1
|
Mori H, Hwang H, Goto K. Inter-individual variation in SpO 2 during endurance exercise in hypoxia does not correlate with endocrine and angiogenic growth factor responses. Physiol Rep 2025; 13:e70221. [PMID: 39924721 PMCID: PMC11807840 DOI: 10.14814/phy2.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
The present study determined the relationship between inter-individual variation in arterial O2 saturation (SpO2) and exercise-induced endocrine and angiogenic growth factor responses under hypoxia. Sixteen healthy men completed two trials on separate days: 60 min of cycling at 65% of maximal oxygen uptake (VO2max) followed by a 60-min rest period, under either normoxia (FiO2 = 20.9%, NOR) or hypoxia (FiO2 = 14.5%, HYP). Serum growth hormone (GH), cortisol, and vascular endothelial growth factor (VEGF) concentrations were determined before, immediately after, and at 60 min after exercise. SpO2 and heart rate were continuously measured during exercise. In the HYP trial, the average SpO2 during exercise varied by >10% among all participants (77.5%-88.2%). However, the ΔSpO2 (Δ = HYP-NOR) did not correlate significantly with exercise-induced changes in serum ΔGH (r = 0.205, p = 0.446), Δcortisol (r = 0.059, p = 0.828), and ΔVEGF (r = -0.004, p = 0.989). Moreover, no significant correlations were observed between the absolute SpO2 value and exercise-induced responses in these blood variables in the HYP trial. Inter-individual variation in SpO2 did not modify exercise-induced endocrine (GH, cortisol) or angiogenic growth factor (VEGF) responses to endurance exercise in hypoxia.
Collapse
Affiliation(s)
- Hisashi Mori
- School of Human Science and EnvironmentUniversity of HyogoHimejiHyogoJapan
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Hyejung Hwang
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
- Physical Activity and Performance InstituteKonkuk UniversitySeoulRepublic of Korea
| | - Kazushige Goto
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
2
|
DiMarco KG, Chapman CL, Weiser NE, Matsell ER, Lucernoni KM, Chacon S, Grivette MMB, Halliwill JR, Lovering AT, Minson CT. Acute exposure to carbon monoxide inhalation and/or hot water immersion transiently increases erythropoietin in females but not in males. Exp Physiol 2024; 109:1782-1795. [PMID: 39143855 PMCID: PMC11442759 DOI: 10.1113/ep091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
The use of acute carbon monoxide inhalation (COi) and hot water immersion (HWI) are of growing interest as interventions to stimulate erythropoietin (EPO) production. However, whether EPO production is further augmented when combining these stressors and whether there are sex differences in this response are poorly understood. Therefore, we measured circulating EPO concentration in response to acute COi and HWI independently and in combination and determined whether the responses were altered by sex. Participants completed three study visits-COi, HWI, and combined COi and HWI-separated by 1 week in a randomized, balanced, crossover design. Renal blood velocity was measured during all interventions, and carboxyhaemoglobin was measured during and after COi. Serum samples were analysed every hour for 6 h post-intervention for EPO concentration. HWI decreased renal blood velocity (46.2 cm/s to 36.2 cm/s) (P < 0.0001), and COi increased carboxyhaemoglobin (1.5%-12.8%) (P < 0.0001) without changing renal blood velocity (46.4-45.2 cm/s) (P = 0.4456). All three interventions increased peak EPO concentration from baseline (COi: 6.02-9.74 mIU/mL; HWI: 6.80-11.10 mIU/mL; COi + HWI: 6.71-10.91 mIU/mL) (P = 0.0048) and to the same extent (P = 0.3505). On average, females increased EPO while males did not in response to COi (females: 6.17 mIU/mL; males: 1.27 mIU/mL) (P = 0.0010), HWI (females: 6.47 mIU/mL; males: 2.14 mIU/mL) (P = 0.0104), and COi and HWI (females: 6.65 mIU/mL; males: 1.76 mIU/mL) (P = 0.0256). These data emphasize that combining these interventions does not augment EPO secretion and that these interventions may work better in females.
Collapse
Affiliation(s)
- Kaitlyn G DiMarco
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | | - Natasha E Weiser
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Emma R Matsell
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | | - Samantha Chacon
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | |
Collapse
|
3
|
Alhummiany B, Sharma K, Buckley DL, Soe KK, Sourbron SP. Physiological confounders of renal blood flow measurement. MAGMA (NEW YORK, N.Y.) 2024; 37:565-582. [PMID: 37971557 PMCID: PMC11417086 DOI: 10.1007/s10334-023-01126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES Renal blood flow (RBF) is controlled by a number of physiological factors that can contribute to the variability of its measurement. The purpose of this review is to assess the changes in RBF in response to a wide range of physiological confounders and derive practical recommendations on patient preparation and interpretation of RBF measurements with MRI. METHODS A comprehensive search was conducted to include articles reporting on physiological variations of renal perfusion, blood and/or plasma flow in healthy humans. RESULTS A total of 24 potential confounders were identified from the literature search and categorized into non-modifiable and modifiable factors. The non-modifiable factors include variables related to the demographics of a population (e.g. age, sex, and race) which cannot be manipulated but should be considered when interpreting RBF values between subjects. The modifiable factors include different activities (e.g. food/fluid intake, exercise training and medication use) that can be standardized in the study design. For each of the modifiable factors, evidence-based recommendations are provided to control for them in an RBF-measurement. CONCLUSION Future studies aiming to measure RBF are encouraged to follow a rigorous study design, that takes into account these recommendations for controlling the factors that can influence RBF results.
Collapse
Affiliation(s)
- Bashair Alhummiany
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, LS2 9NL, UK.
| | - Kanishka Sharma
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - David L Buckley
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, LS2 9NL, UK
| | - Kywe Kywe Soe
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Steven P Sourbron
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
4
|
Peltonen JE, Leppävuori A, Lehtonen E, Mikkonen RS, Kettunen O, Nummela A, Ohtonen O, Gagnon DD, Wehrlin JP, Wilber RL, Linnamo V. Combined intermittent hypoxic exposure at rest and continuous hypoxic training can maintain elevated hemoglobin mass after a hypoxic camp. J Appl Physiol (1985) 2024; 137:409-420. [PMID: 38961820 DOI: 10.1152/japplphysiol.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Athletes use hypoxic living and training to increase hemoglobin mass (Hbmass), but Hbmass declines rapidly upon return to sea level. We investigated whether intermittent hypoxic exposure (IHE) + continuous hypoxic training (CHT) after return to sea level maintained elevated Hbmass, and if changes in Hbmass were transferred to changes in maximal oxygen uptake (V̇o2max) and exercise performance. Hbmass was measured in 58 endurance athletes before (PRE), after (POST1), and 30 days after (POST2) a 27 ± 4-day training camp in hypoxia (n = 44, HYP) or at sea level (n = 14, SL). After returning to sea level, 22 athletes included IHE (2 h rest) + CHT (1 h training) in their training every third day for 1 mo (HYPIHE + CHT), whereas the other 22 HYP athletes were not exposed to IHE or CHT (HYPSL). Hbmass increased from PRE to POST1 in both HYPIHE + CHT (4.4 ± 0.7%, means ± SE) and HYPSL (4.1 ± 0.6%) (both P < 0.001). Compared with PRE, Hbmass at POST2 remained 4.2 ± 0.8% higher in HYPIHE + CHT (P < 0.001) and 1.9 ± 0.5% higher in HYPSL (P = 0.023), indicating a significant difference between the groups (P = 0.002). In SL, no significant changes were observed in Hbmass with mean alterations between -0.5% and 0.4%. V̇o2max and time to exhaustion during an incremental treadmill test (n = 35) were elevated from PRE to POST2 only in HYPIHE + CHT (5.8 ± 1.2% and 5.4 ± 1.4%, respectively, both P < 0.001). IHE + CHT possesses the potential to mitigate the typical decline in Hbmass commonly observed during the initial weeks after return to sea level.NEW & NOTEWORTHY Sets of 2-h intermittent hypoxic exposure + 1-h continuous hypoxic training, every third day, possess the potential to mitigate the typical decline in Hbmass that is commonly observed during the initial weeks after return to sea level from an altitude camp. Inclusion of IHE + CHT in the training regimen was also accompanied by improvements in V̇o2max and exercise performance in most but not all Tier 3-Tier 5 level endurance athletes during the training season.
Collapse
Affiliation(s)
- Juha E Peltonen
- Helsinki Sports and Exercise Medicine Clinic (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Leppävuori
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Elias Lehtonen
- Helsinki Sports and Exercise Medicine Clinic (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ritva S Mikkonen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Oona Kettunen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Olli Ohtonen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Dominique D Gagnon
- Helsinki Sports and Exercise Medicine Clinic (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jon P Wehrlin
- Section for Elite Sport, Swiss Federal Institute of Sport Magglingen, Magglingen, Switzerland
| | - Randall L Wilber
- United States Olympic & Paralympic Committee (USOPC), Colorado Springs, Colorado, United States
| | - Vesa Linnamo
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| |
Collapse
|
5
|
Sutehall S, Malinsky F, Shurlock J, Wang G, Bosch A, Pitsiladis YP. Whole-Blood and Peripheral Mononuclear Cell Transcriptional Response to Prolonged Altitude Exposure in Well-Trained Runners. Clin J Sport Med 2023; 33:e135-e144. [PMID: 37656978 DOI: 10.1097/jsm.0000000000001046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/03/2022] [Indexed: 09/03/2023]
Abstract
BACKGROUND Recombinant human erythropoietin (rHuEpo) abuse by athletes threatens the integrity of sport. Due to the overlap in physiological response to rHuEpo and altitude exposure, it remains difficult to differentiate changes in hematological variables caused by rHuEpo or altitude, and therefore, other molecular methods to enhance anti-doping should be explored. OBJECTIVE To identify the hematological and transcriptomic response to prolonged altitude exposure typical of practices used by elite athletes. DESIGN Longitudinal study. SETTING University of Cape Town and Altitude Training Centre in Ethiopia. PARTICIPANTS AND INTERVENTION Fourteen well-trained athletes sojourned to an altitude training camp in Sululta, Ethiopia (∼2400-2500 m above sea level) for 27 days. Blood samples were taken before arrival, 24 hours, and 9, 16, and 24 days after arrival at altitude in addition to 24 hours and 6, 13, and 27 days upon return to sea level. MAIN OUTCOME MEASURES Blood samples were analyzed for hemoglobin concentration, hematocrit, and reticulocyte percentage. The transcriptomic response in whole blood and peripheral blood mononuclear cells (PBMC) were analyzed using gene expression microarrays. RESULTS A unique set of 29 and 10 genes were identified to be commonly expressed at every altitude time point in whole blood and PBMC, respectively. There were no genes identified upon return to sea level in whole blood, and only one gene within PBMC. CONCLUSIONS The current study has identified a series of unique genes that can now be integrated with genes previously validated for rHuEpo abuse, thereby enabling the differentiation of rHuEpo from altitude exposure.
Collapse
Affiliation(s)
- Shaun Sutehall
- Division of Physiological Sciences, University of Cape Town, Cape Town, South Africa
| | - Fernanda Malinsky
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, United Kingdom
| | | | - Guan Wang
- School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
| | - Andrew Bosch
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Rome, Italy
| | - Yannis P Pitsiladis
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, United Kingdom
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Rome, Italy
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland; and
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| |
Collapse
|
6
|
Solomon Y, Gebeyehu NA, Adella GA, Kassie GA, Mengstie MA, Seid MA, Abebe EC, Gesese MM, Tegegne KD, Anley DT, Zemene MA, Moges N, Bantie B, Feleke SF, Dejenie TA, Dessie AM. Prevalence of anemia and its associated factors among adult asthmatic patients in Northwest Ethiopia. BMC Pulm Med 2023; 23:222. [PMID: 37344827 PMCID: PMC10286405 DOI: 10.1186/s12890-023-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Asthma is a heterogeneous disease characterized by chronic airway inflammation. The pathophysiologic processes of asthma can disrupt iron homeostasis, resulting in anemia. However, the association between asthma and anemia among adult asthma patients remains limited. Therefore, the main aim of this study was to determine the prevalence and factors associated with anemia among adult asthmatic patients from May to August 2021. METHODS An institution-based, cross-sectional study was conducted among 291 asthmatic patients in Northwest Ethiopia. A pre-tested structured questionnaire and checklist were used to collect sociodemographic and clinical data. A blood specimen was collected from asthmatic patients for a complete blood count analysis and morphology assessment. The data were entered into the Epi data software and exported to the statistical package for social science version 20 software for analysis. Non-parametric Mann-Whitney U test was used to compare red blood cell parameters among groups with acute and chronic exacerbations. Binary logistic regression models were used to determine the factors associated with anemia. A p-value less than 0.05 was considered statistically significant. RESULT The overall prevalence of anemia in this study was 11% (95% CI: 7.2-14.8%). Acutely exacerbated asthmatic patients had significantly lower median values of red blood cell parameters such as red blood cell count, hemoglobin, and mean cell hemoglobin when compared to chronic exacerbations. In addition, using systemic corticosteroids (AOR = 4.07, 95% CI: 1.126-14.71, p = 0.032) and being hospitalized in the emergency department (AOR = 3.74, 95% CI: 1.26-11.07, p = 0.017) were found to be significantly associated with anemia. CONCLUSION This study demonstrated that anemia was predominant in adult asthma patients. Red blood cell number, hemoglobin level, and mean corpuscular hemoglobin were significantly lower in acute asthma exacerbations. Therefore, appropriate intervention strategies should be undertaken to reduce the prevalence of anemia among adult asthma patients to reduce further complications and provide better monitoring of asthma patients.
Collapse
Affiliation(s)
- Yenealem Solomon
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Natnael Atnafu Gebeyehu
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Wolaita, Ethiopia
| | - Getachew Asmare Adella
- Department of Reproductive Health and Nutrition, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Gizachew Ambaw Kassie
- Department of Epidemiology and Biostatistics, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mohammed Abdu Seid
- Unit of Physiology, Department of Biomedical Science, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Molalegn Mesele Gesese
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Wolaita, Ethiopia
| | - Kirubel Dagnaw Tegegne
- Department of Nursing, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Denekew Tenaw Anley
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melkamu Aderajew Zemene
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Natnael Moges
- Department of Pediatrics and Child Health Nursing, College of Health sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Berihun Bantie
- Department of Comprehensive Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sefineh Fenta Feleke
- Department of Public Health, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Anteneh Mengist Dessie
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
7
|
Girard O, Levine BD, Chapman RF, Wilber R. "Living High-Training Low" for Olympic Medal Performance: What Have We Learned 25 Years After Implementation? Int J Sports Physiol Perform 2023; 18:563-572. [PMID: 37116895 DOI: 10.1123/ijspp.2022-0501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Altitude training is often regarded as an indispensable tool for the success of elite endurance athletes. Historically, altitude training emerged as a key strategy to prepare for the 1968 Olympics, held at 2300 m in Mexico City, and was limited to the "Live High-Train High" method for endurance athletes aiming for performance gains through improved oxygen transport. This "classical" intervention was modified in 1997 by the "Live High-Train Low" (LHTL) model wherein athletes supplemented acclimatization to chronic hypoxia with high-intensity training at low altitude. PURPOSE This review discusses important considerations for successful implementation of LHTL camps in elite athletes based on experiences, both published and unpublished, of the authors. APPROACH The originality of our approach is to discuss 10 key "lessons learned," since the seminal work by Levine and Stray-Gundersen was published in 1997, and focusing on (1) optimal dose, (2) individual responses, (3) iron status, (4) training-load monitoring, (5) wellness and well-being monitoring, (6) timing of the intervention, (7) use of natural versus simulated hypoxia, (8) robustness of adaptative mechanisms versus performance benefits, (9) application for a broad range of athletes, and (10) combination of methods. Successful LHTL strategies implemented by Team USA athletes for podium performance at Olympic Games and/or World Championships are presented. CONCLUSIONS The evolution of the LHTL model represents an essential framework for sport science, in which field-driven questions about performance led to critical scientific investigation and subsequent practical implementation of a unique approach to altitude training.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA,Australia
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX,USA
- University of Texas Southwestern Medical Center, Dallas, TX,USA
| | - Robert F Chapman
- Human Performance Laboratory, Department of Kinesiology, Indiana University Bloomington, Bloomington, IN,USA
| | - Randall Wilber
- United States Olympic Committee, Colorado Springs, CO,USA
| |
Collapse
|
8
|
Westmacott A, Sanal-Hayes NEM, McLaughlin M, Mair JL, Hayes LD. High-Intensity Interval Training (HIIT) in Hypoxia Improves Maximal Aerobic Capacity More Than HIIT in Normoxia: A Systematic Review, Meta-Analysis, and Meta-Regression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14261. [PMID: 36361141 PMCID: PMC9658399 DOI: 10.3390/ijerph192114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to determine the effect of high intensity interval training (HIIT) in hypoxia on maximal oxygen uptake (VO2max) compared with HIIT in normoxia with a Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-accordant meta-analysis and meta-regression. Studies which measured VO2max following a minimum of 2 weeks intervention featuring HIIT in hypoxia versus HIIT in normoxia were included. From 119 originally identified titles, nine studies were included (n = 194 participants). Meta-analysis was conducted on change in (∆) VO2max using standardised mean difference (SMD) and a random effects model. Meta-regression examined the relationship between the extent of environmental hypoxia (fractional inspired oxygen [FiO2]) and ∆VO2max and intervention duration and ∆VO2max. The overall SMD for ∆VO2max following HIIT in hypoxia was 1.14 (95% CI = 0.56-1.72; p < 0.001). Meta-regressions identified no significant relationship between FiO2 (coefficient estimate = 0.074, p = 0.852) or intervention duration (coefficient estimate = 0.071, p = 0.423) and ∆VO2max. In conclusion, HIIT in hypoxia improved VO2max compared to HIIT in normoxia. Neither extent of hypoxia, nor training duration modified this effect, however the range in FiO2 was small, which limits interpretation of this meta-regression. Moreover, training duration is not the only training variable known to influence ∆VO2max, and does not appropriately capture total training stress or load. This meta-analysis provides pooled evidence that HIIT in hypoxia may be more efficacious at improving VO2max than HIIT in normoxia. The application of these data suggest adding a hypoxic stimuli to a period of HIIT may be more effective at improving VO2max than HIIT alone. Therefore, coaches and athletes with access to altitude (either natural or simulated) should consider implementing HIIT in hypoxia, rather than HIIT in normoxia where possible, assuming no negative side effects.
Collapse
Affiliation(s)
- Ailsa Westmacott
- Sport and Physical Activity Research Institute, University of the West of Scotland, Glasgow G72 0LH, UK
| | - Nilihan E. M. Sanal-Hayes
- Sport and Physical Activity Research Institute, University of the West of Scotland, Glasgow G72 0LH, UK
| | - Marie McLaughlin
- Sport and Physical Activity Research Institute, University of the West of Scotland, Glasgow G72 0LH, UK
| | - Jacqueline L. Mair
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Lawrence D. Hayes
- Sport and Physical Activity Research Institute, University of the West of Scotland, Glasgow G72 0LH, UK
| |
Collapse
|
9
|
Saugy JJ, Schmoutz T, Botrè F. Altitude and Erythropoietin: Comparative Evaluation of Their Impact on Key Parameters of the Athlete Biological Passport: A Review. Front Sports Act Living 2022; 4:864532. [PMID: 35847455 PMCID: PMC9282833 DOI: 10.3389/fspor.2022.864532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The hematological module of the Athlete's Biological Passport (ABP) identifies doping methods and/or substances used to increase the blood's capacity to transport or deliver oxygen to the tissues. Recombinant human erythropoietin (rhEPOs) are doping substances known to boost the production of red blood cells and might have an effect on the blood biomarkers of the ABP. However, hypoxic exposure influences these biomarkers similarly to rhEPOs. This analogous impact complicates the ABP profiles' interpretation by antidoping experts. The present study aimed to collect and identify, through a literature search, the physiological effects on ABP blood biomarkers induced by these external factors. A total of 43 studies were selected for this review. A positive correlation (R2 = 0.605, r = 0.778, p < 0.001) was identified between the hypoxic dose and the increase in hemoglobin concentration (HGB) percentage. In addition, the change in the reticulocyte percentage (RET%) has been identified as one of the most sensitive parameters to rhEPO use. The mean effects of rhEPO on blood parameters were greater than those induced by hypoxic exposure (1.7 times higher for HGB and RET% and 4 times higher for hemoglobin mass). However, rhEPO micro-doses have shown effects that are hardly distinguishable from those identified after hypoxic exposure. The results of the literature search allowed to identify temporal and quantitative evolution of blood parameters in connection with different hypoxic exposure doses, as well as different rhEPOs doses. This might be considered to provide justified and well-documented interpretations of physiological changes in blood parameters of the Athlete Biological Passport.
Collapse
Affiliation(s)
- Jonas J. Saugy
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
- *Correspondence: Jonas J. Saugy
| | - Tania Schmoutz
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Francesco Botrè
- Institute of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland
- Research and Expertise in anti-Doping Sciences (REDs), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Solomon Y, Woldu B, Mesfin N, Enawgaw B. Selected hematological abnormalities and their associated factors among asthmatic patients in Northwest Ethiopia: a cross-sectional study. BMC Pulm Med 2022; 22:228. [PMID: 35698065 PMCID: PMC9190135 DOI: 10.1186/s12890-022-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Asthma is a chronic inflammatory disease that affects the lungs. Variation in whole blood cell lines is caused by the progression and severity of asthma. Common hematological abnormalities encountered during asthma include eosinophilia, neutrophilia, leukocytosis, and increased erythrocyte sedimentation rate. The main aim of this study was to assess the selected hematological abnormalities and their associated factors among asthmatic patients in Northwest Ethiopia from March to May 2021. Methodology A hospital-based cross-sectional study was conducted on a total of 320 asthmatic patients in Northwest Ethiopia. A simple random sampling technique was employed to select study participants. A pre-tested structured questionnaire and a checklist were used to collect data. Blood samples were collected from asthmatic patients for complete blood count and erythrocyte sedimentation rate determination. Hematological profiles were analyzed by Unicel DxH 800 (Beckman Coulter, Ireland). The erythrocyte sedimentation rate was determined by using the Westergren method. The data were entered into EpiData version 3.0.4 and analyzed with a statistical package for social science version 20 software. The bi-variable and multi-variable binary logistic regression models were used to assess the factors associated with hematological abnormalities. A p value of less than 0.05 in the multivariable logistic regression analysis was considered statistically significant. Results The overall prevalence of neutrophilia, eosinophilia, thrombocytopenia, leukocytosis, and basophilia was 35.3%, 20%, 11.9%, 10.3%, and 4.1%, respectively. Neutrophilia was associated with a lack of physical activity (AOR = 3.25; 95% CI 1.43–7.37) and a history of taking non-asthmatic drugs within the previous three months (AOR = 2.63; 95% CI 1.22–5.65). Being admitted to the emergency department (AOR = 0.27; 95% CI 0.11–5.67) was found to be associated with eosinophilia. In addition, being admitted to the emergency department (AOR = 5.44; 95%CI: 2.6–11.3) was associated with thrombocytopenia. Conclusion The current study demonstrated the predominant prevalence of neutrophilia, followed by eosinophilia, among asthma patients. Therefore, hematological abnormalities should be taken into account for proper monitoring and management of asthmatic patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02020-z.
Collapse
Affiliation(s)
- Yenealem Solomon
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Berhanu Woldu
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| | - Nebiyu Mesfin
- Department of Internal Medicine, School of Medicine, University of Gondar, Gondar, Ethiopia
| | - Bamlaku Enawgaw
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
11
|
Park HY, Jung WS, Kim SW, Kim J, Lim K. Effects of Interval Training Under Hypoxia on Hematological Parameters, Hemodynamic Function, and Endurance Exercise Performance in Amateur Female Runners in Korea. Front Physiol 2022; 13:919008. [PMID: 35665230 PMCID: PMC9158122 DOI: 10.3389/fphys.2022.919008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Interval training under hypoxia (IHT) is commonly used to enhance endurance exercise performance. However, previous studies examining hematologic changes related to the immune system that affect health and conditioning are lacking. This study aimed to evaluate the effects of IHT for 6-weeks on hematological parameters, hemodynamic function, and endurance exercise performance in amateur Korean female runners. Twenty healthy amateur Korean female runners (age: 24.85 ± 3.84 years) were equally assigned to normoxic training group (NTG) for interval training under normoxia (760 mmHg) and hypoxic training group (HTG) for interval training under hypobaric hypoxia (526 mmHg, 3000 m simulated altitude) according to their body composition and endurance exercise performance. All participants performed 120-min of training sessions, consisting of 20-min of warm-up, 60-min of interval training, and 20-min of cool-down. The training program was performed 3-days per week for 6-weeks. Warm-up and cool-down were performed for 20-min at 60% maximal heart rate (HRmax). The interval training sessions comprised 10 repetitions of interval exercise (5-min of exercise corresponding to 90–95% HRmax and 1-min of rest) on a treadmill. All participants underwent measurements of hematological parameters, hemodynamic function, and endurance exercise performance before and after training. Both groups showed a significant increase in erythropoietin (EPO) level and a decrease in monocyte abundance, with EPO showing a greater increase in the HTG than in the NTG. B cell abundance significantly increased in the NTG; hematocrit and neutrophil counts significantly increased, and lymphocyte counts significantly decreased in the HTG. The HTG showed a significant improvement in oxygen uptake, stroke volume index, and end-diastolic volume index compared to the NTG. In addition, both groups showed significant improvements in heart rate, end-systolic volume index, and cardiac output index. The maximal oxygen uptake and 3000 m time trial record were significantly improved in both groups, and the HTG showed a tendency to improve more than the NTG. In conclusion, the IHT was effective in enhancing endurance exercise performance through improved hemodynamic function. Furthermore, hematological parameters of immune system showed a normal range before and after training and were not negatively affected.
Collapse
Affiliation(s)
- Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Won-Sang Jung
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Sung-Woo Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Jisu Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, South Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, South Korea
- Department of Physical Education, Konkuk University, Seoul, South Korea
- *Correspondence: Kiwon Lim,
| |
Collapse
|
12
|
Feltes BC, Vieira IA, Parraga-Alava J, Meza J, Portmann E, Terán L, Dorn M. Feature selection reveal peripheral blood parameter's changes between COVID-19 infections patients from Brazil and Ecuador. INFECTION, GENETICS AND EVOLUTION 2022; 98:105228. [PMID: 35104680 PMCID: PMC8800568 DOI: 10.1016/j.meegid.2022.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/23/2022] [Indexed: 11/29/2022]
Abstract
The investigation of conventional complete blood-count (CBC) data for classifying the SARS-CoV-2 infection status became a topic of interest, particularly as a complementary laboratory tool in developing and third-world countries that financially struggled to test their population. Although hematological parameters in COVID-19-affected individuals from Asian and USA populations are available, there are no descriptions of comparative analyses of CBC findings between COVID-19 positive and negative cases from Latin American countries. In this sense, machine learning techniques have been employed to examine CBC data and aid in screening patients suspected of SARS-CoV-2 infection. In this work, we used machine learning to compare CBC data between two highly genetically distinguished Latin American countries: Brazil and Ecuador. We notice a clear distribution pattern of positive and negative cases between the two countries. Interestingly, almost all red blood cell count parameters were divergent. For males, neutrophils and lymphocytes are distinct between Brazil and Ecuador, while eosinophils are distinguished for females. Finally, neutrophils, lymphocytes, and monocytes displayed a particular distribution for both genders. Therefore, our findings demonstrate that the same set of CBC features relevant to one population is unlikely to apply to another. This is the first study to compare CBC data from two genetically distinct Latin American countries.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Genetics, Institute of Bioscience, and Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Igor Araújo Vieira
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jorge Parraga-Alava
- Facultad de Ciencias Informaticas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Jaime Meza
- Facultad de Ciencias Informaticas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Edy Portmann
- Human-IST Institute, University of Fribourg, Fribourg, Switzerland
| | - Luis Terán
- Human-IST Institute, University of Fribourg, Fribourg, Switzerland
| | - Márcio Dorn
- Institute of Informatics, Center of Biotechnology, Federal University of Rio Grande do Sul, RS, Brazil; National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Baranauskas MN, Fulton TJ, Fly AD, Martin BJ, Mickleborough TD, Chapman RF. High Intraindividual Variability in the Response of Serum Erythropoietin to Multiple Simulated Altitude Exposures. High Alt Med Biol 2022; 23:85-89. [PMID: 35290748 DOI: 10.1089/ham.2021.0154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Baranauskas, Marissa N., Timothy J. Fulton, Alyce D. Fly, Bruce J. Martin, Timothy D. Mickleborough, and Robert F. Chapman. High intraindividual variability in the response of serum erythropoietin to multiple simulated altitude exposures. High Alt Med Biol. 23:85-89, 2022. Purpose: To evaluate within-subject variability in the serum erythropoietin (EPO) response to multiple simulated altitude exposures. Methods: Seven physically active men and women (age 27 ± 3 years, body mass index = 24.6 ± 4.0 kg/m2) were exposed to normobaric hypoxia (fraction of inspired oxygen [FiO2] = 0.14) for 12 hours on three separate occasions. Serum EPO concentrations were measured before exposure (0 hour), after 6 hours, and after 12 hours in hypoxia. The EPO response to hypoxia was calculated as percent change from 0 to 12 hours (ΔEPO0-12). Results: Exposure time had a significant effect on EPO (p < 0.001) with concentrations increasing 3.2 ± 1.3 mIU/ml from 0 to 6 hours (p = 0.034) and 4.7 ± 1.2 mIU/ml from 0 to 12 hours (p = 0.001). Group mean ΔEPO0-12 remained unchanged (p = 0.688) between the three exposures; however, there was considerable intraindividual variability in EPO responses. The intrasubject coefficient of variation for ΔEPO0-12 was 61% ± 28% (range: 17%-103%) with intrasubject associations ranging r = 0.052 to r = 0.651 between repeated exposures. Conclusions: Athletes who routinely supplement training with simulated altitude methods (e.g., hypoxic tents) should expect inconsistent EPO responses to intermittent exposures lasting ≤12 hours.
Collapse
Affiliation(s)
- Marissa N Baranauskas
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Timothy J Fulton
- Department of Physical Therapy, College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Alyce D Fly
- Department of Nutrition and Health Science, College of Health, Ball State University, Muncie, Indiana, USA
| | - Bruce J Martin
- Department of Anatomy, Cell Biology, and Physiology, School of Medicine, Indiana University, Bloomington, Indiana, USA
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
14
|
Bouten J, Debusschere J, Lootens L, Declercq L, Van Eenoo P, Boone J, Bourgois JG. Six weeks of static apnea training does not affect Hbmass and exercise performance. J Appl Physiol (1985) 2022; 132:673-681. [PMID: 35050796 DOI: 10.1152/japplphysiol.00770.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Acute apnea is known to induce decreases in oxyhemoglobin desaturation (SpO2) and increases in erythropoietin concentration ([EPO]). This study examined the potential of an apnea training program to induce erythropoiesis and increase hematological parameters and exercise performance. METHODS Twenty-two male subjects were randomly divided into an apnea and control group. The apnea group performed a 6-week apnea training program consisting of a daily series of 5 maximal static apneas. Before and after training, subjects visited the lab on three test days to perform 1) a ramp incremental test measuring V̇O2peak, 2) CO-rebreathing for Hb mass determination and a 3-km time trial and 3) an apnea test protocol with continuous finger SpO2 registration. Venous blood samples were drawn before and 180 minutes after the apnea test for analysis of [EPO]. RESULTS Minimal SpO2 reached during the apnea test protocol was 91 ±7% pre and 82 ±7% post apnea training. The apnea test protocol did not elicit an acute increase in [EPO] (p=0.685) before nor after the training program. Consequently, resting [EPO] (p=0.170), Hbmass (p=0.134), V̇O2peak (p=0.796) and 3-km cycling time trial performance (p=0.509) were not affected either. CONCLUSION The apnea test and training protocol, consisting of 5 maximal static apneas, did not induce a sufficiently strong hypoxic stimulus to cause erythropoiesis and therefore did not result in an increase in resting [EPO], Hbmass, V̇O2peak or time trial performance. Longer and/or more intense training sessions inducing a stronger hypoxic stimulus are probably needed to obtain changes in hematological and exercise parameters.
Collapse
Affiliation(s)
- Janne Bouten
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jonas Debusschere
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Leen Lootens
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Louise Declercq
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Gustaaf Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.,Centre of Sports Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Royal JT, Eiken O, Keramidas ME, McDonnell AC, Mekjavic IB. Heterogeneity of Hematological Response to Hypoxia and Short-Term or Medium-Term Bed Rest. Front Physiol 2021; 12:777611. [PMID: 34975531 PMCID: PMC8715762 DOI: 10.3389/fphys.2021.777611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Hematological changes are commonly observed following prolonged exposure to hypoxia and bed rest. Typically, such responses have been reported as means and standard deviations, however, investigation into the responses of individuals is insufficient. Therefore, the present study retrospectively assessed individual variation in the hematological responses to severe inactivity (bed rest) and hypoxia. The data were derived from three-bed rest projects: two 10-d (LunHab project: 8 males; FemHab project: 12 females), and one 21-d (PlanHab project: 11 males). Each project comprised a normoxic bed rest (NBR; PIO2=133mmHg) and hypoxic bed rest (HBR; PIO2=91mmHg) intervention, where the subjects were confined in the Planica facility (Rateče, Slovenia). During the HBR intervention, subjects were exposed to normobaric hypoxia equivalent to an altitude of 4,000m. NBR and HBR interventions were conducted in a random order and separated by a washout period. Blood was drawn prior to (Pre), during, and post bed rest (R1, R2, R4) to analyze the individual variation in the responses of red blood cells (RBC), erythropoietin (EPO), and reticulocytes (Rct) to bed rest and hypoxia. No significant differences were found in the mean ∆(Pre-Post) values of EPO across projects (LunHab, FemHab, and PlanHab; p>0.05), however, female EPO responses to NBR (Range - 17.39, IQR – 12.97 mIU.ml−1) and HBR (Range – 49.00, IQR – 10.91 mIU.ml−1) were larger than males (LunHab NBR Range – 4.60, IQR – 2.03; HBR Range – 7.10, IQR – 2.78; PlanHab NBR Range – 7.23, IQR – 1.37; HBR Range – 9.72, IQR – 4.91 mIU.ml−1). Bed rest duration had no impact on the heterogeneity of EPO, Rct, and RBC responses (10-d v 21-d). The resultant hematological changes that occur during NBR and HBR are not proportional to the acute EPO response. The following cascade of hematological responses to NBR and HBR suggests that the source of variability in the present data is due to mechanisms related to hypoxia as opposed to inactivity alone. Studies investigating hematological changes should structure their study design to explore these mechanistic responses and elucidate the discord between the EPO response and hematological cascade to fully assess heterogeneity.
Collapse
Affiliation(s)
- Joshua T. Royal
- Environmental Physiology and Ergonomics Lab, Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ola Eiken
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Solna, Sweden
| | - Michail E. Keramidas
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Solna, Sweden
| | - Adam C. McDonnell
- Environmental Physiology and Ergonomics Lab, Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Igor B. Mekjavic
- Environmental Physiology and Ergonomics Lab, Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Igor B. Mekjavic,
| |
Collapse
|
16
|
Ott T, Joyce MC, Hillman AR. Effects of Acute High-Intensity Exercise With the Elevation Training Mask or Hypoxicator on Pulmonary Function, Metabolism, and Hormones. J Strength Cond Res 2021; 35:2486-2491. [PMID: 34431483 DOI: 10.1519/jsc.0000000000003175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Ott, T, Joyce, MC, and Hillman, AR. Effects of acute high-intensity exercise with the elevation training mask or hypoxicator on pulmonary function, metabolism, and hormones. J Strength Cond Res 35(9): 2486-2491, 2021-The elevation training mask (ETM) 2.0 is an increasingly popular hands-free respiratory muscle training modality proposing to mimic altitude; however, the degree to which this occurs has been questioned. The purpose of this study was to investigate the efficacy of this modality in comparison with using a hypoxicator (HYP) during acute aerobic exercise. Eight regularly active subjects (age: 25 ± 8 years; height: 166 ± 12 cm; body mass 64 ± 10 kg; and V̇o2max: 46 ± 6 ml·kg-1·min-1) completed 3 trials, each including resting metabolic rate measurement, pulmonary function tests, and 13 sprint intervals at 90% V̇o2max using either the HYP, ETM, or control. There was no significant difference in metabolism or heart rate between conditions. Fraction of expired air in the first second was greater after exercise (p = 0.02), while oxygen saturation was lower during exercise with the HYP (p < 0.001). Human growth hormone increased with exercise, but no differences were found between conditions; however, a trend was observed for higher growth hormone after exercise in HYP vs. ETM (p = 0.08). Elevation training mask does not seem to change acute pulmonary function, metabolism, heart rate, or oxygen saturation, indicating it likely does not create a hypoxic environment or mimic altitude.
Collapse
Affiliation(s)
- Taylor Ott
- Department of Athletic Training and Exercise Science, Marywood University, Scranton, Pennsylvania
- College of Health Sciences, Department of Physical Therapy, Midwestern University, Glendale, Arizona
| | - Michael C Joyce
- Department of Athletic Training and Exercise Science, Marywood University, Scranton, Pennsylvania
- Wilkes-Barre Scranton Penguins, Wilkes-Barre, Pennsylvania
| | - Angela R Hillman
- Department of Athletic Training and Exercise Science, Marywood University, Scranton, Pennsylvania
- College of Health Sciences and Professions, School of Applied Health Sciences and Wellness, Department of Exercise Physiology, Ohio University, Athens, Ohio
| |
Collapse
|
17
|
Effects of Altitude on Chronic Obstructive Pulmonary Disease Patients: Risks and Care. Life (Basel) 2021; 11:life11080798. [PMID: 34440542 PMCID: PMC8401125 DOI: 10.3390/life11080798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023] Open
Abstract
Air travel and altitude stays have become increasingly frequent within the overall population but also in patients suffering from chronic obstructive pulmonary disease (COPD), which is the most common respiratory disease worldwide. While altitude is well tolerated by most individuals, COPD patients are exposed to some serious complications, that could be life-threatening. COPD patients present not only a respiratory illness but also frequent comorbidities. Beyond oxygen desaturation, it also affects respiratory mechanics, and those patients are at high risk to decompensate a cardiac condition, pulmonary hypertension, or a sleep disorder. Recently, there has been considerable progress in the management of this disease. Nocturnal oxygen therapy, inhaled medications, corticosteroids, inspiratory muscle training, and pulmonary rehabilitation are practical tools that must be developed in the comprehensive care of those patients so as to enable them to afford altitude stays.
Collapse
|
18
|
Kim SW, Jung WS, Kim JW, Nam SS, Park HY. Aerobic Continuous and Interval Training under Hypoxia Enhances Endurance Exercise Performance with Hemodynamic and Autonomic Nervous System Function in Amateur Male Swimmers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083944. [PMID: 33918616 PMCID: PMC8068973 DOI: 10.3390/ijerph18083944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/03/2022]
Abstract
Hypoxic training is often performed by competitive swimmers to enhance their performance in normoxia. However, the beneficial effects of aerobic continuous and interval training under hypoxia on hemodynamic function, autonomic nervous system (ANS) function, and endurance exercise performance remain controversial. Here we investigated whether six weeks of aerobic continuous and interval training under hypoxia can improve hematological parameters, hemodynamic function, ANS function, and endurance exercise performance versus normoxia in amateur male swimmers. Twenty amateur male swimmers were equally assigned to the hypoxic training group or normoxic training group and evaluated before and after six weeks of training. Aerobic continuous and interval training in the hypoxia showed a more significantly improved hemodynamic function (heart rate, −653.4 vs. −353.7 beats/30 min; oxygen uptake, −62.45 vs. −16.22 mL/kg/30 min; stroke volume index, 197.66 vs. 52.32 mL/30 min) during submaximal exercise, ANS function (root mean square of successive differences, 10.15 vs. 3.32 ms; total power, 0.72 vs. 0.20 ms2; low-frequency/high-frequency ratio, −0.173 vs. 0.054), and endurance exercise performance (maximal oxygen uptake, 5.57 vs. 2.26 mL/kg/min; 400-m time trial record, −20.41 vs. −7.91 s) than in the normoxia. These indicate that hypoxic training composed of aerobic continuous and interval exercise improves the endurance exercise performance of amateur male swimmers with better hemodynamic function and ANS function.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
| | - Won-Sang Jung
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
| | - Jeong-Weon Kim
- Graduate School of Professional Therapy, Gachon University, 1332 Seongnam-daero, Sujeong-gu, Seongnam-si 13306, Korea;
| | - Sang-Seok Nam
- Taekwondo Research Institute of Kukkiwon, 32 Teheran7gil, Gangnam-gu, Seoul 06130, Korea;
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (W.-S.J.)
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6035
| |
Collapse
|
19
|
Vontobel J. [Heart Patients and Exposure to Altitude]. PRAXIS 2021; 110:303-311. [PMID: 33906438 DOI: 10.1024/1661-8157/a003649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Overall, heart patients should be advised individually with respect to their tolerance of altitudes. However, the historical reflex that altitude 'per se' is bad for heart patients should become a thing of the past. Adequately treated and stable patients can usually go up to an altitude of 2500 m without any restrictions. Higher altitudes are also possible for a large number of patients, but may require an adaptation of the medication and further clarification. This is especially the case when physical work is to be performed at great heights.
Collapse
|
20
|
Physiology, pathophysiology and (mal)adaptations to chronic apnoeic training: a state-of-the-art review. Eur J Appl Physiol 2021; 121:1543-1566. [PMID: 33791844 PMCID: PMC8144079 DOI: 10.1007/s00421-021-04664-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
Breath-hold diving is an activity that humans have engaged in since antiquity to forage for resources, provide sustenance and to support military campaigns. In modern times, breath-hold diving continues to gain popularity and recognition as both a competitive and recreational sport. The continued progression of world records is somewhat remarkable, particularly given the extreme hypoxaemic and hypercapnic conditions, and hydrostatic pressures these athletes endure. However, there is abundant literature to suggest a large inter-individual variation in the apnoeic capabilities that is thus far not fully understood. In this review, we explore developments in apnoea physiology and delineate the traits and mechanisms that potentially underpin this variation. In addition, we sought to highlight the physiological (mal)adaptations associated with consistent breath-hold training. Breath-hold divers (BHDs) are evidenced to exhibit a more pronounced diving-response than non-divers, while elite BHDs (EBHDs) also display beneficial adaptations in both blood and skeletal muscle. Importantly, these physiological characteristics are documented to be primarily influenced by training-induced stimuli. BHDs are exposed to unique physiological and environmental stressors, and as such possess an ability to withstand acute cerebrovascular and neuronal strains. Whether these characteristics are also a result of training-induced adaptations or genetic predisposition is less certain. Although the long-term effects of regular breath-hold diving activity are yet to be holistically established, preliminary evidence has posed considerations for cognitive, neurological, renal and bone health in BHDs. These areas should be explored further in longitudinal studies to more confidently ascertain the long-term health implications of extreme breath-holding activity.
Collapse
|
21
|
Mathew B, Philip M, Perwad Z, Karatt TK, Caveney MR, Subhahar MB, Karakka Kal AK. Identification of Hypoxia-inducible factor (HIF) stabilizer roxadustat and its possible metabolites in thoroughbred horses for doping control. Drug Test Anal 2021; 13:1203-1215. [PMID: 33569900 DOI: 10.1002/dta.3014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia-inducible factor (HIF) stabilizer belongs to a novel class of pharmacologically active substances, which are capable of inducing the endogenous erythropoietic system. The transcriptional activator HIF has been shown to significantly increase blood hemoglobin and is well set for the treatment of anemia resulting from chronic kidney disease. This research work reports a comprehensive study of the most popular HIF stabilizer roxadustat and its metabolites in thoroughbred horse urine after oral administration. The plausible structures of the detected metabolites were postulated using liquid chromatography-high-resolution mass spectrometry. Under the experimental condition 13 metabolites (7 phase I, 1 phase II, and 5 conjugates of phase I metabolism) were positively detected (M1-M13). The major phase I metabolites identified were formed by hydroxylation. Dealkylated and hydrolyzed phase I metabolites were also observed in this study. In phase II, a glucuronic acid conjugate of roxadustat was detected as the major metabolite. The sulfonic acid conjugates were observed to be formed from phase I metabolites. The characterized in vivo metabolites can potentially serve as target analytes for doping control analysis; hence, the result is an important tool for assessing its use and abuse in competitive sport.
Collapse
Affiliation(s)
- Binoy Mathew
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | | | |
Collapse
|
22
|
Philip M, Mathew B, Karatt TK, Perwad Z, Subhahar MB, Karakka Kal AK. Metabolic studies of hypoxia-inducible factor stabilisers IOX2, IOX3 and IOX4 (in vitro) for doping control. Drug Test Anal 2021; 13:794-816. [PMID: 33458935 DOI: 10.1002/dta.3000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
The transcriptional activator hypoxia-inducible factor (HIF) is a vital arbitrator in the performance of cellular responses lacking oxygen supply in aerobic organisms. Because these compounds are capable of enhancing the organism's capacity for molecular oxygen transport, they possess great potential for abuse as a performance-enhancing agent in sports. A comprehensive study of the metabolic conversion of the most popular HIF stabilisers such as IOX2, IOX3 and IOX4 using equine liver microsomes (in vitro) is reported. The parents and their metabolites were identified and characterised by liquid chromatography-mass spectrometry in negative ionisation mode using a QExactive high-resolution mass spectrometer. Under the current experimental condition, a total of 10 metabolites for IOX2 (three phase I and seven phase II), nine metabolites for IOX3 (four phase I and five phase II) and five metabolites for IOX4 (three phase I and two phase II) were detected. The outcome of the present study is as follows: (1) all the three IOX candidates are prone to oxidation, results in subsequent monohydroxylated, and some dihydroxylated metabolites. (2) Besides oxidation, there is a possibility of hydrolysis and de-alkylation, which results in corresponding carboxylic acid and amide, respectively. (3) The glucuronide and sulphate conjugate of the parent drugs as well as the monohydroxylated analogues were observed in this study. The characterised in vitro metabolites can potentially serve as target analytes for doping control analysis.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Binoy Mathew
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | |
Collapse
|
23
|
Baranauskas MN, Powell J, Fly AD, Martin BJ, Mickleborough TD, Paris HL, Chapman RF. Influence of Zinc on the Acute Changes in Erythropoietin and Proinflammatory Cytokines with Hypoxia. High Alt Med Biol 2020; 22:148-156. [PMID: 33325784 DOI: 10.1089/ham.2020.0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Baranauskas, Marissa N., Joseph Powell, Alyce D. Fly, Bruce J. Martin, Timothy D. Mickleborough, Hunter L. Paris, and Robert F. Chapman. Influence of zinc on the acute changes in erythropoietin and proinflammatory cytokines with hypoxia. High Alt Med Biol. 22: 148-156, 2021. Background: Considerable, unexplained, interindividual variability characterizes the erythropoietin (EPO) response to hypoxia, which can impact hematological acclimatization for individuals sojourning to altitude. Zinc supplementation has the potential to alter EPO by attenuating increases in inflammation and oxidative stress. Yet, the application of such an intervention has not been evaluated in humans. In this proof-of-concept study, we aimed to evaluate the EPO and inflammatory responses to acute hypoxia in human participants following chronic zinc supplementation. Methods: Nine physically active participants (men n = 5, women n = 4, age 28 ± 4 years, height 176 ± 11 cm, mass 77 ± 21 kg) were exposed to 12 hours of normobaric hypoxia simulating an altitude of 3,000 m (FiO2 = 0.14) before and after 8 weeks of supplementation with 40 mg/day of elemental zinc from picolinate. Blood samples for subsequent analysis of serum zinc, EPO, superoxide dismutase (extracellular superoxide dismutase [EC-SOD]), C-reactive protein (CRP), and proinflammatory cytokines were obtained pre- and postsupplementation and exposure to hypoxia. Results: After zinc supplementation, EPO increased by 64.9 ± 36.0% (mean ± standard deviation) following 12 hours of hypoxia, but this response was not different from presupplementation (70.8 ± 46.1%). Considerable interindividual (range: -1% to +208%) variability was apparent in the acute EPO response. While most markers of inflammation did not change with hypoxia, interleukin-6 concentrations increased from 1.17 ± 0.05 to 1.97 ± 0.32 pg/ml during the final 6 hours. The acute EPO response at 12 hours was not related to changes in serum zinc, EC-SOD, CRP, or proinflammatory cytokines. Conclusions: Zinc supplementation does not influence the acute EPO or inflammatory response with short-term exposure to moderate levels of normobaric hypoxia (3,000 m) in apparently healthy young adults.
Collapse
Affiliation(s)
- Marissa N Baranauskas
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Joseph Powell
- The Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alyce D Fly
- Department of Nutrition and Health Science, College of Health, Ball State University, Muncie, Indiana, USA
| | - Bruce J Martin
- Department of Anatomy, Cell Biology, and Physiology, School of Medicine, Indiana University, Bloomington, Indiana, USA
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Hunter L Paris
- Division of Natural Sciences, Pepperdine University, Malibu, California, USA
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana, USA.,United States Track and Field, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6479630. [PMID: 32923484 PMCID: PMC7453230 DOI: 10.1155/2020/6479630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Intermittent exposure to hypoxia (IHE) increases the production of reactive oxygen and nitrogen species as well as erythropoietin (EPO), which stimulates the adaptation to intense physical activity. However, several studies suggest a protective effect of moderate hypoxia in cardiovascular disease (CVD) events. The effects of intense physical activity with IHE on oxi-inflammatory mediators and their interaction with conventional CVD risk factors were investigated. Blood samples were collected from elite athletes (control n = 6, IHE n = 6) during a 6-day IHE cycle using hypoxicator GO2 altitude. IHE was held once a day, at least 2 hours after training. In serum, hydrogen peroxide (H2O2), nitric oxide (NO), 3-nitrotyrosine (3-Nitro), proinflammatory cytokines (IL-1β and TNFα), high sensitivity C-reactive protein (hsCRP), and heat shock protein 27 (HSP27) were determined by the commercial immunoenzyme (ELISA kits) or colorimetric methods. Serum erythropoietin (EPO) level was measured by ELISA kit every day of hypoxia. IHE was found to significantly increase H2O2, NO, and HSP27 but to decrease 3NT concentrations. The changes in 3NT and HSP27 following hypoxia proved to enhance NO bioavailability and endothelial function. In the present study, the oxi-inflammatory mediators IL-1β and hsCRP increased in IHE group but they did not exceed the reference values. The serum EPO level increased on the 3rd day of IHE, then decreased on 5th day of IHE, and correlated with NO/H2O2 ratio (r s = 0.640, P < 0.05). There were no changes in haematological markers contrary to lipoproteins such as low-density lipoprotein (LDL) and non-high-density lipoprotein (non-HDL) which showed a decreasing trend in response to hypoxic exposure. The study demonstrated that IHE combined with sports activity reduced a risk of endothelial dysfunction and atherogenesis in athletes even though the oxi-inflammatory processes were enhanced. Therefore, 6-day IHE seems to be a potential therapeutic and nonpharmacological method to reduce CVD risk, especially in elite athletes participating in strenuous training.
Collapse
|
25
|
Palubiski LM, O'Halloran KD, O'Neill J. Renal Physiological Adaptation to High Altitude: A Systematic Review. Front Physiol 2020; 11:756. [PMID: 32765289 PMCID: PMC7378794 DOI: 10.3389/fphys.2020.00756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/11/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Under normal physiological conditions, renal tissue oxygen is tightly regulated. At high altitude, a physiological challenge is imposed by the decrease in atmospheric oxygen. At the level of the kidney, the physiological adaptation to high altitude is poorly understood, which might relate to different integrated responses to hypoxia over different time domains of exposure. Thus, this systematic review sought to examine the renal physiological adaptation to high altitude in the context of the magnitude and duration of exposure to high altitude in the healthy kidney model. Methods: To conduct the review, three electronic databases were examined: OVID, PubMed, and Scopus. Search terms included: Altitude, renal, and kidney. The broad, but comprehensive search, retrieved 1,057 articles published between 1997 and April 2020. Fourteen studies were included in the review. Results: The inconsistent effect of high altitude on renal hemodynamic parameters (glomerular filtration rate, renal blood flow, and renal plasma flow), electrolyte balance, and renal tissue oxygen is difficult to interpret; however, the data suggest that the nature and extent of renal physiological adaptation at high altitude appears to be related to the magnitude and duration of the exposure. Conclusion: It is clear that renal physiological adaptation to high altitude is a complex process that is not yet fully understood. Further research is needed to better understand the renal physiological adaptation to hypoxia and how renal oxygen homeostasis and metabolism is defended during exposure to high altitude and affected as a long-term consequence of renal adaptation at high altitude.
Collapse
Affiliation(s)
- Lisa M Palubiski
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Julie O'Neill
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Hayashi N, Yatsutani H, Mori H, Ito H, Badenhorst CE, Goto K. No effect of supplemented heat stress during an acute endurance exercise session in hypoxia on hepcidin regulation. Eur J Appl Physiol 2020; 120:1331-1340. [PMID: 32303828 DOI: 10.1007/s00421-020-04365-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/04/2020] [Indexed: 12/21/2022]
Abstract
Hepcidin is a novel factor for iron deficiency in athletes, which is suggested to be regulated by interleukin-6 (IL-6) or erythropoietin (EPO). PURPOSE The purpose of the present study was to compare endurance exercise-induced hepcidin elevation among "normoxia", "hypoxia" and "combined heat and hypoxia". METHODS Twelve males (21.5 ± 0.3 years, 168.1 ± 1.2 cm, 63.6 ± 2.0 kg) participated in the present study. They performed 60 min of cycling at 60% of [Formula: see text] in either "heat and hypoxia" (HHYP; FiO2 14.5%, 32 °C), "hypoxia" (HYP; FiO2 14.5%, 23 °C) or "normoxia" (NOR; FiO2 20.9%, 23 °C). After completing the exercise, participants remained in the prescribed conditions for 3 h post-exercise. Blood samples were collected before, immediately and 3 h after exercise. RESULTS Plasma IL-6 level significantly increased immediately after exercise (P < 0.05), with no significant difference among the trials. A significant elevation in serum EPO was observed 3 h after exercise in hypoxic trials (HHYP and HYP, P < 0.05), with no significant difference between HHYP and HYP. Serum hepcidin level increased 3 h after exercise in all trials (NOR, before 18.3 ± 3.9 and post180 31.2 ± 6.3 ng/mL; HYP, before 13.5 ± 2.5 and post180 23.3 ± 3.6 ng/mL, HHYP; before 15.8 ± 3.3 and post180 31.4 ± 5.3 ng/mL, P < 0.05). However, there was no significant difference among the trials during post-exercise. CONCLUSION Endurance exercise in "combined heat and hypoxia" did not exacerbate exercise-induced hepcidin elevation compared with the same exercise in "hypoxia" or "normoxia".
Collapse
Affiliation(s)
- Nanako Hayashi
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Haruka Yatsutani
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hisashi Mori
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Hiroto Ito
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Claire E Badenhorst
- School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
27
|
Effects of 2-Week Exercise Training in Hypobaric Hypoxic Conditions on Exercise Performance and Immune Function in Korean National Cycling Athletes with Disabilities: A Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030861. [PMID: 32019079 PMCID: PMC7037344 DOI: 10.3390/ijerph17030861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
We aimed to evaluate the effects of a 2-week exercise training program in hypobaric hypoxic conditions on exercise performance and immune function in Korean national cycling athletes with disabilities. Six Korean national cycling athletes with disabilities participated in exercise training consisting of continuous aerobic exercise and anaerobic interval exercise in hypobaric hypoxic conditions. The exercise training frequency was 60 min (5 days per week for 2 weeks). Before and after the exercise training, exercise performance and immune function were measured in all athletes. Regarding the exercise performance parameters, the 3-km time trial significantly decreased and blood lactate levels after the 3-km time trial test significantly increased by exercise training in hypobaric hypoxic conditions. Regarding the oxygen-transporting capacity, significant differences were not observed. Regarding immune function, the number of leukocytes and natural killer cells significantly decreased and that of eosinophils, B cells, and T cells significantly increased. These results indicated that our 2-week hypoxic training showed the potential to improve exercise performance in Korean national disabled athletes. However, the effects of our hypoxic training method on immune function remained unclear.
Collapse
|
28
|
Okazaki K, Stray-Gundersen J, Chapman RF, Levine BD. Iron insufficiency diminishes the erythropoietic response to moderate altitude exposure. J Appl Physiol (1985) 2019; 127:1569-1578. [DOI: 10.1152/japplphysiol.00115.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The effects of iron stores and supplementation on erythropoietic responses to moderate altitude in endurance athletes were examined. In a retrospective study, red cell compartment volume (RCV) responses to 4 wk at 2,500 m were assessed in athletes with low ( n = 9, ≤20 and ≤30 ng/mL for women and men, respectively) and normal ( n = 10) serum ferritin levels ([Ferritin]) without iron supplementation. In a subsequent prospective study, the same responses were assessed in athletes ( n = 26) with a protocol designed to provide sufficient iron before and during identical altitude exposure. The responses to a 4-wk training camp at sea level were assessed in another group of athletes ( n = 13) as controls. RCV and maximal oxygen uptake (V̇o2max) were determined at sea level before and after intervention. In the retrospective study, athletes with low [Ferritin] did not increase RCV (27.0 ± 2.9 to 27.5 ± 3.8 mL/kg, mean ± SD, P = 0.65) or V̇o2max (60.2 ± 7.2 to 62.2 ± 7.5 mL·kg−1·min−1, P = 0.23) after 4 wk at altitude, whereas athletes with normal [Ferritin] increased both (RCV: 27.3 ± 3.1 to 29.8 ± 2.4 mL/kg, P = 0.002; V̇o2max: 62.0 ± 3.1 to 66.2 ± 3.7 mL·kg−1·min−1, P = 0.003). In the prospective study, iron supplementation normalized low [Ferritin] observed in athletes exposed to altitude ( n = 14) and sea level ( n = 6) before the altitude/sea-level camp and maintained [Ferritin] within normal range in all athletes during the camp. RCV and V̇o2max increased in the altitude group but remained unchanged in the sea-level group. Finally, the increase in RCV correlated with the increase in V̇o2max [( r = 0.368, 95% confidence interval (CI): 0.059–0.612, P = 0.022]. Thus, iron deficiency in athletes restrains erythropoiesis to altitude exposure and may preclude improvement in sea-level athletic performance. NEW & NOTEWORTHY Hypoxic exposure increases iron requirements and utilization for erythropoiesis in athletes. This study clearly demonstrates that iron deficiency in athletes inhibits accelerated erythropoiesis to a sojourn to moderate high altitude and may preclude a potential improvement in sea-level athletic performance with altitude training. Iron replacement therapy before and during altitude exposure is important to maximize performance gains after altitude training in endurance athletes.
Collapse
Affiliation(s)
- Kazunobu Okazaki
- Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | | | | | - Benjamin D. Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
29
|
Dias KA, Lawley JS, Gatterer H, Howden EJ, Sarma S, Cornwell WK, Hearon CM, Samels M, Everding B, Liang ASW, Hendrix M, Piper T, Thevis M, Bruick RK, Levine BD. Effect of acute and chronic xenon inhalation on erythropoietin, hematological parameters, and athletic performance. J Appl Physiol (1985) 2019; 127:1503-1510. [DOI: 10.1152/japplphysiol.00289.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to assess the efficacy of acute subanesthetic dosages of xenon inhalation to cause erythropoiesis and determine the effect of chronic xenon dosing on hematological parameters and athletic performance. To assess the acute effects, seven subjects breathed three subanesthetic concentrations of xenon: 30% fraction of inspired xenon (FiXe) for 20 min, 50% FiXe for 5 min, and 70% FiXe for 2 min. Erythropoietin (EPO) was measured at baseline, during, and after xenon inhalation. To determine the chronic effects, eight subjects breathed 70% FiXe for 2 min on 7 consecutive days, and EPO, total blood, and plasma volume were measured. Phase II involved assessment of 12 subjects for EPO, total blood volume, maximal oxygen uptake, and 3-km time before and after random assignment to 4 wk of xenon or sham gas inhalation. FiXe 50% and 70% stimulated an increase in EPO at 6 h [+2.3 mIU/mL; 95% confidence interval (CI) 0.1–4.5; P = 0.038] and at 192 h postinhalation (+2.9 mIU/mL; 95% CI 0.6–5.1; P = 0.017), respectively. Seven consecutive days of dosing significantly elevated plasma volume (+491 mL; 95% CI 194–789; P = 0.002). Phase II showed no significant effect on EPO, hemoglobin mass, plasma volume, maximal oxygen uptake, or 3-km time. Acute exposure to subanesthetic doses of xenon caused a consistent increase in EPO, and 7 consecutive days of xenon inhalation significantly expanded plasma volume. However, this physiological response appeared to be transient, and 4 wk of xenon inhalation did not stimulate increases in plasma volume or erythropoiesis, leaving cardiorespiratory fitness and athletic performance unchanged. NEW & NOTEWORTHY This is the first study to examine each element of the cascade by which xenon inhalation is purported to take effect, starting with measurement of the hypoxia-inducible factor effector, erythropoietin, to hemoglobin mass and blood volume and athletic performance. We found that acute exposure to xenon increased serum erythropoietin concentration, although major markers of erythropoiesis remained unchanged. While daily dosing significantly expanded plasma volume, no physiological or performance benefits were apparent following 4 wk of dosing.
Collapse
Affiliation(s)
- Katrin A. Dias
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Justin S. Lawley
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Erin J. Howden
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Satyam Sarma
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Christopher M. Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mitchel Samels
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
| | - Braden Everding
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
| | | | - Max Hendrix
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Thomas Piper
- German Sport University Cologne, Institute of Biochemistry/Centre for Preventive Doping Research, Cologne, Germany
| | - Mario Thevis
- German Sport University Cologne, Institute of Biochemistry/Centre for Preventive Doping Research, Cologne, Germany
| | | | - Benjamin D. Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
30
|
Tymko MM, Tremblay JC, Bailey DM, Green DJ, Ainslie PN. The impact of hypoxaemia on vascular function in lowlanders and high altitude indigenous populations. J Physiol 2019; 597:5759-5776. [PMID: 31677355 DOI: 10.1113/jp277191] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure to hypoxia elicits widespread physiological responses that are critical for successful acclimatization; however, these responses may induce apparent maladaptive consequences. For example, recent studies conducted in both the laboratory and the field (e.g. at high altitude) have demonstrated that endothelial function is reduced in hypoxia. Herein, we review the several proposed mechanism(s) pertaining to the observed reduction in endothelial function in hypoxia including: (i) changes in blood flow patterns (i.e. shear stress), (ii) increased inflammation and production of reactive oxygen species (i.e. oxidative stress), (iii) heightened sympathetic nerve activity, and (iv) increased red blood cell concentration and mass leading to elevated nitric oxide scavenging. Although some of these mechanism(s) have been examined in lowlanders, less in known about endothelial function in indigenous populations that have chronically adapted to environmental hypoxia for millennia (e.g. the Peruvian, Tibetan and Ethiopian highlanders). There is some evidence indicating that healthy Tibetan and Peruvian (i.e. Andean) highlanders have preserved endothelial function at high altitude, but less is known about the Ethiopian highlanders. However, Andean highlanders suffering from chronic mountain sickness, which is characterized by an excessive production of red blood cells, have markedly reduced endothelial function. This review will provide a framework and mechanistic model for vascular endothelial adaptation to hypoxia in lowlanders and highlanders. Elucidating the pathways responsible for vascular adaption/maladaptation to hypoxia has potential clinical implications for disease featuring low oxygen delivery (e.g. heart failure, pulmonary disease). In addition, a greater understanding of vascular function at high altitude will clinically benefit the global estimated 85 million high altitude residents.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
31
|
Childebayeva A, Harman T, Weinstein J, Goodrich JM, Dolinoy DC, Day TA, Bigham AW, Brutsaert TD. DNA Methylation Changes Are Associated With an Incremental Ascent to High Altitude. Front Genet 2019; 10:1062. [PMID: 31737045 PMCID: PMC6828981 DOI: 10.3389/fgene.2019.01062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and nongenetic factors are involved in the individual ability to physiologically acclimatize to high-altitude hypoxia through processes that include increased heart rate and ventilation. High-altitude acclimatization is thought to have a genetic component, yet it is unclear if other factors, such as epigenetic gene regulation, are involved in acclimatization to high-altitude hypoxia in nonacclimatized individuals. We collected saliva samples from a group of healthy adults of European ancestry (n = 21) in Kathmandu (1,400 m; baseline) and three altitudes during a trek to the Everest Base Camp: Namche (3,440 m; day 3), Pheriche (4,240 m; day 7), and Gorak Shep (5,160 m; day 10). We used quantitative bisulfite pyrosequencing to determine changes in DNA methylation, a well-studied epigenetic marker, in LINE-1, EPAS1, EPO, PPARa, and RXRa. We found significantly lower DNA methylation between baseline (1,400 m) and high altitudes in LINE-1, EPO (at 4,240 m only), and RXRa. We found increased methylation in EPAS1 (at 4,240 m only) and PPARa. We also found positive associations between EPO methylation and systolic blood pressure and RXRa methylation and hemoglobin. Our results show that incremental exposure to hypoxia can affect the epigenome. Changes to the epigenome, in turn, could underlie the process of altitude acclimatization.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Taylor Harman
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Julien Weinstein
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Abigail W Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Anthropology, University of California, Los Angeles, CA, United States
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
32
|
Elia A, Barlow MJ, Deighton K, Wilson OJ, O'Hara JP. Erythropoietic responses to a series of repeated maximal dynamic and static apnoeas in elite and non-breath-hold divers. Eur J Appl Physiol 2019; 119:2557-2565. [PMID: 31563983 PMCID: PMC6858396 DOI: 10.1007/s00421-019-04235-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
Purpose Serum erythropoietin (EPO) concentration is increased following static apnoea-induced hypoxia. However, the acute erythropoietic responses to a series of dynamic apnoeas in non-divers (ND) or elite breath-hold divers (EBHD) are unknown. Methods Participants were stratified into EBHD (n = 8), ND (n = 10) and control (n = 8) groups. On two separate occasions, EBHD and ND performed a series of five maximal dynamic apnoeas (DYN) or two sets of five maximal static apnoeas (STA). Control performed a static eupnoeic (STE) protocol to control against any effects of water immersion and diurnal variation on EPO. Peripheral oxygen saturation (SpO2) levels were monitored up to 30 s post each maximal effort. Blood samples were collected at 30, 90, and 180 min after each protocol for EPO, haemoglobin and haematocrit concentrations. Results No between group differences were observed at baseline (p > 0.05). For EBHD and ND, mean end-apnoea SpO2 was lower in DYN (EBHD, 62 ± 10%, p = 0.024; ND, 85 ± 6%; p = 0.020) than STA (EBHD, 76 ± 7%; ND, 96 ± 1%) and control (98 ± 1%) protocols. EBHD attained lower end-apnoeic SpO2 during DYN and STA than ND (p < 0.001). Serum EPO increased from baseline following the DYN protocol in EBHD only (EBHD, p < 0.001; ND, p = 0.622). EBHD EPO increased from baseline (6.85 ± 0.9mlU/mL) by 60% at 30 min (10.82 ± 2.5mlU/mL, p = 0.017) and 63% at 180 min (10.87 ± 2.1mlU/mL, p = 0.024). Serum EPO did not change after the STA (EBHD, p = 0.534; ND, p = 0.850) and STE (p = 0.056) protocols. There was a significant negative correlation (r = − 0.49, p = 0.003) between end-apnoeic SpO2 and peak post-apnoeic serum EPO concentrations. Conclusions The novel findings demonstrate that circulating EPO is only increased after DYN in EBHD. This may relate to the greater hypoxemia achieved by EBHD during the DYN.
Collapse
Affiliation(s)
- Antonis Elia
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK. .,Division of Environmental Physiology, School of Chemistry, Bioengineering and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Matthew J Barlow
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - Kevin Deighton
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - Oliver J Wilson
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| |
Collapse
|
33
|
Honigman B, Valley M, Lowenstein SR. Editorial Comment on: Effect of Altitude on Veteran Suicide Rates by Sabic et al. (From: Sabic H, Kious B, Boxer D, Fitzgerald C, Riley C, Scholl L, McGlade E, Yurgelun-Todd D, Renshaw PF, Kondo DG. High Alt Med Biol 2019;20:171-177; DOI: 10.1089/ham.2018.0130). High Alt Med Biol 2019; 20:178-180. [PMID: 31233383 DOI: 10.1089/ham.2019.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Benjamin Honigman
- 1 Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Steven R Lowenstein
- 1 Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
34
|
Sutehall S, Muniz-Pardos B, Lima G, Wang G, Malinsky FR, Bosch A, Zelenkova I, Tanisawa K, Pigozzi F, Borrione P, Pitsiladis Y. Altitude Training and Recombinant Human Erythropoietin: Considerations for Doping Detection. Curr Sports Med Rep 2019; 18:97-104. [PMID: 30969231 DOI: 10.1249/jsr.0000000000000577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The benefit of training at altitude to enhance exercise performance remains equivocal although the most widely accepted approach is one where the athletes live and perform lower-intensity running at approximately 2300 m with high-intensity training at approximately 1250 m. The idea is that this method maintains maximal augmentations in total hemoglobin mass while reducing the performance impairment of high-intensity sessions performed at moderate altitude and thus preventing any detraining that can occur when athletes live and train at moderate altitude. This training regimen, however, is not universally accepted and some argue that the performance enhancement is due to placebo and training camp effects. Altitude training may affect an athlete's hematological parameters in ways similar to those observed following blood doping. Current methods of detection appear insufficient to differentiate between altitude training and blood doping making the interpretation of an athlete's biological passport difficult. Further research is required to determine the optimal method for altitude training and to enhance current detection methods to be able to differentiate better blood doping and altitude exposure.
Collapse
Affiliation(s)
- Shaun Sutehall
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | - Borja Muniz-Pardos
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, SPAIN
| | - Giscard Lima
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM.,Centre for Exercise Science and Sports Medicine, University of Rome "Foro Italico", Rome, ITALY
| | - Guan Wang
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM
| | | | - Andrew Bosch
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, SOUTH AFRICA
| | | | - Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, JAPAN
| | - Fabio Pigozzi
- Centre for Exercise Science and Sports Medicine, University of Rome "Foro Italico", Rome, ITALY
| | - Paolo Borrione
- Centre for Exercise Science and Sports Medicine, University of Rome "Foro Italico", Rome, ITALY
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UNITED KINGDOM
| |
Collapse
|
35
|
Törpel A, Peter B, Hamacher D, Schega L. Dose-response relationship of intermittent normobaric hypoxia to stimulate erythropoietin in the context of health promotion in young and old people. Eur J Appl Physiol 2019; 119:1065-1074. [PMID: 30756167 DOI: 10.1007/s00421-019-04096-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Erythropoietin (EPO) has multifactorial positive effects on health and can be increased by intermittent normobaric hypoxia (IH). Recommendations about the intensity and duration of IH to increase EPO exist, but only for young people. Therefore, the aim of the study was to investigate the dose-response relationship regarding the duration of hypoxia until an EPO expression and the amount of EPO expression in old vs. young cohorts. METHODS 56 young and 67 old people were assigned to two separate investigations with identical study designs (3-h hypoxic exposure) but with different approaches to adjust the intensity of hypoxia: (i) the fraction of inspired oxygen (FiO2) was 13.5%; (ii) the FiO2 was individually adjusted to an oxygen saturation of the blood of 80%. Age groups were randomly assigned to a hypoxia or control group (normoxic exposure). EPO was assessed before, during (90 and 180 min), and 30 min after the hypoxia. RESULTS EPO increased significantly after 180 min in both cohorts and in both investigations [old: (i) + 16%, p = 0.007 and (ii) + 14%, p < 0.001; young: (i) + 27%, p < 0.001 and (ii) + 45%, p = 0.007]. In investigation (i), EPO expression was significantly higher in young than in old people after 180 min of hypoxic exposure (p = 0.024) and 30 min afterwards (p = 0.001). CONCLUSION The results indicate that after a normobaric hypoxia of 180 min, EPO increases significantly in both age cohorts. The amount of EPO expression is significantly higher in young people during the same internal intensity of hypoxia than in old people.
Collapse
Affiliation(s)
- Alexander Törpel
- Institute III: Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104, Magdeburg, Germany.
| | - Beate Peter
- Institute III: Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104, Magdeburg, Germany
| | - Dennis Hamacher
- Institute III: Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104, Magdeburg, Germany
| | - Lutz Schega
- Institute III: Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104, Magdeburg, Germany
| |
Collapse
|
36
|
박훈영, 임기원, 김지수. Exercise physiology basis and necessity of hypoxic training to improve exercise performance in elite athletes. ACTA ACUST UNITED AC 2018. [DOI: 10.24985/kjss.2018.29.4.737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Viscor G, Torrella JR, Corral L, Ricart A, Javierre C, Pages T, Ventura JL. Physiological and Biological Responses to Short-Term Intermittent Hypobaric Hypoxia Exposure: From Sports and Mountain Medicine to New Biomedical Applications. Front Physiol 2018; 9:814. [PMID: 30038574 PMCID: PMC6046402 DOI: 10.3389/fphys.2018.00814] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the altitude acclimatization responses elicited by short-term intermittent exposure to hypoxia have been subject to renewed attention. The main goal of short-term intermittent hypobaric hypoxia exposure programs was originally to improve the aerobic capacity of athletes or to accelerate the altitude acclimatization response in alpinists, since such programs induce an increase in erythrocyte mass. Several model programs of intermittent exposure to hypoxia have presented efficiency with respect to this goal, without any of the inconveniences or negative consequences associated with permanent stays at moderate or high altitudes. Artificial intermittent exposure to normobaric hypoxia systems have seen a rapid rise in popularity among recreational and professional athletes, not only due to their unbeatable cost/efficiency ratio, but also because they help prevent common inconveniences associated with high-altitude stays such as social isolation, nutritional limitations, and other minor health and comfort-related annoyances. Today, intermittent exposure to hypobaric hypoxia is known to elicit other physiological response types in several organs and body systems. These responses range from alterations in the ventilatory pattern to modulation of the mitochondrial function. The central role played by hypoxia-inducible factor (HIF) in activating a signaling molecular cascade after hypoxia exposure is well known. Among these targets, several growth factors that upregulate the capillary bed by inducing angiogenesis and promoting oxidative metabolism merit special attention. Applying intermittent hypobaric hypoxia to promote the action of some molecules, such as angiogenic factors, could improve repair and recovery in many tissue types. This article uses a comprehensive approach to examine data obtained in recent years. We consider evidence collected from different tissues, including myocardial capillarization, skeletal muscle fiber types and fiber size changes induced by intermittent hypoxia exposure, and discuss the evidence that points to beneficial interventions in applied fields such as sport science. Short-term intermittent hypoxia may not only be useful for healthy people, but could also be considered a promising tool to be applied, with due caution, to some pathophysiological states.
Collapse
Affiliation(s)
- Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joan R. Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Luisa Corral
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Ricart
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Casimiro Javierre
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Pages
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Josep L. Ventura
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
38
|
Reno E, Brown TL, Betz ME, Allen MH, Hoffecker L, Reitinger J, Roach R, Honigman B. Suicide and High Altitude: An Integrative Review. High Alt Med Biol 2018; 19:99-108. [DOI: 10.1089/ham.2016.0131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Elaine Reno
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Talia L. Brown
- Boulder County Public Health, Colorado School of Public Health, Aurora, Colorado
| | - Marian E. Betz
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael H. Allen
- Johnson Depression Center, Department of Psychiatry and Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Lilian Hoffecker
- Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeremy Reitinger
- Altitude Research Center, Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Robert Roach
- Altitude Research Center, Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Benjamin Honigman
- Altitude Research Center, Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
39
|
Böttcher M, Lentini S, Arens ER, Kaiser A, van der Mey D, Thuss U, Kubitza D, Wensing G. First-in-man-proof of concept study with molidustat: a novel selective oral HIF-prolyl hydroxylase inhibitor for the treatment of renal anaemia. Br J Clin Pharmacol 2018; 84:1557-1565. [PMID: 29575006 DOI: 10.1111/bcp.13584] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS Insufficient erythropoietin (EPO) synthesis is a relevant cause of renal anaemia in patients with chronic kidney disease. Molidustat, a selective hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitor, increases endogenous EPO levels dose dependently in preclinical models. We examined the pharmacokinetics, safety, tolerability and effect on EPO levels of single oral doses of molidustat in healthy male volunteers. METHODS This was a single-centre, randomized, single-blind, placebo-controlled, group-comparison, dose-escalation study. Molidustat was administered at doses of 5, 12.5, 25, 37.5 or 50 mg as a polyethylene glycol-based solution. RESULTS In total, 45 volunteers received molidustat and 14 received placebo. Molidustat was absorbed rapidly, and the mean maximum plasma concentration and area under the concentration-time curve increased dose dependently. The mean terminal half-life was 4.64-10.40 h. A significant increase in endogenous EPO was observed following single oral doses of molidustat of 12.5 mg and above. Geometric mean peak EPO levels were 14.8 IU l-1 (90% confidence interval 13.0, 16.9) for volunteers who received placebo and 39.8 IU l-1 (90% confidence interval: 29.4, 53.8) for those who received molidustat 50 mg. The time course of EPO levels resembled the normal diurnal variation in EPO. Maximum EPO levels were observed approximately 12 h postdose and returned to baseline after approximately 24-48 h. All doses of molidustat were well tolerated and there were no significant changes in vital signs or laboratory safety parameters. CONCLUSIONS Oral administration of molidustat to healthy volunteers elicited a dose-dependent increase in endogenous EPO. These results support the ongoing development of molidustat as a potential new treatment for patients with renal anaemia.
Collapse
Affiliation(s)
- M Böttcher
- Clinical Sciences, Clinical Pharmacology Cardiovascular/Hematology, Global Drug Discovery, Bayer AG, Wuppertal, Germany
| | - S Lentini
- Clinical Sciences, Clinical Pharmacology Cardiovascular/Hematology, Global Drug Discovery, Bayer AG, Wuppertal, Germany
| | - E R Arens
- Clinical Sciences, Clinical Pharmacology Cardiovascular/Hematology, Global Drug Discovery, Bayer AG, Wuppertal, Germany
| | - A Kaiser
- Research and Clinical Science Statistics, Clinical Pharmacology Cardiovascular/Hematology, Global Drug Discovery, Bayer AG, Berlin, Germany
| | - D van der Mey
- Clinical Sciences, Clinical Pharmacology Cardiovascular/Hematology, Global Drug Discovery, Bayer AG, Wuppertal, Germany
| | - U Thuss
- Drug Metabolism and Pharmacokinetics, Global Early Development, Global Drug Discovery, Bayer AG, Wuppertal, Germany
| | - D Kubitza
- Clinical Sciences, Clinical Pharmacology Cardiovascular/Hematology, Global Drug Discovery, Bayer AG, Wuppertal, Germany
| | - G Wensing
- Clinical Sciences, Clinical Pharmacology Cardiovascular/Hematology, Global Drug Discovery, Bayer AG, Wuppertal, Germany
| |
Collapse
|
40
|
Płoszczyca K, Langfort J, Czuba M. The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Front Physiol 2018; 9:375. [PMID: 29695978 PMCID: PMC5904371 DOI: 10.3389/fphys.2018.00375] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/27/2018] [Indexed: 02/02/2023] Open
Abstract
Background: One of the goals of altitude training is to increase blood oxygen-carrying capacity in order to improve sea-level endurance performance in athletes. The elevated erythropoietin (EPO) production in hypoxia is a key factor in the achievement of enhanced hematological variables. The level of the EPO increase and acceleration of erythropoiesis depend on the duration of exposure and degree of hypoxia. Furthermore, many other factors may affect the hematological response to altitude training. Aim: The purpose of this narrative review was to: (1) analyze the kinetics of EPO and hematological variables during and after altitude training; (2) summarize the current state of knowledge about the possible causes of individual or cohort differences in EPO and hematological response to altitude training; (3) formulate practical guidelines for athletes to improve the efficiency of altitude training. Methods: A narrative review was performed following an electronic search of the databases PubMed/MEDLINE and SPORTDiscus via EBSCO for all English-language articles published between 1997 and 2017. Results: Complete unification of results from studies on EPO kinetics was difficult due to different time and frequency of blood sampling by different researchers during and after altitude training, but the data presented in the reviewed literature allowed us to detect certain trends. The results of the reviewed studies were divergent and indicated either increase or no change of hematological variables following altitude training. Factors that may affect the hematological response to altitude training include hypoxic dose, training content, training background of athletes, and/or individual variability of EPO production. Conclusions: Despite the potential benefits arising from altitude training, its effectiveness in improving hematological variables is still debatable. Further research and better understanding of factors influencing the response to altitude, as well as factors affecting the suitable measurement and interpretation of study results, are needed.
Collapse
Affiliation(s)
- Kamila Płoszczyca
- Department of Sports Training, Academy of Physical Education of Katowice, Katowice, Poland
| | - Józef Langfort
- Department of Sports Training, Academy of Physical Education of Katowice, Katowice, Poland
| | - Miłosz Czuba
- Department of Physiology, Institute of Sport, Warsaw, Poland
| |
Collapse
|
41
|
DiPasquale DM. Moving the Debate Forward: Are Normobaric and Hypobaric Hypoxia Interchangeable in the Study of Altitude? Curr Sports Med Rep 2018; 16:68-70. [PMID: 28282350 DOI: 10.1249/jsr.0000000000000337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Dana M DiPasquale
- Biomedical Department, Navy Experimental Diving Unit, Panama City, FL
| |
Collapse
|
42
|
Robach P, Hansen J, Pichon A, Meinild Lundby AK, Dandanell S, Slettaløkken Falch G, Hammarström D, Pesta DH, Siebenmann C, Keiser S, Kérivel P, Whist JE, Rønnestad BR, Lundby C. Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers. Scand J Med Sci Sports 2018; 28:1636-1652. [DOI: 10.1111/sms.13075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 01/16/2023]
Affiliation(s)
- P. Robach
- Ecole Nationale des Sports de Montagne; site de l'Ecole Nationale de Ski et d'Alpinisme; Chamonix France
- HP2, Université Grenoble Alpes; Grenoble France
| | - J. Hansen
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - A. Pichon
- Laboratory Mobility, Aging & Exercise (MOVE) - EA 6314; Faculty of Sport Sciences; University of Poitiers; Poitiers France
| | - A.-K. Meinild Lundby
- The Centre for Physical Activity Research; University Hospital of Copenhagen; Copenhagen Denmark
| | - S. Dandanell
- Center for Healthy Aging; Department of Biomedical Sciences; XLab; University of Copenhagen; Copenhagen Denmark
- Department for Physiotherapy and Occupational Therapy; Metropolitan University College; Copenhagen Denmark
| | | | - D. Hammarström
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - D. H. Pesta
- Department of Sport Science; Faculty for Sports Science and Psychology; University of Innsbruck; Innsbruck Austria
- Department of Visceral, Transplant, and Thoracic Surgery; D. Swarovski Research Laboratory; Medical University of Innsbruck; Innsbruck Austria
| | - C. Siebenmann
- The Centre for Physical Activity Research; University Hospital of Copenhagen; Copenhagen Denmark
| | - S. Keiser
- Institute of Physiology; University of Zürich; Zürich Switzerland
| | - P. Kérivel
- Ecole Nationale des Sports de Montagne; site de l'Ecole Nationale de Ski et d'Alpinisme; Chamonix France
| | - J. E. Whist
- Innlandet Hospital Trust; Lillehammer Norway
| | - B. R. Rønnestad
- Inland Norway University of Applied Sciences; Lillehammer Norway
| | - C. Lundby
- The Centre for Physical Activity Research; University Hospital of Copenhagen; Copenhagen Denmark
| |
Collapse
|
43
|
Study of acute hypoxia markers in healthy subjects: Utility in post-crash investigation. Med J Armed Forces India 2018; 73:338-343. [PMID: 29386707 DOI: 10.1016/j.mjafi.2017.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/24/2017] [Indexed: 11/22/2022] Open
Abstract
Background Lactic acid is being routinely used as a marker of hypoxia in aircrash investigation. Since lactic acid estimation as a marker of hypoxia in postmortem samples for aircrash investigation is prone to many interfering factors, like the postmortem production and hemolysis. A study was carried out to evaluate other hypoxia markers other than lactic acid which could be later added as markers of hypoxia in postmortem investigations of aircraft accidents. Methods 25 healthy males of age 20-40 yrs volunteered participants were subjected to an simulated altitude of 15,000 ft for 30 min and the mean plasma concentration of Hypoxia Inducing Factor 1α (HIF 1α), Erythropoietin (EPO), Vascular Endothelial Growth Factor (VEGF) and lactic acid (LA) were analyzed from their venous blood sample collected at 4 intervals viz. Ground level pre exposure, 15,000 ft at 15 min, 15,000 ft at 30 min and Ground level 3 h post exposure. Results Statistical analysis revealed significant increase in mean plasma concentration of lactic acid, HIF-1α and EPO on exposure for duration of 15 min and 30 min at an altitude of 15,000 ft. Conclusion Our study reveals that HIF-1α and EPO are sensitive to hypoxia exposure as compared to lactic acid and can be used in association with LA as hypoxia markers. However stability of these proteins in postmortem conditions needs to be studied and the potential for estimation of mRNA transcripts of HIF-1α and EPO, which would be stable in postmortem conditions, can be explored.
Collapse
|
44
|
Beck J, Henschel C, Chou J, Lin A, Del Balzo U. Evaluation of the Carcinogenic Potential of Roxadustat (FG-4592), a Small Molecule Inhibitor of Hypoxia-Inducible Factor Prolyl Hydroxylase in CD-1 Mice and Sprague Dawley Rats. Int J Toxicol 2017; 36:427-439. [PMID: 29153032 DOI: 10.1177/1091581817737232] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The carcinogenic potential of roxadustat (FG-4592), a novel orally active, heterocyclic small molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH) enzymes in clinical development for treatment of anemia, was evaluated in CD-1 mice and Sprague Dawley rats. Inhibition of HIF-PH by roxadustat leads to a rapid increase in cytoplasmic HIF-α concentrations, followed by translocation of HIF-α to the nucleus and upregulation of HIF-responsive genes, including erythropoietin. Roxadustat was dosed by oral gavage 3 times weekly (TIW) for up to 104 weeks in mice at 0, 15, 30, and 60 mg/kg and in rats at 0, 2.5, 5, and 10 mg/kg. Treatment-associated changes in hematology parameters were consistent with the pharmacologic activity of roxadustat and included elevations in hematocrit in mice at 30 and 60 mg/kg TIW and elevations in erythrocyte count, hemoglobin, hematocrit, and red cell distribution width in rats at 10 mg/kg TIW. No increase in mortality or neoplastic effects compared with vehicle controls was observed after roxadustat treatment in either species. No treatment-related nonneoplastic findings were observed in mice, whereas nonneoplastic microscopic findings in rats were limited to atrial/aortic thromboses at 10 mg/kg TIW males and bone marrow hypercellularity in all treated male and female groups, consistent with the pharmacology of roxadustat. In conclusion, roxadustat administered by oral gavage to mice and rats TIW for up to 104 weeks resulted in dose-dependent exposure and hematologic effects with no effect on survival or development of neoplastic lesions at up to 60 mg/kg in mice and up to 10 mg/kg in rats.
Collapse
Affiliation(s)
| | | | | | - Al Lin
- 1 FibroGen, Inc, San Francisco, CA, USA
| | | |
Collapse
|
45
|
Rendell RA, Prout J, Costello JT, Massey HC, Tipton MJ, Young JS, Corbett J. Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance. Am J Physiol Regul Integr Comp Physiol 2017; 313:R191-R201. [DOI: 10.1152/ajpregu.00103.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022]
Abstract
Adaptations to heat and hypoxia are typically studied in isolation but are often encountered in combination. Whether the adaptive response to multiple stressors affords the same response as when examined in isolation is unclear. We examined 1) the influence of overnight moderate normobaric hypoxia on the time course and magnitude of adaptation to daily heat exposure and 2) whether heat acclimation (HA) was ergogenic and whether this was influenced by an additional hypoxic stimulus. Eight males [V̇o2max = 58.5 (8.3) ml·kg−1·min−1] undertook two 11-day HA programs (balanced-crossover design), once with overnight normobaric hypoxia (HAHyp): 8 (1) h per night for 10 nights [[Formula: see text] = 0.156; SpO2 = 91 (2)%] and once without (HACon). Days 1, 6, and 11 were exercise-heat stress tests [HST (40°C, 50% relative humidity, RH)]; days 2–5 and 7–10 were isothermal strain [target rectal temperature (Tre) ~38.5°C], exercise-heat sessions. A graded exercise test and 30-min cycle trial were undertaken pre-, post-, and 14 days after HA in temperate normoxia (22°C, 55% RH; FIO2 = 0.209). HA was evident on day 6 (e.g., reduced Tre, mean skin temperature (T̄sk), heart rate, and sweat [Na+], P < 0.05) with additional adaptations on day 11 (further reduced T̄sk and heart rate). HA increased plasma volume [+5.9 (7.3)%] and erythropoietin concentration [+1.8 (2.4) mIU/ml]; total hemoglobin mass was unchanged. Peak power output [+12 (20) W], lactate threshold [+15 (18) W] and work done [+12 (20) kJ] increased following HA. The additional hypoxic stressor did not affect these adaptations. In conclusion, a separate moderate overnight normobaric hypoxic stimulus does not affect the time course or magnitude of HA. Performance may be improved in temperate normoxia following HA, but this is unaffected by an additional hypoxic stressor.
Collapse
Affiliation(s)
- Rebecca A. Rendell
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jamie Prout
- School of Physical Education, Sport and Exercise Science, Division of Sciences, University of Otago, Dunedin, New Zealand; and
| | - Joseph T. Costello
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Heather C. Massey
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Michael J. Tipton
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - John S. Young
- School of Pharmacy and Biomedical Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jo Corbett
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
46
|
Siebenmann C, Robach P, Lundby C. Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol (1985) 2017; 123:957-966. [PMID: 28572493 DOI: 10.1152/japplphysiol.00118.2017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Humans ascending to high altitude (HA) experience a reduction in arterial oxyhemoglobin saturation and, as a result, arterial O2 content ([Formula: see text]). As HA exposure extends, this reduction in [Formula: see text] is counteracted by an increase in arterial hemoglobin concentration. Initially, hemoconcentration is exclusively related to a reduction in plasma volume (PV), whereas after several weeks a progressive expansion in total red blood cell volume (RCV) contributes, although often to a modest extent. Since the decrease in PV is more rapid and usually more pronounced than the expansion in RCV, at least during the first weeks of exposure, a reduction in circulating blood volume is common at HA. Although the regulation of hematological responses to HA has been investigated for decades, it remains incompletely understood. This is not only related to the large number of mechanisms that could be involved and the complexity of their interplay but also to the difficulty of conducting comprehensive experiments in the often secluded HA environment. In this review, we present our understanding of the kinetics, the mechanisms and the physiological relevance of the HA-induced reduction in PV and expansion in RCV.
Collapse
Affiliation(s)
- Christoph Siebenmann
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Paul Robach
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Carsten Lundby
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
47
|
De Smet S, van Herpt P, D'Hulst G, Van Thienen R, Van Leemputte M, Hespel P. Physiological Adaptations to Hypoxic vs. Normoxic Training during Intermittent Living High. Front Physiol 2017; 8:347. [PMID: 28620311 PMCID: PMC5449743 DOI: 10.3389/fphys.2017.00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
In the setting of “living high,” it is unclear whether high-intensity interval training (HIIT) should be performed “low” or “high” to stimulate muscular and performance adaptations. Therefore, 10 physically active males participated in a 5-week “live high-train low or high” program (TR), whilst eight subjects were not engaged in any altitude or training intervention (CON). Five days per week (~15.5 h per day), TR was exposed to normobaric hypoxia simulating progressively increasing altitude of ~2,000–3,250 m. Three times per week, TR performed HIIT, administered as unilateral knee-extension training, with one leg in normobaric hypoxia (~4,300 m; TRHYP) and with the other leg in normoxia (TRNOR). “Living high” elicited a consistent elevation in serum erythropoietin concentrations which adequately predicted the increase in hemoglobin mass (r = 0.78, P < 0.05; TR: +2.6%, P < 0.05; CON: −0.7%, P > 0.05). Muscle oxygenation during training was lower in TRHYP vs. TRNOR (P < 0.05). Muscle homogenate buffering capacity and pH-regulating protein abundance were similar between pretest and posttest. Oscillations in muscle blood volume during repeated sprints, as estimated by oscillations in NIRS-derived tHb, increased from pretest to posttest in TRHYP (~80%, P < 0.01) but not in TRNOR (~50%, P = 0.08). Muscle capillarity (~15%) as well as repeated-sprint ability (~8%) and 3-min maximal performance (~10–15%) increased similarly in both legs (P < 0.05). Maximal isometric strength increased in TRHYP (~8%, P < 0.05) but not in TRNOR (~4%, P > 0.05). In conclusion, muscular and performance adaptations were largely similar following normoxic vs. hypoxic HIIT. However, hypoxic HIIT stimulated adaptations in isometric strength and muscle perfusion during intermittent sprinting.
Collapse
Affiliation(s)
- Stefan De Smet
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Paul van Herpt
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Gommaar D'Hulst
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Ruud Van Thienen
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Marc Van Leemputte
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Peter Hespel
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium.,Athletic Performance Center, Bakala Academy, KU LeuvenLeuven, Belgium
| |
Collapse
|
48
|
Córdova Martínez A, Pascual Fernández J, Fernandez Lázaro D, Alvarez Mon M. Muscular and heart adaptations of execise in hypoxia. Is training in slow hypoxy healthy? Med Clin (Barc) 2017; 148:469-474. [PMID: 28341369 DOI: 10.1016/j.medcli.2017.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Alfredo Córdova Martínez
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Fisioterapia, Campus Universitario de Soria, Universidad de Valladolid, Soria, España.
| | | | - Diego Fernandez Lázaro
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Fisioterapia, Campus Universitario de Soria, Universidad de Valladolid, Soria, España
| | - Melchor Alvarez Mon
- Departamento de Medicina y Especialidades Médicas, Hospital Universitario Príncipe de Asturias, Universidad de Alcalá, Alcalá de Henares, Madrid, España
| |
Collapse
|
49
|
Constantini K, Wilhite DP, Chapman RF. A Clinician Guide to Altitude Training for Optimal Endurance Exercise Performance at Sea Level. High Alt Med Biol 2017; 18:93-101. [PMID: 28453305 DOI: 10.1089/ham.2017.0020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Constantini, Keren, Daniel P. Wilhite, and Robert F. Chapman. A clinician guide to altitude training for optimal endurance exercise performance at sea level. High Alt Med Biol. 18:93-101, 2017.-For well over 50 years, endurance athletes have been utilizing altitude training in an effort to enhance performance in sea level competition. This brief review will offer the clinician a series of evidence-based best-practice guidelines on prealtitude and altitude training considerations, which can ultimately maximize performance improvement outcomes.
Collapse
Affiliation(s)
- Keren Constantini
- HH Morris Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| | - Daniel P Wilhite
- HH Morris Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| | - Robert F Chapman
- HH Morris Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| |
Collapse
|
50
|
Leone RJ, Lalande S. Intermittent hypoxia as a means to improve aerobic capacity in type 2 diabetes. Med Hypotheses 2017; 100:59-63. [PMID: 28236850 DOI: 10.1016/j.mehy.2017.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/15/2016] [Accepted: 01/21/2017] [Indexed: 11/18/2022]
Abstract
Physical inactivity and a low maximal aerobic capacity (VO2max) strongly predict morbidity and mortality in patients with type 2 diabetes (T2D). Patients with T2D have a reduced VO2max when compared with healthy individuals of similar age, weight, and physical activity levels, and this lower aerobic capacity is usually attributed to a reduced oxygen delivery to the working muscles. The oxygen carrying capacity of the blood, as well as increases in cardiac output and blood flow, contribute to the delivery of oxygen to the active muscles during exercise. Hemoglobin mass (Hb mass), a key determinant of oxygen carrying capacity, is suggested to be reduced in patients with T2D following the observation of a lower blood volume (BV) in combination with normal hematocrit levels in this population. Therefore, a lower Hb mass, in addition to a reported lower BV and impaired cardiovascular response to exercise, likely contributes to the reduced oxygen delivery and VO2max in patients with T2D. While exercise training increases Hb mass, BV, and consequently VO2max, the majority of patients with T2D are not physically active, highlighting the need for alternative methods to improve VO2max in this population. Exposure to hypoxia triggers the release of erythropoietin, the hormone regulating red blood cell production, which increases Hb mass and consequently BV. Exposure to mild intermittent hypoxia (IH), characterized by few and short episodes of hypoxia at a fraction of inspired oxygen ranging between 10 and 14% interspersed with cycles of normoxia, increased red blood cell volume, Hb mass, and plasma volume in patients with coronary artery disease or chronic obstructive pulmonary disease, which resulted in an improved VO2max in both populations. We hypothesize that 12 exposures to mild IH over a period of 4weeks will increase Hb mass, BV, cardiac function, and VO2max in patients with T2D. Therefore, exposures to mild IH may increase oxygen delivery and VO2max without the need to perform exercise in patients with T2D.
Collapse
Affiliation(s)
- R J Leone
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH, USA.
| | - S Lalande
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| |
Collapse
|