1
|
Gan J, Yang L, Yang SH, Gu WW, Gu Y, Shi Y, Shi JX, Xu HR, Xin YW, Zhang X, Wang J. FXYD1 was identified as a hub gene in recurrent miscarriage and involved in decidualization via regulating Na/K-ATPase activity. J Assist Reprod Genet 2025; 42:665-678. [PMID: 39730944 PMCID: PMC11871252 DOI: 10.1007/s10815-024-03363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024] Open
Abstract
PURPOSE Recurrent miscarriage (RM) is a distressing and complicated adverse pregnancy outcome. It is commonly recognized that insufficient decidualization could result in RM, but the molecular mechanisms of decidual impairment are still not fully understood. Thus, this study aimed to identify novel key genes potentially involved in RM and explore their roles played in endometrial decidualization. METHODS Initially, a combinative analysis of decidual and mid-secretory endometrial transcriptomes was performed to discover hub genes involved in the etiology of RM. And the expression levels of hub genes were evaluated in both primary decidual stromal cells (DSCs) and decidual tissues. Subsequently, the immortalized human endometrial cell line, T-HESCs, was used to investigate whether FXYD1 overexpression affects decidualization by regulating Na/K-ATPase activity. RESULTS FXYD domain containing ion transport regulator 1 (FXYD1) was identified as a hub gene in the pathogenesis of RM through various bioinformatic methods. Abnormally increased FXYD1 expression was observed in DSCs and decidual tissues from RM patients compared to that of the normal group. Furthermore, in vitro decidualization was obviously inhibited by the overexpression of FXYD1. Additionally, Na/K-ATPase activity was significantly elevated during decidualization, whereas overexpression of FXYD1 reduced Na/K-ATPase activity. Bufalin, a Na/K-ATPase inhibitor, showed an effectively inhibitory effect on decidualization. CONCLUSIONS Collectively, FXYD1 was discovered as a hub gene associated with RM, and its expression levels in RM patients were significantly upregulated. Increased FXYD1 expression might lead to decidualization defects by reducing Na/K-ATPase activity, of which presented a novel prospective treatment target for RM.
Collapse
Affiliation(s)
- Jie Gan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Long Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Shu-Han Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Wen-Wen Gu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Yan Gu
- The Second Hospital of Tianjin Medical University, Tianjin, 300221, China
| | - Yan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Jia-Xin Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Hao-Ran Xu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China
| | - Ya-Wei Xin
- The Second Hospital of Tianjin Medical University, Tianjin, 300221, China
| | - Xuan Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China.
| | - Jian Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
2
|
Hansen TS, Karimi Galougahi K, Tang O, Tsang M, Scherrer-Crosbie M, Arystarkhova E, Sweadner K, Bursill C, Bubb KJ, Figtree GA. The FXYD1 protein plays a protective role against pulmonary hypertension and arterial remodeling via redox and inflammatory mechanisms. Am J Physiol Heart Circ Physiol 2024; 326:H623-H635. [PMID: 38133617 DOI: 10.1152/ajpheart.00090.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Pulmonary hypertension (PH) consists of a heterogenous group of diseases that culminate in increased pulmonary arterial pressure and right ventricular (RV) dysfunction. We sought to investigate the role of FXYD1, a small membrane protein that modulates Na+-K+-ATPase function, in the pathophysiology of PH. We mined online transcriptome databases to assess FXYD1 expression in PH. We characterized the effects of FXYD1 knockout (KO) in mice on right and left ventricular (RV and LV) function using echocardiography and measured invasive hemodynamic measurements under normal conditions and after treatment with bleomycin sulfate or chronic hypoxia to induce PH. Using immunohistochemistry, immunoblotting, and functional assays, we examined the effects of FXYD1 KO on pulmonary microvasculature and RV and LV structure and assessed signaling via endothelial nitric oxide synthase (eNOS) and inflammatory pathways. FXYD1 lung expression tended to be lower in samples from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with controls, supporting a potential pathophysiological role. FXYD1 KO mice displayed characteristics of PH including significant increases in pulmonary arterial pressure, increased muscularization of small pulmonary arterioles, and impaired RV systolic function, in addition to LV systolic dysfunction. However, when PH was stimulated with standard models of lung injury-induced PH, there was no exacerbation of disease in FXYD1 KO mice. Both the lungs and left ventricles exhibited elevated nitrosative stress and inflammatory milieu. The absence of FXYD1 in mice results in LV inflammation and cardiopulmonary redox signaling changes that predispose to pathophysiological features of PH, suggesting FXYD1 may be protective.NEW & NOTEWORTHY This is the first study to show that deficiency of the FXYD1 protein is associated with pulmonary hypertension. FXYD1 expression is lower in the lungs of people with idiopathic pulmonary artery hypertension. FXYD1 deficiency results in both left and right ventricular functional impairment. Finally, FXYD1 may endogenously protect the heart from oxidative and inflammatory injury.
Collapse
Affiliation(s)
- Thomas S Hansen
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | | | - Owen Tang
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Tsang
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Marielle Scherrer-Crosbie
- Perelman School of Medicine, The Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Kathleen Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Christina Bursill
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Vascular Research Centre, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kristen J Bubb
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Biomedicine Discovery Institute and Victorian Heart Institute, Monash University Faculty of Medicine, Nursing and Health Sciences, Clayton, Victoria, Australia
| | - Gemma A Figtree
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Obradovic M, Sudar-Milovanovic E, Gluvic Z, Banjac K, Rizzo M, Isenovic ER. The Na +/K +-ATPase: A potential therapeutic target in cardiometabolic diseases. Front Endocrinol (Lausanne) 2023; 14:1150171. [PMID: 36926029 PMCID: PMC10011626 DOI: 10.3389/fendo.2023.1150171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiometabolic diseases (CMD) are a direct consequence of modern living and contribute to the development of multisystem diseases such as cardiovascular diseases and diabetes mellitus (DM). CMD has reached epidemic proportions worldwide. A sodium pump (Na+/K+-ATPase) is found in most eukaryotic cells' membrane and controls many essential cellular functions directly or indirectly. This ion transporter and its isoforms are important in the pathogenesis of some pathological processes, including CMD. The structure and function of Na+/K+-ATPase, its expression and distribution in tissues, and its interactions with known ligands such as cardiotonic steroids and other suspected endogenous regulators are discussed in this review. In addition, we reviewed recent literature data related to the involvement of Na+/K+-ATPase activity dysfunction in CMD, focusing on the Na+/K+-ATPase as a potential therapeutic target in CMD.
Collapse
Affiliation(s)
- Milan Obradovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Banjac
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Manfredi Rizzo
- School of Medicine, Promise Department, University of Palermo, Palermo, Italy
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Cuomo M, Florio E, Della Monica R, Costabile D, Buonaiuto M, Di Risi T, De Riso G, Sarnataro A, Cocozza S, Visconti R, Chiariotti L. Epigenetic remodelling of Fxyd1 promoters in developing heart and brain tissues. Sci Rep 2022; 12:6471. [PMID: 35440736 PMCID: PMC9018693 DOI: 10.1038/s41598-022-10365-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
FXYD1 is a key protein controlling ion channel transport. FXYD1 exerts its function by regulating Na+/K+-ATPase activity, mainly in brain and cardiac tissues. Alterations of the expression level of the FXYD1 protein cause diastolic dysfunction and arrhythmias in heart and decreased neuronal dendritic tree and spine formation in brain. Moreover, FXYD1, a target of MeCP2, plays a crucial role in the pathogenesis of the Rett syndrome, a neurodevelopmental disorder. Thus, the amount of FXYD1 must be strictly controlled in a tissue specific manner and, likely, during development. Epigenetic modifications, particularly DNA methylation, represent the major candidate mechanism that may regulate Fxyd1 expression. In the present study, we performed a comprehensive DNA methylation analysis and mRNA expression level measurement of the two Fxyd1 transcripts, Fxyd1a and Fxyd1b, in brain and heart tissues during mouse development. We found that DNA methylation at Fxyd1a increased during brain development and decreased during heart development along with coherent changes in mRNA expression levels. We also applied ultra-deep methylation analysis to detect cell to cell methylation differences and to identify possible distinct methylation profile (epialleles) distribution between heart and brain and in different developmental stages. Our data indicate that the expression of Fxyd1 transcript isoforms inversely correlates with DNA methylation in developing brain and cardiac tissues suggesting the existence of a temporal-specific epigenetic program. Moreover, we identified a clear remodeling of epiallele profiles which were distinctive for single developmental stage both in brain and heart tissues.
Collapse
Affiliation(s)
- Mariella Cuomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.
| | - Ermanno Florio
- Department of Medicine, University of California, San Diego UCSD, Gilman Dr, La Jolla, CA, 95000, USA
| | - Rosa Della Monica
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Davide Costabile
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,SEMM-European School of Molecular Medicine, University of Naples, "Federico II", 80131, Naples, Italy
| | - Michela Buonaiuto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Teodolinda Di Risi
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Department of Public Health, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Antonella Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberta Visconti
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,SEMM-European School of Molecular Medicine, University of Naples, "Federico II", 80131, Naples, Italy.
| |
Collapse
|
5
|
Bazard P, Frisina RD, Acosta AA, Dasgupta S, Bauer MA, Zhu X, Ding B. Roles of Key Ion Channels and Transport Proteins in Age-Related Hearing Loss. Int J Mol Sci 2021; 22:6158. [PMID: 34200434 PMCID: PMC8201059 DOI: 10.3390/ijms22116158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory system is a fascinating sensory organ that overall, converts sound signals to electrical signals of the nervous system. Initially, sound energy is converted to mechanical energy via amplification processes in the middle ear, followed by transduction of mechanical movements of the oval window into electrochemical signals in the cochlear hair cells, and finally, neural signals travel to the central auditory system, via the auditory division of the 8th cranial nerve. The majority of people above 60 years have some form of age-related hearing loss, also known as presbycusis. However, the biological mechanisms of presbycusis are complex and not yet fully delineated. In the present article, we highlight ion channels and transport proteins, which are integral for the proper functioning of the auditory system, facilitating the diffusion of various ions across auditory structures for signal transduction and processing. Like most other physiological systems, hearing abilities decline with age, hence, it is imperative to fully understand inner ear aging changes, so ion channel functions should be further investigated in the aging cochlea. In this review article, we discuss key various ion channels in the auditory system and how their functions change with age. Understanding the roles of ion channels in auditory processing could enhance the development of potential biotherapies for age-related hearing loss.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Sneha Dasgupta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Marck PV, Pierre SV. Na/K-ATPase Signaling and Cardiac Pre/Postconditioning with Cardiotonic Steroids. Int J Mol Sci 2018; 19:ijms19082336. [PMID: 30096873 PMCID: PMC6121447 DOI: 10.3390/ijms19082336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The first reports of cardiac Na/K-ATPase signaling, published 20 years ago, have opened several major fields of investigations into the cardioprotective action of low/subinotropic concentrations of cardiotonic steroids (CTS). This review focuses on the protective cardiac Na/K-ATPase-mediated signaling triggered by low concentrations of ouabain and other CTS, in the context of the enduring debate over the use of CTS in the ischemic heart. Indeed, as basic and clinical research continues to support effectiveness and feasibility of conditioning interventions against ischemia/reperfusion injury in acute myocardial infarction (AMI), the mechanistic information available to date suggests that unique features of CTS-based conditioning could be highly suitable, alone /or as a combinatory approach.
Collapse
Affiliation(s)
- Pauline V Marck
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| |
Collapse
|
7
|
Matagne V, Wondolowski J, Frerking M, Shahidullah M, Delamere NA, Sandau US, Budden S, Ojeda SR. Correcting deregulated Fxyd1 expression rescues deficits in neuronal arborization and potassium homeostasis in MeCP2 deficient male mice. Brain Res 2018; 1697:45-52. [PMID: 29902467 DOI: 10.1016/j.brainres.2018.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene. In the absence of MeCP2, expression of FXYD domain-containing transport regulator 1 (FXYD1) is deregulated in the frontal cortex (FC) of mice and humans. Because Fxyd1 is a membrane protein that controls cell excitability by modulating Na+, K+-ATPase activity (NKA), an excess of Fxyd1 may reduce NKA activity and contribute to the neuronal phenotype of Mecp2 deficient (KO) mice. To determine if Fxyd1 can rescue these RTT deficits, we studied the male progeny of Fxyd1 null males bred to heterozygous Mecp2 female mice. Maximal NKA enzymatic activity was not altered by the loss of MeCP2, but it increased in mice lacking one Fxyd1 allele, suggesting that NKA activity is under Fxyd1 inhibitory control. Deletion of one Fxyd1 allele also prevented the increased extracellular potassium (K+) accumulation observed in cerebro-cortical neurons from Mecp2 KO animals in response to the NKA inhibitor ouabain, and rescued the loss of dendritic arborization observed in FC neurons of Mecp2 KO mice. These effects were gene-dose dependent, because the absence of Fxyd1 failed to rescue the MeCP2-dependent deficits, and mimicked the effect of MeCP2 deficiency in wild-type animals. These results indicate that excess of Fxyd1 in the absence of MeCP2 results in deregulation of endogenous K+ conductances functionally associated with NKA and leads to stunted neuronal growth.
Collapse
Affiliation(s)
- Valerie Matagne
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Joyce Wondolowski
- Neuroscience Graduate Program, Oregon Health and Sciences University, Portland, OR 97239, USA.
| | - Matthew Frerking
- Departments of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | - Ursula S Sandau
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Sarojini Budden
- Division of Developmental Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
8
|
Hafver TL, Hodne K, Wanichawan P, Aronsen JM, Dalhus B, Lunde PK, Lunde M, Martinsen M, Enger UH, Fuller W, Sjaastad I, Louch WE, Sejersted OM, Carlson CR. Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman. J Biol Chem 2015; 291:4561-79. [PMID: 26668322 DOI: 10.1074/jbc.m115.677898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/06/2022] Open
Abstract
The sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na(+)/K(+)-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca(2+) binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5-8Φ1Φ2-X8-9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.
Collapse
Affiliation(s)
- Tandekile Lubelwana Hafver
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Kjetil Hodne
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway, the Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences (NMBU), 0454 Oslo, Norway
| | - Pimthanya Wanichawan
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Jan Magnus Aronsen
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the Bjørknes College, Oslo, Norway
| | - Bjørn Dalhus
- the Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway, the Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, 0424 Oslo, Norway and
| | - Per Kristian Lunde
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Marianne Lunde
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Marita Martinsen
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Ulla Helene Enger
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - William Fuller
- the Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom DD1 9SY
| | - Ivar Sjaastad
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - William Edward Louch
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Ole Mathias Sejersted
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Cathrine Rein Carlson
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway,
| |
Collapse
|
9
|
Mishra NK, Habeck M, Kirchner C, Haviv H, Peleg Y, Eisenstein M, Apell HJ, Karlish SJD. Molecular Mechanisms and Kinetic Effects of FXYD1 and Phosphomimetic Mutants on Purified Human Na,K-ATPase. J Biol Chem 2015; 290:28746-59. [PMID: 26429909 DOI: 10.1074/jbc.m115.687913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 11/06/2022] Open
Abstract
Phospholemman (FXYD1) is a single-transmembrane protein regulator of Na,K-ATPase, expressed strongly in heart, skeletal muscle, and brain and phosphorylated by protein kinases A and C at Ser-68 and Ser-63, respectively. Binding of FXYD1 reduces Na,K-ATPase activity, and phosphorylation at Ser-68 or Ser-63 relieves the inhibition. Despite the accumulated information on physiological effects, whole cell studies provide only limited information on molecular mechanisms. As a complementary approach, we utilized purified human Na,K-ATPase (α1β1 and α2β1) reconstituted with FXYD1 or mutants S63E, S68E, and S63E,S68E that mimic phosphorylation at Ser-63 and Ser-68. Compared with control α1β1, FXYD1 reduces Vmax and turnover rate and raises K0.5Na. The phosphomimetic mutants reverse these effects and reduce K0.5Na below control K0.5Na. Effects on α2β1 are similar but smaller. Experiments in proteoliposomes reconstituted with α1β1 show analogous effects of FXYD1 on K0.5Na, which are abolished by phosphomimetic mutants and also by increasing mole fractions of DOPS in the proteoliposomes. Stopped-flow experiments using the dye RH421 show that FXYD1 slows the conformational transition E2(2K)ATP → E1(3Na)ATP but does not affect 3NaE1P → E2P3Na. This regulatory effect is explained simply by molecular modeling, which indicates that a cytoplasmic helix (residues 60-70) docks between the αN and αP domains in the E2 conformation, but docking is weaker in E1 (also for phosphomimetic mutants). Taken together with previous work showing that FXYD1 also raises binding affinity for the Na(+)-selective site III, these results provide a rather comprehensive picture of the regulatory mechanism of FXYD1 that complements the physiological studies.
Collapse
Affiliation(s)
| | | | - Corinna Kirchner
- the Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Haim Haviv
- From the Department of Biological Chemistry
| | - Yoav Peleg
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel and
| | | | - Hans Juergen Apell
- the Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | | |
Collapse
|
10
|
Zhang XQ, Wang J, Song J, Rabinowitz J, Chen X, Houser SR, Peterson BZ, Tucker AL, Feldman AM, Cheung JY. Regulation of L-type calcium channel by phospholemman in cardiac myocytes. J Mol Cell Cardiol 2015; 84:104-11. [PMID: 25918050 PMCID: PMC4468006 DOI: 10.1016/j.yjmcc.2015.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/24/2015] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
Abstract
We evaluated whether phospholemman (PLM) regulates L-type Ca(2+) current (ICa) in mouse ventricular myocytes. Expression of α1-subunit of L-type Ca(2+) channels between wild-type (WT) and PLM knockout (KO) hearts was similar. Compared to WT myocytes, peak ICa (at -10 mV) from KO myocytes was ~41% larger, the inactivation time constant (τ(inact)) of ICa was ~39% longer, but deactivation time constant (τ(deact)) was similar. In the presence of isoproterenol (1 μM), peak ICa was ~48% larger and τ(inact) was ~144% higher in KO myocytes. With Ba(2+) as the permeant ion, PLM enhanced voltage-dependent inactivation but had no effect on τ(deact). To dissect the molecular determinants by which PLM regulated ICa, we expressed PLM mutants by adenovirus-mediated gene transfer in cultured KO myocytes. After 24h in culture, KO myocytes expressing green fluorescent protein (GFP) had significantly larger peak ICa and longer τ(inact) than KO myocytes expressing WT PLM; thereby independently confirming the observations in freshly isolated myocytes. Compared to KO myocytes expressing GFP, KO myocytes expressing the cytoplasmic domain truncation mutant (TM43), the non-phosphorylatable S68A mutant, the phosphomimetic S68E mutant, and the signature PFXYD to alanine (ALL5) mutant all resulted in lower peak ICa. Expressing PLM mutants did not alter expression of α1-subunit of L-type Ca(2+) channels in cultured KO myocytes. Our results suggested that both the extracellular PFXYD motif and the transmembrane domain of PLM but not the cytoplasmic tail were necessary for regulation of peak ICa amplitude. We conclude that PLM limits Ca(2+) influx in cardiac myocytes by reducing maximal ICa and accelerating voltage-dependent inactivation.
Collapse
Affiliation(s)
- Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Joseph Rabinowitz
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Blaise Z Peterson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Amy L Tucker
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Arthur M Feldman
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Guo K, Wang YP, Zhou ZW, Jiang YB, Li W, Chen XM, Li YG. Impact of phosphomimetic and non-phosphorylatable mutations of phospholemman on L-type calcium channels gating in HEK 293T cells. J Cell Mol Med 2015; 19:642-50. [PMID: 25656605 PMCID: PMC4369820 DOI: 10.1111/jcmm.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/10/2014] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Phospholemman (PLM) is an important phosphorylation substrate for protein kinases A and C in the heart. Until now, the association between PLM phosphorylation status and L-type calcium channels (LTCCs) gating has not been fully understood. We investigated the kinetics of LTCCs in HEK 293T cells expressing phosphomimetic or nonphosphorylatable PLM mutants. METHODS The LTCCs gating was measured in HEK 293T cells transfected with LTCC and wild-type (WT) PLM, phosphomimetic or nonphosphorylatable PLM mutants: 6263AA, 6869AA, AAAA, 6263DD, 6869DD or DDDD. RESULTS WT PLM significantly slowed LTCCs activation and deactivation while enhanced voltage-dependent inactivation (VDI). PLM mutants 6869DD and DDDD significantly increased the peak of the currents. 6263DD accelerated channel activation, while 6263AA slowed it more than WT PLM. 6869DD significantly enhanced PLM-induced increase of VDI. AAAA slowed the channel activation more than 6263AA, and DDDD accelerated the channel VDI more than 6869DD. CONCLUSIONS Our results demonstrate that phosphomimetic PLM could stimulate LTCCs and alter their dynamics, while PLM nonphosphorylatable mutant produced the opposite effects.
Collapse
Affiliation(s)
- Kai Guo
- Department of Cardiology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang J, Song J, Gao E, Zhang XQ, Gu T, Yu D, Koch WJ, Feldman AM, Cheung JY. Induced overexpression of phospholemman S68E mutant improves cardiac contractility and mortality after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2014; 306:H1066-77. [PMID: 24486513 DOI: 10.1152/ajpheart.00861.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM), when phosphorylated at Ser(68), inhibits cardiac Na+ / Ca2+ exchanger 1 (NCX1) and relieves its inhibition on Na+ -K+ -ATPase. We have engineered mice in which expression of the phosphomimetic PLM S68E mutant was induced when dietary doxycycline was removed at 5 wk. At 8-10 wk, compared with noninduced or wild-type hearts, S68E expression in induced hearts was ∼35-75% that of endogenous PLM, but protein levels of sarco(endo)plasmic reticulum Ca2+ -ATPase, α1- and α2-subunits of Na+ -K+ -ATPase, α1c-subunit of L-type Ca2+ channel, and phosphorylated ryanodine receptor were unchanged. The NCX1 protein level was increased by ∼47% but the NCX1 current was depressed by ∼34% in induced hearts. Isoproterenol had no effect on NCX1 currents but stimulated Na+ -K+ -ATPase currents equally in induced and noninduced myocytes. At baseline, systolic intracellular Ca2+ concentrations ([Ca2+]i), sarcoplasmic reticulum Ca2+ contents, and [Ca(2+)]i transient and contraction amplitudes were similar between induced and noninduced myocytes. Isoproterenol stimulation resulted in much higher systolic [Ca2+]i, sarcoplasmic reticulum Ca2+ content, and [Ca2+]i transient and contraction amplitudes in induced myocytes. Echocardiography and in vivo close-chest catheterization demonstrated similar baseline myocardial function, but isoproterenol induced a significantly higher +dP/dt in induced compared with noninduced hearts. In contrast to the 50% mortality observed in mice constitutively overexpressing the S68E mutant, induced mice had similar survival as wild-type and noninduced mice. After ischemia-reperfusion, despite similar areas at risk and left ventricular infarct sizes, induced mice had significantly higher +dP/dt and -dP/dt and lower perioperative mortality compared with noninduced mice. We propose that phosphorylated PLM may be a novel therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang Y, Wang R, Du W, Wang S, Yang L, Pan Z, Li X, Xiong X, He H, Shi Y, Liu X, Yu S, Bi Z, Lu Y, Shan H. Downregulation of miR-151-5p contributes to increased susceptibility to arrhythmogenesis during myocardial infarction with estrogen deprivation. PLoS One 2013; 8:e72985. [PMID: 24039836 PMCID: PMC3767733 DOI: 10.1371/journal.pone.0072985] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/23/2013] [Indexed: 12/04/2022] Open
Abstract
Estrogen deficiency is associated with increased incidence of cardiovascular diseases. But merely estrogen supplementary treatment can induce many severe complications such as breast cancer. The present study was designed to elucidate molecular mechanisms underlying increased susceptibility of arrhythmogenesis during myocardial infarction with estrogen deprivation, which provides us a new target to cure cardiac disease accompanied with estrogen deprivation. We successfully established a rat model of myocardial ischemia (MI) accompanied with estrogen deprivation by coronary artery ligation and ovariectomy (OVX). Vulnerability and mortality of ventricular arrhythmias increased in estrogen deficiency rats compared to non estrogen deficiency rats when suffered MI, which was associated with down-regulation of microRNA-151-5p (miR-151-5p). Luciferase Reporter Assay demonstrated that miR-151-5p can bind to the 3′-UTR of FXYD1 (coding gene of phospholemman, PLM) and inhibit its expression. We found that the expression of PLM was increased in (OVX+MI) group compared with MI group. More changes such as down-regulation of Kir2.1/IK1, calcium overload had emerged in (OVX+MI) group compared to MI group merely. Transfection of miR-151-5p into primary cultured myocytes decreased PLM levels and [Ca2+]i, however, increased Kir2.1 levels. These effects were abolished by the antisense oligonucleotides against miR-151-5p. Co-immunoprecipitation and immunofluorescent experiments confirmed the co-localization between Kir2.1 and PLM in rat ventricular tissue. We conclude that the increased ventricular arrhythmias vulnerability in response to acute myocardial ischemia in rat is critically dependent upon down-regulation of miR-151-5p. These findings support the proposal that miR-151-5p could be a potential therapeutic target for the prevention of ischemic arrhythmias in the subjects with estrogen deficiency.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Renjun Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Weijie Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Shuxuan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Lei Yang
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xuehui Xiong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hua He
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yongfang Shi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xue Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Shaonan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Zhengang Bi
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
- * E-mail: (HS); (YL)
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
- * E-mail: (HS); (YL)
| |
Collapse
|
14
|
Pavlovic D, Fuller W, Shattock MJ. Novel regulation of cardiac Na pump via phospholemman. J Mol Cell Cardiol 2013; 61:83-93. [PMID: 23672825 DOI: 10.1016/j.yjmcc.2013.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/19/2022]
Abstract
As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected].
Collapse
Affiliation(s)
- Davor Pavlovic
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London, UK.
| | | | | |
Collapse
|
15
|
Cheung JY, Zhang XQ, Song J, Gao E, Chan TO, Rabinowitz JE, Koch WJ, Feldman AM, Wang J. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:175-90. [PMID: 23224879 DOI: 10.1007/978-1-4614-4756-6_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Belliard A, Sottejeau Y, Duan Q, Karabin JL, Pierre SV. Modulation of cardiac Na+,K+-ATPase cell surface abundance by simulated ischemia-reperfusion and ouabain preconditioning. Am J Physiol Heart Circ Physiol 2012; 304:H94-103. [PMID: 23086991 DOI: 10.1152/ajpheart.00374.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+),K(+)-ATPase and cell survival were investigated in a cellular model of ischemia-reperfusion (I/R)-induced injury and protection by ouabain-induced preconditioning (OPC). Rat neonatal cardiac myocytes were subjected to 30 min of substrate and coverslip-induced ischemia followed by 30 min of simulated reperfusion. This significantly compromised cell viability as documented by lactate dehydrogenase release and Annexin V/propidium iodide staining. Total Na(+),K(+)-ATPase α(1)- and α(3)-polypeptide expression remained unchanged, but cell surface biotinylation and immunostaining studies revealed that α(1)-cell surface abundance was significantly decreased. Na(+),K(+)-ATPase-activity in crude homogenates and (86)Rb(+) transport in live cells were both significantly decreased by about 30% after I/R. OPC, induced by a 4-min exposure to 10 μM ouabain that ended 8 min before the beginning of ischemia, increased cell viability in a PKCε-dependent manner. This was comparable with the protective effect of OPC previously reported in intact heart preparations. OPC prevented I/R-induced decrease of Na(+),K(+)-ATPase activity and surface expression. This model also revealed that Na(+),K(+)-ATPase-mediated (86)Rb(+) uptake was not restored to control levels in the OPC group, suggesting that the increased viability was not conferred by an increased Na(+),K(+)-ATPase-mediated ion transport capacity at the cell membrane. Consistent with this observation, transient expression of an internalization-resistant mutant form of Na(+),K(+)-ATPase α(1) known to have increased surface abundance without increased ion transport activity successfully reduced I/R-induced cell death. These results suggest that maintenance of Na(+),K(+)-ATPase cell surface abundance is critical to myocyte survival after an ischemic attack and plays a role in OPC-induced protection. They further suggest that the protection conferred by increased surface expression of Na(+),K(+)-ATPase may be independent of ion transport.
Collapse
Affiliation(s)
- Aude Belliard
- Department of Biochemistry, College of Medicine, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
17
|
Fuller W, Tulloch LB, Shattock MJ, Calaghan SC, Howie J, Wypijewski KJ. Regulation of the cardiac sodium pump. Cell Mol Life Sci 2012; 70:1357-80. [PMID: 22955490 PMCID: PMC3607738 DOI: 10.1007/s00018-012-1134-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/27/2012] [Accepted: 08/13/2012] [Indexed: 01/24/2023]
Abstract
In cardiac muscle, the sarcolemmal sodium/potassium ATPase is the principal quantitative means of active transport at the myocyte cell surface, and its activity is essential for maintaining the trans-sarcolemmal sodium gradient that drives ion exchange and transport processes that are critical for cardiac function. The 72-residue phosphoprotein phospholemman regulates the sodium pump in the heart: unphosphorylated phospholemman inhibits the pump, and phospholemman phosphorylation increases pump activity. Phospholemman is subject to a remarkable plethora of post-translational modifications for such a small protein: the combination of three phosphorylation sites, two palmitoylation sites, and one glutathionylation site means that phospholemman integrates multiple signaling events to control the cardiac sodium pump. Since misregulation of cytosolic sodium contributes to contractile and metabolic dysfunction during cardiac failure, a complete understanding of the mechanisms that control the cardiac sodium pump is vital. This review explores our current understanding of these mechanisms.
Collapse
Affiliation(s)
- W Fuller
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine Dentistry and Nursing, University of Dundee, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Role of protein kinase C in phospholemman mediated regulation of α2β1 isozyme of Na+/K+-ATPase in caveolae of pulmonary artery smooth muscle cells. Biochimie 2012; 94:991-1000. [DOI: 10.1016/j.biochi.2011.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022]
|
19
|
Mirza MA, Lane S, Yang Z, Karaoli T, Akosah K, Hossack J, McDuffie M, Wang J, Zhang XQ, Song J, Cheung JY, Tucker AL. Phospholemman deficiency in postinfarct hearts: enhanced contractility but increased mortality. Clin Transl Sci 2012; 5:235-42. [PMID: 22686200 DOI: 10.1111/j.1752-8062.2012.00403.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholemman (PLM) regulates [Na(+) ](i), [Ca(2+)](i) and contractility through its interactions with Na(+)-K(+)-ATPase (NKA) and Na(+) /Ca(2+) exchanger (NCX1) in the heart. Both expression and phosphorylation of PLM are altered after myocardial infarction (MI) and heart failure. We tested the hypothesis that absence of PLM regulation of NKA and NCX1 in PLM-knockout (KO) mice is detrimental. Three weeks after MI, wild-type (WT) and PLM-KO hearts were similarly hypertrophied. PLM expression was lower but fractional phosphorylation was higher in WT-MI compared to WT-sham hearts. Left ventricular ejection fraction was severely depressed in WT-MI but significantly less depressed in PLM-KO-MI hearts despite similar infarct sizes. Compared with WT-sham myocytes, the abnormal [Ca(2+) ], transient and contraction amplitudes observed in WT-MI myocytes were ameliorated by genetic absence of PLM. In addition, NCX1 current was depressed in WT-MI but not in PLM-KO-MI myocytes. Despite improved myocardial and myocyte performance, PLM-KO mice demonstrated reduced survival after MI. Our findings indicate that alterations in PLM expression and phosphorylation are important adaptations post-MI, and that complete absence of PLM regulation of NKA and NCX1 is detrimental in post-MI animals.
Collapse
Affiliation(s)
- M Ayoub Mirza
- Cardiovascular Division, Department of Medicine, University of Virginia Medical Center, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Song J, Gao E, Wang J, Zhang XQ, Chan TO, Koch WJ, Shang X, Joseph JI, Peterson BZ, Feldman AM, Cheung JY. Constitutive overexpression of phosphomimetic phospholemman S68E mutant results in arrhythmias, early mortality, and heart failure: potential involvement of Na+/Ca2+ exchanger. Am J Physiol Heart Circ Physiol 2011; 302:H770-81. [PMID: 22081699 DOI: 10.1152/ajpheart.00733.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) are altered in many disease states. We engineered mice in which the phosphomimetic phospholemman S68E mutant (inhibits NCX1 but not Na(+)-K(+)-ATPase) was constitutively overexpressed in a cardiac-specific manner (conS68E). At 4-6 wk, conS68E mice exhibited severe bradycardia, ventricular arrhythmias, increased left ventricular (LV) mass, decreased cardiac output (CO), and ∼50% mortality compared with wild-type (WT) littermates. Protein levels of NCX1, calsequestrin, ryanodine receptor, and α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase were similar, but sarco(endo)plasmic reticulum Ca(2+)-ATPase was lower, whereas L-type Ca(2+) channels were higher in conS68E hearts. Resting membrane potential and action potential amplitude were similar, but action potential duration was dramatically prolonged in conS68E myocytes. Diastolic intracellular Ca(2+) ([Ca(2+)](i)) was higher, [Ca(2+)](i) transient and maximal contraction amplitudes were lower, and half-time of [Ca(2+)](i) transient decline was longer in conS68E myocytes. Intracellular Na(+) reached maximum within 3 min after isoproterenol addition, followed by decline in WT but not in conS68E myocytes. Na(+)/Ca(2+) exchange, L-type Ca(2+), Na(+)-K(+)-ATPase, and depolarization-activated K(+) currents were decreased in conS68E myocytes. At 22 wk, bradycardia and increased LV mass persisted in conS68E survivors. Despite comparable baseline CO, conS68E survivors at 22 wk exhibited decreased chronotropic, inotropic, and lusitropic responses to isoproterenol. We conclude that constitutive overexpression of S68E mutant was detrimental, both in terms of depressed cardiac function and increased arrhythmogenesis.
Collapse
Affiliation(s)
- Jianliang Song
- Division of Nephrology, Thomas Jefferson Univ., 833 Chestnut St., Suite 700, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang J, Gao E, Rabinowitz J, Song J, Zhang XQ, Koch WJ, Tucker AL, Chan TO, Feldman AM, Cheung JY. Regulation of in vivo cardiac contractility by phospholemman: role of Na+/Ca2+ exchange. Am J Physiol Heart Circ Physiol 2010; 300:H859-68. [PMID: 21193587 DOI: 10.1152/ajpheart.00894.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM), when phosphorylated at serine 68, relieves its inhibition on Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger 1 (NCX1) in cardiac myocytes. Under stress when catecholamine levels are high, enhanced Na(+)-K(+)-ATPase activity by phosphorylated PLM attenuates intracellular Na(+) concentration ([Na(+)](i)) overload. To evaluate the effects of PLM on NCX1 on in vivo cardiac contractility, we injected recombinant adeno-associated virus (serotype 9) expressing either the phosphomimetic PLM S68E mutant or green fluorescent protein (GFP) directly into left ventricles (LVs) of PLM-knockout (KO) mice. Five weeks after virus injection, ∼40% of isolated LV myocytes exhibited GFP fluorescence. Expression of S68E mutant was confirmed with PLM antibody. There were no differences in protein levels of α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase, NCX1, and sarco(endo)plasmic reticulum Ca(2+)-ATPase between KO-GFP and KO-S68E LV homogenates. Compared with KO-GFP myocytes, Na(+)/Ca(2+) exchange current was suppressed, but resting [Na(+)](i), Na(+)-K(+)-ATPase current, and action potential amplitudes were similar in KO-S68E myocytes. Resting membrane potential was slightly lower and action potential duration at 90% repolarization (APD(90)) was shortened in KO-S68E myocytes. Isoproterenol (Iso; 1 μM) increased APD(90) in both groups of myocytes. After Iso, [Na(+)](i) increased monotonically in paced (2 Hz) KO-GFP but reached a plateau in KO-S68E myocytes. Both systolic and diastolic [Ca(2+)](i) were higher in Iso-stimulated KO-S68E myocytes paced at 2 Hz. Echocardiography demonstrated similar resting heart rate, ejection fraction, and LV mass between KO-GFP and KO-S68E mice. In vivo closed-chest catheterization demonstrated enhanced contractility in KO-S68E compared with KO-GFP hearts stimulated with Iso. We conclude that under catecholamine stress when [Na(+)](i) is high, PLM minimizes [Na(+)](i) overload by relieving its inhibition of Na(+)-K(+)-ATPase and preserves inotropy by simultaneously inhibiting Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- Jufang Wang
- Division of Nephrology and Center of Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hughes E, Whittaker CAP, Barsukov IL, Esmann M, Middleton DA. A study of the membrane association and regulatory effect of the phospholemman cytoplasmic domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1021-31. [PMID: 21130070 DOI: 10.1016/j.bbamem.2010.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Phospholemman (PLM) is a single-span transmembrane protein belonging to the FXYD family of proteins. PLM (or FXYD1) regulates the Na,K-ATPase (NKA) ion pump by altering its affinity for K(+) and Na(+) and by reducing its hydrolytic activity. Structural studies of PLM in anionic detergent micelles have suggested that the cytoplasmic domain, which alone can regulate NKA, forms a partial helix which is stabilized by interactions with the charged membrane surface. This work examines the membrane affinity and regulatory function of a 35-amino acid peptide (PLM(38-72)) representing the PLM cytoplasmic domain. Isothermal titration calorimetry and solid-state NMR measurements confirm that PLM(38-72) associates strongly with highly anionic phospholipid membranes, but the association is weakened substantially when the negative surface charge is reduced to a more physiologically relevant environment. Membrane interactions are also weakened when the peptide is phosphorylated at S68, one of the substrate sites for protein kinases. PLM(38-72) also lowers the maximal velocity of ATP hydrolysis (V(max)) by NKA, and phosphorylation of the peptide at S68 gives rise to a partial recovery of V(max). These results suggest that the PLM cytoplasmic domain populates NKA-associated and membrane-associated states in dynamic equilibrium and that phosphorylation may alter the position of the equilibrium. Interestingly, peptides representing the cytoplasmic domains of two other FXYD proteins, Mat-8 (FXYD3) and CHIF (FXYD4), have little or no interaction with highly anionic phospholipid membranes and have no effect on NKA function. This suggests that the functional and physical properties of PLM are not conserved across the entire FXYD family.
Collapse
Affiliation(s)
- Eleri Hughes
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | |
Collapse
|
23
|
Cheung JY, Zhang XQ, Song J, Gao E, Rabinowitz JE, Chan TO, Wang J. Phospholemman: a novel cardiac stress protein. Clin Transl Sci 2010; 3:189-96. [PMID: 20718822 DOI: 10.1111/j.1752-8062.2010.00213.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. Functionally, when phosphorylated at serine(68), PLM stimulates Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger in cardiac myocytes. In heterologous expression systems, PLM modulates the gating of cardiac L-type Ca(2+) channel. Therefore, PLM occupies a key modulatory role in intracellular Na(+) and Ca(2+) homeostasis and is intimately involved in regulation of excitation-contraction (EC) coupling. Genetic ablation of PLM results in a slight increase in baseline cardiac contractility and prolongation of action potential duration. When hearts are subjected to catecholamine stress, PLM minimizes the risks of arrhythmogenesis by reducing Na(+) overload and simultaneously preserves inotropy by inhibiting Na(+)/Ca(2+) exchanger. In heart failure, both expression and phosphorylation state of PLM are altered and may partly account for abnormalities in EC coupling. The unique role of PLM in regulation of Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and potentially L-type Ca(2+) channel in the heart, together with the changes in its expression and phosphorylation in heart failure, make PLM a rational and novel target for development of drugs in our armamentarium against heart failure. Clin Trans Sci 2010; Volume 3: 189-196.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Guo K, Wang X, Gao G, Huang C, Elmslie KS, Peterson BZ. Amino acid substitutions in the FXYD motif enhance phospholemman-induced modulation of cardiac L-type calcium channels. Am J Physiol Cell Physiol 2010; 299:C1203-11. [PMID: 20720179 DOI: 10.1152/ajpcell.00149.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have found that phospholemman (PLM) associates with and modulates the gating of cardiac L-type calcium channels (Wang et al., Biophys J 98: 1149-1159, 2010). The short 17 amino acid extracellular NH(2)-terminal domain of PLM contains a highly conserved PFTYD sequence that defines it as a member of the FXYD family of ion transport regulators. Although we have learned a great deal about PLM-dependent changes in calcium channel gating, little is known regarding the molecular mechanisms underlying the observed changes. Therefore, we investigated the role of the PFTYD segment in the modulation of cardiac calcium channels by individually replacing Pro-8, Phe-9, Thr-10, Tyr-11, and Asp-12 with alanine (P8A, F9A, T10A, Y11A, D12A). In addition, Asp-12 was changed to lysine (D12K) and cysteine (D12C). As expected, wild-type PLM significantly slows channel activation and deactivation and enhances voltage-dependent inactivation (VDI). We were surprised to find that amino acid substitutions at Thr-10 and Asp-12 significantly enhanced the ability of PLM to modulate Ca(V)1.2 gating. T10A exhibited a twofold enhancement of PLM-induced slowing of activation, whereas D12K and D12C dramatically enhanced PLM-induced increase of VDI. The PLM-induced slowing of channel closing was abrogated by D12A and D12C, whereas D12K and T10A failed to impact this effect. These studies demonstrate that the PFXYD motif is not necessary for the association of PLM with Ca(V)1.2. Instead, since altering the chemical and/or physical properties of the PFXYD segment alters the relative magnitudes of opposing PLM-induced effects on Ca(V)1.2 channel gating, PLM appears to play an important role in fine tuning the gating kinetics of cardiac calcium channels and likely plays an important role in shaping the cardiac action potential and regulating Ca(2+) dynamics in the heart.
Collapse
Affiliation(s)
- Kai Guo
- Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
During activation of the sympathetic nervous system, cardiac performance is increased as part of the fight-or-flight stress response. The increase in contractility with sympathetic stimulation is an orchestrated combination of intrinsic inotropic, lusitropic, and chronotropic effects, mediated in part by activation of beta-adrenergic receptors and protein kinase A. This causes phosphorylation of several Ca cycling proteins in cardiac myocytes (increasing Ca entry via L-type Ca channels, sarcoplasmic reticulum Ca pumping, and the dissociation rate of Ca from the myofilaments). Here, we discuss how stimulation of the Na/K-ATPase, mediated by phosphorylation of phospholemman (a small sarcolemmal protein that associates with and modulates Na/K-ATPase), is an additional important player in the sympathetic fight-or-flight response. Enhancement of Na/K- ATPase activity limits the rise in [Na](i) caused by the higher level of Na influx and by doing so limits the rise in cellular and sarcoplasmic reticulum Ca load by favoring Ca extrusion via the Na/Ca exchanger. Thus, phospholemman-mediated activation of the Na/K-ATPase may prevent Ca overload and triggered arrhythmias during stress.
Collapse
|
26
|
Wang J, Gao E, Song J, Zhang XQ, Li J, Koch WJ, Tucker AL, Philipson KD, Chan TO, Feldman AM, Cheung JY. Phospholemman and beta-adrenergic stimulation in the heart. Am J Physiol Heart Circ Physiol 2009; 298:H807-15. [PMID: 20008271 DOI: 10.1152/ajpheart.00877.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation at serine 68 of phospholemman (PLM) in response to beta-adrenergic stimulation results in simultaneous inhibition of cardiac Na(+)/Ca(2+) exchanger NCX1 and relief of inhibition of Na(+)-K(+)-ATPase. The role of PLM in mediating beta-adrenergic effects on in vivo cardiac function was investigated with congenic PLM-knockout (KO) mice. Echocardiography showed similar ejection fraction between wild-type (WT) and PLM-KO hearts. Cardiac catheterization demonstrated higher baseline contractility (+dP/dt) but similar relaxation (-dP/dt) in PLM-KO mice. In response to isoproterenol (Iso), maximal +dP/dt was similar but maximal -dP/dt was reduced in PLM-KO mice. Dose-response curves to Iso (0.5-25 ng) for WT and PLM-KO hearts were superimposable. Maximal +dP/dt was reached 1-2 min after Iso addition and declined with time in WT but not PLM-KO hearts. In isolated myocytes paced at 2 Hz. contraction and intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitudes and [Na(+)](i) reached maximum 2-4 min after Iso addition, followed by decline in WT but not PLM-KO myocytes. Reducing pacing frequency to 0.5 Hz resulted in much smaller increases in [Na(+)](i) and no decline in contraction and [Ca(2+)](i) transient amplitudes with time in Iso-stimulated WT and PLM-KO myocytes. Although baseline Na(+)-K(+)-ATPase current was 41% higher in PLM-KO myocytes because of increased alpha(1)- but not alpha(2)-subunit activity, resting [Na(+)](i) was similar between quiescent WT and PLM-KO myocytes. Iso increased alpha(1)-subunit current (I(alpha1)) by 73% in WT but had no effect in PLM-KO myocytes. Iso did not affect alpha(2)-subunit current (I(alpha2)) in WT and PLM-KO myocytes. In both WT and NCX1-KO hearts, PLM coimmunoprecipitated with Na(+)-K(+)-ATPase alpha(1)- and alpha(2)-subunits, indicating that association of PLM with Na(+)-K(+)-ATPase did not require NCX1. We conclude that under stressful conditions in which [Na(+)](i) was high, beta-adrenergic agonist-mediated phosphorylation of PLM resulted in time-dependent reduction in inotropy due to relief of inhibition of Na(+)-K(+)-ATPase.
Collapse
Affiliation(s)
- JuFang Wang
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Teriete P, Thai K, Choi J, Marassi FM. Effects of PKA phosphorylation on the conformation of the Na,K-ATPase regulatory protein FXYD1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2462-70. [PMID: 19761758 DOI: 10.1016/j.bbamem.2009.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/21/2009] [Accepted: 09/06/2009] [Indexed: 12/17/2022]
Abstract
FXYD1 (phospholemman) is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the Na,K-ATPase enzyme complex in specific tissues and specific physiological states. In heart and skeletal muscle sarcolemma, FXYD1 is also the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinase A and by protein kinase C, which phosphorylate the protein at conserved Ser residues in its cytoplasmic domain, altering its Na,K-ATPase regulatory activity. FXYD1 adopts an L-shaped alpha-helical structure with the transmembrane helix loosely connected to a cytoplasmic amphipathic helix that rests on the membrane surface. In this paper we describe NMR experiments showing that neither PKA phosphorylation at Ser68 nor the physiologically relevant phosphorylation mimicking mutation Ser68Asp induces major changes in the protein conformation. The results, viewed in light of a model of FXYD1 associated with the Na,K-ATPase alpha and beta subunits, indicate that the effects of phosphorylation on the Na,K-ATPase regulatory activity of FXYD1 could be due primarily to changes in electrostatic potential near the membrane surface and near the Na(+)/K(+) ion binding site of the Na,K-ATPase alpha subunit.
Collapse
Affiliation(s)
- Peter Teriete
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
28
|
Stefanon I, Cade JR, Fernandes AA, Ribeiro Junior RF, Targueta GP, Mill JG, Vassallo DV. Ventricular performance and Na+-K+ ATPase activity are reduced early and late after myocardial infarction in rats. ACTA ACUST UNITED AC 2009; 42:902-11. [PMID: 19787147 DOI: 10.1590/s0100-879x2009005000015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 06/26/2009] [Indexed: 11/22/2022]
Abstract
Myocardial infarction leads to compensatory ventricular remodeling. Disturbances in myocardial contractility depend on the active transport of Ca2+ and Na+, which are regulated by Na+-K+ ATPase. Inappropriate regulation of Na+-K+ ATPase activity leads to excessive loss of K+ and gain of Na+ by the cell. We determined the participation of Na+-K+ ATPase in ventricular performance early and late after myocardial infarction. Wistar rats (8-10 per group) underwent left coronary artery ligation (infarcted, Inf) or sham-operation (Sham). Ventricular performance was measured at 3 and 30 days after surgery using the Langendorff technique. Left ventricular systolic pressure was obtained under different ventricular diastolic pressures and increased extracellular Ca2+ concentrations (Ca2+e) and after low and high ouabain concentrations. The baseline coronary perfusion pressure increased 3 days after myocardial infarction and normalized by 30 days (Sham 3 = 88 +/- 6; Inf 3 = 130 +/- 9; Inf 30 = 92 +/- 7 mmHg; P < 0.05). The inotropic response to Ca2+e and ouabain was reduced at 3 and 30 days after myocardial infarction (Ca2+ = 1.25 mM; Sham 3 = 70 +/- 3; Inf 3 = 45 +/- 2; Inf 30 = 29 +/- 3 mmHg; P < 0.05), while the Frank-Starling mechanism was preserved. At 3 and 30 days after myocardial infarction, ventricular Na+-K+ ATPase activity and contractility were reduced. This Na+-K+ ATPase hypoactivity may modify the Na+, K+ and Ca2+ transport across the sarcolemma resulting in ventricular dysfunction.
Collapse
Affiliation(s)
- I Stefanon
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brasil.
| | | | | | | | | | | | | |
Collapse
|
29
|
Garcia-Rudaz C, Deng V, Matagne V, Ronnekleiv O, Bosch M, Han V, Percy AK, Ojeda SR. FXYD1, a modulator of Na,K-ATPase activity, facilitates female sexual development by maintaining gonadotrophin-releasing hormone neuronal excitability. J Neuroendocrinol 2009; 21:108-22. [PMID: 19187398 PMCID: PMC2934895 DOI: 10.1111/j.1365-2826.2008.01812.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The excitatory tone to gonadotrophin-releasing hormone (GnRH) neurones is a critical component underlying the pubertal increase in GnRH secretion. However, the homeostatic mechanisms modulating the response of GnRH neurones to excitatory inputs remain poorly understood. A basic mechanism of neuronal homeostasis is the Na(+),K(+)-ATPase-dependent restoration of Na(+) and K(+) transmembrane gradients after neuronal excitation. This activity is reduced in a mouse model of Rett syndrome (RTT), a neurodevelopmental disorder in which expression of FXYD1, a modulator of Na(+),K(+)-ATPase activity, is increased. We now report that the initiation, but not the completion of puberty, is advanced in girls with RTT, and that, in rodents, FXYD1 may contribute to the neuroendocrine regulation of female puberty by modulating GnRH neuronal excitability. Fxyd1 mRNA abundance reaches maximal levels in the female rat hypothalamus by the fourth postnatal week of life (i.e., around the time when the mode of GnRH secretion acquires an adult pattern of release). Although Fxyd1 mRNA expression is low in the hypothalamus, approximately 50% of GnRH neurones contain Fxyd1 transcripts. Whole-cell patch recording of GnRH-EGFP neurones revealed that the neurones of Fxyd1-null female mice respond to somatic current injections with a lower number of action potentials than wild-type cells. Both the age at vaginal opening and at first oestrous were delayed in Fxyd1(-/-) mice, but adult reproductive capacity was normal. These results suggest that FXYD1 contributes to facilitating the advent of puberty by maintaining GnRH neuronal excitability to incoming transsynaptic stimulatory inputs.
Collapse
Affiliation(s)
- Cecilia Garcia-Rudaz
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| | - Vivianne Deng
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| | - Valerie Matagne
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| | - Oline Ronnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Martha Bosch
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Victor Han
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| | - Alan K. Percy
- Department of Pediatrics University of Alabama at Birmingham, Birmingham, Alabama
| | - Sergio R. Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
30
|
Sharikabad MN, Aronsen JM, Haugen E, Pedersen J, Møller ASW, Mørk HK, Aass HCD, Sejersted OM, Sjaastad I, Brørs O. Cardiomyocytes from postinfarction failing rat hearts have improved ischemia tolerance. Am J Physiol Heart Circ Physiol 2009; 296:H787-95. [PMID: 19136604 DOI: 10.1152/ajpheart.00796.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Altered myocardial Ca(2+) and Na(+) handling in congestive heart failure (CHF) may be expected to decrease the tolerance to ischemia by augmenting reperfusion Ca(2+) overload. The aim of the present study was to investigate tolerance to hypoxia-reoxygenation by measuring enzyme release, cell death, ATP level, and cell Ca(2+) and Na(+) in cardiomyocytes from failing rat hearts. CHF was induced in Wistar rats by ligation of the left coronary artery during isoflurane anesthesia, after which cardiac failure developed within 6 wk. Isolated cardiomyocytes were cultured for 24 h and subsequently exposed to 4 h of hypoxia and 2 h of reoxygenation. Cell damage was measured as lactate dehydrogenase (LD) release, cell death as propidium iodide uptake, and ATP by firefly luciferase assay. Cell Ca(2+) and Na(+) were determined with radioactive isotopes, and free intracellular Ca(2+) concentration ([Ca(2+)](i)) with fluo-3 AM. CHF cells showed less increase in LD release and cell death after hypoxia-reoxygenation and had less relative reduction in ATP level after hypoxia than sham cells. CHF cells accumulated less Na(+) than sham cells during hypoxia (117 vs. 267 nmol/mg protein). CHF cells maintained much lower [Ca(2+)](i) than sham cells during hypoxia (423 vs. 1,766 arbitrary units at 4 h of hypoxia), and exchangeable Ca(2+) increased much less in CHF than in sham cells (1.4 vs. 6.7 nmol/mg protein) after 120 min of reoxygenation. Ranolazine, an inhibitor of late Na(+) current, significantly attenuated both the increase in exchangeable Ca(2+) and the increase in LD release in sham cells after reoxygenation. This supports the suggestion that differences in Na(+) accumulation during hypoxia cause the observed differences in Ca(2+) accumulation during reoxygenation. Tolerance to hypoxia and reoxygenation was surprisingly higher in CHF than in sham cardiomyocytes, probably explained by lower hypoxia-mediated Na(+) accumulation and subsequent lower Ca(2+) accumulation in CHF after reoxygenation.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Na,K-ATPase is an oligomeric protein composed of alpha subunits, beta subunits and FXYD proteins. The catalytic alpha subunit hydrolyzes ATP and transports the cations. Increasing experimental evidence suggest that beta subunits and FXYD proteins essentially contribute to the variable physiological needs of Na,K-ATPase function in different tissues. RECENT FINDINGS Beta subunits have a crucial role in the structural and functional maturation of Na,K-ATPase and modulate its transport properties. The chaperone function of the beta subunit is essential, for example, in the formation of tight junctions and cell polarity. Recent studies suggest that beta subunits also have inherent functions, which are independent of Na,K-ATPase activity and which may be involved in cell-cell adhesiveness and in suppression of cell motility. As for FXYD proteins, they modulate Na,K-ATPase activity in a tissue-specific way, in some cases in close cooperation with posttranslational modifications such as phosphorylation. SUMMARY A better understanding of the multiple functional roles of the accessory subunits of Na,K-ATPase is crucial to appraise their influence on physiological processes and their implication in pathophysiological states.
Collapse
|
32
|
Shimizu J, Yamashita D, Misawa H, Tohne K, Matsuoka S, Kim B, Takeuchi A, Nakajima-Takenaka C, Takaki M. Increased O2 consumption in excitation-contraction coupling in hypertrophied rat heart slices related to increased Na+ -Ca2+ exchange activity. J Physiol Sci 2009; 59:63-74. [PMID: 19340563 PMCID: PMC10717199 DOI: 10.1007/s12576-008-0006-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/31/2008] [Indexed: 10/20/2022]
Abstract
The goal of our study was to evaluate the origin of the increased O(2) consumption in electrically stimulated left ventricular slices of isoproterenol-induced hypertrophied rat hearts with normal left ventricular pressure. O(2) consumption per minute (mVO(2)) of mechanically unloaded left ventricular slices was measured in the absence and presence of 1-Hz field stimulation. Basal metabolic mVO(2), i.e., mVO(2) without electrical stimulation, was significantly smaller, but mVO(2) for the total Ca(2+) handling in excitation-contraction coupling (E-C coupling mVO(2)), i.e., delta mVO(2) (=mVO(2) with stimulation - mVO(2) without stimulation), was significantly larger in the hypertrophied heart. Furthermore, the fraction of E-C coupling mVO(2) was markedly altered in the hypertrophied heart. Namely, mVO(2) consumed by sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2) was depressed by 40%; mVO(2) consumed by the Na(+)/K(+)-ATPase (NKA)-Na(+)/Ca(2+) exchange (NCX) coupling was increased by 100%. The depressed mVO(2) consumption by SERCA2 was supported by lower protein expressions of phosphorylated-Ser(16) phospholamban and SERCA2. The increase in NKA-NCX coupling mVO(2) was supported by marked augmentation of NCX current. However, the increase in NCX current was not due to the increase in NCX1 protein expression, but was attributable to attenuation of the intrinsic inactivation mechanisms. The present results demonstrated that the altered origin of the increased E-C coupling mVO(2) in hypertrophy was derived from decreased SERCA2 activity (1ATP: 2Ca(2+)) and increased NCX activity coupled to NKA activity (1ATP: Ca(2+)). Taken together, we conclude that the energetically less efficient Ca(2+) extrusion pathway evenly contributes to Ca(2+) handling in E-C coupling in the present hypertrophy model.
Collapse
Affiliation(s)
- Juichiro Shimizu
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Daisuke Yamashita
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Hiromi Misawa
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Kiyoe Tohne
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| | - Satoshi Matsuoka
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Bongju Kim
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Ayako Takeuchi
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | | | - Miyako Takaki
- Department of Physiology II, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Japan
| |
Collapse
|
33
|
Song J, Zhang XQ, Wang J, Cheskis E, Chan TO, Feldman AM, Tucker AL, Cheung JY. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase. Am J Physiol Heart Circ Physiol 2008; 295:H1615-25. [PMID: 18708446 DOI: 10.1152/ajpheart.00287.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct inhibitory effects on Na(+)/Ca(2+) exchange.
Collapse
Affiliation(s)
- Jianliang Song
- Division of Nephrology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Bibert S, Roy S, Schaer D, Horisberger JD, Geering K. Phosphorylation of phospholemman (FXYD1) by protein kinases A and C modulates distinct Na,K-ATPase isozymes. J Biol Chem 2007; 283:476-486. [PMID: 17991751 DOI: 10.1074/jbc.m705830200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholemman (FXYD1), mainly expressed in heart and skeletal muscle, is a member of the FXYD protein family, which has been shown to decrease the apparent K(+) and Na(+) affinity of Na,K-ATPase ( Crambert, G., Fuzesi, M., Garty, H., Karlish, S., and Geering, K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 11476-11481 ). In this study, we use the Xenopus oocyte expression system to study the role of phospholemman phosphorylation by protein kinases A and C in the modulation of different Na,K-ATPase isozymes present in the heart. Phosphorylation of phospholemman by protein kinase A has no effect on the maximal transport activity or on the apparent K(+) affinity of Na,K-ATPase alpha1/beta1 and alpha2/beta1 isozymes but increases their apparent Na(+) affinity, dependent on phospholemman phosphorylation at Ser(68). Phosphorylation of phospholemman by protein kinase C affects neither the maximal transport activity of alpha1/beta1 isozymes nor the K(+) affinity of alpha1/beta1 and alpha2/beta1 isozymes. However, protein kinase C phosphorylation of phospholemman increases the maximal Na,K-pump current of alpha2/beta1 isozymes by an increase in their turnover number. Thus, our results indicate that protein kinase A phosphorylation of phospholemman has similar functional effects on Na,K-ATPase alpha1/beta and alpha2/beta isozymes and increases their apparent Na(+) affinity, whereas protein kinase C phosphorylation of phospholemman modulates the transport activity of Na,K-ATPase alpha2/beta but not of alpha1/beta isozymes. The complex and distinct regulation of Na,K-ATPase isozymes by phosphorylation of phospholemman may be important for the efficient control of heart contractility and excitability.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Sophie Roy
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Danièle Schaer
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Jean-Daniel Horisberger
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Käthi Geering
- Department of Pharmacology and Toxicology, University of Lausanne, 27 Rue du Bugnon, 1005 Lausanne, Switzerland.
| |
Collapse
|
36
|
Cheung JY, Rothblum LI, Moorman JR, Tucker AL, Song J, Ahlers BA, Carl LL, Wang J, Zhang XQ. Regulation of cardiac Na+/Ca2+ exchanger by phospholemman. Ann N Y Acad Sci 2007; 1099:119-34. [PMID: 17446450 DOI: 10.1196/annals.1387.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phospholemman (PLM) is the first sequenced member of the FXYD family of regulators of ion transport. The mature protein has 72 amino acids and consists of an extracellular N terminus containing the signature FXYD motif, a single transmembrane (TM) domain, and a cytoplasmic C-terminal domain containing four potential sites for phosphorylation. PLM and other members of the FXYD family are known to regulate Na+-K+-ATPase. Using adenovirus-mediated gene transfer into adult rat cardiac myocytes, we showed that changes in contractility and intracellular Ca2+ homeostasis associated with PLM overexpression or downregulation are not consistent with the effects expected from inhibition of Na+-K+-ATPase by PLM. Additional studies with heterologous expression of PLM and cardiac Na+/Ca2+ exchanger 1 (NCX1) in HEK293 cells and cardiac myocytes isolated from PLM-deficient mice demonstrated by co-localization, co-immunoprecipitation, and electrophysiological and radioactive tracer uptake techniques that PLM associates with NCX1 in the sarcolemma and transverse tubules and that PLM inhibits NCX1, independent of its effects on Na+-K+-ATPase. Mutational analysis indicates that the cytoplasmic domain of PLM is required for its regulation of NCX1. In addition, experiments using phosphomimetic and phospho-deficient PLM mutants, as well as activators of protein kinases A and C, indicate that PLM phosphorylated at serine68 is the active form that inhibits NCX1. This is in sharp contrast to the finding that the unphosphorylated PLM form inhibits Na+-K+-ATPase. We conclude that PLM regulates cardiac contractility by modulating the activities of NCX and Na+-K+-ATPase.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bers DM, Despa S, Bossuyt J. Regulation of Ca2+ and Na+ in normal and failing cardiac myocytes. Ann N Y Acad Sci 2007; 1080:165-77. [PMID: 17132783 DOI: 10.1196/annals.1380.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ca(2+) in cardiac myocytes regulates contractility and relaxation, and Ca(2+) and Na (+)regulation are linked via Na(+)/Ca(2+) exchange (NCX). Heart failure (HF) is accompanied by contractile dysfunction and arrhythmias, both of which may be due to altered cellular Ca(2+) handling. Smaller Ca(2+) transient and sarcoplasmic reticulum (SR) Ca(2+) content cause systolic dysfunction in HF. The reduced SR Ca(2+) content is due to: (a) reduced SR Ca(2+)-ATPase function (which also contributes to diastolic dysfunction), (b) increased expression and function of NCX (which competes with SR Ca(2+)-ATPase during relaxation, but preserves diastolic function), and (c) enhanced diastolic SR Ca(2+) leak. Relative contributions of these may vary with HF etiology and stage. Triggered arrhythmias (e.g., delayed afterdepolarizations [DADs]) are prominent in HF. DADs are due to spontaneous SR Ca(2+) release and consequent activation of transient inward NCX current, which in HF allows DADs to more readily trigger arrhythmogenic action potentials. Thus NCX and Na(+) are critical in systolic and diastolic function and arrhythmias. [Na(+)](i) is elevated in HF, which may limit SR unloading and provide some Ca(2+) influx during the HF action potential, thus limiting the depression of systolic function. High [Na(+)](i) in HF is due to enhanced Na(+) influx. Cellular Na(+)/K(+)-ATPase (NKA) function appears unaltered, despite reduced NKA expression. This dichotomy led us to test NKA regulation by phospholemman (PLM). We find that PLM regulates NKA in a manner analogous to phospholamban regulation of SR Ca(2+)-ATPase (i.e., inhibition that is relieved by PLM phosphorylation). We measured intermolecular FRET between PLM and NKA, which is reduced upon PLM phosphorylation. The lower expression level of more phosphorylated PLM in HF may explain the above dichotomy. Thus, altered Ca(2+) and Na(+) handling contributes to altered contractile function and arrhythmogenesis in HF.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153-5500, USA.
| | | | | |
Collapse
|
38
|
Deng V, Matagne V, Banine F, Frerking M, Ohliger P, Budden S, Pevsner J, Dissen GA, Sherman LS, Ojeda SR. FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet 2007; 16:640-50. [PMID: 17309881 DOI: 10.1093/hmg/ddm007] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. Direct MeCP2 targets underlying RTT pathogenesis remain largely unknown. Here, we report that FXYD1, which encodes a transmembrane modulator of Na(+), K(+) -ATPase activity, is elevated in frontal cortex (FC) neurons of RTT patients and Mecp2-null mice. Increasing neuronal FXDY1 expression is sufficient to reduce dendritic arborization and spine formation, hallmarks of RTT neuropathology. Mecp2-null mouse cortical neurons have diminished Na(+),K(+)-ATPase activity, suggesting that aberrant FXYD1 expression contributes to abnormal neuronal activity in RTT. MeCP2 represses Fxyd1 transcription through direct interactions with sequences in the Fxyd1 promoter that are methylated in FC neurons. FXYD1 is therefore a MeCP2 target gene whose de-repression may directly contribute to RTT neuronal pathogenesis.
Collapse
Affiliation(s)
- Vivianne Deng
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liang M, Tian J, Liu L, Pierre S, Liu J, Shapiro J, Xie ZJ. Identification of a pool of non-pumping Na/K-ATPase. J Biol Chem 2007; 282:10585-93. [PMID: 17296611 DOI: 10.1074/jbc.m609181200] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have ascribed many non-pumping functions to the Na/K-ATPase. Here, we present experimental evidence demonstrating that over half of the plasma membrane Na/K-ATPase in LLC-PK1 cells is performing cellular functions other than ion pumping. This "non-pumping" pool of Na/K-ATPase, like the pumping pump, binds ouabain. Depletion of either cholesterol or caveolin-1 moves some of the "non-pumping" Na/K-ATPase into the pumping pool. Graded knock-down of the alpha1 subunit of the Na/K-ATPase eventually results in loss of this "non-pumping" pool while preserving the pumping pool. Our prior studies indicate that a loss of the non-pumping pool is associated with a loss of receptor function as evidenced by the failure of ouabain administration to induce the activation of Src and/or ERK. Therefore, our new findings suggest that a substantial amount of surface-expressed Na/K-ATPase, at least in some types of cells, may function as non-canonical ouabain-binding receptors.
Collapse
Affiliation(s)
- Man Liang
- Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, University of Toledo Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Pavlović D, Fuller W, Shattock MJ. The intracellular region of FXYD1 is sufficient to regulate cardiac Na/K ATPase. FASEB J 2007; 21:1539-46. [PMID: 17283221 DOI: 10.1096/fj.06-7269com] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
FXYD1 is a transmembrane protein predominantly expressed in excitable tissues that associates with and regulates Na/K ATPase. PKA phosphorylates FXYD1 at serine 68 (S68), however, the effects of phosphorylation on Na/K ATPase activity are not fully characterized. The objectives of this study were to characterize Na/K ATPase currents in FXYD1 wild-type (WT) and knockout (KO) adult mouse ventricular myocytes, and investigate the effects of FXYD1 on Na/K ATPase currents using the whole-cell patch-clamp technique. A peptide representing the 19 C-terminal residues of FXYD1 (FXYD1(54-72)) was introduced into the interior of FXYD1 KO and WT myocytes through the patch pipette. K-sensitive Na/K ATPase currents were higher in KO myocytes (2.9+/-0.1 pA/pF; n=4) compared with WT (1.9+/-0.1 pA/pF; n=4). Unphosphorylated FXYD1(54-72), at a concentration of 4 microM, reduced the currents in WT (from 2.1+/-0.1 to 1.3+/-0.1 pA/pF; P<0.05, n=7) and KO (from 2.9+/-0.1 to 1.7+/-0.1 pA/pF; P<0.05, n=5), whereas, 1 microM of FXYD1(54-72) phosphorylated at S68 increased currents in WT (from 1.91+/-0.09 to 3.1+/-0.5 pA/pF; P<0.05, n=6) and KO (from 2.7+/-0.11 to 3.8+/-0.2 pA/pF; P<0.05, n=6) myocytes. Coimmunoprecipitation studies demonstrated that S68 phosphorylated and unphosphorylated FXYD1(54-72) associates with Na/K ATPase alpha1 subunit. We conclude that unphosphorylated FXYD1 inhibits Na/K ATPase, whereas S68 phosphorylated FXYD1 stimulates Na/K ATPase to a level above that seen in the absence of FXYD1.
Collapse
Affiliation(s)
- Davor Pavlović
- Cardiovascular Division, The Rayne Institute, King's College London, St. Thomas Hospital, London, SE1 7EH, UK
| | | | | |
Collapse
|
41
|
Abstract
Ca is critical in both the electrical and mechanical properties of cardiac myocytes, and much is known about ionic currents and the normal excitation-contraction coupling process. In heart failure, there are significant alterations in how myocyte Ca is regulated, and these alterations are critical in dictating both contractile dysfunction and certain cardiac arrhythmias that are characteristic of heart failure.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA.
| |
Collapse
|
42
|
Wang J, Zhang XQ, Ahlers BA, Carl LL, Song J, Rothblum LI, Stahl RC, Carey DJ, Cheung JY. Cytoplasmic Tail of Phospholemman Interacts with the Intracellular Loop of the Cardiac Na+/Ca2+ Exchanger. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Wang J, Zhang XQ, Ahlers BA, Carl LL, Song J, Rothblum LI, Stahl RC, Carey DJ, Cheung JY. Cytoplasmic tail of phospholemman interacts with the intracellular loop of the cardiac Na+/Ca2+ exchanger. J Biol Chem 2006; 281:32004-14. [PMID: 16921169 PMCID: PMC1613256 DOI: 10.1074/jbc.m606876200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholemman (PLM), a member of the FXYD family of small ion transport regulators, inhibits cardiac Na+/Ca2+ exchanger (NCX1). NCX1 is made up of N-terminal domain consisting of the first five transmembrane segments (residues 1-217), a large intracellular loop (residues 218-764), and a C-terminal domain comprising the last four transmembrane segments (residues 765-938). Using glutathione S-transferase (GST) pull-down assay, we demonstrated that the intracellular loop, but not the N- or C-terminal transmembrane domains of NCX1, was associated with PLM. Further analysis using protein constructs of GST fused to various segments of the intracellular loop of NCX1 suggest that PLM bound to residues 218-371 and 508-764 but not 371-508. Split Na+/Ca2+ exchangers consisting of N- or C-terminal domains with different lengths of the intracellular loop were co-expressed with PLM in HEK293 cells that are devoid of endogenous PLM and NCX1. Although expression of N-terminal but not C-terminal domain alone resulted in correct membrane targeting, co-expression of both N- and C-terminal domains was required for correct membrane targeting and functional exchange activity. NCX1 current measurements indicate that PLM decreased NCX1 current only when the split exchangers contained residues 218-358 of the intracellular loop. Co-immunoprecipitation experiments with PLM and split exchangers suggest that PLM associated with the N-terminal domain of NCX1 when it contained intracellular loop residues 218-358. TM43, a PLM mutant with its cytoplasmic tail truncated, did not co-immunoprecipitate with wild-type NCX1 when co-expressed in HEK293 cells, confirming little to no interaction between the transmembrane domains of PLM and NCX1. We conclude that PLM interacted with the intracellular loop of NCX1, most likely at residues 218-358.
Collapse
Affiliation(s)
- JuFang Wang
- Department of Cellular and Molecular Physiology and
| | | | | | - Lois L. Carl
- Department of Cellular and Molecular Physiology and
| | | | | | - Richard C. Stahl
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822
| | - David J. Carey
- Weis Center for Research, Geisinger Medical Center, Danville, PA 17822
| | - Joseph Y. Cheung
- Department of Cellular and Molecular Physiology and
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033; and
- Address Correspondence To: Joseph Y. Cheung, M.D., Ph.D., Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, MC-H166, Hershey, PA 17033. Tel. (717)531-5748; Fax. (717)531-7667;
| |
Collapse
|
44
|
Tucker AL, Song J, Zhang XQ, Wang J, Ahlers BA, Carl LL, Mounsey JP, Moorman JR, Rothblum LI, Cheung JY. Altered contractility and [Ca2+]i homeostasis in phospholemman-deficient murine myocytes: role of Na+/Ca2+ exchange. Am J Physiol Heart Circ Physiol 2006; 291:H2199-209. [PMID: 16751288 PMCID: PMC1593220 DOI: 10.1152/ajpheart.01181.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM) regulates contractility and Ca(2+) homeostasis in cardiac myocytes. We characterized excitation-contraction coupling in myocytes isolated from PLM-deficient mice backbred to a pure congenic C57BL/6 background. Cell length, cell width, and whole cell capacitance were not different between wild-type and PLM-null myocytes. Compared with wild-type myocytes, Western blots indicated total absence of PLM but no changes in Na(+)/Ca(2+) exchanger, sarcoplasmic reticulum (SR) Ca(2+)-ATPase, alpha(1)-subunit of Na(+)-K(+)-ATPase, and calsequestrin levels in PLM-null myocytes. At 5 mM extracellular Ca(2+) concentration ([Ca(2+)](o)), contraction and cytosolic [Ca(2+)] ([Ca(2+)](i)) transient amplitudes and SR Ca(2+) contents in PLM-null myocytes were significantly (P < 0.0004) higher than wild-type myocytes, whereas the converse was true at 0.6 mM [Ca(2+)](o). This pattern of contractile and [Ca(2+)](i) transient abnormalities in PLM-null myocytes mimics that observed in adult rat myocytes overexpressing the cardiac Na(+)/Ca(2+) exchanger. Indeed, we have previously reported that Na(+)/Ca(2+) exchange currents were higher in PLM-null myocytes. Activation of protein kinase A resulted in increased inotropy such that there were no longer any contractility differences between the stimulated wild-type and PLM-null myocytes. Protein kinase C stimulation resulted in decreased contractility in both wild-type and PLM-null myocytes. Resting membrane potential and action potential amplitudes were similar, but action potential duration was much prolonged (P < 0.04) in PLM-null myocytes. Whole cell Ca(2+) current densities were similar between wild-type and PLM-null myocytes, as were the fast- and slow-inactivation time constants. We conclude that a major function of PLM is regulation of cardiac contractility and Ca(2+) fluxes, likely by modulating Na(+)/Ca(2+) exchange activity.
Collapse
Affiliation(s)
- Amy L. Tucker
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia; and
| | - Jianliang Song
- Department of Cellular and Molecular Physiology and
- Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania
| | - Xue-Qian Zhang
- Department of Cellular and Molecular Physiology and
- Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania
| | - JuFang Wang
- Department of Cellular and Molecular Physiology and
- Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania
| | - Belinda A. Ahlers
- Department of Cellular and Molecular Physiology and
- Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania
| | - Lois L. Carl
- Department of Cellular and Molecular Physiology and
- Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania
| | - J. Paul Mounsey
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia; and
| | - J. Randall Moorman
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia; and
| | | | - Joseph Y. Cheung
- Department of Cellular and Molecular Physiology and
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
- Weis Center for Research, Geisinger Medical Center, Danville, Pennsylvania
| |
Collapse
|
45
|
Zhang XQ, Ahlers BA, Tucker AL, Song J, Wang J, Moorman JR, Mounsey JP, Carl LL, Rothblum LI, Cheung JY. Phospholemman inhibition of the cardiac Na+/Ca2+ exchanger. Role of phosphorylation. J Biol Chem 2006; 281:7784-92. [PMID: 16434394 PMCID: PMC1405234 DOI: 10.1074/jbc.m512092200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated previously that phospholemman (PLM), a 15-kDa integral sarcolemmal phosphoprotein, inhibits the cardiac Na+/Ca2+ exchanger (NCX1). In addition, protein kinase A phosphorylates serine 68, whereas protein kinase C phosphorylates both serine 63 and serine 68 of PLM. Using human embryonic kidney 293 cells that are devoid of both endogenous PLM and NCX1, we first demonstrated that the exogenous NCX1 current (I(NaCa)) was increased by phorbol 12-myristate 13-acetate (PMA) but not by forskolin. When co-expressed with NCX1, PLM resulted in: (i) decreases in I(NaCa), (ii) attenuation of the increase in I(NaCa) by PMA, and (iii) additional reduction in I(NaCa) in cells treated with forskolin. Mutating serine 63 to alanine (S63A) preserved the sensitivity of PLM to forskolin in terms of suppression of I(NaCa), whereas mutating serine 68 to alanine (S68A) abolished the inhibitory effect of PLM on I(NaCa). Mutating serine 68 to glutamic acid (phosphomimetic) resulted in additional suppression of I(NaCa) as compared with wild-type PLM. These results suggest that PLM phosphorylated at serine 68 inhibited I(NaCa). The physiological significance of inhibition of NCX1 by phosphorylated PLM was evaluated in PLM-knock-out (KO) mice. When compared with wild-type myocytes, I(NaCa) was significant larger in PLM-KO myocytes. In addition, the PMA-induced increase in I(NaCa) was significantly higher in PLM-KO myocytes. By contrast, forskolin had no effect on I(NaCa) in wild-type myocytes. We conclude that PLM, when phosphorylated at serine 68, inhibits Na+/Ca2+ exchange in the heart.
Collapse
Key Words
- anova, analysis of variance
- 8-br-camp, 8-bromoadenosine 3′, 5′ cyclic monophosphate
- [ca2+]o, extracellular ca2+ concentration; cm, whole cell membrane capacitance
- cmv, cytomegalovirus
- dmem, dulbecco’s modified eagle’s medium
- dmso, dimethylsulfoxide
- egta, ethylene glycol-bis-(β-aminoethyl ether)n,n,n’,n’-tetraacetic acid
- em, membrane potential
- em., emission
- ex., excitation
- enaca, equilibrium potential for na+, ca2+ exchange current
- fbs, fetal bovine serum
- gfp, green fluorescent protein
- hek, human embryonic kidney
- hepes, n-2-hydroxyethylpiperazine-n’-2-ethanesulfonic acid
- inaca, na+, ca2+ exchange current
- ko, knock-out
- mem, minimal essential media
- ncx1, na+, ca2+ exchanger
- nima, never in mitosis a
- pka, protein kinase a
- pkc, protein kinase c
- plm, phospholemman
- pma, phorbol 12-myristate 13-acetate
- pmsf, phenylmethylsulfonyl fluoride
- pvdf, polyvinylidene difluoride
- se, standard error
- serca2, sarco(endo)plasmic reticulum ca2+-atpase
- sr, sarcoplasmic reticulum
- sds-page, sodium dodecyl sulfate- polyacrylamide gel electrophoresis
- vmax, maximum velocity
- wt, wild-type
Collapse
Affiliation(s)
| | | | - Amy L. Tucker
- Department of Internal Medicine (Cardiovascular Division), University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | | | - JuFang Wang
- Department of Cellular and Molecular Physiology and
| | - J. Randall Moorman
- Department of Internal Medicine (Cardiovascular Division), University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - J. Paul Mounsey
- Department of Internal Medicine (Cardiovascular Division), University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Lois L. Carl
- Department of Cellular and Molecular Physiology and
| | | | - Joseph Y. Cheung
- Department of Cellular and Molecular Physiology and
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033
| |
Collapse
|
46
|
Abstract
Ca(2+) is a central player in the excitation-contraction coupling of cardiac myocytes, the process that enables the heart to contract and relax. Mishandling of Ca(2+) is a central cause of both contractile dysfunction and arrhythmias in pathophysiological conditions such as heart failure (HF). Upon electrical excitation, Ca(2+) enters the myocytes via voltage-gated Ca(2+) channels and induces further Ca(2+) release from the sarcoplasmic reticulum (SR). This raises the free intracellular Ca(2+) concentration ([Ca(2+)](i)), activating contraction. Relaxation is driven by [Ca(2+)](i) decline, mainly due to re-uptake into the SR via SR Ca(2+)-ATPase and extrusion via the sarcolemmal Na(+)/Ca(2+) exchange, NCX. Intracellular Na(+) concentration ([Na(+)](i)) is a main regulator of NCX, and thus [Na(+)](i) plays an important role in controlling the cytosolic and SR [Ca(2+)]. [Na(+)](i) may have an even more important role in HF because NCX is generally upregulated. There are several pathways for Na(+) entry into the cells, whereas the Na(+)/K(+) pump (NKA) is the main Na(+) extrusion pathway and therefore is essential in maintaining the transmembrane Na(+) gradient. Phospholemman is an important regulator of NKA function (decreasing [Na(+)](i) affinity unless it is phosphorylated). Here we discuss the interplay between Ca(2+) and Na(+) in myocytes from normal and failing hearts.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.
| | | |
Collapse
|