1
|
Sadraei A, Naghib SM, Rabiee N. 4D printing chemical stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 2. Expert Opin Drug Deliv 2025; 22:491-510. [PMID: 39953663 DOI: 10.1080/17425247.2025.2466768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION The incorporation of 4D printing alongside chemical stimuli-responsive hydrogels represents a significant advancement in the field of biomedical engineering, effectively overcoming the constraints associated with conventional static 3D-printed structures. Through the integration of time as the fourth dimension, 4D printing facilitates the development of dynamic and adaptable structures that can react to chemical alterations in their surroundings. This innovation presents considerable promise for sophisticated tissue engineering and targeted drug delivery applications. AREAS COVERED This review examines the function of chemical stimuli-responsive hydrogels within the context of 4D printing, highlighting their distinctive ability to undergo regulated transformations when exposed to particular chemical stimuli. An in-depth examination of contemporary research underscores the collaborative dynamics between these hydrogels and their surroundings, focusing specifically on their utilization in biomimetic scaffolds for tissue regeneration and the advancement of intelligent drug delivery systems. EXPERT OPINION The integration of 4D printing technology with chemically responsive hydrogels presents exceptional prospects for advancements in tissue engineering and targeted drug delivery, facilitating the development of personalized and adaptive medical solutions. Although the potential is promising, it is essential to address challenges such as material optimization, biocompatibility, and precise control over stimuli-responsive behavior to facilitate clinical translation and scalability.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Cabral RP, Ribeiro APD, Monte MG, Fujimori ASS, Tonon CR, Ferreira NF, Zanatti SG, Minicucci MF, Zornoff LAM, Paiva SARD, Polegato BF. Pera orange juice ( Citrus sinensis L. Osbeck) alters lipid metabolism and attenuates oxidative stress in the heart and liver of rats treated with doxorubicin. Heliyon 2024; 10:e36834. [PMID: 39263053 PMCID: PMC11388782 DOI: 10.1016/j.heliyon.2024.e36834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Background Doxorubicin (DOX) is a highly effective chemotherapy drug widely used to treat cancer, but its use is limited due to multisystemic toxicity. Lipid metabolism is also affected by doxorubicin. Orange juice can reduce dyslipidemia in other clinical situations and has already been shown to attenuate cardiotoxicity. Our aim is to evaluate the effects of Pera orange juice (Citrus sinensis L. Osbeck) on mitigating lipid metabolism imbalance, metabolic pathways, and DOX induced cytotoxic effects in the heart and liver. Methods Twenty-four male Wistar rats were allocated into 3 groups: Control (C); DOX (D); and DOX plus Pera orange juice (DOJ). DOJ received orange juice for 4 weeks, while C and D received water. At the end of each week, D and DOJ groups received 4 mg/kg/week DOX, intraperitoneal. At the end of 4 weeks animals were submitted to echocardiography and euthanasia. Results Animals treated with DOX decreased water intake and lost weight over time. At echocardiography, DOX treated rats presented morphologic alterations in the heart. DOX increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol, high density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides. It also reduced superoxide dismutase (SOD) activity, increased protein carbonylation in the heart and dihydroethidium (DHE) expression in the liver, decreased glucose transporter type 4 (GLUT4) and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ1) in the heart, and reduced carnitine palmitoyltransferase I (CPT1) in the liver. Conclusion DOX caused dyslipidemia, liver and cardiac toxicity by increasing oxidative stress, and altered energy metabolic parameters in both organs. Despite not improving changes in left ventricular morphology, orange juice did attenuate oxidative stress and mitigate the metabolic effects of DOX.
Collapse
|
3
|
Tonon CR, Monte MG, Balin PS, Fujimori ASS, Ribeiro APD, Ferreira NF, Vieira NM, Cabral RP, Okoshi MP, Okoshi K, Zornoff LAM, Minicucci MF, Paiva SAR, Gomes MJ, Polegato BF. Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats. Int J Mol Sci 2024; 25:5833. [PMID: 38892020 PMCID: PMC11172760 DOI: 10.3390/ijms25115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Doxorubicin is an effective drug for cancer treatment; however, cardiotoxicity limits its use. Cardiotoxicity pathophysiology is multifactorial. GLP-1 analogues have been shown to reduce oxidative stress and inflammation. In this study, we evaluated the effect of pretreatment with liraglutide on doxorubicin-induced acute cardiotoxicity. A total of 60 male Wistar rats were allocated into four groups: Control (C), Doxorubicin (D), Liraglutide (L), and Doxorubicin + Liraglutide (DL). L and DL received subcutaneous injection of liraglutide 0.6 mg/kg daily, while C and D received saline for 2 weeks. Afterwards, D and DL received a single intraperitoneal injection of doxorubicin 20 mg/kg; C and L received an injection of saline. Forty-eight hours after doxorubicin administration, the rats were subjected to echocardiogram, isolated heart functional study, and euthanasia. Liraglutide-treated rats ingested significantly less food and gained less body weight than animals that did not receive the drug. Rats lost weight after doxorubicin injection. At echocardiogram and isolated heart study, doxorubicin-treated rats had systolic and diastolic function impairment. Myocardial catalase activity was statistically higher in doxorubicin-treated rats. Myocardial protein expression of tumor necrosis factor alpha (TNF-α), phosphorylated nuclear factor-κB (p-NFκB), troponin T, and B-cell lymphoma 2 (Bcl-2) was significantly lower, and the total NFκB/p-NFκB ratio and TLR-4 higher in doxorubicin-treated rats. Myocardial expression of OPA-1, MFN-2, DRP-1, and topoisomerase 2β did not differ between groups (p > 0.05). In conclusion, doxorubicin-induced cardiotoxicity is accompanied by decreased Bcl-2 and phosphorylated NFκB and increased catalase activity and TLR-4 expression. Liraglutide failed to improve acute doxorubicin-induced cardiotoxicity in rats.
Collapse
Affiliation(s)
- Carolina R. Tonon
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina G. Monte
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Paola S. Balin
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Anderson S. S. Fujimori
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ana Paula D. Ribeiro
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Natália F. Ferreira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Nayane M. Vieira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ronny P. Cabral
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina P. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Leonardo A. M. Zornoff
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marcos F. Minicucci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Sergio A. R. Paiva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Mariana J. Gomes
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA;
| | - Bertha F. Polegato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| |
Collapse
|
4
|
Ma S, Yan F, Hou Y. Intermedin 1-53 Ameliorates Atrial Fibrosis and Reduces Inducibility of Atrial Fibrillation via TGF-β1/pSmad3 and Nox4 Pathway in a Rat Model of Heart Failure. J Clin Med 2023; 12:jcm12041537. [PMID: 36836072 PMCID: PMC9959393 DOI: 10.3390/jcm12041537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE New drugs to block the occurrence of atrial fibrillation (AF) based on atrial structural remodeling (ASR) are urgently needed. The purpose of this study was to study the role of intermedin 1-53 (IMD1-53) in ASR and AF formation in rats after myocardial infarction (MI). MATERIAL AND METHODS Heart failure was induced by MI in rats. Fourteen days after MI surgery, rats with heart failure were randomized into control (untreated MI group, n = 10) and IMD-treated (n = 10) groups. The MI group and sham group received saline injections. The rats in the IMD group received IMD1-53, 10 nmol/kg/day intraperitoneally for 4 weeks. The AF inducibility and atrial effective refractory period (AERP) were assessed with an electrophysiology test. Additionally, the left-atrial diameter was determined, and heart function and hemodynamic tests were performed. We detected the area changes of myocardial fibrosis in the left atrium using Masson staining. To detect the protein expression and mRNA expression of transforming growth factor-β1 (TGF-β1), α-SMA, collagen Ⅰ, collagen III, and NADPH oxidase (Nox4) in the myocardial fibroblasts and left atrium, we used the Western blot method and real-time quantitative polymerase chain reaction (PCR) assays. RESULTS Compared with the MI group, IMD1-53 treatment decreased the left-atrial diameter and improved cardiac function, while it also improved the left-ventricle end-diastolic pressure (LVEDP). IMD1-53 treatment attenuated AERP prolongation and reduced atrial fibrillation inducibility in the IMD group. In vivo, IMD1-53 reduced the left-atrial fibrosis content in the heart after MI surgery and inhibited the mRNA and protein expression of collagen type Ⅰ and III. IMD1-53 also inhibited the expression of TGF-β1, α-SMA, and Nox4 both in mRNA and protein. In vivo, we found that IMD1-53 inhibited the phosphorylation of Smad3. In vitro, we found that the downregulated expression of Nox4 was partly dependent on the TGF-β1/ALK5 pathway. CONCLUSIONS IMD1-53 decreased the duration and inducibility of AF and atrial fibrosis in the rats after MI operation. The possible mechanisms are related to the inhibition of TGF-β1/Smad3-related fibrosis and TGF-β1/Nox4 activity. Therefore, IMD1-53 may be a promising upstream treatment drug to prevent AF.
Collapse
Affiliation(s)
- Shenzhou Ma
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Cardiology Departments, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Yinglong Hou
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Cardiology Departments, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Correspondence:
| |
Collapse
|
5
|
El-Husseiny HM, Mady EA, Ma D, Hamabe L, Takahashi K, Tanaka R. Intraventricular pressure gradient: A novel tool to assess the post-infarction chronic congestive heart failure. Front Cardiovasc Med 2022; 9:944171. [PMID: 36051280 PMCID: PMC9425054 DOI: 10.3389/fcvm.2022.944171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Congestive heart failure (CHF), the leading cause of death, is deemed a grave sequel of myocardial infarction (MI). The employment of left ventricular end-diastolic pressure (LVEDP), as a primary indication of CHF, becomes restricted owing to the potential impairment of heart function and caused injury to the aortic valve during its measurement. Echocardiography is the standard technique to detect cardiac dysfunction. However, it exhibits a low capacity to predict the progression of CHF post chronic MI. Being extremely sensitive, noninvasive, and preload-independent, intraventricular pressure gradient (IVPG) was lately introduced to evaluate cardiac function, specifically during cardiomyopathy. Yet, the utility of its use to assess the CHF progression after chronic MI was not investigated. Herein, in the current research, we aimed to study the efficacy of a novel echocardiographic-derived index as IVPG in the assessment of cardiac function in a chronic MI rat model with CHF. Fifty healthy male rats were involved, and MI was surgically induced in 35 of them. Six months post-surgery, all animals were examined using transthoracic conventional and color M-mode echocardiography (CMME) for IVPG. Animals were euthanized the following day after hemodynamics recording. Gross pathological and histological evaluations were performed. J-tree cluster analysis was conducted relying on ten echocardiographic parameters suggestive of CHF. Animals were merged into two main clusters: CHF+ (MI/HF + group, n = 22) and CHF– (n = 28) that was joined from Sham (n = 15), and MI/HF– (n = 13) groups. MI/HF+ group showed the most severe echocardiographic, hemodynamic, anatomic, and histologic alterations. There was no significant change in the total IVPG among various groups. However, the basal IVPG was significantly increased in MI/HF+ group compared to the other groups. The remaining IVPG measures were considerably increased in the MI/HF+ group than in the Sham one. The segmental IVPG measures were significantly correlated with the anatomical, histological, echocardiographic, and hemodynamic findings except for the heart rate. Moreover, they were significant predictors of CHF following a long-standing MI. Conclusively, IVPG obtained from CMME is a substantially promising noninvasive tool with a high ability to detect and predict the progression of CHF following chronic MI compared to conventional echocardiography.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
- *Correspondence: Hussein M. El-Husseiny
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Danfu Ma
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
- Lina Hamabe
| | - Ken Takahashi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
- Ryou Tanaka
| |
Collapse
|
6
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
7
|
Souza LM, Okoshi MP, Gomes MJ, Gatto M, Rodrigues EA, Pontes THD, Damatto FC, Oliveira LRS, Borim PA, Lima ARR, Zornoff LAM, Okoshi K, Pagan LU. Effects of Late Aerobic Exercise on Cardiac Remodeling of Rats with Small-Sized Myocardial Infarction. Arq Bras Cardiol 2021; 116:784-792. [PMID: 33886729 PMCID: PMC8121407 DOI: 10.36660/abc.20190813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Fundamento: O exercício físico tem sido considerado uma importante terapia não farmacológica para a prevenção e tratamento das doenças cardiovasculares. No entanto, seus efeitos na remodelação cardíaca leve não são claros. Objetivo: Avaliar a influência do exercício aeróbico sobre a capacidade funcional, estrutura cardíaca, função ventricular esquerda (VE) e expressão gênica das subunidades da NADPH oxidase em ratos com infarto do miocárdio pequeno (IM). Métodos: Três meses após a indução do IM, ratos Wistar foram divididos em três grupos: Sham; IM sedentário (IM-SED); e IM exercício aeróbico (IM-EA). Os ratos se exercitaram em uma esteira três vezes por semana durante 12 semanas. Um ecocardiograma foi realizado antes e após o treinamento. O tamanho do infarto foi avaliado por histologia e a expressão gênica por RT-PCR. O nível de significância para análise estatística foi estabelecido em 5%. Resultados: Ratos com IM menor que 30% da área total do VE foram incluídos no estudo. A capacidade funcional foi maior no IM-EA do que nos ratos Sham e IM-SED. O tamanho do infarto não diferiu entre os grupos. Ratos infartados apresentaram aumento do diâmetro diastólico e sistólico do VE, diâmetro do átrio esquerdo e massa do VE, com disfunção sistólica. A espessura relativa da parede foi menor no grupo IM-SED do que nos grupos IM-EA e Sham. A expressão gênica das subunidades NADPH oxidase NOX2, NOX4, p22phox e p47phox não diferiu entre os grupos. Conclusão: Infarto do miocárdio pequeno altera a estrutura cardíaca e a função sistólica do VE. O exercício aeróbico tardio pode melhorar a capacidade funcional e a remodelação cardíaca por meio da preservação da geometria ventricular esquerda. A expressão gênica das subunidades da NADPH oxidase não está envolvida na remodelação cardíaca, nem é modulada pelo exercício aeróbico em ratos com infarto do miocárdio pequeno.
Collapse
Affiliation(s)
- Lidiane M Souza
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Marina P Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Mariana J Gomes
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Mariana Gatto
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Eder A Rodrigues
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Thierres H D Pontes
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Felipe C Damatto
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Leiliane R S Oliveira
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Patrícia Aparecida Borim
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Aline R R Lima
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Leonardo A M Zornoff
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Katashi Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Luana U Pagan
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| |
Collapse
|
8
|
Martinez PF, Okoshi MP, Okoshi K, Oliveira-Junior SAD. Heart Failure Mid-Range Ejection Fraction. Arq Bras Cardiol 2021; 116:24-25. [PMID: 33566961 PMCID: PMC8159510 DOI: 10.36660/abc.20200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Paula Felippe Martinez
- Instituto Integrado de Saúde, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS - Brasil
| | - Marina Politi Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP - Brasil
| | - Katashi Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP - Brasil
| | | |
Collapse
|
9
|
Oliveira-Junior SAD, Muzili NDA, Carvalho MRD, Ota GE, Morais CSD, Vieira LFDC, Ortiz MO, Campos DHS, Cezar MDM, Okoshi MP, Okoshi K, Cicogna AC, Martinez PF. AT1Receptor Blockade Improves Myocardial Functional Performance in Obesity. Arq Bras Cardiol 2020; 115:17-28. [PMID: 32401842 PMCID: PMC8384332 DOI: 10.36660/abc.20190131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
Fundamento A obesidade tem sido associada com ativação crônica do sistema renina-angiotensina-aldosterona e importantes alterações no desempenho cardíaco. Objetivo Avaliar a influência do bloqueio de receptores de angiotensina-II do tipo 1 (AT1) sobre a morfologia e desempenho cardíaco de ratos obesos por dieta Métodos Ratos Wistar (n=48) foram submetidos a dieta controle (2,9 kcal/g) ou hiperlipídica (3,6 kcal/g) durante 20 semanas. Após a 16ª semana, foram distribuídos em quatro grupos: Controle (CO), Obeso (OB), Controle Losartan (CL) e Obeso Losartan (OL). CL e OL receberam losartan (30 mg/kg/dia) na água durante quatro semanas. Posteriormente, foram analisadas composição corporal, pressão arterial sistólica (PAS) e ecocardiograma. A função de músculos papilares foi avaliada em situação basal com concentração de cálcio ([Ca2+]o) de 2,50 mM e após manobras inotrópicas: potencial pós-pausa (PPP), elevação da [Ca2+]o e durante estimulação beta-adrenérgica com isoproterenol. A análise dos resultados foi feita por meio de Two-Way ANOVA e teste de comparações apropriado. O nível de significância considerado foi de 5%. Resultados Embora a alteração da PAS não tenha se mantido ao final do experimento, a obesidade se associou com hipertrofia cardíaca e maior velocidade de encurtamento da parede posterior do ventrículo esquerdo.No estudo de músculos papilares em condição basal, CL mostrou menor velocidade máxima de variação negativa da tensão desenvolvida (-dT/dt) do que CO. O PPP de 60s promoveu menor -dT/dt e pico de tensão desenvolvida (TD) em OB e CL, comparados ao CO, e maior variação relativa de TD e velocidade máxima de variação positiva (+dT/dt) no OL em relação a CL e OB. Sob 1,5, 2,0 e 2,5mM de [Ca2+]o, o grupo OL exibiu maior -dT/dt do que CL. Conclusão Losartan melhora a função miocárdica de ratos com obesidade induzida por dieta. (Arq Bras Cardiol. 2020; 115(1):17-28)
Collapse
Affiliation(s)
| | | | | | - Gabriel Elias Ota
- Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | | | | | | | | | | | - Marina Politi Okoshi
- Departamento de Medicina Interna, Universidade Estadual de São Paulo, Botucatu, SP, Brasil
| | - Katashi Okoshi
- Faculdade de Medicina, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP, Brasil
| | | | | |
Collapse
|
10
|
Sun J, Xu W, Hua H, Xiao Y, Chen X, Gao Z, Li S, Jing X, Du F, Sun G. Pharmacodynamic and pharmacokinetic effects of S086, a novel angiotensin receptor neprilysin inhibitor. Biomed Pharmacother 2020; 129:110410. [PMID: 32570118 DOI: 10.1016/j.biopha.2020.110410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin receptor-NEP inhibitor (ARNi), which includes an angiotensin receptor blocker (ARB) and a neprilysin inhibitor (NEPi), has been proven safe and effective for treating heart failure with reduced ejection fraction (HF-REF). S086 is a novel single-molecule ARNi that includes the molecular moieties of EXP3174 (the active metabolite of the ARB losartan) and sacubitril (a NEP inhibitor prodrug) in a 1:1 M ratio. We performed preclinical animal model studies to evaluate the efficacy of S086 in treating HF. EXPERIMENTAL APPROACH Rat and dog models of myocardial ischemia-induced chronic heart failure were used in this research. PRINCIPAL RESULTS The oral administration of S086 dose-dependently lowered the heart weight index, attenuated cardiac fibrosis, and improved left ventricular ejection fraction, shortening fraction, and cardiac output, without effects on hemodynamics in animal models of myocardial ischemia-induced chronic heart failure. A comparable protective effect to LCZ696 was observed for S086 at an equal molar dose in dog models. In addition, S086 was superior to LCZ696 since it significantly reversed the decrease in left ventricular posterior wall end-systolic thickness. CONCLUSION This animal study suggests that S086 is effective in treating myocardial ischemia-induced chronic heart failure.
Collapse
Affiliation(s)
- Jingchao Sun
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China.
| | - Wenjie Xu
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Huaijie Hua
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Ying Xiao
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Song Li
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Xiaolong Jing
- Shenzhen Salubris Pharmaceutical Co., Ltd., Shenzhen, Guangdong, China
| | - Frank Du
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| | - Guofeng Sun
- WuXi AppTec (Shanghai) Co., Ltd., Shanghai, China
| |
Collapse
|
11
|
Stefani GP, Nunes RB, Rossato DD, Hentschke VS, Domenico MD, Lago PD, Rhoden CR. Quantification of DNA Damage in Different Tissues in Rats with Heart Failure. Arq Bras Cardiol 2020; 114:234-242. [PMID: 32215490 PMCID: PMC7077576 DOI: 10.36660/abc.20180198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/15/2019] [Indexed: 12/29/2022] Open
Abstract
Background Chronic heart failure (CHF) is a complex syndrome which comprises structural and functional alterations in the heart in maintaining the adequate blood demand to all tissues. Few investigations sought to evaluate oxidative DNA damage in CHF. Objective To quantify the DNA damage using the comet assay in left ventricle (LV), lungs, diaphragm, gastrocnemius and soleus in rats with CHF. Methods Twelve male Wistar rats (300 to 330 g) were selected for the study: Sham (n = 6) and CHF (n = 6). The animals underwent myocardial infarction by the ligation of the left coronary artery. After six weeks, the animals were euthanized. It was performed a cell suspension of the tissues. The comet assay was performed to evaluate single and double strand breaks in DNA. Significance level (p) considered < 0.05. Results The CHF group showed higher values of left ventricle end-diastolic pressure (LVEDP), pulmonary congestion, cardiac hypertrophy and lower values of maximal positive and negative derivatives of LV pressure, LV systolic pressure (p < 0.05). CHF group showed higher DNA damage (% tail DNA, tail moment and Olive tail moment) compared to Sham (p < 0.001). The tissue with the highest damage was the soleus, compared to LV and gastrocnemius in CHF group (p < 0.05). Conclusion Our results indicates that the CHF affects all tissues, both centrally and peripherically, being more affected in skeletal muscle (soleus) and is positively correlated with LV dysfunction.
Collapse
Affiliation(s)
| | - Ramiro Barcos Nunes
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS - Brazil
| | | | | | - Marlise Di Domenico
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS - Brazil
| | - Pedro Dal Lago
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS - Brazil
| | - Cláudia Ramos Rhoden
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS - Brazil
| |
Collapse
|
12
|
Dyavanapalli J, Hora AJ, Escobar JB, Schloen J, Dwyer MK, Rodriguez J, Spurney CF, Kay MW, Mendelowitz D. Chemogenetic activation of intracardiac cholinergic neurons improves cardiac function in pressure overload-induced heart failure. Am J Physiol Heart Circ Physiol 2020; 319:H3-H12. [PMID: 32412778 DOI: 10.1152/ajpheart.00150.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart failure (HF) is characterized by autonomic imbalance with sympathetic hyperactivity and loss of parasympathetic tone. Intracardiac ganglia (ICG) neurons represent the final common pathway for vagal innervation of the heart and strongly regulate cardiac functions. This study tests whether ICG cholinergic neuron activation mitigates the progression of cardiac dysfunction and reduces mortality that occurs in HF. HF was induced by transaortic constriction (TAC) in male transgenic Long-Evans rats expressing Cre recombinase within choline acetyltransferase (ChAT) neurons. ChAT neurons were selectively activated by expression and activation of excitatory designer receptors exclusively activated by designer receptors (DREADDs) by clozapine-N-oxide (TAC + treatment and sham-treated groups). Control animals expressed DREADDs but received saline (sham and TAC groups). A separate set of animals were telemetry instrumented to record blood pressure (BP) and heart rate (HR). Acute activation of ICG neurons resulted in robust reductions in BP (∼20 mmHg) and HR (∼100 beats/min). All groups of animals were subjected to weekly echocardiography and treadmill stress tests from 3 to 6 wk post-TAC/sham surgery. Activation of ICG cholinergic neurons reduced the left ventricular systolic dysfunction (reductions in ejection fraction, fractional shortening, stroke volume, and cardiac output) and cardiac autonomic dysfunction [reduced HR recovery (HRR) post peak effort] observed in TAC animals. Additionally, activation of ICG ChAT neurons reduced mortality by 30% compared with untreated TAC animals. These data suggest that ICG cholinergic neuron activation reduces cardiac dysfunction and improves survival in HF, indicating that ICG neuron activation could be a novel target for treating HF.NEW & NOTEWORTHY Intracardiac ganglia form the final common pathway for the parasympathetic innervation of the heart. This study has used a novel chemogenetic approach within transgenic ChAT-Cre rats [expressing only Cre-recombinase in choline acetyl transferase (ChAT) neurons] to selectively increase intracardiac cholinergic parasympathetic activity to the heart in a pressure overload-induced heart failure model. The findings from this study confirm that selective activation of intracardiac cholinergic neurons lessens cardiac dysfunction and mortality seen in heart failure, identifying a novel downstream cardiac-selective target for increasing cardioprotective parasympathetic activity in heart failure.
Collapse
Affiliation(s)
- Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| | - Aloysius James Hora
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| | - Joan B Escobar
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| | - John Schloen
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Mary Kate Dwyer
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Jeannette Rodriguez
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Christopher F Spurney
- Children's National Heart Institute, Center for Genetic Medicine Research, Children's National Health System, Washington, District of Columbia
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
13
|
Gomes MJ, Pagan LU, Lima ARR, Reyes DRA, Martinez PF, Damatto FC, Pontes THD, Rodrigues EA, Souza LM, Tosta IF, Fernandes AAH, Zornoff LAM, Okoshi K, Okoshi MP. Effects of aerobic and resistance exercise on cardiac remodelling and skeletal muscle oxidative stress of infarcted rats. J Cell Mol Med 2020; 24:5352-5362. [PMID: 32239667 PMCID: PMC7205792 DOI: 10.1111/jcmm.15191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/21/2020] [Accepted: 02/22/2020] [Indexed: 12/22/2022] Open
Abstract
We compared the influence of aerobic and resistance exercise on cardiac remodelling, physical capacity and skeletal muscle oxidative stress in rats with MI‐induced heart failure. Three months after MI induction, Wistar rats were divided into four groups: Sham; sedentary MI (S‐MI); aerobic exercised MI (A‐MI); and resistance exercised MI (R‐MI). Exercised rats trained three times a week for 12 weeks on a treadmill or ladder. Statistical analysis was performed by ANOVA or Kruskal‐Wallis test. Functional aerobic capacity was greater in A‐MI and strength gain higher in R‐MI. Echocardiographic parameters did not differ between infarct groups. Reactive oxygen species production, evaluated by fluorescence, was higher in S‐MI than Sham, and lipid hydroperoxide concentration was lower in A‐MI than the other groups. Glutathione peroxidase activity was higher in A‐MI than S‐MI and R‐MI. Superoxide dismutase was lower in S‐MI than Sham and R‐MI. Gastrocnemius cross‐sectional area, satellite cell activation and expression of the ubiquitin‐proteasome system proteins did not differ between groups. In conclusion, aerobic exercise and resistance exercise improve functional capacity and maximum load carrying, respectively, without changing cardiac remodelling in infarcted rats. In the gastrocnemius, infarction increases oxidative stress and changes antioxidant enzyme activities. Aerobic exercise reduces oxidative stress and attenuates superoxide dismutase and glutathione peroxidase changes.
Collapse
Affiliation(s)
- Mariana J Gomes
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Aline R R Lima
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - David R A Reyes
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Felipe C Damatto
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Thierres H D Pontes
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Eder A Rodrigues
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Lidiane M Souza
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ingrid F Tosta
- Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ana A H Fernandes
- Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu, Brazil
| | | | - Katashi Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|
14
|
Katz MG, Fargnoli AS, Gubara SM, Chepurko E, Bridges CR, Hajjar RJ. Surgical and physiological challenges in the development of left and right heart failure in rat models. Heart Fail Rev 2019; 24:759-777. [PMID: 30903356 PMCID: PMC6698228 DOI: 10.1007/s10741-019-09783-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA.
| | - Anthony S Fargnoli
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Sarah M Gubara
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Charles R Bridges
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| |
Collapse
|
15
|
Okoshi K, Cezar MDM, Polin MAM, Paladino JR, Martinez PF, Oliveira SA, Lima ARR, Damatto RL, Paiva SAR, Zornoff LAM, Okoshi MP. Influence of intermittent fasting on myocardial infarction-induced cardiac remodeling. BMC Cardiovasc Disord 2019; 19:126. [PMID: 31138145 PMCID: PMC6540428 DOI: 10.1186/s12872-019-1113-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Information on the role of intermittent fasting (IF) on pathologic cardiac remodeling is scarce. We compared the effects of IF before and after myocardial infarction (MI) on rat cardiac remodeling and survival. Methods Wistar rats were intermittently fasted (food available every other day) or fed ad libitum for 12 weeks and then divided into three groups: AL – fed ad libitum; AL/IF - fed AL before MI and IF after MI; and IF – fed IF before and after MI. Echocardiogram was performed before MI and 2 and 12 weeks after surgery. Isolated hearts were evaluated in Langendorff preparations. Results Before surgery, body weight (BW) was lower in IF than AL. Final BW was lower in AL/IF and IF than AL. Perioperative mortality did not change between AL (31.3%) and IF (27.3%). Total mortality was lower in IF than AL. Before surgery, echocardiographic parameters did not differ between groups. Two weeks after surgery, MI size did not differ between groups. Twelve weeks after MI, left ventricular (LV) diastolic posterior wall thickness was lower in AL/IF and IF than AL. The percentage of variation of echocardiographic parameters between twelve and two weeks showed that MI size decreased in all groups and the reduction was higher in IF than AL/IF. In Langendorff preparations, LV volume at zero end-diastolic pressure (V0; AL: 0.41 ± 0.05; AL/IF: 0.34 ± 0.06; IF: 0.28 ± 0.05 mL) and at 25 mmHg end-diastolic pressure (V25; AL: 0.61 ± 0.05; AL/IF: 0.54 ± 0.07; IF: 0.44 ± 0.06 mL) was lower in AL/IF and IF than AL and V25 was lower in IF than AL/IF. V0/BW ratio was lower in IF than AL and LV weight/V0 ratio was higher in IF than AL. Myocyte diameter was lower in AL/IF and IF than AL (AL: 17.3 ± 1.70; AL/IF: 15.1 ± 2.21; IF: 13.4 ± 1.49 μm). Myocardial hydroxyproline concentration and gene expression of ANP, Serca 2a, and α- and β-myosin heavy chain did not differ between groups. Conclusion Intermittent fasting initiated before or after MI reduces myocyte hypertrophy and LV dilation. Myocardial fibrosis and fetal gene expression are not modulated by feeding regimens. Benefit is more evident when intermittent fasting is initiated before rather than after MI.
Collapse
Affiliation(s)
- K Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - M D M Cezar
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil.,Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - M A M Polin
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - J R Paladino
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - P F Martinez
- Federal University of Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, Campo Grande, MS, 79070-900, Brazil
| | - S A Oliveira
- Federal University of Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, Campo Grande, MS, 79070-900, Brazil
| | - A R R Lima
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - R L Damatto
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil.,Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - S A R Paiva
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - L A M Zornoff
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil.,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil
| | - M P Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil. .,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP, Rubiao Junior, S/N. CEP 18618-687, Botucatu, SP, Brazil.
| |
Collapse
|
16
|
Pagan LU, Cezar MDM, Damatto RL. Alterations Resulting From Exposure to Mercury in Normotensive and Hypertensive Rats. Arq Bras Cardiol 2019; 112:381-382. [PMID: 30994715 PMCID: PMC6459425 DOI: 10.5935/abc.20190025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Luana Urbano Pagan
- Faculdade de Medicina de Botucatu - Universidade Estadual Paulista
(UNESP), Botucatu, SP - Brazil
| | - Marcelo Diarcadia Mariano Cezar
- Faculdade de Medicina de Botucatu - Universidade Estadual Paulista
(UNESP), Botucatu, SP - Brazil
- Faculdade de Ciências Sociais e Agrárias de Itapeva
(FAIT), Itapeva, SP - Brazil
| | - Ricardo Luiz Damatto
- Faculdade de Medicina de Botucatu - Universidade Estadual Paulista
(UNESP), Botucatu, SP - Brazil
- Faculdade de Ciências Sociais e Agrárias de Itapeva
(FAIT), Itapeva, SP - Brazil
| |
Collapse
|
17
|
Reyes DRA, Gomes MJ, Rosa CM, Pagan LU, Zanati SG, Damatto RL, Rodrigues EA, Carvalho RF, Fernandes AAH, Martinez PF, Lima ARR, Cezar MDM, Carvalho LEFM, Okoshi K, Okoshi MP. Exercise during transition from compensated left ventricular hypertrophy to heart failure in aortic stenosis rats. J Cell Mol Med 2018; 23:1235-1245. [PMID: 30456799 PMCID: PMC6349163 DOI: 10.1111/jcmm.14025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
We evaluated the influence of aerobic exercise on cardiac remodelling during the transition from compensated left ventricular (LV) hypertrophy to clinical heart failure in aortic stenosis (AS) rats. Eighteen weeks after AS induction, rats were assigned into sedentary (AS) and exercised (AS-Ex) groups. Results were compared to Sham rats. Exercise was performed on treadmill for 8 weeks. Exercise improved functional capacity. Echocardiogram showed no differences between AS-Ex and AS groups. After exercise, fractional shortening and ejection fraction were lower in AS-Ex than Sham. Myocyte diameter and interstitial collagen fraction were higher in AS and AS-Ex than Sham; however, myocyte diameter was higher in AS-Ex than AS. Myocardial oxidative stress, evaluated by lipid hydroperoxide concentration, was higher in AS than Sham and was normalized by exercise. Gene expression of the NADPH oxidase subunits NOX2 and NOX4, which participate in ROS generation, did not differ between groups. Activity of the antioxidant enzyme superoxide dismutase was lower in AS and AS-Ex than Sham and glutathione peroxidase was lower in AS-Ex than Sham. Total and reduced myocardial glutathione, which is involved in cellular defence against oxidative stress, was lower in AS than Sham and total glutathione was higher in AS-Ex than AS. The MAPK JNK was higher in AS-Ex than Sham and AS groups. Phosphorylated P38 was lower in AS-Ex than AS. Despite improving functional capacity, aerobic exercise does not change LV function in AS rats. Exercise restores myocardial glutathione, reduces oxidative stress, impairs JNK signalling and further induces myocyte hypertrophy.
Collapse
Affiliation(s)
- David R A Reyes
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila M Rosa
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Silmeia G Zanati
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Eder A Rodrigues
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Robson F Carvalho
- Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ana A H Fernandes
- Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Aline R R Lima
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luiz E F M Carvalho
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|
18
|
Oliveira-Junior SA, Martinez PF, Fan WYC, Nakatani BT, Pagan LU, Padovani CR, Cicogna AC, Okoshi MP, Okoshi K. Association between echocardiographic structural parameters and body weight in Wistar rats. Oncotarget 2018; 8:26100-26105. [PMID: 28212534 PMCID: PMC5432241 DOI: 10.18632/oncotarget.15320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The association between echocardiographic structural parameters and body weight (BW) during rat development has been poorly addressed. We evaluated echocardiographic variables: left ventricular (LV) end-diastolic (LVDD) and end-systolic (LVSD) diameters, LV diastolic posterior wall thickness (PWT), left atrial diameter (LA), and aortic diameter (AO) in function of BW during development.Results/Materials and Methods: Male Wistar rats (n = 328, BW: 302-702 g) were retrospectively used to construct regression models and 95% confidence intervals relating to cardiac structural parameters and BW. Adjusted indexes were significant to all relationships; the regression model for predicting LVDD (R2 = 0.678; p < 0.001) and AO (R2 = 0.567; p < 0.001) had the highest prediction coefficients and LA function the lowest prediction coefficient (R2 = 0.274; p < 0.01). These relationships underwent validation by performing echocardiograms on additional rats (n = 43, BW: 300-600 g) and testing whether results were within confidence intervals of our regressions. Prediction models for AO and LA correctly allocated 38 (88.4%) and 39 rats (90.7%), respectively, within the 95% confidence intervals. Regression models for LVDD, LVSD, and PWT included 27 (62.7%), 30 (69.8%), and 19 (44.2%) animals, respectively, within the 95% confidence intervals. CONCLUSIONS Increase in cardiac structures is associated with BW gain during rat growth. LA and AO can be correctly predicted using regression models; prediction of PWT and LV diameters is not accurate.
Collapse
Affiliation(s)
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - William Y C Fan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Bruno T Nakatani
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Carlos R Padovani
- Botucatu Biosciences Institute, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Antonio C Cicogna
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
19
|
Hentschke VS, Capalonga L, Rossato DD, Perini JL, Alves JP, Quagliotto E, Stefani GP, Karsten M, Pontes M, Dal Lago P. Functional capacity in a rat model of heart failure: impact of myocardial infarct size. Exp Physiol 2017; 102:1448-1458. [DOI: 10.1113/ep086076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Vítor Scotta Hentschke
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Programa de Pós-Graduação em Ciências da Saúde; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Lucas Capalonga
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Douglas Dalcin Rossato
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Centro Universitário Franciscano (UNIFRA); Santa Maria Rio Grande do Sul Brazil
| | - Júlia Luíza Perini
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Jadson Pereira Alves
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Programa de Pós-Graduação em Ciências da Saúde; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Edson Quagliotto
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Giuseppe Potrick Stefani
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Programa de Pós-Graduação em Ciências da Saúde; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Marlus Karsten
- Departamento de Fisioterapia; Universidade do Estado de Santa Catarina (UDESC); Florianópolis Santa Catarina Brazil
| | - Mauro Pontes
- Departamento de Farmacociências; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| | - Pedro Dal Lago
- Laboratório de Fisiologia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
- Departamento de Fisioterapia; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA); Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
20
|
Lima ARR, Pagan LU, Damatto RL, Cezar MDM, Bonomo C, Gomes MJ, Martinez PF, Guizoni DM, Campos DHS, Damatto FC, Okoshi K, Okoshi MP. Effects of growth hormone on cardiac remodeling and soleus muscle in rats with aortic stenosis-induced heart failure. Oncotarget 2017; 8:83009-83021. [PMID: 29137319 PMCID: PMC5669945 DOI: 10.18632/oncotarget.20583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022] Open
Abstract
Background Skeletal muscle wasting is often observed in heart failure (HF). The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is impaired in HF. In this study, we evaluated the effects of GH on soleus muscle and cardiac remodeling in rats with aortic stenosis (AS)-induced HF. Methods AS was created by placing a stainless-steel clip on the ascending aorta. After clinically detecting HF, GH (2 mg/kg/day) was subcutaneously injected for 14 days (AS-GH group). Results were compared with those from Sham and non-treated AS groups. Transthoracic echocardiogram was performed before and after treatment. Protein expression was evaluated by Western blot and satellite cells activation by immunofluorescence. Statistical analyzes: ANOVA and Tukey or Kruskal-Wallis and Student-Newman-Keuls. Results Before treatment both AS groups presented a similar degree of cardiac injury. GH prevented body weight loss and attenuated systolic dysfunction. Soleus cross-sectional fiber areas were lower in both AS groups than Sham (Sham 3,556±447; AS 2,882±422; AS-GH 2,868±591 μm2; p=0.016). GH increased IGF-1 serum concentration (Sham 938±83; AS 866±116; AS-GH 1167±166 ng/mL; p<0.0001) and IGF-1 muscle protein expression and activated PI3K protein. Neural cell adhesion molecule (NCAM) immunofluorescence was increased in both AS groups. Catabolism-related intracellular pathways did not differ between groups. Conclusion Short-term growth hormone attenuates left ventricular systolic dysfunction in rats with aortic stenosis-induced HF. Despite preserving body weight, increasing serum and muscular IGF-1 levels, and stimulating PI3K muscle expression, GH does not modulate soleus muscle trophism, satellite cells activation or intracellular pathways associated with muscle catabolism.
Collapse
Affiliation(s)
- Aline R R Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila Bonomo
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Daniele M Guizoni
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Dijon H S Campos
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Felipe C Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|
21
|
Oliveira LFLD, O'Connell JL, Carvalho EEVD, Pulici ÉCC, Romano MMD, Maciel BC, Simões MV. Comparison between Radionuclide Ventriculography and Echocardiography for Quantification of Left Ventricular Systolic Function in Rats Exposed to Doxorubicin. Arq Bras Cardiol 2017; 108:12-20. [PMID: 28146205 PMCID: PMC5245843 DOI: 10.5935/abc.20160194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
Background Radionuclide ventriculography (RV) is a validated method to evaluate the left
ventricular systolic function (LVSF) in small rodents. However, no prior
study has compared the results of RV with those obtained by other imaging
methods in this context. Objectives To compare the results of LVSF obtained by RV and echocardiography (ECHO) in
an experimental model of cardiotoxicity due to doxorubicin (DXR) in rats.
Methods Adult male Wistar rats serving as controls (n = 7) or receiving DXR (n = 22)
in accumulated doses of 8, 12, and 16 mg/kg were evaluated with ECHO
performed with a Sonos 5500 Philips equipment (12-MHz transducer) and RV
obtained with an Orbiter-Siemens gamma camera using a pinhole collimator
with a 4-mm aperture. Histopathological quantification of myocardial
fibrosis was performed after euthanasia. Results The control animals showed comparable results in the LVSF analysis obtained
with ECHO and RV (83.5 ± 5% and 82.8 ± 2.8%, respectively, p
> 0.05). The animals that received DXR presented lower LVSF values when
compared with controls (p < 0.05); however, the LVSF values obtained by
RV (60.6 ± 12.5%) were lower than those obtained by ECHO (71.8
± 10.1%, p = 0.0004) in this group. An analysis of the correlation
between the LVSF and myocardial fibrosis showed a moderate correlation when
the LVSF was assessed by ECHO (r = -0.69, p = 0.0002) and a stronger
correlation when it was assessed by RV (r = -0.79, p < 0.0001). On
multiple regression analysis, only RV correlated independently with
myocardial fibrosis. Conclusion RV is an alternative method to assess the left ventricular function in small
rodents in vivo. When compared with ECHO, RV showed a better correlation
with the degree of myocardial injury in a model of DXR-induced
cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Benedito Carlos Maciel
- Centro de Cardiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Marcus Vinicius Simões
- Centro de Cardiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| |
Collapse
|
22
|
Tomato (Lycopersicon esculentum) or lycopene supplementation attenuates ventricular remodeling after myocardial infarction through different mechanistic pathways. J Nutr Biochem 2017; 46:117-124. [PMID: 28599197 DOI: 10.1016/j.jnutbio.2017.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/06/2017] [Accepted: 05/20/2017] [Indexed: 11/24/2022]
Abstract
The objective of this study was to evaluate the influence of tomato or lycopene supplementation on cardiac remodeling after myocardial infarction (MI). Male Wistar rats were assigned to four groups: the sham group (animals that underwent simulated surgery) that received a standard chow (S; n=18), the infarcted group that received a standard chow (MI; n=13), the infarcted group supplemented with lycopene (1 mg of lycopene/kg body weight/day) (MIL; n=16) and the infarcted group supplemented with tomato (MIT; n=16). After 3 months, morphological, functional and biochemical analyses were performed. The groups MIL and MIT showed decreased interstitial fibrosis induced by infarction. Tomato supplementation attenuated the hypertrophy induced by MI. In addition, tomato and lycopene improved diastolic dysfunction evaluated by echocardiographic and isolated heart studies, respectively. The MI group showed higher levels of cardiac TNF-α compared to the MIL and MIT groups. Decreased nuclear factor E2-related factor 2 was measured in the MIL group. Lipid hydroperoxide levels were higher in the infarcted groups; however, the MIT group had a lower concentration than did the MI group [S=223±20.8, MI=298±19.5, MIL=277±26.6, MIT=261±28.8 (nmol/g); n=8; P<.001]. We also examined left ventricle miRNA expression; when compared to the S group, the MIL group uniquely down-regulated the expression of eight miRNAs. No miRNA was found to be up-regulated uniquely in the MIT and MIL groups. In conclusion, tomato or lycopene supplementation attenuated the cardiac remodeling process and improved diastolic function after MI. However, the effect of lycopene and tomato supplementation occurred through different mechanistic pathways.
Collapse
|
23
|
Silveira CFSMP, Campos DHS, Freire PP, Deus AF, Okoshi K, Padovani CR, Cicogna AC. Importance of SERCA2a on early isolated diastolic dysfunction induced by supravalvular aortic stenosis in rats. ACTA ACUST UNITED AC 2017; 50:e5742. [PMID: 28423119 PMCID: PMC5441282 DOI: 10.1590/1414-431x20175742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/10/2017] [Indexed: 01/19/2023]
Abstract
Cardiac remodeling is defined as changes in shape and function of the heart in response to aggression (pressure overload). The sarcoplasmic reticulum calcium ATPase cardiac isoform 2a (SERCA2a) is a known factor that influences function. A wide spectrum of studies report a decrease in SERCA2a in heart failure, but none evaluate it's the role in early isolated diastolic dysfunction in supravalvular aortic stenosis (AoS). Our hypothesis was that SERCA2a participates in such dysfunction. Thirty-day-old male Wistar rats (60-80 g) were divided into AoS and Sham groups, which were submitted to surgery with or without aorta clipping, respectively. After 6 weeks, the animals were submitted to echocardiogram and functional analysis by isolated papillary muscle (IPM) in basal condition, hypoxia, and SERCA2a blockage with cyclopiazonic acid at calcium concentrations of 0.5, 1.5, and 2.5 mM. Western-blot analyses were used for SERCA2a and phospholamban detection. Data analysis was carried out with Student's t-test and ANOVA. AoS enhanced left atrium and E and A wave ratio, with preserved ejection fraction. Basal condition in IPM showed similar increases in developed tension (DT) and resting tension (RT) in AoS, and hypoxia was similar between groups. After cyclopiazonic acid blockage, final DT was equally decreased and RT was similar between groups, but the speed of relaxation was decreased in the AoS group. Western-blot was uniform in all evaluations. The hypothesis was confirmed, since functional parameters regarding SERCA2a were changed in the AoS group.
Collapse
Affiliation(s)
- C F S M P Silveira
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - D H S Campos
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - P P Freire
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - A F Deus
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - K Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - C R Padovani
- Departamento de Bioestatística, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - A C Cicogna
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| |
Collapse
|
24
|
Aronsen JM, Espe EKS, Skårdal K, Hasic A, Zhang L, Sjaastad I. Noninvasive stratification of postinfarction rats based on the degree of cardiac dysfunction using magnetic resonance imaging and echocardiography. Am J Physiol Heart Circ Physiol 2017; 312:H932-H942. [PMID: 28188213 DOI: 10.1152/ajpheart.00668.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 11/22/2022]
Abstract
The myocardial infarction (MI) rat model plays a crucial role in modern cardiovascular research, but the inherent heterogeneity of this model represents a challenge. We sought to identify subgroups among the post-MI rats and establish simple noninvasive stratification protocols for such subgroups. Six weeks after induction of MI, 49 rats underwent noninvasive examinations using magnetic resonance imaging (MRI) and echocardiography. Twelve sham-operated rats served as controls. Increased end-diastolic left ventricular (LV) pressure and lung weight served as indicators for congestive heart failure (CHF). A clustering algorithm using 13 noninvasive and invasive parameters was used to identify distinct groups among the animals. The cluster analysis revealed four distinct post-MI phenotypes; two without congestion but with different degree of LV dilatation, and two with different degree of congestion and right ventricular (RV) affection. Among the MRI parameters, RV mass emerged as robust noninvasive marker of CHF with 100% specificity/sensitivity. Moreover, LV infarct size and RV ejection fraction further predicted subgroup among the non-CHF and CHF rats with excellent specificity/sensitivity. Of the echocardiography parameters, left atrial diameter predicted CHF. Moreover, LV end-diastolic diameter predicted the subgroups among the non-CHF rats. We propose two simple noninvasive schemes to stratify post-MI rats, based on the degree of heart failure; one for MRI and one for echocardiography.NEW & NOTEWORTHY In vivo phenotyping of rats is essential for robust and reliable data. Here, we present two simple noninvasive schemes for the stratification of postinfarction rats based on the degree of heart failure: one using magnetic resonance imaging and one based on echocardiography.
Collapse
Affiliation(s)
- Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and .,Bjørknes College, Oslo, Norway
| | - Emil Knut Stenersen Espe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Kristine Skårdal
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| |
Collapse
|
25
|
Maximal oxygen uptake and exercise tolerance are improved in rats with heart failure subjected to low-level laser therapy associated with resistance training. Lasers Med Sci 2016; 32:73-85. [PMID: 27858257 DOI: 10.1007/s10103-016-2088-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
Exercise tolerance and maximal oxygen uptake (VO2max) are reduced in heart failure (HF). The influence of combined resistance training (RT) and low-level laser therapy (LLLT) on exercise tolerance and VO2max in HF has not yet been explored. The aim of this study was to evaluate the influence of combined RT and LLLT on VO2max and exercise tolerance in rats with HF induced by myocardial infarction (MI). Rats were allocated to sedentary sham (Sed-Sham, n = 12), sedentary heart failure (Sed-HF, n = 9), RT heart failure (RT-HF, n = 7) and RT associated with LLLT heart failure (RT + LLLT-HF, n = 7) groups. After MI or sham surgery, rats underwent a RT and LLLT protocol (applied immediately after RT) for 8 weeks. VO2max and exercise tolerance were evaluated at the end of protocol. HF rats subjected to LLLT combined with RT showed higher VO2basal (41 %), VO2max (40 %), VO2reserve (39 %), run distance (46 %), time to exhaustion (30 %) and maximal velocity (22 %) compared with HF rats that underwent RT alone. LLLT associated with RT improved oxygen uptake and exercise tolerance compared with RT alone in HF rats.
Collapse
|
26
|
Lustosa BB, Polegato B, Minicucci M, Rafacho B, Santos PP, Fernandes AA, Okoshi K, Batista D, Modesto P, Gonçalves A, Pereira EJ, Pires V, Paiva S, Zornoff L, Azevedo PS. Green tea (Cammellia sinensis) attenuates ventricular remodeling after experimental myocardial infarction. Int J Cardiol 2016; 225:147-153. [PMID: 27723532 DOI: 10.1016/j.ijcard.2016.09.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Considering the high morbidity and mortality after myocardial infarction (MI), the study of compounds with potential benefits for cardiac remodeling is reasonable. Green tea (GT) (Cammellia sinensis) is the most consumed beverage in the world. The potential action mechanisms of GT include anti-inflammatory, anti-apoptotic, antioxidant, and lipid-lowering properties. OBJECTIVE This study analyzed the effects of GT on cardiac remodeling following coronary occlusion in rats. METHODS Male Wistar rats were divided into four groups: control (C), control green tea (GT), myocardial infarction (MI), and myocardial infarction and green tea (MI-GT). GT and MI-GT were fed with standard chow with 0.25% Polyphenon 60 (Sigma-Aldrich Canada, Oakville, ON, Canada). After 3months of observation, echocardiographic and isolated heart study, oxidative stress, energy metabolism, serum lipids, extracellular matrix, and apoptosis were evaluated. RESULTS GT reduced cardiac hypertrophy and improved systolic and diastolic dysfunction. Concerning oxidative stress, GT reduced protein carbonyl, increased Nrf-2, and restored antioxidant enzyme activity to the control pattern. Energy metabolism was affected by MI that presented with lower fatty acid oxidation and accumulation of triacylglycerol, increased serum lipids, impairment of the citric acid cycle, and oxidative phosphorylation. GT stimulated the glucose pathway and mitochondrial function after MI by increasing pyruvate dehydrogenase, Complex I, ATP synthase, and glycogen storage. In addition, MI changed the extracellular matrix including MMP-2 and TIMP-1 activity and increased apoptosis by 3-caspase, all of which were attenuated by GT. CONCLUSION GT attenuated cardiac remodeling after MI, associated with improvement in systolic and diastolic dysfunction. Oxidative stress, energy metabolism, apoptosis, and extracellular matrix alterations are all potential mechanisms by which GT may take part.
Collapse
Affiliation(s)
- Beatriz B Lustosa
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Bertha Polegato
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marcos Minicucci
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Bruna Rafacho
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Priscila P Santos
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Ana Angélica Fernandes
- Chemistry and Biochemistry Department, Institute of Bioscience, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Diego Batista
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Pamela Modesto
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Andrea Gonçalves
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Elenize J Pereira
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Vanessa Pires
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Sergio Paiva
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Leonardo Zornoff
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Paula S Azevedo
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil.
| |
Collapse
|
27
|
Okoshi MP, Cezar MDM, Iyomasa RM, Silva MB, Costa LCO, Martinez PF, Campos DHS, Damatto RL, Minicucci MF, Cicogna AC, Okoshi K. Effects of early aldosterone antagonism on cardiac remodeling in rats with aortic stenosis-induced pressure overload. Int J Cardiol 2016; 222:569-575. [PMID: 27513653 DOI: 10.1016/j.ijcard.2016.07.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED Aldosterone plays a pivotal role in the pathophysiology of systolic heart failure. However, whether early aldosterone antagonism improves cardiac remodeling during persistent pressure overload is unsettled. We evaluated the effects of aldosterone antagonist spironolactone on cardiac remodeling in rats with ascending aortic stenosis (AS). METHODS Three days after inducing AS, weaning rats were randomized to receive spironolactone (AS-SPR, 20mg/kg/day) or no drug (AS) for 18weeks, and compared with sham-operated rats. Myocardial function was studied in isolated left ventricular (LV) papillary muscles. STATISTICAL ANALYSES ANOVA or Kruskal-Wallis tests. RESULTS Echocardiogram showed that LV diastolic (Sham 8.73±0.57; AS 8.30±1.10; AS-SPR 9.19±1.15mm) and systolic (Sham 4.57±0.67; AS 3.61±1.49; AS-SPR 4.62±1.48mm) diameters, left atrial diameter (Sham 5.80±0.44; AS 7.15±1.22; AS-SPR 8.02±1.17mm), and LV mass were higher in AS-SPR than AS. Posterior wall shortening velocity (Sham 38.5±3.8; AS 35.6±5.6; AS-SPR 31.1±3.8mm/s) was lower in AS-SPR than Sham and AS; E/A ratio was higher in AS-SPR than Sham. Developed tension was lower in AS and AS-SPR than Sham. Time to peak tension was higher in AS-SPR than Sham and AS after post-rest contraction. Right ventricle weight was higher in AS-SPR than AS, suggesting more severe heart failure in AS-SPR than AS. Interstitial collagen fractional area and myocardial hydroxyproline concentration were higher in AS than Sham. Metalloproteinase-2 and -9 activity, evaluated by zymography, did not differ between groups. CONCLUSION Early spironolactone administration causes further hypertrophy in cardiac chambers, and left ventricular dilation and dysfunction in rats with AS-induced chronic pressure overload.
Collapse
Affiliation(s)
- M P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil.
| | - M D M Cezar
- Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - R M Iyomasa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - M B Silva
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - L C O Costa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - P F Martinez
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - D H S Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - R L Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil; Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - M F Minicucci
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - A C Cicogna
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - K Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| |
Collapse
|
28
|
Guizoni DM, Oliveira-Junior SA, Noor SLR, Pagan LU, Martinez PF, Lima ARR, Gomes MJ, Damatto RL, Cezar MDM, Bonomo C, Zornoff LAM, Okoshi K, Okoshi MP. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol 2016; 221:406-12. [PMID: 27404715 DOI: 10.1016/j.ijcard.2016.07.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Physical exercise attenuates myocardial infarction (MI)-induced cardiac remodeling. However, it is unsettled whether late exercise modulates post-infarction cardiac remodeling differentially according to infarct size. We investigated the effects of exercise started at late stage heart failure on cardiac remodeling in rats with moderate and large sized MI. METHODS Three months after MI, rats were assigned into sedentary and exercise groups. Exercise rats underwent treadmill for three months. After assessing infarct size by histological analysis, rats were subdivided into four groups: moderate MI sedentary (Mod MI-Sed; n=7), Mod MI exercised (Mod MI-Ex; n=7), Large MI-Sed (n=11), and Large MI-Ex (n=10). RESULTS Before exercise, MI-induced cardiac changes were demonstrated by comparing results to a Sham group; alterations were more intense in rats with large than moderate MI size. Systolic function, evaluated by echocardiogram using the variation in LV fractional area change between after and before exercise, was improved in exercise than sedentary groups. Calsequestrin expression increased in exercised compared to sedentary groups. L-type calcium channel was higher in Mod MI-Ex than Mod MI-Sed. SERCA2a, phospholamban, and Na(+)/Ca(2+) exchanger expression did not differ between groups. CONCLUSION Late exercise improves systolic function and modulates intracellular calcium signaling proteins in rats with moderate and large MI.
Collapse
Affiliation(s)
- Daniele M Guizoni
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | | | - Sefora L R Noor
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil; School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Aline R R Lima
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila Bonomo
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Leonardo A M Zornoff
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| |
Collapse
|
29
|
Pacagnelli FL, de Almeida Sabela AKD, Okoshi K, Mariano TB, Campos DHS, Carvalho RF, Cicogna AC, Vanderlei LCM. Preventive aerobic training exerts a cardioprotective effect on rats treated with monocrotaline. Int J Exp Pathol 2016; 97:238-47. [PMID: 27365256 DOI: 10.1111/iep.12166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/06/2015] [Indexed: 01/18/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease which causes overload to the right ventricle. The effect of preventive training on cardiac remodelling in this condition is still unknown. This study aimed to evaluate the influence of preventive training on hypertrophy, heart function and gene expression of calcium transport proteins in rats with monocrotaline-induced PAH. Thirty-two male Wistar rats were randomly divided into four groups: S, sedentary control; T, trained control; SM, sedentary monocrotaline; and TM, trained monocrotaline. The preventive training protocol was performed on a treadmill for 13 weeks, five times/week. The first two weeks were adopted for adaptation to training with gradual increases in speed/time. The speed of the physical training from the third to tenth weeks was gradually increased from 0.9 to 1.1 km/h for 60 min. Next, monocrotaline was applied (60 mg/kg) to induce PAH and lactate threshold analysis performed to determine the training speeds. The training speed of the TM group in the following two weeks was 0.8 km/h for 60 min and the T = 0.9 km/h for 60 min; in the final two weeks, both groups trained at the same speed and duration 0.9 km/h, 60 min. Cardiac function was assessed through echocardiography, ventricular hypertrophy through histomorphometric analysis and gene expression through RT-qPCR. Right cardiac function assessed through the peak flow velocity was SM = 75.5 cm/s vs. TM = 92.0 cm/s (P = 0.001), and ventricular hypertrophy was SM = 106.4 μm² vs. TM = 77.7 μm² (P = 0.004). There was a decrease in the gene expression of ryanodine S = 1.12 au vs. SM = 0.60 au (P = 0.02) without alterations due to training. Thus, we conclude that prior physical training exerts a cardioprotective effect on the right ventricle in the monocrotaline rat model.
Collapse
Affiliation(s)
- Francis Lopes Pacagnelli
- Department of Physiotherapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | | | - Katashi Okoshi
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Thaoan Bruno Mariano
- Postgraduate Program in Animal Science, UNOESTE, Presidente Prudente, São Paulo, Brazil
| | | | | | - Antônio Carlos Cicogna
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
30
|
Damatto RL, Lima ARR, Martinez PF, Cezar MDM, Okoshi K, Okoshi MP. Myocardial myostatin in spontaneously hypertensive rats with heart failure. Int J Cardiol 2016; 215:384-7. [PMID: 27128567 DOI: 10.1016/j.ijcard.2016.04.101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Myostatin has been shown to regulate skeletal and cardiac muscle growth. However, its status on long-term hypertrophied myocardium has not been addressed. The purpose of this study was to evaluate the expression of myocardial myostatin and its antagonist follistatin in spontaneously hypertensive rats (SHR) with heart failure. METHODS Eighteen-month-old SHR were evaluated to identify clinical features of heart failure such as tachypnea/labored respiration and weight loss. After heart failure was detected, rats were subjected to echocardiogram and euthanized. Age-matched normotensive Wistar-Kyoto (WKY) rats were used as controls. Myostatin and follistatin protein expression was assessed by Western blotting. Statistical analysis was performed by Student's t test. RESULTS All SHR (n=8) presented right ventricular hypertrophy and five had lung congestion. SHR had left chambers hypertrophy and dilation (left atrial diameter: WKY 5.73±0.59; SHR 7.28±1.17mm; p=0.004; left ventricular (LV) diastolic diameter/body weight ratio: WKY 19.6±3.1; SHR 27.7±4.7mm/kg; p=0.001), and LV systolic dysfunction (midwall fractional shortening: WKY 34.9±3.31; SHR 24.8±3.20%; p=0.003). Myocyte diameter (WKY 23.1±1.50, SHR 25.5±1.33μm; p=0.004) and myocardial interstitial collagen fraction (WKY 4.86±0.01; SHR 8.36±0.02%; p<0.001) were increased in the SHR. Myostatin (WKY 1.00±0.16; SHR 0.77±0.23 arbitrary units; p=0.035) and follistatin (WKY 1.00±0.35; SHR 0.49±0.18 arbitrary units; p=0.002) expression was lower in SHR. Myostatin and follistatin expression negatively correlated with LV diastolic diameter-to-body weight ratio and LV systolic diameter, and positively correlated with midwall fractional shortening. CONCLUSION Myostatin and follistatin protein expression is reduced in the long-term hypertrophied myocardium from spontaneously hypertensive rats with heart failure.
Collapse
Affiliation(s)
- R L Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - A R R Lima
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - P F Martinez
- Federal University of Mato Grosso do Sul, UFMS, Brazil
| | - M D M Cezar
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - K Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - M P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil.
| |
Collapse
|
31
|
Ding YF, Peng YR, Shen H, Shu L, Wei YJ. Gualou Xiebai decoction inhibits cardiac dysfunction and inflammation in cardiac fibrosis rats. Altern Ther Health Med 2016; 16:49. [PMID: 26846090 PMCID: PMC4743121 DOI: 10.1186/s12906-016-1012-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023]
Abstract
Background Gualou Xiebai Decoction (GXD) is a well-known traditional Chinese recipe. It has been used to treat cardiovascular disorders for nearly two thousand years. But there is a lack of reports on cardiac fibrosis and underlying mechanism. Methods Myocardial infarction was performed by ligation of left anterior descending coronary artery (LAD) in male Wistar rats. Rats with myocardial infarction were treated with GXD (1.14 g/kg, 4.53 g/kg) daily for 4 weeks. Cardiac function was evaluated by echocardiography. Hemodynamic parameters and infarct size were measured in each group. Myocardial enzymes were examined by biochemical tests. Inflammatory cytokines were assessed by ELISA, and interrelated proteins were detected by western blot. Results Cardiac function was significantly improved in GXD-treatment rats after myocardial infarction (MI), which was accompanied with decreased infarct size. Administration of GXD to myocardial fibrosis rats significantly ameliorated the activities of AST, LDH and CK-MB in serum. The increase in inflammatory factors (TNF-α, IL-1β) were markedly reduced upon GXD treatment. Furthermore, the inflammatory mediators (NF-κB p65, TNF-α, MCP-1) were down-regulated by GXD in the myocardial fibrosis rats. Conclusions Treatment with GXD improved cardiac function induced by myocardial fibrosis by inhibiting expression of inflammatory mediators associated with NF-κB.
Collapse
|
32
|
Polegato BF, Minicucci MF, Azevedo PS, Gonçalves AF, Lima AF, Martinez PF, Okoshi MP, Okoshi K, Paiva SAR, Zornoff LAM. Association between Functional Variables and Heart Failure after Myocardial Infarction in Rats. Arq Bras Cardiol 2016; 106:105-12. [PMID: 26815462 PMCID: PMC4765008 DOI: 10.5935/abc.20160015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022] Open
Abstract
Background Heart failure prediction after acute myocardial infarction may have important
clinical implications. Objective To analyze the functional echocardiographic variables associated with heart
failure in an infarction model in rats. Methods The animals were divided into two groups: control and infarction.
Subsequently, the infarcted animals were divided into groups: with and
without heart failure. The predictive values were assessed by logistic
regression. The cutoff values predictive of heart failure were determined
using ROC curves. Results Six months after surgery, 88 infarcted animals and 43 control animals were
included in the study. Myocardial infarction increased left cavity diameters
and the mass and wall thickness of the left ventricle. Additionally,
myocardial infarction resulted in systolic and diastolic dysfunction,
characterized by lower area variation fraction values, posterior wall
shortening velocity, E-wave deceleration time, associated with higher values
of E / A ratio and isovolumic relaxation time adjusted by heart rate. Among
the infarcted animals, 54 (61%) developed heart failure. Rats with heart
failure have higher left cavity mass index and diameter, associated with
worsening of functional variables. The area variation fraction, the E/A
ratio, E-wave deceleration time and isovolumic relaxation time adjusted by
heart rate were functional variables predictors of heart failure. The cutoff
values of functional variables associated with heart failure were: area
variation fraction < 31.18%; E / A > 3.077; E-wave deceleration time
< 42.11 and isovolumic relaxation time adjusted by heart rate <
69.08. Conclusion In rats followed for 6 months after myocardial infarction, the area variation
fraction, E/A ratio, E-wave deceleration time and isovolumic relaxation time
adjusted by heart rate are predictors of heart failure onset.
Collapse
Affiliation(s)
- Bertha F Polegato
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Marcos F Minicucci
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Paula S Azevedo
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Andréa F Gonçalves
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Aline F Lima
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Paula F Martinez
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Marina P Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Katashi Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Sergio A R Paiva
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Leonardo A M Zornoff
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| |
Collapse
|
33
|
Beneficial Effects of Physical Exercise on Functional Capacity and Skeletal Muscle Oxidative Stress in Rats with Aortic Stenosis-Induced Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8695716. [PMID: 26904168 PMCID: PMC4745811 DOI: 10.1155/2016/8695716] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
Objective. We evaluated the influence of exercise on functional capacity, cardiac remodeling, and skeletal muscle oxidative stress, MAPK, and NF-κB pathway in rats with aortic stenosis- (AS-) induced heart failure (HF). Methods and Results. Eighteen weeks after AS induction, rats were assigned into sedentary control (C-Sed), exercised control (C-Ex), sedentary AS (AS-Sed), and exercised AS (AS-Ex) groups. Exercise was performed on treadmill for eight weeks. Statistical analyses were performed with Goodman and ANOVA or Mann-Whitney. HF features frequency and mortality did not differ between AS groups. Exercise improved functional capacity, assessed by maximal exercise test on treadmill, without changing echocardiographic parameters. Soleus cross-sectional areas did not differ between groups. Lipid hydroperoxide concentration was higher in AS-Sed than C-Sed and AS-Ex. Activity of antioxidant enzymes superoxide dismutase and glutathione peroxidase was changed in AS-Sed and restored in AS-Ex. NADPH oxidase activity and gene expression of its subunits did not differ between AS groups. Total ROS generation was lower in AS-Ex than C-Ex. Exercise modulated MAPK in AS-Ex and did not change NF-κB pathway proteins. Conclusion. Exercise improves functional capacity in rats with AS-induced HF regardless of echocardiographic parameter changes. In soleus, exercise reduces oxidative stress, preserves antioxidant enzyme activity, and modulates MAPK expression.
Collapse
|
34
|
Souza RWA, Fernandez GJ, Cunha JPQ, Piedade WP, Soares LC, Souza PAT, de Campos DHS, Okoshi K, Cicogna AC, Dal-Pai-Silva M, Carvalho RF. Regulation of cardiac microRNAs induced by aerobic exercise training during heart failure. Am J Physiol Heart Circ Physiol 2015; 309:H1629-41. [DOI: 10.1152/ajpheart.00941.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/23/2015] [Indexed: 11/22/2022]
Abstract
Exercise training (ET) has beneficial effects on the myocardium in heart failure (HF) patients and in animal models of induced cardiac hypertrophy and failure. We hypothesized that if microRNAs (miRNAs) respond to changes following cardiac stress, then myocardial profiling of these miRNAs may reveal cardio-protective mechanisms of aerobic ET in HF. We used ascending aortic stenosis (AS) inducing HF in Wistar rats. Controls were sham-operated animals. At 18 wk after surgery, rats with cardiac dysfunction were randomized to 10 wk of aerobic ET (HF-ET) or to a heart failure sedentary group (HF-S). ET attenuated cardiac remodeling as well as clinical and pathological signs of HF with maintenance of systolic and diastolic function when compared with that of the HF-S. Global miRNA expression profiling of the cardiac tissue revealed 53 miRNAs exclusively dysregulated in animals in the HF-ET, but only 11 miRNAs were exclusively dysregulated in the HF-S. Out of 23 miRNAs that were differentially regulated in both groups, 17 miRNAs exhibited particularly high increases in expression, including miR-598, miR-429, miR-224, miR-425, and miR-221. From the initial set of deregulated miRNAs, 14 miRNAs with validated targets expressed in cardiac tissue that respond robustly to ET in HF were used to construct miRNA-mRNA regulatory networks that revealed a set of 203 miRNA-target genes involved in programmed cell death, TGF-β signaling, cellular metabolic processes, cytokine signaling, and cell morphogenesis. Our findings reveal that ET attenuates cardiac abnormalities during HF by regulating cardiac miRNAs with a potential role in cardio-protective mechanisms through multiple effects on gene expression.
Collapse
Affiliation(s)
- Rodrigo W. A. Souza
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Geysson J. Fernandez
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - João P. Q. Cunha
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Warlen P. Piedade
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Luana C. Soares
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Paula A. T. Souza
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Dijon H. S. de Campos
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Antonio C. Cicogna
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Robson F. Carvalho
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| |
Collapse
|
35
|
Martins F, Campos DHS, Pagan LU, Martinez PF, Okoshi K, Okoshi MP, Padovani CR, Souza ASD, Cicogna AC, Oliveira-Junior SAD. High-fat Diet Promotes Cardiac Remodeling in an Experimental Model of Obesity. Arq Bras Cardiol 2015; 105:479-86. [PMID: 26291841 PMCID: PMC4651406 DOI: 10.5935/abc.20150095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/01/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although nutritional, metabolic and cardiovascular abnormalities are commonly seen in experimental studies of obesity, it is uncertain whether these effects result from the treatment or from body adiposity. OBJECTIVE To evaluate the influence of treatment and body composition on metabolic and cardiovascular aspects in rats receiving high saturated fat diet. METHODS Sixteen Wistar rats were used, distributed into two groups, the control (C) group, treated with isocaloric diet (2.93 kcal/g) and an obese (OB) group, treated with high-fat diet (3.64 kcal/g). The study period was 20 weeks. Analyses of nutritional behavior, body composition, glycemia, cholesterolemia, lipemia, systolic arterial pressure, echocardiography, and cardiac histology were performed. RESULTS High-fat diet associates with manifestations of obesity, accompanied by changes in glycemia, cardiomyocyte hypertrophy, and myocardial interstitial fibrosis. After adjusting for adiposity, the metabolic effects were normalized, whereas differences in morphometric changes between groups were maintained. CONCLUSION It was concluded that adiposity body composition has a stronger association with metabolic disturbances in obese rodents, whereas the high-fat dietary intervention is found to be more related to cardiac morphological changes in experimental models of diet-induced obesity.
Collapse
Affiliation(s)
- Fernando Martins
- Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Luana Urbano Pagan
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Paula Felippe Martinez
- Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Katashi Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | | | - Albert Schiaveto de Souza
- Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Silvio Assis de Oliveira-Junior
- Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
36
|
Guimaraes JFC, Muzio BP, Rosa CM, Nascimento AF, Sugizaki MM, Fernandes AAH, Cicogna AC, Padovani CR, Okoshi MP, Okoshi K. Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovasc Diabetol 2015; 14:90. [PMID: 26185015 PMCID: PMC4504040 DOI: 10.1186/s12933-015-0255-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background Oxidative stress plays a major role in diabetic cardiomyopathy pathogenesis. Anti-oxidant therapy has been investigated in preventing or treating several diabetic complications. However, anti-oxidant action on diabetic-induced cardiac remodeling is not completely clear. This study evaluated the effects of rutin, a flavonoid, on cardiac and myocardial function in diabetic rats. Methods Wistar rats were assigned into control (C, n = 14); control-rutin (C-R, n = 14); diabetes mellitus (DM, n = 16); and DM-rutin (DM-R, n = 16) groups. Seven days after inducing diabetes (streptozotocin, 60 mg/kg, i.p.), rutin was injected intraperitoneally once a week (50 mg/kg) for 7 weeks. Echocardiogram was performed and myocardial function assessed in left ventricular (LV) papillary muscles. Serum insulin concentration was measured by ELISA. Statistics: One-way ANOVA and Tukey’s post hoc test. Results Glycemia was higher in DM than DM-R and C and in DM-R than C-R. Insulin concentration was lower in diabetic groups than controls (C 2.45 ± 0.67; C-R 2.09 ± 0.52; DM 0.59 ± 0.18; DM-R 0.82 ± 0.21 ng/mL). Echocardiogram showed no differences between C-R and C. DM had increased LV systolic diameter compared to C, and increased left atrium diameter/body weight (BW) ratio and LV mass/BW ratio compared to C and DM-R. Septal wall thickness, LV diastolic diameter/BW ratio, and relative wall thickness were lower in DM-R than DM. Fractional shortening and posterior wall shortening velocity were lower in DM than C and DM-R. In papillary muscle preparation, DM and DM-R presented higher time to peak tension and time from peak tension to 50% relaxation than controls; time to peak tension was lower in DM-R than DM. Under 0.625 and 1.25 mM extracellular calcium concentrations, DM had higher developed tension than C. Conclusion Rutin attenuates cardiac remodeling and left ventricular and myocardial dysfunction caused by streptozotocin-induced diabetes mellitus.
Collapse
Affiliation(s)
- Julliano F C Guimaraes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Bruno P Muzio
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Camila M Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Andre F Nascimento
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Mario M Sugizaki
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Ana A H Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Antonio C Cicogna
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Carlos R Padovani
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Marina P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil. .,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, UNESP Rubiao Junior, S/N 18618-970, Botucatu, SP, Brazil.
| |
Collapse
|
37
|
Gimenes C, Gimenes R, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Guirado GN, Cicogna AC, Takamoto AHR, Okoshi MP, Okoshi K. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats. J Diabetes Res 2015; 2015:457848. [PMID: 26509175 PMCID: PMC4609864 DOI: 10.1155/2015/457848] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/04/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. CONCLUSION Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats.
Collapse
Affiliation(s)
- C. Gimenes
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
- Sagrado Coração University, Bauru, SP, Brazil
| | - R. Gimenes
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - C. M. Rosa
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - N. P. Xavier
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - D. H. S. Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - A. A. H. Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Brazil
| | - M. D. M. Cezar
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - G. N. Guirado
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - A. C. Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - A. H. R. Takamoto
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - M. P. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - K. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
- *K. Okoshi:
| |
Collapse
|
38
|
Effect of Metalloproteinase Inhibitor on Early Postinfarction Remodeling in the Most Acute Phase of Myocardial Infarction. Bull Exp Biol Med 2013; 156:19-24. [DOI: 10.1007/s10517-013-2267-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Rosa CM, Xavier NP, Henrique Campos D, Fernandes AAH, Cezar MDM, Martinez PF, Cicogna AC, Gimenes C, Gimenes R, Okoshi MP, Okoshi K. Diabetes mellitus activates fetal gene program and intensifies cardiac remodeling and oxidative stress in aged spontaneously hypertensive rats. Cardiovasc Diabetol 2013; 12:152. [PMID: 24134628 PMCID: PMC4015448 DOI: 10.1186/1475-2840-12-152] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 12/25/2022] Open
Abstract
Background The combination of systemic arterial hypertension and diabetes mellitus (DM) induces greater cardiac remodeling than either condition alone. However, this association has been poorly addressed in senescent rats. Therefore, this study aimed to analyze the influence of streptozotocin-induced DM on ventricular remodeling and oxidative stress in aged spontaneously hypertensive rats (SHR). Methods Fifty 18 month old male SHR were divided into two groups: control (SHR, n = 25) and diabetic (SHR-DM, n = 25). DM was induced by streptozotocin (40 mg/kg, i.p.). After nine weeks, the rats underwent echocardiography and myocardial functional study in left ventricular (LV) isolated papillary muscle preparations. LV samples were obtained to measure myocyte diameters, interstitial collagen fraction, and hydroxyproline concentration. Gene expression of atrial natriuretic peptide (ANP) and α- and β-myosin heavy chain (MyHC) isoforms was evaluated by RT-PCR. Serum oxidative stress was assessed by measuring lipid hydroperoxide concentration and superoxide dismutase and glutathione peroxidase activities. Statistics: Student’s t test or Mann-Whitney test, p < 0.05. Results SHR-DM presented higher blood glucose (487 ± 29 vs. 89.1 ± 21.1 mg/dL) and lower body weight (277 ± 26 vs. 339 ± 38 g). Systolic blood pressure did not differ between groups. Echocardiography showed LV and left atrial dilation, LV diastolic and relative wall thickness decrease, and LV systolic and diastolic function impairment in SHR-DM. Papillary muscle study showed decreased myocardial contractility and contractile reserve in SHR-DM. Myocyte diameters and myocardial interstitial collagen fraction and hydroxyproline concentration did not differ between groups. Increased serum pro-oxidant activity and gene expression of ANP and β/α-MyHC ratio were observed in DM. Conclusion Diabetes mellitus induces cardiac dilation and functional impairment, increases oxidative stress and activates fetal gene program in aged spontaneously hypertensive rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| |
Collapse
|
40
|
FENG YONGQIANG, CHAI JIAKE, CHU WANLI, MA LI, ZHANG PEIPEI, DUAN HONGJIE. Combination of ketamine and xylazine exacerbates cardiac dysfunction in severely scalded rats during the shock stage. Exp Ther Med 2013; 6:641-648. [PMID: 24137240 PMCID: PMC3786838 DOI: 10.3892/etm.2013.1213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 11/06/2022] Open
Abstract
Cardiac inhibition due to burn injury and anesthetics have been documented previously. However, little is known about their combined effects on cardiac function. The aim of the present study was to observe the effects of a ketamine/xylazine (K/X) combination on the cardiac function of rats with severe scalds and compare them with those of avertin. Adult rats were randomly distributed into four groups: the KXB group (scalds anesthetized with K/X, n=10), the KXC group (sham scalds anesthetized with K/X, n=10), the AVB group (scalds anesthetized with avertin, n=10) and the AVC group (sham scalds anesthetized with avertin, n=10). Ketamine and xylazine were administered at 25 and 6 mg/kg, respectively, and avertin at 200 mg/kg before full-thickness scalds or sham scalds of 30% total body surface area (TBSA) were produced. Echocardiographic parameters were assessed following injury. The heart rate (HR) in the KXB group was fatally low during the study period. Fractional shortening (FS%) and ejection fraction (EF) in the KXB group were extremely low initially and remained low. The left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV) were reduced in the burned rats. Serum levels of cardiac troponin I (cTnI) were significantly higher in the KXB group than in the AVB group (1.66±0.28 vs. 1.16±0.34 ng/ml, P<0.01). The highest lung wet/dry weight ratio was observed in the KXB group. However, no evident heart tissue pathological changes were observed in these groups. The apoptotic index of myocardial cells and caspase 3 expression level were highest in the KXB group (P<0.01). In conclusion, K/X exacerbated cardiac inhibition in severely scalded rats during the shock stage by a mechanism which may involve mitochondrial apoptosis.
Collapse
Affiliation(s)
- YONGQIANG FENG
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - JIAKE CHAI
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - WANLI CHU
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - LI MA
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - PEIPEI ZHANG
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - HONGJIE DUAN
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
41
|
Damatto R, Martinez P, Lima A, Cezar M, Campos D, Oliveira Junior S, Guizoni D, Bonomo C, Nakatani B, Dal Pai Silva M, Carvalho R, Okoshi K, Okoshi M. Heart failure-induced skeletal myopathy in spontaneously hypertensive rats. Int J Cardiol 2013; 167:698-703. [DOI: 10.1016/j.ijcard.2012.03.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/02/2012] [Accepted: 03/03/2012] [Indexed: 12/31/2022]
|
42
|
Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J 2013; 4:20. [PMID: 23889805 PMCID: PMC3751918 DOI: 10.1186/1878-5085-4-20] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/01/2013] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Nanoscale gold particles (AuNPs) have wide perspectives for biomedical applications because of their unique biological properties, as antioxidative activity and potentials for drug delivery. AIMS AND OBJECTIVES The aim was to test effects of AuNPs using suggested heart failure rat model to compare with proved medication Simdax, to test gold nanoparticle for drug delivery, and to test sonoporation effect to increase nanoparticles delivery into myocardial cells. MATERIAL AND METHODS We performed biosafety and biocompatibility tests for AuNPs and conjugate with Simdax. For in vivo tests, we included Wistar rats weighing 180-200 g (n = 54), received doxorubicin in cumulative dose of 12.0 mg/kg to model advance heart failure, registered by ultrasonography. We formed six groups: the first three groups of animals received, respectively, 0.06 ml Simdax, AuNPs, and conjugate (AuNPs-Simdax), intrapleurally, and the second three received them intravenously. The seventh group was control (saline). We performed dynamic assessment of heart failure regression in vivo measuring hydrothorax. Sonoporation of gold nanoparticles to cardiomyocytes was tested. RESULTS We designed and constructed colloidal, spherical gold nanoparticles, AuNPs-Simdax conjugate, both founded biosafety (in cytotoxicity, genotoxicity, and immunoreactivity). In all animals of the six groups after the third day post-medication injection, no ascites and liver enlargement were registered (P < 0.001 vs controls). Conjugate injection showed significantly higher hydrothorax reduction than Simdax injection only (P < 0.01); gold nanoparticle injection showed significantly higher results than Simdax injection (P < 0.05). AuNPs and conjugate showed no significant difference for rat recovery. Difference in rat life continuity was significant between Simdax vs AuNPs (P < 0.05) and Simdax vs conjugate (P < 0.05). Sonoporation enhances AuNP transfer into the cell and mitochondria that were highly localized, superior to controls (P < 0.01 for both). CONCLUSIONS Gold nanoparticles of 30 nm and its AuNPs-Simdax conjugate gave positive results in biosafety and biocompatibility in vitro and in vivo. AuNPs-Simdax and AuNPs have similar significant cardioprotective effects in rats with doxorubicin-induced heart failure, higher than that of Simdax. Intrapleural (local) delivery is preferred over intravenous (systemic) delivery according to all tested parameters. Sonoporation is able to enhance gold nanoparticle delivery to myocardial cells in vivo.
Collapse
Affiliation(s)
- Mykola Ya Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv 03680, Ukraine
- LCL “DIAPROF”, Svitlycky str., 35, Kyiv 04123, Ukraine
| | - Rostyslav V Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv 03680, Ukraine
- Centre of Ultrasound Diagnostics and Interventional Sonography, Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny str., 21, Kyiv 03680, Ukraine
| | - Ilya M Yemets
- Scientific-Practical Centre of Pediatric Cardiology and Cardiac Health of Ukraine, Chornovil str., 28/1, Kyiv 01135, Ukraine
| | - Liudmyla M Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv 03680, Ukraine
| | - Natalia O Tymoshok
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv 03680, Ukraine
| | - Zoia R Ulberg
- Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, Acad. Vernadsky blvd, 42, Kyiv 03142, Ukraine
| |
Collapse
|
43
|
Zheng D, Hou J, Xiao Y, Zhao Z, Chen L. Cardioprotective effect of mangiferin on left ventricular remodeling in rats. Pharmacology 2012; 90:78-87. [PMID: 22759807 DOI: 10.1159/000339450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2012] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to clarify the protective role of mangiferin on postinfarction myocardial remodeling and potential mechanisms. The myocardial infarction (MI) model was established by ligating the left anterior descending coronary artery. Cardiac function, myocardial apoptosis and fibrosis, serum tumor necrosis factor-α (TNF-α) and phosphorylated p38 mitogen-activated protein kinase (MAPK) were examined by echocardiography, histological staining, ELISA and Western blot, respectively. Mangiferin attenuated MI and prevented the development of intercellular fibrosis. Western blotting underscores that the p38 MAPK cascade plays an important role in the cardioprotective effect of mangiferin during MI. Inhibition of p38 MAPK significantly decreased serum TNF-α levels. Transferase-mediated uridine nick end labeling and Masson staining also showed that mangiferin reduced apoptosis and fibrosis in myocardium remodeling. Based on these results, we conclude that mangiferin has a therapeutic effect on post-MI left ventricular remodeling and improves cardiac function.
Collapse
Affiliation(s)
- Dezhi Zheng
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|