrated with methacholine, a muscarinic receptor agonist, in a dose-dependent fashion (0.0125, 0.25, 5, 100, and 2000 mM, 25 min for each). ANP at all concentrations did not increase sweat rate and cutaneous vascular conductance as compared with pre-ANP infusion values (all P > 0.05). Methacholine increased both sweat rate and cutaneous vascular conductance (all P ≤ 0.05). However, the responses were unaffected by co-administration of ANP relative to methacholine only, even as assessed in context of the methacholine concentration required to elicit 50% of the maximal response (EC50) (all P > 0.05). We show that exogenous ANP administration intradermally does not directly modulate sweating and cutaneous vasodilatation under room temperature conditions in resting young adults. Further, there is no effect of ANP on muscarinic sweating and cutaneous vasodilatation.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.,Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
24
|
Fujii N, Zhang SY, McNeely BD, Nishiyasu T, Kenny GP. Heat shock protein 90 contributes to cutaneous vasodilation through activating nitric oxide synthase in young male adults exercising in the heat. J Appl Physiol (1985) 2017; 123:844-850. [PMID: 28751373 PMCID: PMC5668448 DOI: 10.1152/japplphysiol.00446.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
While the mechanisms underlying the control of cutaneous vasodilation have been extensively studied, there remains a lack of understanding of the different factors that may modulate cutaneous perfusion during an exercise-induced heat stress. We evaluated the hypothesis that heat shock protein 90 (HSP90) contributes to the heat loss response of cutaneous vasodilation via the activation of nitric oxide synthase (NOS) during exercise in the heat. In 11 young males (25 ± 5 yr), cutaneous vascular conductance (CVC) was measured at four forearm skin sites that were continuously treated with 1) lactated Ringer solution (control), 2) NOS inhibition with 10 mM NG-nitro-l-arginine methyl ester (l-NAME), 3) HSP90 inhibition with 178 μM geldanamycin, or 4) a combination of 10 mM l-NAME and 178 μM geldanamycin. Participants rested in a moderate heat stress (35°C) condition for 70 min. Thereafter, they performed a 50-min bout of moderate-intensity cycling (~52% V̇o2peak) followed by a 30-min recovery period. We showed that NOS inhibition attenuated CVC (~40-50%) relative to the control site during pre- and postexercise rest in the heat (P ≤ 0.05); however, no effect of HSP90 inhibition was observed (P > 0.05). During exercise, we observed an attenuation of CVC with the separate inhibition of NOS (~40-50%) and HSP90 (~15-20%) compared with control (both P ≤ 0.05). However, the effect of HSP90 inhibition was absent in the presence of the coinhibition of NOS (P > 0.05). We show that HSP90 contributes to cutaneous vasodilation in young men exposed to the heat albeit during exercise only. We also show that the HSP90 contribution is due to NOS-dependent mechanisms.NEW & NOTEWORTHY We show that heat shock protein 90 functionally contributes to the heat loss response of cutaneous vasodilation during exercise in the heat, and this response is mediated through the activation of nitric oxide synthase. Therefore, interventions that may activate heat shock protein 90 may facilitate an increase in heat dissipation through an augmentation of cutaneous perfusion. In turn, this may attenuate or reduce the increase in core temperature and therefore the level of heat strain.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, Japan; and
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Sarah Y Zhang
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, Japan; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
25
|
Amano T, Fujii N, Kenny GP, Inoue Y, Kondo N. Do nitric oxide synthase and cyclooxygenase contribute to sweating response during passive heating in endurance-trained athletes? Physiol Rep 2017; 5:5/17/e13403. [PMID: 28899912 PMCID: PMC5599863 DOI: 10.14814/phy2.13403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022] Open
Abstract
The aim of our study was to determine if habitual endurance training can influence the relative contribution of nitric oxide synthase (NOS) and cyclooxygenase (COX) in the regulation of sweating during a passive heat stress in young adults. Ten trained athletes and nine untrained counterparts were passively heated until oral temperature (as estimated by sublingual temperature, Tor) increased by 1.5°C above baseline resting. Forearm sweat rate (ventilated capsule) was measured at three skin sites continuously perfused with either lactated Ringer's solution (Control), 10 mmol/L NG -nitro-L-arginine methyl ester (L-NAME, non-selective NOS inhibitor), or 10 mmol/L ketorolac (Ketorolac, non-selective COX inhibitor) via intradermal microdialysis. Sweat rate was averaged for each 0.3°C increase in Tor Sweat rate at the L-NAME site was lower than Control following a 0.9 and 1.2°C increase in Tor in both groups (all P ≤ 0.05). Relative to the Control site, NOS-inhibition reduced sweating similarly between the groups (P = 0.51). Sweat rate at the Ketorolac site was not different from the Control at any levels of Tor in both groups (P > 0.05). Nevertheless, a greater sweat rate was measured at the end of heating in the trained as compared to the untrained individuals (P ≤ 0.05). We show that NOS contributes similarly to sweating in both trained and untrained individuals during a passive heat stress. Further, no effect of COX on sweating was measured for either group. The greater sweat production observed in endurance-trained athletes is likely mediated by factors other than NOS- and COX-dependent mechanisms.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit University of Ottawa, Ottawa, Canada
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology Graduate School of Human Development and Environment Kobe University, Kobe, Japan
| |
Collapse
|
26
|
Tucker MA, Six A, Moyen NE, Satterfield AZ, Ganio MS. Effect of hypohydration on postsynaptic cutaneous vasodilation and sweating in healthy men. Am J Physiol Regul Integr Comp Physiol 2017; 312:R637-R642. [DOI: 10.1152/ajpregu.00525.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 02/05/2023]
Abstract
Hypohydration decreases cutaneous vasodilation and sweating during heat stress, but it is unknown if these decrements are from postsynaptic (i.e., sweat gland/blood vessel) alterations. The purpose of this study was to determine if hypohydration affects postsynaptic cutaneous vasodilation and sweating responses. Twelve healthy men participated in euhydrated (EU) and hypohydrated (HY) trials, with hypohydration induced via fluid restriction and passive heat stress. Changes in cutaneous vascular conductance (CVC; %max) in response to incremental intradermal infusion of the endothelium-independent vasodilator sodium nitroprusside (SNP) and the endothelium-dependent vasodilator methacholine chloride (MCh) were assessed by laser Doppler flowmetry. Local sweat rate (LSR) was simultaneously assessed at the MCh site via ventilated capsule. At the end of the last dose, maximal CVC was elicited by delivering a maximal dose of SNP (5 × 10−2 M) for 30 min to both sites with simultaneous local heating (~44°C) at the SNP site. The concentration of drug needed to elicit 50% of the maximal response (log EC50) was compared between hydration conditions. The percent body mass loss was greater with HY vs. EU (−2.2 ± 0.7 vs. −0.1 ± 0.7%, P < 0.001). Log EC50 of endothelium-dependent CVC was lower with EU (−3.62 ± 0.22) vs. HY (−2.93 ± 0.08; P = 0.044). Hypohydration did not significantly alter endothelium-independent CVC or LSR (both P > 0.05). In conclusion, hypohydration attenuated endothelium-dependent CVC but did not affect endothelium-independent CVC or LSR responses. These data suggest that reductions in skin blood flow accompanying hypohydration can be partially attributed to altered postsynaptic function.
Collapse
Affiliation(s)
- Matthew A. Tucker
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas; and
| | - Ashley Six
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas; and
| | - Nicole E. Moyen
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas; and
- Fitbit, San Francisco, California
| | - Alf Z. Satterfield
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas; and
| | - Matthew S. Ganio
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas; and
| |
Collapse
|
27
|
Fujii N, McNeely BD, Nishiyasu T, Kenny GP. Prostacyclin does not affect sweating but induces skin vasodilatation to a greater extent in older versus younger women: roles of NO and K Ca channels. Exp Physiol 2017; 102:578-586. [PMID: 28271565 DOI: 10.1113/ep086297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/02/2017] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? It remains unknown whether ageing modulates prostacyclin-induced cutaneous vasodilatation in women. What is the main finding and its importance? Prostacyclin induced cutaneous vasodilatation, albeit the magnitude of increase at lower concentrations of prostacyclin was greater in older relative to young women. This response was associated with greater contributions of nitric oxide synthase and calcium-activated potassium channels. Our results suggest that administration of prostacyclin might be an effective therapy to reverse microvascular hypoperfusion, especially in older women. We previously reported that prostacyclin induces cutaneous vasodilatation but not sweating in younger and older men. Furthermore, we demonstrated that nitric oxide synthase and calcium-activated potassium (KCa ) channels contribute to the prostacyclin-induced cutaneous vasodilatation in younger men, although these contributions are diminished in older men. Given that the effects of ageing might differ between men and women, the above results cannot simply be applied to women. In this study, cutaneous vascular conductance and sweat rate were evaluated in younger (mean ± SD, 22 ± 3 years old) and older (55 ± 7 years old) women (10 per group) at four intradermal forearm skin sites treated as follows: (i) lactated Ringer solution without any drug (control); (ii) 10 mm NG -nitro-l-arginine (l-NNA), a non-specific nitric oxide synthase inhibitor; (iii) 50 mm tetraethylammonium (TEA), a non-specific KCa channel blocker; or (iv) 10 mm l-NNA plus 50 mm TEA. All four sites were co-administered with prostacyclin in an incremental manner (0.04, 0.4, 4, 40 and 400 μm, each for 25 min). Surprisingly, increases in cutaneous vascular conductance in response to 0.04-4 μm prostacyclin were greater in older relative to younger women (all P ≤ 0.05), and these age-related differences were diminished when both l-NNA and TEA were administered simultaneously (all P > 0.05). No effect on sweat rate was observed in either group (all concentrations, P > 0.05). We show that although prostacyclin does not mediate sweating, it induces cutaneous vasodilatation, and this response elicited by lower concentrations of prostacyclin is greater in older relative to younger women. This greater cutaneous vasodilatation in older women is likely to be attributable to nitric oxide synthase- and KCa channel-dependent mechanisms.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Fujii N, Louie JC, McNeely BD, Amano T, Nishiyasu T, Kenny GP. Mechanisms of nicotine-induced cutaneous vasodilation and sweating in young adults: roles for K Ca, K ATP, and K V channels, nitric oxide, and prostanoids. Appl Physiol Nutr Metab 2017; 42:470-478. [PMID: 28177721 DOI: 10.1139/apnm-2016-0615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the influence of K+ channels (i.e., Ca2+-activated K+ (KCa), ATP-sensitive K+ (KATP), and voltage-gated K+ (KV) channels) and key enzymes (nitric oxide synthase (NOS) and cyclooxygenase (COX)) on nicotine-induced cutaneous vasodilation and sweating. Using intradermal microdialysis, we evaluated forearm cutaneous vascular conductance (CVC) and sweat rate in 2 separate protocols. In protocol 1 (n = 10), 4 separate sites were infused with (i) lactated Ringer (Control), (ii) 50 mmol·L-1 tetraethylammonium (KCa channel blocker), (iii) 5 mmol·L-1 glybenclamide (KATP channel blocker), and (iv) 10 mmol·L-1 4-aminopyridine (KV channel blocker). In protocol 2 (n = 10), 4 sites were infused with (i) lactated Ringer (Control), (ii) 10 mmol·L-1 Nω-nitro-l-arginine (NOS inhibitor), (iii) 10 mmol·L-1 ketorolac (COX inhibitor), or (iv) a combination of NOS+COX inhibitors. At all sites, nicotine was infused in a dose-dependent manner (1.2, 3.6, 11, 33, and 100 mmol·L-1; each for 25 min). Nicotine-induced increase in CVC was attenuated by the KCa, KATP, and KV channel blockers, whereas nicotine-induced increase in sweat rate was reduced by the KCa and KV channel blockers (P ≤ 0.05). COX inhibitor augmented nicotine-induced increase in CVC (P ≤ 0.05), which was absent when NOS inhibitor was co-administered (P > 0.05). In addition, our secondrary experiment (n = 7) demonstrated that muscarinic receptor blockade with 58 μmol·L-1 atropine sulfate salt monohydrate abolished nicotine-induced increases in CVC (1.2-11 mmol·L-1) and sweating (all doses). We show that under a normothermic resting state: (i) KCa, KATP, and KV channels contribute to nicotinic cutaneous vasodilation, (ii) inhibition of COX augments nicotinic cutaneous vasodilation likely through NOS-dependent mechanism(s), and (iii) KCa and KV channels contribute to nicotinic sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- a Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada
| | - Jeffrey C Louie
- a Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada
| | - Brendan D McNeely
- a Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada
| | - Tatsuro Amano
- b Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Japan
| | - Takeshi Nishiyasu
- c Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- a Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Louie JC, Fujii N, Meade RD, McNeely BD, Kenny GP. The roles of K Ca, K ATP, and K V channels in regulating cutaneous vasodilation and sweating during exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2017; 312:R821-R827. [PMID: 28254750 DOI: 10.1152/ajpregu.00507.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 01/11/2023]
Abstract
We recently showed the varying roles of Ca2+-activated (KCa), ATP-sensitive (KATP), and voltage-gated (KV) K+ channels in regulating cholinergic cutaneous vasodilation and sweating in normothermic conditions. However, it is unclear whether the respective contributions of these K+ channels remain intact during dynamic exercise in the heat. Eleven young (23 ± 4 yr) men completed a 30-min exercise bout at a fixed rate of metabolic heat production (400 W) followed by a 40-min recovery period in the heat (35°C, 20% relative humidity). Cutaneous vascular conductance (CVC) and local sweat rate were assessed at four forearm skin sites perfused via intradermal microdialysis with: 1) lactated Ringer solution (control); 2) 50 mM tetraethylammonium (nonspecific KCa channel blocker); 3) 5 mM glybenclamide (selective KATP channel blocker); or 4) 10 mM 4-aminopyridine (nonspecific KV channel blocker). Responses were compared at baseline and at 10-min intervals during and following exercise. KCa channel inhibition resulted in greater CVC versus control at end exercise (P = 0.04) and 10 and 20 min into recovery (both P < 0.01). KATP channel blockade attenuated CVC compared with control during baseline (P = 0.04), exercise (all P ≤ 0.04), and 10 min into recovery (P = 0.02). No differences in CVC were observed with KV channel inhibition during baseline (P = 0.15), exercise (all P ≥ 0.06), or recovery (all P ≥ 0.14). With the exception of KV channel inhibition augmenting sweating during baseline (P = 0.04), responses were similar to control with all K+ channel blockers during each time period (all P ≥ 0.07). We demonstrated that KCa and KATP channels contribute to the regulation of cutaneous vasodilation during rest and/or exercise and recovery in the heat.
Collapse
Affiliation(s)
- Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and.,Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
30
|
Fujii N, Louie JC, McNeely BD, Zhang SY, Tran MA, Kenny GP. Nicotinic receptor activation augments muscarinic receptor-mediated eccrine sweating but not cutaneous vasodilatation in young males. Exp Physiol 2016; 102:245-254. [DOI: 10.1113/ep085916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics; University of Ottawa; Ottawa Ontario Canada
| | - Jeffrey C. Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics; University of Ottawa; Ottawa Ontario Canada
| | - Brendan D. McNeely
- Human and Environmental Physiology Research Unit, School of Human Kinetics; University of Ottawa; Ottawa Ontario Canada
| | - Sarah Y. Zhang
- Human and Environmental Physiology Research Unit, School of Human Kinetics; University of Ottawa; Ottawa Ontario Canada
| | - My-An Tran
- Human and Environmental Physiology Research Unit, School of Human Kinetics; University of Ottawa; Ottawa Ontario Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics; University of Ottawa; Ottawa Ontario Canada
| |
Collapse
|
31
|
Fujii N, Singh MS, Halili L, Louie JC, Kenny GP. The effect of endothelin A and B receptor blockade on cutaneous vascular and sweating responses in young men during and following exercise in the heat. J Appl Physiol (1985) 2016; 121:1263-1271. [PMID: 27763878 DOI: 10.1152/japplphysiol.00679.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/15/2016] [Accepted: 10/02/2016] [Indexed: 11/22/2022] Open
Abstract
During exercise, cutaneous vasodilation and sweating responses occur, whereas these responses rapidly decrease during postexercise recovery. We hypothesized that the activation of endothelin A (ETA) receptors, but not endothelin B (ETB) receptors, attenuate cutaneous vasodilation during high-intensity exercise and contribute to the subsequent postexercise suppression of cutaneous vasodilation. We also hypothesized that both receptors increase sweating during and following high-intensity exercise. Eleven men (24 ± 4 yr) performed an intermittent cycling protocol consisting of two 30-min bouts of moderate- (40% V̇o2peak) and high-intensity (75% V̇o2peak) exercise in the heat (35°C), each separated by a 20- and 40-min recovery period, respectively. Cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal microdialysis skin sites: 1) lactated Ringer (control), 2) 500 nM BQ123 (a selective ETA receptor blocker), 3) 300 nM BQ788 (a selective ETB receptor blocker), or 4) a combination of BQ123 + BQ788. There were no between-site differences in CVC during each exercise bout (all P > 0.05); however, CVC following high-intensity exercise was greater at BQ123 (56 ± 9%max) and BQ123 + BQ788 (55 ± 14%max) sites relative to the control site (43 ± 12%max) (all P ≤ 0.05). Sweat rate did not differ between sites throughout the protocol (all P > 0.05). We show that neither ETA nor ETB receptors modulate cutaneous vasodilation and sweating responses during and following moderate- and high-intensity exercise in the heat, with the exception that ETA receptors may partly contribute to the suppression of cutaneous vasodilation following high-intensity exercise.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Maya S Singh
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
32
|
Fujii N, Amano T, Halili L, Louie JC, Zhang SY, McNeely BD, Kenny GP. Intradermal administration of endothelin-1 attenuates endothelium-dependent and -independent cutaneous vasodilation via Rho kinase in young adults. Am J Physiol Regul Integr Comp Physiol 2016; 312:R23-R30. [PMID: 27881399 DOI: 10.1152/ajpregu.00368.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
We recently showed that intradermal administration of endothelin-1 diminished endothelium-dependent and -independent cutaneous vasodilation. We evaluated the hypothesis that Rho kinase may be a mediator of this response. We also sought to evaluate if endothelin-1 increases sweating. In 12 adults (25 ± 6 yr), we measured cutaneous vascular conductance (CVC) and sweating during 1) endothelium-dependent vasodilation induced via administration of incremental doses of methacholine (0.25, 5, 100, and 2,000 mM each for 25 min) and 2) endothelium-independent vasodilation induced via administration of 50 mM sodium nitroprusside (20-25 min). Responses were evaluated at four skin sites treated with either 1) lactated Ringer solution (Control), 2) 400 nM endothelin-1, 3) 3 mM HA-1077 (Rho kinase inhibitor), or 4) endothelin-1+HA-1077. Pharmacological agents were intradermally administered via microdialysis. Relative to the Control site, endothelin-1 attenuated endothelium-dependent vasodilation (CVC at 2,000 mM methacholine, 80 ± 10 vs. 56 ± 15%max, P < 0.01); however, this response was not detected when the Rho kinase inhibitor was simultaneously administered (CVC at 2,000 mM methacholine for Rho kinase inhibitor vs. endothelin-1 + Rho kinase inhibitor sites: 73 ± 9 vs. 72 ± 11%max, P > 0.05). Endothelium-independent vasodilation was attenuated by endothelin-1 compared with the Control site (CVC, 92 ± 13 vs. 70 ± 14%max, P < 0.01). However, in the presence of Rho kinase inhibition, endothelin-1 did not affect endothelium-independent vasodilation (CVC at Rho kinase inhibitor vs. endothelin-1+Rho kinase inhibitor sites: 81 ± 9 vs. 86 ± 10%max, P > 0.05). There was no between-site difference in sweating throughout (P > 0.05). We show that in young adults, Rho kinase is an important mediator of the endothelin-1-mediated attenuation of endothelium-dependent and -independent cutaneous vasodilation, and that endothelin-1 does not increase sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Sarah Y Zhang
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| |
Collapse
|
33
|
Fujii N, Notley SR, Minson CT, Kenny GP. Administration of prostacyclin modulates cutaneous blood flow but not sweating in young and older males: roles for nitric oxide and calcium-activated potassium channels. J Physiol 2016; 594:6419-6429. [PMID: 27511105 DOI: 10.1113/jp273174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS In young adults, cyclooxygenase (COX) contributes to the heat loss responses of cutaneous vasodilatation and sweating, and this may be mediated by prostacyclin-induced activation of nitric oxide synthase (NOS) and calcium-activated potassium (KCa) channels. This prostacyclin-induced response may be diminished in older relative to young adults because ageing is known to attenuate COX-dependent heat loss responses. We observed that, although prostacyclin does not mediate sweating in young and older males, it does modulate cutaneous vasodilatation, although the magnitude of increase is similar between groups. We also found that, although NOS and KCa channels contribute to prostacyclin-induced cutaneous vasodilatation in young males, these contributions are diminished in older males. Our findings provide new insight into the mechanisms governing heat loss responses and suggest that the age-related diminished COX-dependent heat loss responses reported in previous studies may be a result of the reduced COX-derived production of prostanoids (e.g., prostacyclin) rather than the decreased sensitivity of prostanoid receptors. ABSTRACT Cyclooxygenase (COX) contributes to the regulation of cutaneous vasodilatation and sweating; however, the mechanism(s) underpinning this response remain unresolved. We hypothesized that prostacyclin (a COX-derived product) may directly mediate cutaneous vasodilatation and sweating through nitric oxide synthase (NOS) and calcium-activated potassium (KCa) channels in young adults. However, these responses would be diminished in older adults because ageing attenuates COX-dependent cutaneous vasodilatation and sweating. In young (25 ± 4 years) and older (60 ± 6 years) males (nine per group), cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites: (i) control; (ii) 10 mm NG -nitro-l-arginine (l-NNA), a non-specific NOS inhibitor; (iii) 50 mm tetraethylammonium (TEA), a non-specific KCa channel blocker; and (iv) 10 mm l-NNA + 50 mm TEA. All four sites were coadministered with prostacyclin in an incremental manner (0.04, 0.4, 4, 40 and 400 μm each for 25 min). Prostacyclin-induced increases in CVC were similar between groups (all concentrations, P > 0.05). l-NNA and TEA, as well as their combination, lowered CVC in young males at all prostacyclin concentrations (P ≤ 0.05), with the exception of l-NNA at 0.04 μm (P > 0.05). In older males, CVC during prostacyclin administration was not influenced by l-NNA (all concentrations), TEA (4-400 μm) or their combination (400 μm) (P > 0.05). No effect on sweat rate was observed in either group (all concentrations, P > 0.05). We conclude that, although prostacyclin does not mediate sweating, it modulates cutaneous vasodilatation to a similar extent in young and older males. Furthermore, although NOS and KCa channels contribute to the prostacyclin-induced cutaneous vasodilatation in young males, these contributions are diminished in older males.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Sean R Notley
- Centre for Human and Applied Physiology, School of Medicine, University of Wollongong, Wollongong, Australia
| | | | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
34
|
Fujii N, Louie JC, McNeely BD, Zhang SY, Tran MA, Kenny GP. K+ channel mechanisms underlying cholinergic cutaneous vasodilation and sweating in young humans: roles of KCa, KATP, and KV channels? Am J Physiol Regul Integr Comp Physiol 2016; 311:R600-6. [PMID: 27440718 DOI: 10.1152/ajpregu.00249.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 11/22/2022]
Abstract
Acetylcholine released from cholinergic nerves is involved in heat loss responses of cutaneous vasodilation and sweating. K(+) channels are thought to play a role in regulating cholinergic cutaneous vasodilation and sweating, though which K(+) channels are involved in their regulation remains unclear. We evaluated the hypotheses that 1) Ca(2+)-activated K(+) (KCa), ATP-sensitive K(+) (KATP), and voltage-gated K(+) (KV) channels all contribute to cholinergic cutaneous vasodilation; and 2) KV channels, but not KCa and KATP channels, contribute to cholinergic sweating. In 13 young adults (24 ± 5 years), cutaneous vascular conductance (CVC) and sweat rate were evaluated at intradermal microdialysis sites that were continuously perfused with: 1) lactated Ringer (Control), 2) 50 mM tetraethylammonium (KCa channel blocker), 3) 5 mM glybenclamide (KATP channel blocker), and 4) 10 mM 4-aminopyridine (KV channel blocker). At all sites, cholinergic cutaneous vasodilation and sweating were induced by coadministration of methacholine (0.0125, 0.25, 5, 100, and 2,000 mM, each for 25 min). The methacholine-induced increase in CVC was lower with the KCa channel blocker relative to Control at 0.0125 (1 ± 1 vs. 9 ± 6%max) and 5 (2 ± 5 vs. 17 ± 14%max) mM methacholine, whereas it was lower in the presence of KATP (69 ± 7%max) and KV (57 ± 14%max) channel blocker compared with Control (79 ± 6%max) at 100 mM methacholine. Furthermore, methacholine-induced sweating was lower at the KV channel blocker site (0.42 ± 0.17 mg·min(-1)·cm(-2)) compared with Control (0.58 ± 0.15 mg·min(-1)·cm(-2)) at 2,000 mM methacholine. In conclusion, we show that KCa, KATP, and KV channels play a role in cholinergic cutaneous vasodilation, whereas only KV channels contribute to cholinergic sweating in normothermic resting humans.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Sarah Yan Zhang
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - My-An Tran
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
35
|
Fujii N, Singh MS, Halili L, Boulay P, Sigal RJ, Kenny GP. Cutaneous vascular and sweating responses to intradermal administration of prostaglandin E1 and E2 in young and older adults: a role for nitric oxide? Am J Physiol Regul Integr Comp Physiol 2016; 310:R1064-72. [PMID: 27101302 DOI: 10.1152/ajpregu.00538.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/06/2016] [Indexed: 01/28/2023]
Abstract
Cyclooxygenase (COX) contributes to cutaneous vasodilation and sweating responses; however, the mechanisms underpinning these responses remain unknown. We hypothesized that prostaglandin E1 (PGE1) and E2 (PGE2) (COX-derived vasodilator products) directly mediate cutaneous vasodilation and sweating through nitric oxide synthase (NOS)-dependent mechanisms in young adults. Furthermore, we hypothesized that this response is diminished in older adults, since aging attenuates COX-dependent cutaneous vasodilation and sweating. In 9 young (22 ± 5 yr) and 10 older (61 ± 6 yr) adults, cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites receiving incremental doses (0.05, 0.5, 5, 50, 500 μM each for 25 min) of PGE1 or PGE2 with and without coadministration of 10 mM N(ω)-nitro-l-arginine, a nonspecific NOS inhibitor. N(ω)-nitro-l-arginine attenuated PGE1-mediated increases in CVC at all concentrations in young adults, whereas it reduced PGE2-mediated increases in CVC at lower concentrations (0.05-0.5 μM) in older adults (all P < 0.05). However, the magnitude of the PGE1- and PGE2-mediated increases in CVC did not differ between groups (all P > 0.05). Neither PGE1 nor PGE2 increased sweat rate at any of the administered concentrations for either the young or older adults (all P > 0.05). We show that although cutaneous vascular responsiveness to PGE1 and PGE2 is similar between young and older adults, the cutaneous vasodilator response is partially mediated through NOS albeit via low-to-high concentrations of PGE1 in young adults and low concentrations of PGE2 in older adults, respectively. We also show that in both young and older adults, PGE1 and PGE2 do not increase sweat rate under normothermic conditions.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Maya Sarah Singh
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Canada; and
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
| |
Collapse
|
36
|
Fujii N, Meade RD, Minson CT, Brunt VE, Boulay P, Sigal RJ, Kenny GP. Cutaneous blood flow during intradermal NO administration in young and older adults: roles for calcium-activated potassium channels and cyclooxygenase? Am J Physiol Regul Integr Comp Physiol 2016; 310:R1081-7. [PMID: 27053645 DOI: 10.1152/ajpregu.00041.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/30/2016] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) increases cutaneous blood flow; however, the underpinning mechanism(s) remains to be elucidated. We hypothesized that the cutaneous blood flow response during intradermal administration of sodium nitroprusside (SNP, a NO donor) is regulated by calcium-activated potassium (KCa) channels and cyclooxygenase (COX) in young adults. We also hypothesized that these contributions are diminished in older adults given that aging can downregulate KCa channels and reduce COX-derived vasodilator prostanoids. In 10 young (23 ± 5 yr) and 10 older (54 ± 4 yr) adults, cutaneous vascular conductance (CVC) was measured at four forearm skin sites infused with 1) Ringer (Control), 2) 50 mM tetraethylammonium (TEA), a nonspecific KCa channel blocker, 3) 10 mM ketorolac, a nonspecific COX inhibitor, or 4) 50 mM TEA + 10 mM ketorolac via intradermal microdialysis. All skin sites were coinfused with incremental doses of SNP (0.005, 0.05, 0.5, 5, and 50 mM each for 25 min). During SNP administration, CVC was similar at the ketorolac site (0.005-50 mM, all P > 0.05) relative to Control, but lower at the TEA and TEA + ketorolac sites (0.005-0.05 mM, all P < 0.05) in young adults. In older adults, ketorolac increased CVC relative to Control during 0.005-0.05 mM SNP administration (all P < 0.05), but this increase was not observed when TEA was coadministered (all P > 0.05). Furthermore, TEA alone did not modulate CVC during any concentration of SNP administration in older adults (all P > 0.05). We show that during low-dose NO administration (e.g., 0.005-0.05 mM), KCa channels contribute to cutaneous blood flow regulation in young adults; however, in older adults, COX inhibition increases cutaneous blood flow through a KCa channel-dependent mechanism.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | | | - Vienna E Brunt
- Department of Human Physiology, The University of Oregon, Eugene, Oregon
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Canada; and
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
| |
Collapse
|
37
|
Halili L, Singh MS, Fujii N, Alexander LM, Kenny GP. Endothelin-1 modulates methacholine-induced cutaneous vasodilatation but not sweating in young human skin. J Physiol 2016; 594:3439-52. [PMID: 26846374 DOI: 10.1113/jp271735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Endothelin-1 (ET-1) is a potent endothelial-derived vasoconstrictor that may modulate cholinergic cutaneous vascular regulation. Endothelin receptors are also expressed on the human eccrine sweat gland, although it remains unclear whether ET-1 modulates cholinergic sweating. We investigated whether ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Our findings show that ET-1 attenuates methacholine-induced cutaneous vasodilatation through a NOS-independent mechanism. We also demonstrate that ET-1 attenuates cutaneous vasodilatation in response to sodium nitroprusside, suggesting that ET-1 diminishes the dilatation capacity of vascular smooth muscle cells. We show that ET-1 does not modulate methacholine-induced sweating at any of the administered concentrations. Our findings advance our knowledge pertaining to the peripheral control underpinning the regulation of cutaneous blood flow and sweating and infer that ET-1 may attenuate the heat loss responses of cutaneous blood flow, but not sweating. ABSTRACT The present study investigated the effect of endothelin-1 (ET-1) on cholinergic mechanisms of end-organs (i.e. skin blood vessels and sweat glands) for heat dissipation. We evaluated the hypothesis that ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Cutaneous vascular conductance (CVC) and sweat rate were assessed in three protocols: in Protocol 1 (n = 8), microdialysis sites were perfused with lactated Ringer solution (Control), 40 pm, 4 nm or 400 nm ET-1; in Protocol 2 (n = 11) sites were perfused with lactated Ringer solution (Control), 400 nm ET-1, 10 mm N(G) -nitro-l-arginine (l-NNA; a NOS inhibitor) or a combination of 400 nm ET-1 and 10 mm l-NNA; in Protocol 3 (n = 8), only two sites (Control and 400 nm ET-1) were utilized to assess the influence of ET-1 on the dilatation capacity of vascular smooth muscle cells (sodium nitroprusside; SNP). Methacholine (MCh) was co-administered in a dose-dependent manner (0.0125, 0.25, 5, 100, 2000 mm, each for 25 min) at all skin sites. ET-1 at 400 nm (P < 0.05) compared to lower doses (40 pm and 4 nm) (all P > 0.05) significantly attenuated increases in CVC in response to 0.25 and 5 mm MCh. A high dose of ET-1 (400 nm) co-infused with l-NNA further attenuated CVC during 0.25, 5 and 100 mm MCh administration relative to the ET-1 site (all P < 0.05). Cutaneous vasodilatation in response to SNP was significantly blunted after administration of 400 nm ET-1 (P < 0.05). We show that ET-1 attenuates cutaneous vasodilatation through a NOS-independent mechanism, possibly through a vascular smooth muscle cell-dependent mechanism, and methacholine-induced sweating is not altered by ET-1.
Collapse
Affiliation(s)
- Lyra Halili
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maya Sarah Singh
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
38
|
Petrofsky J, Lee H, Khowailed IA. Sudomotor and vasomotor activity during the menstrual cycle with global heating. Clin Physiol Funct Imaging 2015; 37:366-371. [PMID: 26442634 DOI: 10.1111/cpf.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
Abstract
Many studies have reported that there are changes in sympathetic activity throughout the menstrual cycle as there are oestrogen receptor in the hypothalamus and all other parts of the sympathetic nervous system. The purpose of this study was to see whether there were variations in sympathetic activity, skin vasomotor and sweat gland sudomotor rhythms during the menstrual cycle. Eight young female subjects with a regular menstrual cycle participated in the study. Subjects were tested once during the follicular phase and once during the luteal phase. Skin blood flow and sweat rate were significantly higher in the luteal phase compared with the follicular phase (p < .05), but the frequency and magnitude of sudomotor and vasomotor rhythms were significantly greater in the follicular phase (p < .05). In contrast, spectral data showed less sympathetic activity in the luteal phase. A significant finding here is that the sudomotor rhythm of sweat glands is altered by the menstrual cycle.
Collapse
Affiliation(s)
- Jerrold Petrofsky
- Department of Physical Therapy, Loma Linda University, Loma Linda, CA, USA
| | - Haneul Lee
- Departments of Physical Therapy, College of Health Science, Gachon University, Incheon, South Korea
| | | |
Collapse
|
39
|
Fujii N, Halili L, Singh MS, Meade RD, Kenny GP. Intradermal administration of ATP augments methacholine-induced cutaneous vasodilation but not sweating in young males and females. Am J Physiol Regul Integr Comp Physiol 2015; 309:R912-9. [PMID: 26290105 DOI: 10.1152/ajpregu.00261.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
Acetylcholine released from cholinergic nerves is a key neurotransmitter contributing to heat stress-induced cutaneous vasodilation and sweating. Given that sympathetic cholinergic nerves also release ATP, ATP may play an important role in modulating cholinergic cutaneous vasodilation and sweating. However, the pattern of response may differ between males and females given reports of sex-related differences in the peripheral mechanisms governing these heat loss responses. Cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) and sweat rate (ventilated capsule) were evaluated in 17 young adults (8 males, 9 females) at four intradermal microdialysis skin sites continuously perfused with: 1) lactated Ringer (Control), 2) 0.3 mM ATP, 3) 3 mM ATP, or 4) 30 mM ATP. At all skin sites, methacholine was coadministered in a concentration-dependent manner (0.0125, 0.25, 5, 100, 2,000 mM, each for 25 min). In both males and females, CVC was elevated with the lone infusion of 30 mM ATP (both P < 0.05), but not with 0.3 and 3 mM ATP compared with control (all P >0.27). However, 0.3 mM ATP induced a greater increase in CVC compared with control in response to 100 mM methacholine infusion in males (P < 0.05). In females, 0.3 mM ATP infusion resulted in a lower concentration of methacholine required to elicit a half-maximal response (EC50) (P < 0.05). In both males and females, methacholine-induced sweating was unaffected by any concentration of ATP (all P > 0.44). We demonstrate that ATP enhances cholinergic cutaneous vasodilation albeit the pattern of response differs between males and females. Furthermore, we show that ATP does not modulate cholinergic sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maya Sarah Singh
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
40
|
Fujii N, McGinn R, Halili L, Singh MS, Kondo N, Kenny GP. Cutaneous vascular and sweating responses to intradermal administration of ATP: a role for nitric oxide synthase and cyclooxygenase? J Physiol 2015; 593:2515-25. [PMID: 25809194 DOI: 10.1113/jp270147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/13/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In humans in vivo, the mechanisms behind ATP-mediated cutaneous vasodilatation along with whether and how ATP increases sweating remains uncertain. Recent work has implicated nitric oxide synthase (NOS), cyclooxygenase (COX) and/or adenosine in the modulation of cutaneous vasodilatation and sweat production during both local (i.e. localized heating) and whole-body heat stress (i.e. exercise-induced heat stress). We evaluated whether ATP-mediated cutaneous vasodilatation and sweating is mediated via NOS, COX and/or adenosine. We show that in humans in vivo, intradermal administration of ATP induces pronounced vasodilatation which is partially mediated by NOS, but neither COX nor adenosine influences ATP-mediated vasodilatation, and ATP alone does not induce an increase in sweating. These findings advance our basic physiological knowledge regarding control of skin blood flow and sweating, and provide insight into the mechanisms governing thermoeffector activity, which has major implications for whole-body heat exchange and therefore core temperature regulation in humans during heat stress. ABSTRACT In humans in vivo, the mechanisms behind ATP-mediated cutaneous vasodilatation and whether and how ATP increases sweating remain uncertain. We evaluated whether ATP-mediated cutaneous vasodilatation and sweating is mediated via nitric oxide synthase (NOS), cyclooxygenase (COX) and/or adenosine-dependent mechanisms. Cutaneous vascular conductance (CVC, laser Doppler perfusion units/mean arterial pressure) and sweat rate (ventilated capsule) were evaluated at intradermal microdialysis forearm skin sites, each receiving pharmacological agents (two separate protocols). In Protocol 1 (n = 12), sites were perfused with: (1) lactated Ringer solution (Control), (2) 10 mm N(ω) -nitro-l-arginine (l-NNA, a NOS inhibitor), (3) 10 mm ketorolac (Ketorolac, a COX inhibitor) or (4) a combination of 10 mm l-NNA + 10 mm ketorolac (l-NNA + Ketorolac). In Protocol 2 (n = 8), sites were perfused with: (1) lactated Ringer solution (Control) or (2) 4 mm theophylline (Theophylline, an adenosine receptor inhibitor). At all sites, ATP was simultaneously perfused at 0.12, 1.2, 12, 120 and 1200 nm min(-1) (each for 20 min). Relative to CVC at the Control site with ATP infused at 120 nm min(-1) (71 ± 9% of max CVC), CVC at the Ketorolac site was comparable (64 ± 13% of max CVC, P = 0.407), but lower at l-NNA (51 ± 15% of max CVC, P = 0.040) and l-NNA + Ketorolac (51 ± 13% of max CVC, P = 0.049) sites. Conversely, across the four skin sites at any other ATP infusion rate (all P > 0.174), no differences in CVC were observed. Theophylline did not influence CVC at any ATP infusion rate (all P > 0.234). Furthermore, no ATP infusion rate elicited an increase in sweating from baseline at any skin site (all P > 0.235). We show that NOS, but neither COX nor adenosine receptors, modulates ATP-mediated cutaneous vasodilatation, whereas ATP does not directly increase sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Ryan McGinn
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maya Sarah Singh
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Narihiko Kondo
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|