1
|
Lavin KM, O'Bryan SM, Pathak KV, Garcia-Mansfield K, Graham ZA, McAdam JS, Drummer DJ, Bell MB, Kelley CJ, Lixandrão ME, Peoples B, Seay RS, Torres AR, Reiman R, Alsop E, Hutchins E, Bonfitto A, Antone J, Palade J, Van Keuren-Jensen K, Huentelman MJ, Pirrotte P, Broderick T, Bamman MM. Divergent multiomic acute exercise responses reveal the impact of sex as a biological variable. Physiol Genomics 2025; 57:321-342. [PMID: 40014011 DOI: 10.1152/physiolgenomics.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
The majority of exercise physiology research has been conducted in males, resulting in a skewed biological representation of how exercise impacts the physiological system. Extrapolating male-centric physiological findings to females is not universally appropriate and may even be detrimental. Thus, addressing this imbalance and taking into consideration sex as a biological variable is mandatory for optimization of precision exercise interventions and/or regimens. Our present analysis focused on establishing multiomic profiles in young, exercise-naïve males (n = 23) and females (n = 17) at rest and following acute exercise. Sex differences were characterized at baseline and following exercise using skeletal muscle and extracellular vesicle transcriptomics, whole blood methylomics, and serum metabolomics. Sex-by-time analysis of the acute exercise response revealed notable overlap, and divergent molecular responses between males and females. An exploratory comparison of two combined exercise regimens [high-intensity tactical training (HITT) and traditional (TRAD)] was then performed using singular value decomposition, revealing latent data structures that suggest a complex dose-by-sex interaction response to exercise. These findings lay the groundwork for an understanding of key differences in responses to acute exercise exposure between sexes. This may be leveraged in designing optimal training strategies, understanding common and divergent molecular interplay guiding exercise responses, and elucidating the role of sex hormones and/or other sex-specific attributes in responses to acute and chronic exercise.NEW & NOTEWORTHY This study examined methylomics, transcriptomics, and metabolomics in circulation and/or skeletal muscle of young, healthy, exercise-naïve males and females before and after exposure to either traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found an overlapping yet considerably sex-divergent response in the molecular mechanisms activated by exercise. These findings may provide insight into optimal training strategies for adaptation when considering sex as a biological variable.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Samia M O'Bryan
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Khyatiben V Pathak
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Krystine Garcia-Mansfield
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Zachary A Graham
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
- Birmingham VA Health Care System, Birmingham, Alabama, United States
| | - Jeremy S McAdam
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Devin J Drummer
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Margaret B Bell
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Christian J Kelley
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Manoel E Lixandrão
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Brandon Peoples
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
| | - Regina S Seay
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| | - Anakaren R Torres
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Rebecca Reiman
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Eric Alsop
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Elizabeth Hutchins
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Anna Bonfitto
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Jerry Antone
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Joanna Palade
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | | | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Patrick Pirrotte
- Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, United States
| | - Timothy Broderick
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Marcas M Bamman
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Alabama, United States
- Departments of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Alabama, United States
| |
Collapse
|
2
|
Caredio D, Koderman M, Frontzek KJ, Sorce S, Nuvolone M, Bremer J, Mariutti G, Schwarz P, Madrigal L, Mitrovic M, Sellitto S, Streichenberger N, Scheckel C, Aguzzi A. Prion diseases disrupt glutamate/glutamine metabolism in skeletal muscle. PLoS Pathog 2024; 20:e1012552. [PMID: 39259763 PMCID: PMC11419395 DOI: 10.1371/journal.ppat.1012552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
In prion diseases (PrDs), aggregates of misfolded prion protein (PrPSc) accumulate not only in the brain but also in extraneural organs. This raises the question whether prion-specific pathologies arise also extraneurally. Here we sequenced mRNA transcripts in skeletal muscle, spleen and blood of prion-inoculated mice at eight timepoints during disease progression. We detected gene-expression changes in all three organs, with skeletal muscle showing the most consistent alterations. The glutamate-ammonia ligase (GLUL) gene exhibited uniform upregulation in skeletal muscles of mice infected with three distinct scrapie prion strains (RML, ME7, and 22L) and in victims of human sporadic Creutzfeldt-Jakob disease. GLUL dysregulation was accompanied by changes in glutamate/glutamine metabolism, leading to reduced glutamate levels in skeletal muscle. None of these changes were observed in skeletal muscle of humans with amyotrophic lateral sclerosis, Alzheimer's disease, or dementia with Lewy bodies, suggesting that they are specific to prion diseases. These findings reveal an unexpected metabolic dimension of prion infections and point to a potential role for GLUL dysregulation in the glutamate/glutamine metabolism in prion-affected skeletal muscle.
Collapse
Affiliation(s)
- Davide Caredio
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maruša Koderman
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karl J. Frontzek
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Juliane Bremer
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni Mariutti
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lidia Madrigal
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marija Mitrovic
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefano Sellitto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Claudia Scheckel
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Mercer HM, Nair AM, Ridgel A, Piontkivska H. Alterations in RNA editing in skeletal muscle following exercise training in individuals with Parkinson's disease. PLoS One 2023; 18:e0287078. [PMID: 38134032 PMCID: PMC10745226 DOI: 10.1371/journal.pone.0287078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease behind Alzheimer's Disease, currently affecting more than 10 million people worldwide and 1.5 times more males than females. The progression of PD results in the loss of function due to neurodegeneration and neuroinflammation. The etiology of PD is multifactorial, including both genetic and environmental origins. Here we explored changes in RNA editing, specifically editing through the actions of the Adenosine Deaminases Acting on RNA (ADARs), in the progression of PD. Analysis of ADAR editing of skeletal muscle transcriptomes from PD patients and controls, including those that engaged in a rehabilitative exercise training program revealed significant differences in ADAR editing patterns based on age, disease status, and following rehabilitative exercise. Further, deleterious editing events in protein coding regions were identified in multiple genes with known associations to PD pathogenesis. Our findings of differential ADAR editing complement findings of changes in transcriptional networks identified by a recent study and offer insights into dynamic ADAR editing changes associated with PD pathogenesis.
Collapse
Affiliation(s)
- Heather Milliken Mercer
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Aiswarya Mukundan Nair
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Angela Ridgel
- School of Health Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| |
Collapse
|
4
|
Lundquist A, Lázár E, Han NS, Emanuelsson EB, Reitzner SM, Chapman MA, Shirokova V, Alkass K, Druid H, Petri S, Sundberg CJ, Bergmann O. FiNuTyper: Design and validation of an automated deep learning-based platform for simultaneous fiber and nucleus type analysis in human skeletal muscle. Acta Physiol (Oxf) 2023; 239:e13982. [PMID: 37097015 DOI: 10.1111/apha.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
AIM While manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time-consuming and prone to investigator bias. To address this challenge, we assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer). METHODS We integrated recently developed deep learning-based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle, and utilized SERCA1 and SERCA2 as type-specific myonucleus and myofiber markers after validating them against the traditional use of MyHC isoforms. RESULTS Parameters including cross-sectional area, myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber-type-specific manner, revealing that a large degree of sex- and muscle-related heterogeneity could be detected using the pipeline. Our platform was also tested on pathological muscle tissue (ALS and IBM) and adapted for the detection of other resident cell types (leucocytes, satellite cells, capillary endothelium). CONCLUSION In summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition and structure of healthy and diseased human skeletal muscle.
Collapse
Affiliation(s)
- August Lundquist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nan S Han
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mark A Chapman
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Integrated Engineering, University of San Diego, San Diego, USA
| | - Vera Shirokova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kanar Alkass
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Petri
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Carl J Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management, and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Pharmacology and Toxicology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
5
|
Kraková D, Holwerda AM, Betz MW, Lavin KM, Bamman MM, van Loon LJC, Verdijk LB, Snijders T. Muscle fiber type grouping does not change in response to prolonged resistance exercise training in healthy older men. Exp Gerontol 2023; 173:112083. [PMID: 36621699 DOI: 10.1016/j.exger.2023.112083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ageing of skeletal muscle is characterized in some by muscle fiber type grouping due to denervation-reinnervation cycles, but the severity of fiber type grouping varies widely across individuals of the same chronological age. It remains unknown whether fiber type grouping is associated with lower muscle mass and/or reduced physical function in elderly. Therefore, we assessed the relationship between fiber type grouping and indices of muscle mass and physical function in older adults. In addition, we assessed whether fiber type grouping is affected by prolonged resistance training in older adults. METHODS Twenty young (21 ± 2 y) and twenty older (70 ± 4 y) healthy men participated in the present study. Body composition (DXA-scan), quadriceps cross-sectional area (CT-scan) and muscle strength (1RM) were assessed at baseline (young and old) and following 12 weeks of resistance training (old only). Percutaneous skeletal muscle biopsies from the vastus lateralis were collected at baseline (young and old) and following exercise training (old only). Immunohistochemical analyses were performed to evaluate type I and type II muscle fiber distribution, size, myonuclear content and grouping. RESULTS At baseline, type II fibers were significantly (P < 0.05) smaller in older compared with young adults (5366 ± 1288 vs 6705 ± 1168 μm2). Whereas no differences were observed in type I, type II fiber grouping was significantly (P < 0.05) lower in older (18 ± 18 %) compared with young (32 ± 25 %) men. No significant correlations were observed between fiber type grouping and muscle mass or physical function. Prolonged resistance training in old men resulted in a significant increase (P < 0.05) in type II fiber size (from 5366 ± 1288 to 6165 ± 1484 μm2) with no significant changes in the proportion of type I muscle fibers found grouped. CONCLUSION Muscle fiber type grouping is not associated with lower body strength or muscle mass in healthy, older men. In addition, twelve weeks of resistance exercise training results in type II muscle fiber specific hypertrophy but does not affect fiber type grouping.
Collapse
Affiliation(s)
- Dominika Kraková
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Milan W Betz
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Kaleen M Lavin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Florida Institute for Human and Machine Cognition, Pensacola, FL, USA
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Florida Institute for Human and Machine Cognition, Pensacola, FL, USA
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Fadil R, Huether AXA, Verma AK, Brunnemer R, Blaber AP, Lou JS, Tavakolian K. Effect of Parkinson’s Disease on Cardio-postural Coupling During Orthostatic Challenge. Front Physiol 2022; 13:863877. [PMID: 35755448 PMCID: PMC9214860 DOI: 10.3389/fphys.2022.863877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac baroreflex and leg muscles activation are two important mechanisms for blood pressure regulation, failure of which could result in syncope and falls. Parkinson’s disease is known to be associated with cardiac baroreflex impairment and skeletal muscle dysfunction contributing to falls. However, the mechanical effect of leg muscles contractions on blood pressure (muscle-pump) and the baroreflex-like responses of leg muscles to blood pressure changes is yet to be comprehensively investigated. In this study, we examined the involvement of the cardiac baroreflex and this hypothesized reflex muscle-pump function (cardio-postural coupling) to maintain blood pressure in Parkinson’s patients and healthy controls during an orthostatic challenge induced via a head-up tilt test. We also studied the mechanical effect of the heart and leg muscles contractions on blood pressure. We recorded electrocardiogram blood pressure and electromyogram from 21 patients with Parkinson’s disease and 18 age-matched healthy controls during supine, head-up tilt at 70°, and standing positions with eyes open. The interaction and bidirectional causalities between the cardiovascular and musculoskeletal signals were studied using wavelet transform coherence and convergent cross mapping techniques, respectively. Parkinson’s patients displayed an impaired cardiac baroreflex and a reduced mechanical effect of the heart on blood pressure during supine, tilt and standing positions. However, the effectiveness of the cardiac baroreflex decreased in both Parkinson’s patients and healthy controls during standing as compared to supine. In addition, Parkinson’s patients demonstrated cardio-postural coupling impairment along with a mechanical muscle pump dysfunction which both could lead to dizziness and falls. Moreover, the cardiac baroreflex had a limited effect on blood pressure during standing while lower limb muscles continued to contract and maintain blood pressure via the muscle-pump mechanism. The study findings highlighted altered bidirectional coupling between heart rate and blood pressure, as well as between muscle activity and blood pressure in Parkinson’s disease. The outcomes of this study could assist in the development of appropriate physical exercise programs to reduce falls in Parkinson’s disease by monitoring the cardiac baroreflex and cardio-postural coupling effect on maintaining blood pressure.
Collapse
Affiliation(s)
- Rabie Fadil
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Asenath X. A. Huether
- Parkinson Disease Research Laboratory, Department of Neurology, Sanford Health, Fargo, ND, United States
| | - Ajay K. Verma
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Robert Brunnemer
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Andrew P. Blaber
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Jau-Shin Lou
- Parkinson Disease Research Laboratory, Department of Neurology, Sanford Health, Fargo, ND, United States
- School of Medicine and Health Sciences, Department of Neurology, University of North Dakota, Grand Forks, ND, United States
| | - Kouhyar Tavakolian
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Kouhyar Tavakolian,
| |
Collapse
|
7
|
Nishimura Y, Tsuboi H, Murata KY, Minoshima Y, Sato H, Umezu Y, Tajima F. Comparison of erector spinae fatigability between female patients with Parkinson's disease and healthy individuals: a cross sectional pilot study. BMC Neurol 2022; 22:189. [PMID: 35606705 PMCID: PMC9125835 DOI: 10.1186/s12883-022-02719-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Postural abnormality is one of the main symptoms of Parkinson's disease (PD). The erector spinae muscles play an important role in maintaining an upright posture, but the fatigability of the erector spinae in patients with PD is unknown. The purpose of this study was to compare the trunk extension maximum voluntary contraction (MVC) and the fatigability of the erector spinae between female patients with PD and healthy volunteers. METHODS Th participants of this cross-sectional pilot study comprised 19 patients with PD and nine healthy volunteers matched for sex, age, and physical characteristics as a control group. The MVC of all participants was measured, and after sufficient rest, the Sørensen back endurance test was conducted to the point of exhaustion. The muscle activity of the erector spinae during the Sørensen back endurance test was measured using surface electromyography. The median frequency (MF) slope, which is an index of fatigability, was calculated from the recorded surface muscle activity by means of power spectrum analysis using a Fast Fourier transformation. RESULTS Nine of the 19 patients with PD were unable to perform the Sørensen back endurance test, and a lower proportion of the PD group were able to perform it compared with the control group. The MVC of those patients with PD who were able to perform the Sørensen back endurance test was lower than that of the control group, and the time for which the pose could be maintained was shorter. There was no significant difference between the MF slope on the left and right side in the PD group, and it was higher on both sides than in the control group. CONCLUSION This is the first study to demonstrate a reduction of maximum muscle strength and great fatigability of the erector spinae in patients with PD. This discovery strongly underlines the need for paraspinal muscle training from an early stage with the aim of preventing the progression of postural abnormality in patients with PD.
Collapse
Affiliation(s)
- Yukihide Nishimura
- Department of Rehabilitation Medicine, Iwate Medical University, Yahaba-cho Shiwa-gun, Iwate, 028-3695, Japan.
| | - Hiroyuki Tsuboi
- Rehabilitation Division, Iwate Medical University Hospital, Iwate, Japan
| | - Ken-Ya Murata
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Yuta Minoshima
- Division of Rehabilitation, Wakayama Medical University Hospital, Wakayama, Japan
| | - Hideyuki Sato
- Department of Rehabilitation, Konan Medical Center, Hyogo, Japan
| | - Yuichi Umezu
- Department of Rehabilitation, Kokura Rehabilitation Hospital, Fukuoka, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
8
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
He S, Huang L, Shao C, Nie T, Xia L, Cui B, Lu F, Zhu L, Chen B, Yang Q. Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson's disease. Transl Neurodegener 2021; 10:25. [PMID: 34315539 PMCID: PMC8317324 DOI: 10.1186/s40035-021-00249-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Blood-based test for predicting disease progression and early diagnosis of Parkinson's disease (PD) is an unmet need in the clinic. The profiles of microRNAs (miRNAs) are regarded as potential diagnostic biomarkers for human diseases, whereas miRNAs in the periphery are susceptible to the influence of various components. MiRNAs enriched in serum extracellular vesicles (EVs) have demonstrated disease-specific advantages in diagnosis due to their high abundance, stability and resistance to degradation. This study was aimed to screen differentially expressed EV-derived miRNAs between healthy controls and PD patients to aid in diagnosis of PD. METHODS A total of 31 healthy controls and 72 patients with a diagnosis of PD at different Hoehn and Yahr stages in Tangdu Hospital were included. In total, 185 differentially expressed miRNAs were obtained through RNA sequencing of serum EVs as well as edgeR and t-test analyses. Subsequently, the weighted gene co-expression network analysis (WGCNA) was utilized to identify the commonly expressed miRNAs in all stages of PD by constructing connections between modules, and specifically expressed miRNAs in each stage of PD by functional enrichment analysis. After aligning these miRNAs with PD-related miRNAs in Human miRNA Disease Database, the screened miRNAs were further validated by receiver operating characteristic (ROC) curves and quantitative real-time polymerase chain reaction (qRT-PCR) using peripheral blood EVs from 40 more participants. RESULTS WGCNA showed that 4 miRNAs were commonly associated with all stages of PD and 13 miRNAs were specifically associated with different stages of PD. Of the 17 obtained miRNAs, 7 were validated by ROC curve analysis and 7 were verified in 40 more participants by qRT-PCR. Six miRNAs were verified by both methods, which included 2 miRNAs that were commonly expressed in all stages of PD and 4 miRNAs that were specifically expressed in different stages of PD. CONCLUSIONS The 6 serum EV-derived miRNAs, hsa-miR-374a-5p, hsa-miR-374b-5p, hsa-miR-199a-3p, hsa-miR-28-5p, hsa-miR-22-5p and hsa-miR-151a-5p, may potentially be used as biomarkers for PD progression and for early diagnosis of PD in populations.
Collapse
Affiliation(s)
- Shulei He
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Lu Huang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Ci Shao
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Li Xia
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Lin Zhu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Bolin Chen
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
10
|
Dial AG, Monaco CMF, Grafham GK, Patel TP, Tarnopolsky MA, Hawke TJ. Impaired Function and Altered Morphology in the Skeletal Muscles of Adult Men and Women With Type 1 Diabetes. J Clin Endocrinol Metab 2021; 106:2405-2422. [PMID: 33890059 DOI: 10.1210/clinem/dgab261] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Previous investigations on skeletal muscle health in type 1 diabetes (T1D) have generally focused on later stages of disease progression where comorbidities are present and are posited as a primary mechanism of muscle dysfunction. OBJECTIVE To investigate skeletal muscle function and morphology across the adult lifespan in those with and without T1D. DESIGN Participants underwent maximal contraction (MVC) testing, resting muscle biopsy, and venous blood sampling. SETTING Procedures in this study were undertaken at the McMaster University Medical Centre. PARTICIPANTS Sixty-five healthy adult (18-78 years old) men/males and women/females (T1D = 34; control = 31) matched for age/biological sex/body mass index; self-reported physical activity levels were included. MAIN OUTCOME MEASURES Our primary measure in this study was MVC, with supporting histological/immunofluorescent measures. RESULTS After 35 years of age ("older adults"), MVC declined quicker in T1D subjects compared to controls. Loss of strength in T1D was accompanied by morphological changes associated with accelerated aging. Type 1 myofiber grouping was higher in T1D, and the groups were larger and more numerous than in controls. Older T1D females exhibited more myofibers expressing multiple myosin heavy chain isoforms (hybrid fibers) than controls, another feature of accelerated aging. Conversely, T1D males exhibited a shift toward type 2 fibers, with less evidence of myofiber grouping or hybrid fibers. CONCLUSIONS These data suggest impairments to skeletal muscle function and morphology exist in T1D. The decline in strength with T1D is accelerated after 35 years of age and may be responsible for the earlier onset of frailty, which characterizes those with diabetes.
Collapse
Affiliation(s)
- Athan G Dial
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Cynthia M F Monaco
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Grace K Grafham
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Tirth P Patel
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Thomas J Hawke
- Dept of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Lavin KM, Bell MB, McAdam JS, Peck BD, Walton RG, Windham ST, Tuggle SC, Long DE, Kern PA, Peterson CA, Bamman MM. Muscle transcriptional networks linked to resistance exercise training hypertrophic response heterogeneity. Physiol Genomics 2021; 53:206-221. [PMID: 33870722 DOI: 10.1152/physiolgenomics.00154.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The skeletal muscle hypertrophic response to resistance exercise training (RT) is highly variable across individuals. The molecular underpinnings of this heterogeneity are unclear. This study investigated transcriptional networks linked to RT-induced muscle hypertrophy, classified as 1) predictive of hypertrophy, 2) responsive to RT independent of muscle hypertrophy, or 3) plastic with hypertrophy. Older adults (n = 31, 18 F/13 M, 70 ± 4 yr) underwent 14-wk RT (3 days/wk, alternating high-low-high intensity). Muscle hypertrophy was assessed by pre- to post-RT change in mid-thigh muscle cross-sectional area (CSA) [computed tomography (CT), primary outcome] and thigh lean mass [dual-energy X-ray absorptiometry (DXA), secondary outcome]. Transcriptome-wide poly-A RNA-seq was performed on vastus lateralis tissue collected pre- (n = 31) and post-RT (n = 22). Prediction networks (using only baseline RNA-seq) were identified by weighted gene correlation network analysis (WGCNA). To identify Plasticity networks, WGCNA change indices for paired samples were calculated and correlated to changes in muscle size outcomes. Pathway-level information extractor (PLIER) was applied to identify Response networks and link genes to biological annotation. Prediction networks (n = 6) confirmed transcripts previously connected to resistance/aerobic training adaptations in the MetaMEx database while revealing novel member genes that should fuel future research to understand the influence of baseline muscle gene expression on hypertrophy. Response networks (n = 6) indicated RT-induced increase in aerobic metabolism and reduced expression of genes associated with spliceosome biology and type-I myofibers. A single exploratory Plasticity network was identified. Findings support that interindividual differences in baseline gene expression may contribute more than RT-induced changes in gene networks to muscle hypertrophic response heterogeneity. Code/Data: https://github.com/kallavin/MASTERS_manuscript/tree/master.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | - Margaret B Bell
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy S McAdam
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - R Grace Walton
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Samuel T Windham
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - S Craig Tuggle
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas E Long
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Philip A Kern
- Division of Endocrinology, Department of Internal Medicine, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Marcas M Bamman
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Florida Institute for Human and Machine Cognition, Pensacola, Florida
| |
Collapse
|
12
|
Lavin KM, Ge Y, Sealfon SC, Nair VD, Wilk K, McAdam JS, Windham ST, Kumar PL, McDonald MLN, Bamman MM. Rehabilitative Impact of Exercise Training on Human Skeletal Muscle Transcriptional Programs in Parkinson's Disease. Front Physiol 2020; 11:653. [PMID: 32625117 PMCID: PMC7311784 DOI: 10.3389/fphys.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common motor neurodegenerative disease, and neuromuscular function deficits associated with PD contribute to disability. Targeting these symptoms, our laboratory has previously evaluated 16-week high-intensity resistance exercise as rehabilitative training (RT) in individuals with PD. We reported significant improvements in muscle mass, neuromuscular function (strength, power, and motor unit activation), indices of neuromuscular junction integrity, total and motor scores on the unified Parkinson's disease rating scale (UPDRS), and total and sub-scores on the 39-item PD Quality of Life Questionnaire (PDQ-39), supporting the use of RT to reverse symptoms. Our objective was to identify transcriptional networks that may contribute to RT-induced neuromuscular remodeling in PD. We generated transcriptome-wide skeletal muscle RNA-sequencing in 5 participants with PD [4M/1F, 67 ± 2 years, Hoehn and Yahr stages 2 (n = 3) and 3 (n = 2)] before and after 16-week high intensity RT to identify transcriptional networks that may in part underpin RT-induced neuromuscular remodeling in PD. Following RT, 304 genes were significantly upregulated, notably related to remodeling and nervous system/muscle development. Additionally, 402 genes, primarily negative regulators of muscle adaptation, were downregulated. We applied the recently developed Pathway-Level Information ExtractoR (PLIER) method to reveal coordinated gene programs (as latent variables, LVs) that differed in skeletal muscle among young (YA) and old (OA) healthy adults and PD (n = 12 per cohort) at baseline and in PD pre- vs. post-RT. Notably, one LV associated with angiogenesis, axon guidance, and muscle remodeling was significantly lower in PD than YA at baseline and was significantly increased by exercise. A different LV annotated to denervation, autophagy, and apoptosis was increased in both PD and OA relative to YA and was also reduced by 16-week RT in PD. Thus, this analysis identified two novel skeletal muscle transcriptional programs that are dysregulated by PD and aging, respectively. Notably, RT has a normalizing effect on both programs in individuals with PD. These results identify potential molecular transducers of the RT-induced improvements in neuromuscular remodeling and motor function that may aid in optimizing exercise rehabilitation strategies for individuals with PD.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venugopalan D. Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Katarzyna Wilk
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeremy S. McAdam
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel T. Windham
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preeti Lakshman Kumar
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Merry-Lynn N. McDonald
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Birmingham/Atlanta VA Geriatric Research, Education, and Clinical Center, Birmingham, AL, United States
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|