1
|
Żera T, Paleczny B, Siński M, Conde SV, Narkiewicz K, Ponikowski P, Paton JFR, Niewiński P. Translating physiology of the arterial chemoreflex into novel therapeutic interventions targeting carotid bodies in cardiometabolic disorders. J Physiol 2025. [PMID: 40186613 DOI: 10.1113/jp285081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
This review resulted from a conference on the pathological role of arterial chemoreflex and carotid bodies in cardiometabolic diseases held at the 27th Congress of the Polish Cardiac Society in September 2023 in Poznan, Poland. It reflects the contribution of Polish researchers and their international collaborations, which have been fundamental in the development of the field. Aberrant activity of the carotid bodies leads to both high tonicity and increased sensitivity of the arterial chemoreflex with resultant sympathoexcitation in chronic heart failure, resistant hypertension and obstructive sleep apnoea. This observation has led to several successful attempts of removing or denervating the carotid bodies as a therapeutic option in humans. Regrettably, such interventions are accompanied by serious respiratory and acid-base balance side-effects. Rather than a single stereotyped reaction, arterial chemoreflex comprises an integrative multi-system response to a variety of stimulants and its specific reflex components may be individually conveyed at varying intensities. Recent research has revealed that carotid bodies express diverse receptors, synthesize a cocktail of mediators, and respond to a plethora of metabolic, hormonal and autonomic nervous stimuli. This state-of-the-art summary discusses exciting new discoveries regarding GLP-1 receptors, purinergic receptors, the glutamate-GABA system, efferent innervation and regulation of blood flow in the carotid body and how they open new avenues for novel pharmacological treatments selectively targeting specific receptors, mediators and neural pathways to correct distinct responses of the carotid body-evoked arterial chemoreflex in cardiometabolic diseases. The carotid body offers novel and advantageous therapeutic opportunities for future consideration by trialists.
Collapse
Affiliation(s)
- Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Bartłomiej Paleczny
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Siński
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sílvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Piotr Niewiński
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Spiller PF, Morgan HJN, Navegantes LCC, Machado BH, da Silva MP, Moraes DJA. Short-term sustained hypoxia distinctly affects subpopulations of carotid body glomus cells from rats. Am J Physiol Cell Physiol 2025; 328:C1346-C1365. [PMID: 40094217 DOI: 10.1152/ajpcell.00967.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
The main O2 arterial chemoreceptors are the carotid bodies (CBs), which mediate hyperventilation in response to short-term sustained hypoxia (SH). CBs contain glomus cells expressing K+ channels, which are inhibited by hypoxia, leading to neurotransmitter release. ATP released by CBs and type II cells has been considered essential for chemosensory processing under physiological and pathophysiological conditions. Although the systemic effects of chronic activation of CBs by SH are well known, the early (first 24 h) cellular and molecular mechanisms in CBs as well as the effects of short-term SH on populations of glomus cells are still poorly understood. Here, we show that SH (10% O2 for 24 h) depolarizes the membrane potential of one population of glomus cells, mediated by increases in inward current, but does not affect the ATP release by CBs. In addition, SH promotes a reduction in their maximum outward current, mediated by voltage-gated K+ channels. SH also affected sensitivity to acute hypoxia in one glomus cell subpopulation. As for the content of mitochondrial proteins, we observed increases in the citrate synthase, Tom-20, and succinate dehydrogenase (mitochondrial complex II) per cell of CBs after SH. Our results demonstrate important cellular and molecular mechanisms of plasticity in CBs from rats after only 24 h of SH, which may contribute to the generation of cardiovascular and ventilatory adjustments observed in this experimental model.NEW & NOTEWORTHY Our study revealed two subpopulations of glomus cells of carotid bodies (CBs) with specific electrophysiological properties, which were differentially affected by short-term sustained hypoxia (SH; 10% O2 for 24 h). Our experiments showed that SH also affected the sensitivity to acute hypoxia of these glomus cell subpopulations differently. Our molecular analyses allowed us to identify important adaptations in the content of CB mitochondrial proteins that participate in the Krebs cycle and form the electron transport chain.
Collapse
Affiliation(s)
- Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Henrique J N Morgan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz C C Navegantes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Wang RL, Chang RB. The Coding Logic of Interoception. Annu Rev Physiol 2024; 86:301-327. [PMID: 38061018 PMCID: PMC11103614 DOI: 10.1146/annurev-physiol-042222-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Interoception, the ability to precisely and timely sense internal body signals, is critical for life. The interoceptive system monitors a large variety of mechanical, chemical, hormonal, and pathological cues using specialized organ cells, organ innervating neurons, and brain sensory neurons. It is important for maintaining body homeostasis, providing motivational drives, and regulating autonomic, cognitive, and behavioral functions. However, compared to external sensory systems, our knowledge about how diverse body signals are coded at a system level is quite limited. In this review, we focus on the unique features of interoceptive signals and the organization of the interoceptive system, with the goal of better understanding the coding logic of interoception.
Collapse
Affiliation(s)
- Ruiqi L Wang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Rui B Chang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
4
|
Sacramento JF, Melo BF, Prieto-Lloret J, Conde SV. Chronic Metformin Administration Does Not Alter Carotid Sinus Nerve Activity in Control Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:203-208. [PMID: 37322351 DOI: 10.1007/978-3-031-32371-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metformin is a glucose-lowering, insulin-sensitizing drug that is commonly used in the treatment of type 2 diabetes (T2D). In the last decade, the carotid body (CB) has been described as a metabolic sensor implicated in the regulation of glucose homeostasis, being CB dysfunction crucial for the development of metabolic diseases, such as T2D. Knowing that metformin could activate AMP-activated protein kinase (AMPK) and that AMPK has been described to have an important role in CB hypoxic chemotransduction, herein we have investigated the effect of chronic metformin administration on carotid sinus nerve (CSN) chemosensory activity in basal and hypoxic and hypercapnic conditions in control animals. Experiments were performed in male Wistar rats subjected to 3 weeks of metformin (200 mg/kg) administration in the drinking water. The effect of chronic metformin administration was tested in spontaneous and hypoxic (0% and 5% O2) and hypercapnic (10% CO2) evoked CSN chemosensory activity. Metformin administration for 3 weeks did not modify the basal CSN chemosensory activity in control animals. Moreover, the CSN chemosensory response to intense and moderate hypoxia and hypercapnia was not altered by the chronic metformin administration. In conclusion, chronic metformin administration did not modify chemosensory activity in control animals.
Collapse
Affiliation(s)
- Joana F Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bernardete F Melo
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jesus Prieto-Lloret
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto de Biologia y Genetica Molecular (IBGM), Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- Departamento de Bioquimica, Biologia Molecular y Fisiologia, Universidad de Valladolid, Valladolid, Spain
| | - Silvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Evans AM. Of Mice and Men and Plethysmography Systems: Does LKB1 Determine the Set Point of Carotid Body Chemosensitivity and the Hypoxic Ventilatory Response? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:163-173. [PMID: 37322347 DOI: 10.1007/978-3-031-32371-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Our recent studies suggest that the level of liver kinase B1 (LKB1) expression in some way determines carotid body afferent discharge during hypoxia and to a lesser extent during hypercapnia. In short, phosphorylation by LKB1 of an as yet unidentified target(s) determines a set point for carotid body chemosensitivity. LKB1 is the principal kinase that activates the AMP-activated protein kinase (AMPK) during metabolic stresses, but conditional deletion of AMPK in catecholaminergic cells, including therein carotid body type I cells, has little or no effect on carotid body responses to hypoxia or hypercapnia. With AMPK excluded, the most likely target of LKB1 is one or other of the 12 AMPK-related kinases, which are constitutively phosphorylated by LKB1 and, in general, regulate gene expression. By contrast, the hypoxic ventilatory response is attenuated by either LKB1 or AMPK deletion in catecholaminergic cells, precipitating hypoventilation and apnea during hypoxia rather than hyperventilation. Moreover, LKB1, but not AMPK, deficiency causes Cheyne-Stokes-like breathing. This chapter will explore further the possible mechanisms that determine these outcomes.
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
LKB1 is the gatekeeper of carotid body chemosensing and the hypoxic ventilatory response. Commun Biol 2022; 5:642. [PMID: 35768580 PMCID: PMC9243028 DOI: 10.1038/s42003-022-03583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
The hypoxic ventilatory response (HVR) is critical to breathing and thus oxygen supply to the body and is primarily mediated by the carotid bodies. Here we reveal that carotid body afferent discharge during hypoxia and hypercapnia is determined by the expression of Liver Kinase B1 (LKB1), the principal kinase that activates the AMP-activated protein kinase (AMPK) during metabolic stresses. Conversely, conditional deletion in catecholaminergic cells of AMPK had no effect on carotid body responses to hypoxia or hypercapnia. By contrast, the HVR was attenuated by LKB1 and AMPK deletion. However, in LKB1 knockouts hypoxia evoked hypoventilation, apnoea and Cheyne-Stokes-like breathing, while only hypoventilation and apnoea were observed after AMPK deletion. We therefore identify LKB1 as an essential regulator of carotid body chemosensing and uncover a divergence in dependency on LKB1 and AMPK between the carotid body on one hand and the HVR on the other.
Collapse
|
7
|
Argent LP, Bose A, Paton JFR. Intra-carotid body inter-cellular communication. J R Soc N Z 2022; 53:332-361. [PMID: 39439480 PMCID: PMC11459819 DOI: 10.1080/03036758.2022.2079681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
The classic peripheral chemoreflex response is a critical homeostatic mechanism. In healthy individuals, appropriate chemoreflex responses are triggered by acute activation of the carotid body - the principal chemosensory organ in mammals. However, the aberrant chronic activation of the carotid body can drive the elevated sympathetic activity underlying cardio-respiratory diseases such as hypertension, diabetes and heart failure. Carotid body resection induces intolerable side effects and so understanding how to modulate carotid body output without removing it, and whilst maintaining the physiological chemoreflex response, represents the next logical next step in the development of effective clinical interventions. By definition, excessive carotid body output must result from altered intra-carotid body inter-cellular communication. Alongside the canonical synaptic transmission from glomus cells to petrosal afferents, many other modes of information exchange in the carotid body have been identified, for example bidirectional signalling between type I and type II cells via ATP-induced ATP release, as well as electrical communication via gap junctions. Thus, herein we review the carotid body as an integrated circuit, discussing a variety of different inter-cellular signalling mechanisms and highlighting those that are potentially relevant to its pathological hyperactivity in disease with the aim of identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Liam P. Argent
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Aabharika Bose
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julian F. R. Paton
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
9
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Mitochondrial Succinate Metabolism and Reactive Oxygen Species Are Important but Not Essential for Eliciting Carotid Body and Ventilatory Responses to Hypoxia in the Rat. Antioxidants (Basel) 2021; 10:antiox10060840. [PMID: 34070267 PMCID: PMC8225218 DOI: 10.3390/antiox10060840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 01/31/2023] Open
Abstract
Reflex increases in breathing in response to acute hypoxia are dependent on activation of the carotid body (CB)—A specialised peripheral chemoreceptor. Central to CB O2-sensing is their unique mitochondria but the link between mitochondrial inhibition and cellular stimulation is unresolved. The objective of this study was to evaluate if ex vivo intact CB nerve activity and in vivo whole body ventilatory responses to hypoxia were modified by alterations in succinate metabolism and mitochondrial ROS (mitoROS) generation in the rat. Application of diethyl succinate (DESucc) caused concentration-dependent increases in chemoafferent frequency measuring approximately 10–30% of that induced by severe hypoxia. Inhibition of mitochondrial succinate metabolism by dimethyl malonate (DMM) evoked basal excitation and attenuated the rise in chemoafferent activity in hypoxia. However, approximately 50% of the response to hypoxia was preserved. MitoTEMPO (MitoT) and 10-(6′-plastoquinonyl) decyltriphenylphosphonium (SKQ1) (mitochondrial antioxidants) decreased chemoafferent activity in hypoxia by approximately 20–50%. In awake animals, MitoT and SKQ1 attenuated the rise in respiratory frequency during hypoxia, and SKQ1 also significantly blunted the overall hypoxic ventilatory response (HVR) by approximately 20%. Thus, whilst the data support a role for succinate and mitoROS in CB and whole body O2-sensing in the rat, they are not the sole mediators. Treatment of the CB with mitochondrial selective antioxidants may offer a new approach for treating CB-related cardiovascular–respiratory disorders.
Collapse
|
11
|
Bardsley EN, Pen DK, McBryde FD, Ford AP, Paton JFR. The inevitability of ATP as a transmitter in the carotid body. Auton Neurosci 2021; 234:102815. [PMID: 33993068 DOI: 10.1016/j.autneu.2021.102815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Atmospheric oxygen concentrations rose markedly at several points in evolutionary history. Each of these increases was followed by an evolutionary leap in organismal complexity, and thus the cellular adaptions we see today have been shaped by the levels of oxygen within our atmosphere. In eukaryotic cells, oxygen is essential for the production of adenosine 5'-triphosphate (ATP) which is the 'Universal Energy Currency' of life. Aerobic organisms survived by evolving precise mechanisms for converting oxygen within the environment into energy. Higher mammals developed specialised organs for detecting and responding to changes in oxygen content to maintain gaseous homeostasis for survival. Hypoxia is sensed by the carotid bodies, the primary chemoreceptor organs which utilise multiple neurotransmitters one of which is ATP to evoke compensatory reflexes. Yet, a paradox is presented in oxygen sensing cells of the carotid body when during periods of low oxygen, ATP is seemingly released in abundance to transmit this signal although the synthesis of ATP is theoretically halted because of its dependence on oxygen. We propose potential mechanisms to maintain ATP production in hypoxia and summarise recent data revealing elevated sensitivity of purinergic signalling within the carotid body during conditions of sympathetic overactivity and hypertension. We propose the carotid body is hypoxic in numerous chronic cardiovascular and respiratory diseases and highlight the therapeutic potential for modulating purinergic transmission.
Collapse
Affiliation(s)
- Emma N Bardsley
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Dylan K Pen
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Fiona D McBryde
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand
| | - Anthony P Ford
- CuraSen, 930 Brittan Avenue #306, San Carlos, CA 94070, USA
| | - Julian F R Paton
- Auckland University, Department of Physiology, Faculty of Health and Medical Sciences, 85 Park Road, Grafton 1023, New Zealand.
| |
Collapse
|
12
|
Neurotransmitter Modulation of Carotid Body Germinal Niche. Int J Mol Sci 2020; 21:ijms21218231. [PMID: 33153142 PMCID: PMC7662800 DOI: 10.3390/ijms21218231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022] Open
Abstract
The carotid body (CB), a neural-crest-derived organ and the main arterial chemoreceptor in mammals, is composed of clusters of cells called glomeruli. Each glomerulus contains neuron-like, O2-sensing glomus cells, which are innervated by sensory fibers of the petrosal ganglion and are located in close contact with a dense network of fenestrated capillaries. In response to hypoxia, glomus cells release transmitters to activate afferent fibers impinging on the respiratory and autonomic centers to induce hyperventilation and sympathetic activation. Glomus cells are embraced by interdigitating processes of sustentacular, glia-like, type II cells. The CB has an extraordinary structural plasticity, unusual for a neural tissue, as it can grow several folds its size in subjects exposed to sustained hypoxia (as for example in high altitude dwellers or in patients with cardiopulmonary diseases). CB growth in hypoxia is mainly due to the generation of new glomeruli and blood vessels. In recent years it has been shown that the adult CB contains a collection of quiescent multipotent stem cells, as well as immature progenitors committed to the neurogenic or the angiogenic lineages. Herein, we review the main properties of the different cell types in the CB germinal niche. We also summarize experimental data suggesting that O2-sensitive glomus cells are the master regulators of CB plasticity. Upon exposure to hypoxia, neurotransmitters and neuromodulators released by glomus cells act as paracrine signals that induce proliferation and differentiation of multipotent stem cells and progenitors, thus causing CB hypertrophy and an increased sensory output. Pharmacological modulation of glomus cell activity might constitute a useful clinical tool to fight pathologies associated with exaggerated sympathetic outflow due to CB overactivation.
Collapse
|
13
|
Aldossary HS, Alzahrani AA, Nathanael D, Alhuthail EA, Ray CJ, Batis N, Kumar P, Coney AM, Holmes AP. G-Protein-Coupled Receptor (GPCR) Signaling in the Carotid Body: Roles in Hypoxia and Cardiovascular and Respiratory Disease. Int J Mol Sci 2020; 21:ijms21176012. [PMID: 32825527 PMCID: PMC7503665 DOI: 10.3390/ijms21176012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is an important organ located at the carotid bifurcation that constantly monitors the blood supplying the brain. During hypoxia, the CB immediately triggers an alarm in the form of nerve impulses sent to the brain. This activates protective reflexes including hyperventilation, tachycardia and vasoconstriction, to ensure blood and oxygen delivery to the brain and vital organs. However, in certain conditions, including obstructive sleep apnea, heart failure and essential/spontaneous hypertension, the CB becomes hyperactive, promoting neurogenic hypertension and arrhythmia. G-protein-coupled receptors (GPCRs) are very highly expressed in the CB and have key roles in mediating baseline CB activity and hypoxic sensitivity. Here, we provide a brief overview of the numerous GPCRs that are expressed in the CB, their mechanism of action and downstream effects. Furthermore, we will address how these GPCRs and signaling pathways may contribute to CB hyperactivity and cardiovascular and respiratory disease. GPCRs are a major target for drug discovery development. This information highlights specific GPCRs that could be targeted by novel or existing drugs to enable more personalized treatment of CB-mediated cardiovascular and respiratory disease.
Collapse
Affiliation(s)
- Hayyaf S. Aldossary
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- College of Medicine, Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Abdulaziz A. Alzahrani
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- Respiratory Care Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Demitris Nathanael
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Eyas A. Alhuthail
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- Collage of Sciences and Health Professions, Basic Sciences Department, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Clare J. Ray
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Nikolaos Batis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Prem Kumar
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Andrew M. Coney
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Andrew P. Holmes
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-121-415-8161
| |
Collapse
|
14
|
Leonard EM, Nurse CA. Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells. Int J Mol Sci 2020; 21:ijms21155434. [PMID: 32751703 PMCID: PMC7432366 DOI: 10.3390/ijms21155434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/31/2022] Open
Abstract
Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O2 and CO2/H+ homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 μM) had negligible effects on basal [Ca2+]i in isolated rat type II cells. However, DA strongly inhibited [Ca2+]i elevations (Δ[Ca2+]i) evoked by the P2Y2R agonist UTP (100 μM), an effect opposed by the D2/3R antagonist, sulpiride (1-10 μM). As expected, acute hypercapnia (10% CO2; pH 7.4), or high K+ (30 mM) caused Δ[Ca2+]i in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca2+]i in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca2+]i in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca2+]i in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca2+]i in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia.
Collapse
Affiliation(s)
- Erin M. Leonard
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 23178); Fax: +1-905-522-6066
| | | |
Collapse
|
15
|
Mkrtchian S, Kåhlin J, Gómez-Galán M, Ebberyd A, Yoshitake T, Schmidt S, Kehr J, Hildenborg M, Jonsson Fagerlund M, Erlandsson Harris H, Eriksson LI. The impact of damage-associated molecular patterns on the neurotransmitter release and gene expression in the ex vivo rat carotid body. Exp Physiol 2020; 105:1634-1647. [PMID: 32652583 DOI: 10.1113/ep088705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are carotid bodies (CBs) modulated by the damage-associated molecular patterns (DAMPs) and humoral factors of aseptic tissue injury? What are the main findings and their importance? DAMPs (HMGB1, S100 A8/A9) and blood plasma from rats subjected to tibia surgery, a model of aseptic injury, stimulate the release of neurotransmitters (ATP, dopamine) and TNF-α from ex vivo rat CBs. All-thiol HMGB1 mediates upregulation of immune-related biological pathways. These data suggest regulation of CB function by endogenous mediators of innate immunity. ABSTRACT The glomus cells of carotid bodies (CBs) are the primary sensors of arterial partial O2 and CO2 tensions and moreover serve as multimodal receptors responding also to other stimuli, such as pathogen-associated molecular patterns (PAMPs) produced by acute infection. Modulation of CB function by excessive amounts of these immunomodulators is suggested to be associated with a detrimental hyperinflammatory state. We have hypothesized that yet another class of immunomodulators, endogenous danger-associated molecular patterns (DAMPs), released upon aseptic tissue injury and recognized by the same pathogen recognition receptors as PAMPs, might modulate the CB activity in a fashion similar to PAMPs. We have tested this hypothesis by exposing rat CBs to various DAMPs, such as HMGB1 (all-thiol and disulfide forms) and S100 A8/A9 in a series of ex vivo experiments that demonstrated the release of dopamine and ATP, neurotransmitters known to mediate CB homeostatic responses. We observed a similar response after incubating CBs with conditioned blood plasma obtained from the rats subjected to tibia surgery, a model of aseptic injury. In addition, we have investigated global gene expression in the rat CB using an RNA sequencing approach. Differential gene expression analysis showed all-thiol HMGB1-driven upregulation of a number of prominent pro-inflammatory markers including Il1α and Il1β. Interestingly, conditioned plasma had a more profound effect on the CB transcriptome resulting in inhibition rather than activation of the immune-related pathways. These data are the first to suggest potential modulation of CB function by endogenous mediators of innate immunity.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Kåhlin
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.,Function Perioperative Medicine and Intensive Care, Karolinska University Hospital and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marta Gómez-Galán
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Pronexus Analytical AB, Bromma, Sweden
| | - Malin Hildenborg
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.,Function Perioperative Medicine and Intensive Care, Karolinska University Hospital and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.,Function Perioperative Medicine and Intensive Care, Karolinska University Hospital and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Erlandsson Harris
- Department of Medicine Solna, Section for Rheumatology, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars I Eriksson
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.,Function Perioperative Medicine and Intensive Care, Karolinska University Hospital and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Abstract
The carotid body (CB) is an arterial chemoreceptor organ located in the carotid bifurcation and has a well-recognized role in cardiorespiratory regulation. The CB contains neurosecretory sensory cells (glomus cells), which release transmitters in response to hypoxia, hypercapnia, and acidemia to activate afferent sensory fibers terminating in the respiratory and autonomic brainstem centers. Knowledge of the physiology of the CB has progressed enormously in recent years. Herein we review advances concerning the organization and function of the cellular elements of the CB, with emphasis on the molecular mechanisms of acute oxygen sensing by glomus cells. We introduce the modern view of the CB as a multimodal integrated metabolic sensor and describe the properties of the CB stem cell niche, which support CB growth during acclimatization to chronic hypoxia. Finally, we discuss the increasing medical relevance of CB dysfunction and its potential impact on the mechanisms of disease.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| |
Collapse
|
17
|
Sacramento JF, Olea E, Ribeiro MJ, Prieto-Lloret J, Melo BF, Gonzalez C, Martins FO, Monteiro EC, Conde SV. Contribution of adenosine and ATP to the carotid body chemosensory activity in ageing. J Physiol 2019; 597:4991-5008. [PMID: 31426127 DOI: 10.1113/jp274179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/07/2019] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Adenosine and ATP are excitatory neurotransmitters involved in the carotid body (CB) response to hypoxia. During ageing the CB exhibits a decline in its functionality, demonstrated by decreased hypoxic responses. In aged rats (20-24 months old) there is a decrease in: basal and hypoxic release of adenosine and ATP from the CB; expression of adenosine and ATP receptors in the petrosal ganglion; carotid sinus nerve (CSN) activity in response to hypoxia; and ventilatory responses to ischaemic hypoxia. There is also an increase in SNAP25, ENT1 and CD73 expression. It is concluded that, although CSN activity and ventilatory responses to hypoxia decrease with age, adjustments in purinergic metabolism in the CB in aged animals are present aiming to maintain the contribution of adenosine and ATP. The possible significance of the findings in the context of ageing and in CB-associated pathologies is considered. ABSTRACT During ageing the carotid body (CB) exhibits a decline in its functionality. Here we investigated the effect of ageing on functional CB characteristics as well as the contribution of adenosine and ATP to CB chemosensory activity. Experiments were performed in 3-month-old and 20- to 24-month-old male Wistar rats. Ageing decreased: the number of tyrosine hydroxylase immune-positive cells, but not type II cells or nestin-positive cells in the CB; the expression of P2X2 and A2A receptors in the petrosal ganglion; and the basal and hypoxic release of adenosine and ATP from the CB. Ageing increased ecto-nucleotidase (CD73) immune-positive cells and the expression of synaptosome associated protein 25 (SNAP25) and equilibrative nucleoside transporter 1 (ENT1) in the CB. Additionally, ageing did not modify basal carotid sinus nerve (CSN) activity or the activity in response to hypercapnia, but decreased CSN activity in hypoxia. The contribution of adenosine and ATP to stimuli-evoked CSN chemosensory activity in aged animals followed the same pattern of 3-month-old animals. Bilateral common carotid occlusions during 5, 10 and 15 s increased ventilation proportionally to the duration of ischaemia, an effect decreased by ageing. ATP contributed around 50% to ischaemic-ventilatory responses in young and aged rats; the contribution of adenosine was dependent on the intensity of ischaemia, being maximal in ischaemias of 5 s (50%) and much smaller in 15 s ischaemias. Our results demonstrate that both ATP and adenosine contribute to CB chemosensory activity in ageing. Though CB responses to hypoxia, but not to hypercapnia, decrease with age, the relative contribution of both ATP and adenosine for CB activity is maintained.
Collapse
Affiliation(s)
- Joana F Sacramento
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082, Lisbon, Portugal
| | - Elena Olea
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética Molecular, CSIC, Ciber de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, 47005, Valladolid, Spain
| | - Maria J Ribeiro
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082, Lisbon, Portugal
| | - Jesus Prieto-Lloret
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082, Lisbon, Portugal.,Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética Molecular, CSIC, Ciber de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, 47005, Valladolid, Spain
| | - Bernardete F Melo
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082, Lisbon, Portugal
| | - Constancio Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética Molecular, CSIC, Ciber de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, 47005, Valladolid, Spain
| | - Fatima O Martins
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082, Lisbon, Portugal
| | - Emilia C Monteiro
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082, Lisbon, Portugal
| | - Silvia V Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082, Lisbon, Portugal
| |
Collapse
|
18
|
Adenosine Mediates Hypercapnic Response in the Rat Carotid Body via A 2A and A 2B Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 30357738 DOI: 10.1007/978-3-319-91137-3_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Adenosine is one of the key neurotransmitters involved in hypoxic signaling in the carotid body (CB), and it was recently found to have a modulatory role in mediating hypercapnic sensitivity in the CB. Herein we have investigated the contribution of adenosine to the hypercapnic response in the rat CB and studied the adenosine receptors responsible for this effect. Experiments were performed in Wistar rats. Adenosine release in normoxia (21% O2) and in response to hypercapnia (10% CO2) was quantified by HPLC. Carotid sinus nerve (CSN) chemosensory activity was evaluated in response to hypercapnia in the absence and presence of ZM241385 (300 nM), an A2 antagonist, and SCH58261 (20 nM), a selective A2A antagonist. Hypercapnia increased the extracellular concentrations of adenosine by 50.01%. Both, ZM241385 and SCH58261, did not modify significantly the basal frequency of discharges of the CSN. Also, ZM241385 and SCH58261 did not modify the latency time and the time to peak in CSN chemosensory activity. CSN activity evoked by hypercapnia decreased by 58.82 and 33.59% in response to ZM241385 and to SCH58261, respectively. In conclusion, the effect of adenosine in mediating the hypercapnic response in the rat CB involves an effect on A2A and A2B adenosine receptors.
Collapse
|
19
|
Leonard EM, Zhang M, Nurse CA. Evidence for protein kinase involvement in the 5-HT-[Ca 2+ ] i -pannexin-1 signalling pathway in type II glial cells of the rat carotid body. Exp Physiol 2018; 104:244-253. [PMID: 30456914 DOI: 10.1113/ep087411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/19/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The mammalian carotid body (CB) is a peripheral chemoreceptor organ involved in O2 and CO2 /H+ homeostasis. Recent studies suggest that 5-HT, released from CB receptor cells, can stimulate adjacent glial-like type II cells, leading to an increase in intracellular Ca2+ (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. The aim of this study was to elucidate the role of protein kinases in the 5-HT-[Ca2+ ]i -Panx-1 signalling pathway. What is the main finding and its importance? Src family kinase and protein kinase A, acting downstream from Δ[Ca2+ ]i , played central roles in 5-HT-mediated Panx-1 channel activation. This provides new insight into mechanisms regulating CB excitation, especially in pathophysiological conditions. ABSTRACT Chemoreceptor (type I) cells of the rodent carotid body (CB) synthesize and release several neurotransmitters/neuromodulators, including 5-hydroxytryptamine (5-HT), implicated in enhanced CB excitation after exposure to chronic intermittent hypoxia, e.g. sleep apnoea. However, recent studies suggest that 5-HT can robustly stimulate adjacent glial-like type II cells via ketanserin-sensitive 5-HT2 receptors, leading to intracellular Ca2+ elevation (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. Using dissociated rat CB cultures, we investigated the role of protein kinases in the intracellular signalling pathways in type II cells. In isolated type II cells, 5-HT activated a Panx-1-like inward current (I5-HT ) that was reversibly inhibited by the Src family kinase inhibitor PP2 (1 μm), but not by its inactive analogue, PP3 (1 μm). Moreover, I5-HT was reversibly inhibited (>90%) by H89 (1 μm), a protein kinase A blocker, whereas the protein kinase C blocker GF109203X (2 μm) was largely ineffective. In contrast, the P2Y2R agonist UTP (100 μm) activated Panx-1-like currents that were reversibly inhibited (∼60%) by either H89 or GF109203X. Using fura-2 spectrofluorimetry, the 5-HT-induced Δ[Ca2+ ]i was unaffected by PP2, H89 and GF109293X, suggesting that the kinases acted downstream of the Ca2+ rise. Given that intracellular Ca2+ chelation was previously shown to block receptor-mediated Panx-1 current activation in type II cells, these data suggest that CB neuromodulators use overlapping, but not necessarily identical, signalling pathways to activate Panx-1 channels and release ATP, a CB excitatory neurotransmitter. In conclusion, these studies provide new mechanistic insight into 5-HT signalling in the CB that has pathophysiological relevance.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Min Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Nogueira V, Brito-Alves J, Fontes D, Oliveira L, Lucca W, Tourneur Y, Wanderley A, da Silva GSF, Leandro C, Costa-Silva JH. Carotid body removal normalizes arterial blood pressure and respiratory frequency in offspring of protein-restricted mothers. Hypertens Res 2018; 41:1000-1012. [PMID: 30242293 DOI: 10.1038/s41440-018-0104-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
The aim of this study is to evaluate the short-term and long-term effects elicited by carotid body removal (CBR) on ventilatory function and the development of hypertension in the offspring of malnourished rats. Wistar rats were fed a normo-protein (NP, 17% casein) or low-protein (LP, 8% casein) diet during pregnancy and lactation. At 29 days of age, the animals were submitted to CBR or a sham surgery, according to the following groups: NP-cbr, LP-cbr, NP-sham, or LP-sham. In the short-term, at 30 days of age, the respiratory frequency (RF) and immunoreactivity for Fos on the retrotrapezoid nucleus (RTN; brainstem site containing CO2 sensitive neurons) after exposure to CO2 were evaluated. In the long term, at 90 days of age, arterial pressure (AP), heart rate (HR), and cardiovascular variability were evaluated. In the short term, an increase in the baseline RF (~6%), response to CO2 (~8%), and Fos in the RTN (~27%) occurred in the LP-sham group compared with the NP-sham group. Interestingly, the CBR in the LP group normalized the RF in response to CO2 as well as RTN cell activation. In the long term, CBR reduced the mean AP by ~20 mmHg in malnourished rats. The normalization of the arterial pressure was associated with a decrease in the low-frequency (LF) oscillatory component of AP (~58%) and in the sympathetic tonus to the cardiovascular system (~29%). In conclusion, carotid body inputs in malnourished offspring may be responsible for the following: (i) enhanced respiratory frequency and CO2 chemosensitivity in early life and (ii) the production of autonomic imbalance and the development of hypertension.
Collapse
Affiliation(s)
- Viviane Nogueira
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Jose Brito-Alves
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Danilo Fontes
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Larissa Oliveira
- Department of Morphology, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Waldecy Lucca
- Department of Morphology, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Yves Tourneur
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil.,Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon 1, Lyon, France
| | - Almir Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carol Leandro
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - João Henrique Costa-Silva
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
21
|
Holmes AP, Ray CJ, Pearson SA, Coney AM, Kumar P. Ecto-5'-nucleotidase (CD73) regulates peripheral chemoreceptor activity and cardiorespiratory responses to hypoxia. J Physiol 2018; 596:3137-3148. [PMID: 28560821 PMCID: PMC6068227 DOI: 10.1113/jp274498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/25/2017] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Carotid body dysfunction is recognized as a cause of hypertension in a number of cardiorespiratory diseases states and has therefore been identified as a potential therapeutic target. Purinergic transmission is an important element of the carotid body chemotransduction pathway. We show that inhibition of ecto-5'-nucleotidase (CD73) in vitro reduces carotid body basal discharge and responses to hypoxia and mitochondrial inhibition. Additionally, inhibition of CD73 in vivo decreased the hypoxic ventilatory response, reduced the hypoxia-induced heart rate elevation and exaggerated the blood pressure decrease in response to hypoxia. Our data show CD73 to be a novel regulator of carotid body sensory function and therefore suggest that this enzyme may offer a new target for reducing carotid body activity in selected cardiovascular diseases. ABSTRACT Augmented sensory neuronal activity from the carotid body (CB) has emerged as a principal cause of hypertension in a number of cardiovascular related pathologies, including obstructive sleep apnoea, heart failure and diabetes. Development of new targets and pharmacological treatment strategies aiming to reduce CB sensory activity may thus improve outcomes in these key patient cohorts. The present study investigated whether ecto-5'-nucleotidase (CD73), an enzyme that generates adenosine, is functionally important in modifying CB sensory activity and cardiovascular respiratory responses to hypoxia. Inhibition of CD73 by α,β-methylene ADP (AOPCP) in the whole CB preparation in vitro reduced basal discharge frequency by 76 ± 5% and reduced sensory activity throughout graded hypoxia. AOPCP also significantly attenuated elevations in sensory activity evoked by mitochondrial inhibition. These effects were mimicked by antagonism of adenosine receptors with 8-(p-sulfophenyl) theophylline. Infusion of AOPCP in vivo significantly decreased the hypoxic ventilatory response (Δ V ̇ E control 74 ± 6%, Δ V ̇ E AOPCP 64 ± 5%, P < 0.05). AOPCP also modified cardiovascular responses to hypoxia, as indicated by reduced elevations in heart rate and exaggerated changes in femoral vascular conductance and mean arterial blood pressure. Thus we identify CD73 as a novel regulator of CB sensory activity. Future investigations are warranted to clarify whether inhibition of CD73 can effectively reduce CB activity in CB-mediated cardiovascular pathology.
Collapse
Affiliation(s)
| | - Clare J. Ray
- Institute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Selina A. Pearson
- Mouse Pipelines, Wellcome Trust Sanger InstituteWellcome Genome CampusHinxtonCambridgeUK
| | - Andrew M. Coney
- Institute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Prem Kumar
- Institute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamUK
| |
Collapse
|
22
|
Moraes DJA, da Silva MP, Spiller PF, Machado BH, Paton JFR. Purinergic plasticity within petrosal neurons in hypertension. Am J Physiol Regul Integr Comp Physiol 2018; 315:R963-R971. [PMID: 29949411 DOI: 10.1152/ajpregu.00142.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The carotid bodies are peripheral chemoreceptors and contribute to the homeostatic maintenance of arterial levels of O2, CO2, and [H+]. They have attracted much clinical interest recently because of the realization that aberrant signaling in these organs is associated with several pathologies including hypertension. Herein, we describe data suggesting that sympathetic overactivity in neurogenic hypertension is, at least in part, dependent on carotid body tonicity and hyperreflexia that is related to changes in the electrophysiological properties of chemoreceptive petrosal neurons. We present results showing critical roles for both ATP levels in the carotid bodies and expression of P2X3 receptors in petrosal chemoreceptive, but not baroreceptive, terminals in the etiology of carotid body tonicity and hyperreflexia. We discuss mechanisms that may underlie the changes in electrophysiological properties and P2X3 receptor expression in chemoreceptive petrosal neurons, as well as factors affecting ATP release by cells within the carotid bodies. Our findings support the notion of targeting the carotid bodies to reduce sympathetic outflow and arterial pressure, emphasizing the potential clinical importance of modulating purinergic transmission to treat pathologies associated with carotid body dysfunction but, importantly, sparing physiological chemoreflex function.
Collapse
Affiliation(s)
- Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Julian F R Paton
- Cardiovascular Autonomic Research Cluster, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand
| |
Collapse
|
23
|
Porzionato A, Stocco E, Guidolin D, Agnati L, Macchi V, De Caro R. Receptor-Receptor Interactions of G Protein-Coupled Receptors in the Carotid Body: A Working Hypothesis. Front Physiol 2018; 9:697. [PMID: 29930516 PMCID: PMC6000251 DOI: 10.3389/fphys.2018.00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In the carotid body (CB), a wide series of neurotransmitters and neuromodulators have been identified. They are mainly produced and released by type I cells and act on many different ionotropic and metabotropic receptors located in afferent nerve fibers, type I and II cells. Most metabotropic receptors are G protein-coupled receptors (GPCRs). In other transfected or native cells, GPCRs have been demonstrated to establish physical receptor–receptor interactions (RRIs) with formation of homo/hetero-complexes (dimers or receptor mosaics) in a dynamic monomer/oligomer equilibrium. RRIs modulate ligand binding, signaling, and internalization of GPCR protomers and they are considered of relevance for physiology, pharmacology, and pathology of the nervous system. We hypothesize that RRI may also occur in the different structural elements of the CB (type I cells, type II cells, and afferent fibers), with potential implications in chemoreception, neuromodulation, and tissue plasticity. This ‘working hypothesis’ is supported by literature data reporting the contemporary expression, in type I cells, type II cells, or afferent terminals, of GPCRs which are able to physically interact with each other to form homo/hetero-complexes. Functional data about cross-talks in the CB between different neurotransmitters/neuromodulators also support the hypothesis. On the basis of the above findings, the most significant homo/hetero-complexes which could be postulated in the CB include receptors for dopamine, adenosine, ATP, opioids, histamine, serotonin, endothelin, galanin, GABA, cannabinoids, angiotensin, neurotensin, and melatonin. From a methodological point of view, future studies should demonstrate the colocalization in close proximity (less than 10 nm) of the above receptors, through biophysical (i.e., bioluminescence/fluorescence resonance energy transfer, protein-fragment complementation assay, total internal reflection fluorescence microscopy, fluorescence correlation spectroscopy and photoactivated localization microscopy, X-ray crystallography) or biochemical (co-immunoprecipitation, in situ proximity ligation assay) methods. Moreover, functional approaches will be able to show if ligand binding to one receptor produces changes in the biochemical characteristics (ligand recognition, decoding, and trafficking processes) of the other(s). Plasticity aspects would be also of interest, as development and environmental stimuli (chronic continuous or intermittent hypoxia) produce changes in the expression of certain receptors which could potentially invest the dynamic monomer/oligomer equilibrium of homo/hetero-complexes and the correlated functional implications.
Collapse
Affiliation(s)
| | - Elena Stocco
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Luigi Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Macchi
- Department of Neuroscience, University of Padua, Padua, Italy
| | | |
Collapse
|
24
|
Leonard EM, Salman S, Nurse CA. Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia. Front Physiol 2018; 9:225. [PMID: 29615922 PMCID: PMC5864924 DOI: 10.3389/fphys.2018.00225] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O2, CO2/H+, and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, heart failure, hypertension, and diabetes. In response to a decrease in O2 availability (hypoxia) and elevated CO2/H+ (acid hypercapnia), CB receptor type I (glomus) cells depolarize and release neurotransmitters that stimulate apposed chemoafferent nerve fibers. The central projections of those fibers in turn activate cardiorespiratory centers in the brainstem, leading to an increase in ventilation and sympathetic drive that helps restore blood PO2 and protect vital organs, e.g., the brain. Significant progress has been made in understanding how neurochemicals released from type I cells such as ATP, adenosine, dopamine, 5-HT, ACh, and angiotensin II help shape the CB afferent discharge during both normal and pathophysiological conditions. However, type I cells typically occur in clusters and in addition to their sensory innervation are ensheathed by the processes of neighboring glial-like, sustentacular type II cells. This morphological arrangement is reminiscent of a "tripartite synapse" and emerging evidence suggests that paracrine stimulation of type II cells by a variety of CB neurochemicals may trigger the release of "gliotransmitters" such as ATP via pannexin-1 channels. Further, recent data suggest novel mechanisms by which dopamine, acting via D2 receptors (D2R), may inhibit action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Shaima Salman
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Nurse CA, Leonard EM, Salman S. Role of glial-like type II cells as paracrine modulators of carotid body chemoreception. Physiol Genomics 2018. [PMID: 29521602 DOI: 10.1152/physiolgenomics.00142.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mammalian carotid bodies (CB) are chemosensory organs that mediate compensatory cardiorespiratory reflexes in response to low blood PO2 (hypoxemia) and elevated CO2/H+ (acid hypercapnia). The chemoreceptors are glomus or type I cells that occur in clusters enveloped by neighboring glial-like type II cells. During chemoexcitation type I cells depolarize, leading to Ca2+-dependent release of several neurotransmitters, some excitatory and others inhibitory, that help shape the afferent carotid sinus nerve (CSN) discharge. Among the predominantly excitatory neurotransmitters are the purines ATP and adenosine, whereas dopamine (DA) is inhibitory in most species. There is a consensus that ATP and adenosine, acting via postsynaptic ionotropic P2X2/3 receptors and pre- and/or postsynaptic A2 receptors respectively, are major contributors to the increased CSN discharge during chemoexcitation. However, it has been proposed that the CB sensory output is also tuned by paracrine signaling pathways, involving glial-like type II cells. Indeed, type II cells express functional receptors for several excitatory neurochemicals released by type I cells including ATP, 5-HT, ACh, angiotensin II, and endothelin-1. Stimulation of the corresponding G protein-coupled receptors increases intracellular Ca2+, leading to the further release of ATP through pannexin-1 channels. Recent evidence suggests that other CB neurochemicals, e.g., histamine and DA, may actually inhibit Ca2+ signaling in subpopulations of type II cells. Here, we review evidence supporting neurotransmitter-mediated crosstalk between type I and type II cells of the rat CB. We also consider the potential contribution of paracrine signaling and purinergic catabolic pathways to the integrated sensory output of the CB during chemotransduction.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Erin M Leonard
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Shaima Salman
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
26
|
Ribeiro MJ, Sacramento JF, Gallego-Martin T, Olea E, Melo BF, Guarino MP, Yubero S, Obeso A, Conde SV. High fat diet blunts the effects of leptin on ventilation and on carotid body activity. J Physiol 2018; 596:3187-3199. [PMID: 29271068 DOI: 10.1113/jp275362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. ABSTRACT Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not modify intracellular Ca2+ in CB chemoreceptor cells, but it produced an increase in the release of adenosine from the whole CB. We conclude that CBs represent an important target for leptin signalling, not only to coordinate peripheral ventilatory chemoreflexive drive, but probably also to modulate metabolic variables. We also concluded that leptin signalling is mediated by adenosine release and that HF diets blunt leptin responses in the CB, compromising ventilatory adaptation.
Collapse
Affiliation(s)
- Maria J Ribeiro
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Teresa Gallego-Martin
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética Molecular, CSIC, Ciber de Enfermedades Respiratorias, CIBERES, Valladolid, Spain
| | - Elena Olea
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética Molecular, CSIC, Ciber de Enfermedades Respiratorias, CIBERES, Valladolid, Spain
| | - Bernardete F Melo
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Maria P Guarino
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,School of Health Sciences, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Sara Yubero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética Molecular, CSIC, Ciber de Enfermedades Respiratorias, CIBERES, Valladolid, Spain
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética Molecular, CSIC, Ciber de Enfermedades Respiratorias, CIBERES, Valladolid, Spain
| | - Silvia V Conde
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
27
|
Molecular Characterization of Equilibrative Nucleoside Transporters in the Rat Carotid Body and Their Regulation by Chronic Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:43-50. [DOI: 10.1007/978-3-319-91137-3_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Dos Santos E, Sacramento JF, Melo BF, Conde SV. Carotid Body Dysfunction in Diet-Induced Insulin Resistance Is Associated with Alterations in Its Morphology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:103-108. [DOI: 10.1007/978-3-319-91137-3_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Conde SV, Monteiro EC, Sacramento JF. Purines and Carotid Body: New Roles in Pathological Conditions. Front Pharmacol 2017; 8:913. [PMID: 29311923 PMCID: PMC5733106 DOI: 10.3389/fphar.2017.00913] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/29/2017] [Indexed: 01/28/2023] Open
Abstract
It is known that adenosine and adenosine-5′-triphosphate (ATP) are excitatory mediators involved in carotid body (CB) hypoxic signaling. The CBs are peripheral chemoreceptors classically defined by O2, CO2, and pH sensors. When hypoxia activates the CB, it induces the release of neurotransmitters from chemoreceptor cells leading to an increase in the action potentials frequency at the carotid sinus nerve (CSN). This increase in the firing frequency of the CSN is integrated in the brainstem to induce cardiorespiratory compensatory responses. In the last decade several pathologies, as, hypertension, diabetes, obstructive sleep apnea and heart failure have been associated with CB overactivation. In the first section of the present manuscript we review in a concise manner fundamental aspects of purine metabolism. The second section is devoted to the role of purines on the hypoxic response of the CB, providing the state-of-the art for the presence of adenosine and ATP receptors in the CB; for the role of purines at presynaptic level in CB chemoreceptor cells, as well as, its metabolism and regulation; at postsynaptic level in the CSN activity; and on the ventilatory responses to hypoxia. Recently, we have showed that adenosine is involved in CB hypersensitization during chronic intermittent hypoxia (CIH), which mimics obstructive sleep apnea, since caffeine, a non-selective adenosine receptor antagonist that inhibits A2A and A2B adenosine receptors, decreased CSN chemosensory activity in animals subjected to CIH. Apart from this involvement of adenosine in CB sensitization in sleep apnea, it was recently found that P2X3 ATP receptor in the CB contributes to increased chemoreflex hypersensitivity and hypertension in spontaneously hypertension rats. Therefore the last section of this manuscript is devoted to review the recent findings on the role of purines in CB-mediated pathologies as hypertension, diabetes and sleep apnea emphasizing the potential clinical importance of modulating purines levels and action to treat pathologies associated with CB dysfunction.
Collapse
Affiliation(s)
- Silvia V Conde
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Emilia C Monteiro
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
30
|
Zhang M, Vollmer C, Nurse CA. Adenosine and dopamine oppositely modulate a hyperpolarization-activated current I h in chemosensory neurons of the rat carotid body in co-culture. J Physiol 2017; 596:3101-3117. [PMID: 28801916 DOI: 10.1113/jp274743] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Adenosine and dopamine (DA) are neuromodulators in the carotid body (CB) chemoafferent pathway, but their mechanisms of action are incompletely understood. Using functional co-cultures of rat CB chemoreceptor (type I) cells and sensory petrosal neurons (PNs), we show that adenosine enhanced a hyperpolarization-activated cation current Ih in chemosensory PNs via A2a receptors, whereas DA had the opposite effect via D2 receptors. Adenosine caused a depolarizing shift in the Ih activation curve and increased firing frequency, whereas DA caused a hyperpolarizing shift in the curve and decreased firing frequency. Acute hypoxia and isohydric hypercapnia depolarized type I cells concomitant with increased excitation of adjacent PNs; the A2a receptor blocker SCH58261 inhibited both type I and PN responses during hypoxia, but only the PN response during isohydric hypercapnia. We propose that adenosine and DA control firing frequency in chemosensory PNs via their opposing actions on Ih . ABSTRACT Adenosine and dopamine (DA) act as neurotransmitters or neuromodulators at the carotid body (CB) chemosensory synapse, but their mechanisms of action are not fully understood. Using a functional co-culture model of rat CB chemoreceptor (type I) cell clusters and juxtaposed afferent petrosal neurons (PNs), we tested the hypothesis that adenosine and DA act postsynaptically to modulate a hyperpolarization-activated, cyclic nucleotide-gated (HCN) cation current (Ih ). In whole-cell recordings from hypoxia-responsive PNs, cAMP mimetics enhanced Ih whereas the HCN blocker ZD7288 (2 μm) reversibly inhibited Ih . Adenosine caused a potentiation of Ih (EC50 ∼ 35 nm) that was sensitive to the A2a blocker SCH58261 (5 nm), and an ∼16 mV depolarizing shift in V½ for voltage dependence of Ih activation. By contrast, DA (10 μm) caused an inhibition of Ih that was sensitive to the D2 blocker sulpiride (1-10 μm), and an ∼11 mV hyperpolarizing shift in V½ . Sulpiride potentiated Ih in neurons adjacent to, but not distant from, type I cell clusters. DA also decreased PN action potential frequency whereas adenosine had the opposite effect. During simultaneous paired recordings, SCH58261 inhibited both the presynaptic hypoxia-induced receptor potential in type I cells and the postsynaptic PN response. By contrast, SCH58261 inhibited only the postsynaptic PN response induced by isohydric hypercapnia. Confocal immunofluorescence confirmed the localization of HCN4 subunits in tyrosine hydroxylase-positive chemoafferent neurons in tissue sections of rat petrosal ganglia. These data suggest that adenosine and DA, acting through A2a and D2 receptors respectively, regulate PN excitability via their opposing actions on Ih .
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Cathy Vollmer
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
31
|
Salman S, Vollmer C, McClelland GB, Nurse CA. Characterization of ectonucleotidase expression in the rat carotid body: regulation by chronic hypoxia. Am J Physiol Cell Physiol 2017. [PMID: 28637679 DOI: 10.1152/ajpcell.00328.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carotid body (CB) chemoreflex maintains blood Po2 and Pco2/H+ homeostasis and displays sensory plasticity during exposure to chronic hypoxia. Purinergic signaling via P1 and P2 receptors plays a pivotal role in shaping the afferent discharge at the sensory synapse containing catecholaminergic chemoreceptor (type I) cells, glial-like type II cells, and sensory (petrosal) nerve endings. However, little is known about the family of ectonucleotidases that control synaptic nucleotide levels. Using quantitative PCR (qPCR), we first compared expression levels of ectonucleoside triphosphate diphosphohydrolases (NTPDases1,2,3,5,6) and ecto-5'-nucleotidase (E5'Nt/CD73) mRNAs in juvenile rat CB vs. brain, petrosal ganglia, sympathetic (superior cervical) ganglia, and a sympathoadrenal chromaffin (MAH) cell line. In whole CB extracts, qPCR revealed a high relative expression of surface-located members NTPDase1,2 and E5'Nt/CD73, compared with low NTPDase3 expression. Immunofluorescence staining of CB sections or dissociated CB cultures localized NTPDase2,3 and E5'Nt/CD73 protein to the periphery of type I clusters, and in association with sensory nerve fibers and/or isolated type II cells. Interestingly, in CBs obtained from rats reared under chronic hypobaric hypoxia (~60 kPa, equivalent to 4,300 m) for 5-7 days, in addition to the expected upregulation of tyrosine hydroxylase and VEGF mRNAs, there was a significant upregulation of NTPDase3 and E5'Nt/CD73 mRNA, but a downregulation of NTPDase1 and NTPDase2 relative to normoxic controls. We conclude that NTPDase1,2,3 and E5'Nt/CD73 are the predominant surface-located ectonucleotidases in the rat CB and suggest that their differential regulation during chronic hypoxia may contribute to CB plasticity via control of synaptic ATP, ADP, and adenosine pools.
Collapse
Affiliation(s)
- Shaima Salman
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Cathy Vollmer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Murali S, Zhang M, Nurse CA. Evidence that 5-HT stimulates intracellular Ca 2+ signalling and activates pannexin-1 currents in type II cells of the rat carotid body. J Physiol 2017; 595:4261-4277. [PMID: 28332205 DOI: 10.1113/jp273473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS 5-HT is a neuromodulator released from carotid body (CB) chemoreceptor (type I) cells and facilitates the sensory discharge following chronic intermittent hypoxia (CIH). In the present study, we show that, in addition to type I cells, adjacent glial-like type II cells express functional, ketanserin-sensitive 5-HT2 receptors, and their stimulation increases cytoplasmic Ca2+ derived from intracellular stores. In type II cells, 5-HT activated a ketanserin-sensitive inward current (I5-HT ) that was similar to that (IUTP ) activated by the P2Y2R agonist, UTP. As previously shown for IUTP , I5-HT was inhibited by BAPTA-AM and carbenoxolone (5 μm), a putative blocker of ATP-permeable pannexin (Panx)-1 channels; IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide channel blocker, 10 Panx peptide. Paracrine stimulation of type II cells by 5-HT, leading to ATP release via Panx-1 channels, may contribute to CB excitability, especially in pathophysiological conditions associated with CIH (e.g. obstructive sleep apnoea). ABSTRACT Carotid body (CB) chemoreceptor (type I) cells can synthesize and release 5-HT and increased autocrine-paracrine 5-HT2 receptor signalling contributes to sensory long-term facilitation during chronic intermittent hypoxia (CIH). However, recent studies suggest that adjacent glial-like type II cells can respond to CB paracrine signals by elevating intracellular calcium (Δ[Ca2+ ]i ) and activating carbenoxolone-sensitive, ATP-permeable, pannexin (Panx)-1-like channels. In the present study, using dissociated rat CB cultures, we found that 5-HT induced Δ[Ca2+ ]i responses in a subpopulation of type I cells, as well as in most (∼67%) type II cells identified by their sensitivity to the P2Y2 receptor agonist, UTP. The 5-HT-induced Ca2+ response in type II cells was dose-dependent (EC50 ∼183 nm) and largely inhibited by the 5-HT2A receptor blocker, ketanserin (1 μm), and also arose mainly from intracellular stores. 5-HT also activated an inward current (I5-HT ) in type II cells (EC50 ∼200 nm) that was reversibly inhibited by ketanserin (1-10 nm), the Ca2+ chelator BAPTA-AM (5 μm), and low concentrations of carbenoxolone (5 μm), a putative Panx-1 channel blocker. I5-HT reversed direction at approximately -11 mV and was indistinguishable from the UTP-activated current (IUTP ). Consistent with a role for Panx-1 channels, IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide blocker 10 Panx (100 μm), although not by its scrambled control peptide (sc Panx). Because ATP is an excitatory CB neurotransmitter, it is possible that the contribution of enhanced 5-HT signalling to the increased sensory discharge during CIH may occur, in part, by a boosting of ATP release from type II cells via Panx-1 channels.
Collapse
Affiliation(s)
| | - Min Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Tubek S, Niewinski P, Reczuch K, Janczak D, Rucinski A, Paleczny B, Engelman ZJ, Banasiak W, Paton JFR, Ponikowski P. Effects of selective carotid body stimulation with adenosine in conscious humans. J Physiol 2016; 594:6225-6240. [PMID: 27435894 DOI: 10.1113/jp272109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/12/2016] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS In humans, excitation of peripheral chemoreceptors with systemic hypoxia causes hyperventilation, hypertension and tachycardia. However, the contribution of particular chemosensory areas (carotid vs. aortic bodies) to this response is unclear. We showed that selective stimulation of the carotid body by the injection of adenosine into the carotid artery causes a dose-dependent increase in minute ventilation and blood pressure with a concomitant decrease in heart rate in conscious humans. The ventilatory response was abolished and the haemodynamic response was diminished following carotid body ablation. We found that the magnitude of adenosine evoked responses in minute ventilation and blood pressure was analogous to the responses evoked by hypoxia. By contrast, opposing heart rate responses were evoked by adenosine (bradycardia) vs. hypoxia (tachycardia). Intra-carotid adenosine administration may provide a novel method for perioperative assessment of the effectiveness of carotid body ablation, which has been recently proposed as a treatment strategy for sympathetically-mediated diseases. ABSTRACT Stimulation of peripheral chemoreceptors by acute hypoxia causes an increase in minute ventilation (VI), heart rate (HR) and arterial blood pressure (BP). However, the contribution of particular chemosensory areas, such as carotid (CB) vs. aortic bodies, to this response in humans remains unknown. We performed a blinded, randomized and placebo-controlled study in 11 conscious patients (nine men, two women) undergoing common carotid artery angiography. Doses of adenosine ranging from 4 to 512 μg or placebo solution of a matching volume were administered in randomized order via a diagnostic catheter located in a common carotid artery. Separately, ventilatory and haemodynamic responses to systemic hypoxia were also assessed. Direct excitation of a CB with intra-arterial adenosine increased VI, systolic BP, mean BP and decreased HR. No responses in these variables were seen after injections of placebo. The magnitude of the ventilatory and haemodynamic responses depended on both the dose of adenosine used and on the level of chemosensitivity as determined by the ventilatory response to hypoxia. Percutaneous radiofrequency ablation of the CB abolished the adenosine evoked respiratory response and partially depressed the cardiovascular response in one participant. The results of the present study confirm the excitatory role of purines in CB physiology in humans and suggest that adenosine may be used for selective stimulation and assessment of CB activity. The trial is registered at ClinicalTrials.gov NCT01939912.
Collapse
Affiliation(s)
- Stanislaw Tubek
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland. .,Department of Heart Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland.
| | - Piotr Niewinski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Krzysztof Reczuch
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.,Department of Heart Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular Surgery, 4th Military Hospital, Wroclaw, Poland.,Department of Clinical Proceedings, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Rucinski
- Department of Vascular Surgery, 4th Military Hospital, Wroclaw, Poland
| | | | | | - Waldemar Banasiak
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Piotr Ponikowski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.,Department of Heart Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
34
|
Evans AM, Mahmoud AD, Moral-Sanz J, Hartmann S. The emerging role of AMPK in the regulation of breathing and oxygen supply. Biochem J 2016; 473:2561-72. [PMID: 27574022 PMCID: PMC5003690 DOI: 10.1042/bcj20160002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 01/25/2023]
Abstract
Regulation of breathing is critical to our capacity to accommodate deficits in oxygen availability and demand during, for example, sleep and ascent to altitude. It is generally accepted that a fall in arterial oxygen increases afferent discharge from the carotid bodies to the brainstem and thus delivers increased ventilatory drive, which restores oxygen supply and protects against hypoventilation and apnoea. However, the precise molecular mechanisms involved remain unclear. We recently identified as critical to this process the AMP-activated protein kinase (AMPK), which is key to the cell-autonomous regulation of metabolic homoeostasis. This observation is significant for many reasons, not least because recent studies suggest that the gene for the AMPK-α1 catalytic subunit has been subjected to natural selection in high-altitude populations. It would appear, therefore, that evolutionary pressures have led to AMPK being utilized to regulate oxygen delivery and thus energy supply to the body in the short, medium and longer term. Contrary to current consensus, however, our findings suggest that AMPK regulates ventilation at the level of the caudal brainstem, even when afferent input responses from the carotid body are normal. We therefore hypothesize that AMPK integrates local hypoxic stress at defined loci within the brainstem respiratory network with an index of peripheral hypoxic status, namely afferent chemosensory inputs. Allied to this, AMPK is critical to the control of hypoxic pulmonary vasoconstriction and thus ventilation-perfusion matching at the lungs and may also determine oxygen supply to the foetus by, for example, modulating utero-placental blood flow.
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K.
| | - Amira D Mahmoud
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K
| | - Javier Moral-Sanz
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K
| | - Sandy Hartmann
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, U.K
| |
Collapse
|
35
|
Ecto-5'-Nucleotidase, Adenosine and Transmembrane Adenylyl Cyclase Signalling Regulate Basal Carotid Body Chemoafferent Outflow and Establish the Sensitivity to Hypercapnia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 860:279-89. [PMID: 26303492 DOI: 10.1007/978-3-319-18440-1_32] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carotid body (CB) stimulation by hypercapnia causes a reflex increase in ventilation and, along with the central chemoreceptors, this prevents a potentially lethal systemic acidosis. Control over the CB chemoafferent output during normocapnia and hypercapnia most likely involves multiple neurotransmitters and neuromodulators including ATP, acetylcholine, dopamine, serotonin and adenosine, but the precise role of each is yet to be fully established. In the present study, recordings of chemoafferent discharge frequency were made from the isolated in vitro CB in order to determine the contribution of adenosine, derived specifically from extracellular catabolism of ATP, in mediating basal chemoafferent activity and responses to hypercapnia. Pharmacological inhibition of ecto-5'-nucleotidase (CD73), a key enzyme required for extracellular generation of adenosine from ATP, using α,β-methylene ADP, virtually abolished the basal normocapnic single fibre discharge frequency (superfusate PO(2) ~ 300 mmHg, PCO(2) ~ 40 mmHg) and diminished the chemoafferent response to hypercapnia (PCO(2) ~ 80 mmHg). These effects were mimicked by the blockade of adenosine receptors with 8-(p-sulfophenyl) theophylline. The excitatory impact of adenosinergic signalling on CB hypercapnic sensitivity is most likely to be conferred through changes in cAMP. Here, inhibition of transmembrane, but not soluble adenylate cyclases, reduced normocapnic single fibre activity and inhibited the elevation evoked by hypercapnia by approximately 50 %. These data therefore identify a functional role for CD73 derived adenosine and transmembrane adenylate cyclases, in modulating the basal chemoafferent discharge frequency and in priming the CB to hypercapnic stimulation.
Collapse
|
36
|
Murali S, Nurse CA. Purinergic signalling mediates bidirectional crosstalk between chemoreceptor type I and glial-like type II cells of the rat carotid body. J Physiol 2015; 594:391-406. [PMID: 26537220 DOI: 10.1113/jp271494] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/20/2015] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Carotid body chemoreceptors are organized in clusters containing receptor type I and contiguous glial-like type II cells. While type I cells depolarize and release ATP during chemostimulation, the role of type II cells which express purinergic P2Y2 receptors (P2Y2Rs) and ATP-permeable pannexin-1 (Panx-1) channels, is unclear. Here, we show that in isolated rat chemoreceptor clusters, type I cell depolarization induced by hypoxia, hypercapnia, or high K(+) caused delayed intracellular Ca(2+) elevations (Δ[Ca(2+)]i) in nearby type II cells that were inhibited by the P2Y2R blocker suramin, or by the nucleoside hydrolase apyrase. Likewise, stimulation of P2Y2Rs on type II cells caused a delayed, secondary Δ[Ca(2+)]i in nearby type I cells that was inhibited by blockers of Panx-1 channels, adenosine A2A receptors and 5'-ectonucleotidase. We propose that reciprocal crosstalk between type I and type II cells contributes to sensory processing in the carotid body via purinergic signalling pathways. ABSTRACT The mammalian carotid body (CB) is excited by blood-borne stimuli including hypoxia and acid hypercapnia, leading to respiratory and cardiovascular reflex responses. This chemosensory organ consists of innervated clusters of receptor type I cells, ensheathed by processes of adjacent glial-like type II cells. ATP is a major excitatory neurotransmitter released from type I cells and type II cells express purinergic P2Y2 receptors (P2Y2Rs), the activation of which leads to the opening of ATP-permeable, pannexin-1 (Panx-1) channels. While these properties support crosstalk between type I and type II cells during chemotransduction, direct evidence is lacking. To address this, we first exposed isolated rat chemoreceptor clusters to acute hypoxia, isohydric hypercapnia, or the depolarizing stimulus high K(+), and monitored intracellular [Ca(2+)] using Fura-2. As expected, these stimuli induced intracellular [Ca(2+)] elevations (Δ[Ca(2+)]i) in type I cells. Interestingly, however, there was often a delayed, secondary Δ[Ca(2+)]i in nearby type II cells that was reversibly inhibited by the P2Y2R antagonist suramin, or by the nucleoside hydrolase apyrase. By contrast, type II cell stimulation with the P2Y2R agonist uridine-5'-triphosphate (100 μm) often led to a delayed, secondary Δ[Ca(2+)]i response in nearby type I cells that was reversibly inhibited by the Panx-1 blocker carbenoxolone (5 μm). This Δ[Ca(2+)]i response was also strongly inhibited by blockers of either the adenosine A2A receptor (SCH 58261) or of the 5'-ectonucleotidase (AOPCP), suggesting it was due to adenosine arising from breakdown of ATP released through Panx-1 channels. Collectively, these data strongly suggest that purinergic signalling mechanisms mediate crosstalk between CB chemoreceptor and glial cells during chemotransduction.
Collapse
Affiliation(s)
- Sindhubarathi Murali
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
37
|
Adenosine Receptor Blockade by Caffeine Inhibits Carotid Sinus Nerve Chemosensory Activity in Chronic Intermittent Hypoxic Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [DOI: 10.1007/978-3-319-18440-1_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
38
|
Torres M, Rojas M, Campillo N, Cardenes N, Montserrat JM, Navajas D, Farré R. Parabiotic model for differentiating local and systemic effects of continuous and intermittent hypoxia. J Appl Physiol (1985) 2014; 118:42-7. [PMID: 25377885 DOI: 10.1152/japplphysiol.00858.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia can be damaging either because cells are directly sensitive to low oxygen pressure in their local microenvironment and/or because they are exposed to circulating factors systemically secreted in response to hypoxia. The conventional hypoxia model, breathing hypoxic air, does not allow one to distinguish between these local and systemic effects. Here we propose and validate a model for differentially applying local and systemic hypoxic challenges in an animal. We used parabiosis, two mice sharing circulation by surgical union through the skin, and tested the hypothesis that when one of the parabionts breathes room air and the other one is subjected to hypoxic air, both mice share systemic circulation but remain normoxic and hypoxic, respectively. We tested two common hypoxic paradigms in 10 parabiotic pairs: continuous hypoxia (10% O2) mimicking chronic lung diseases, and intermittent hypoxia (40 s, 21% O2; 20 s, 5% O2) simulating sleep apnea. Arterial oxygen saturation and oxygen partial pressure at muscle tissue were measured in both parabionts. Effective cross-circulation was assessed by intraperitoneally injecting a dye in one of the parabionts and measuring blood dye concentration in both animals after 2 h. The results confirmed the hypothesis that tissues of the parabiont under room air were perfused with normally oxygenated blood and, at the same time, were exposed to all of the systemic mediators secreted by the other parabiont actually subjected to hypoxia. In conclusion, combination of parabiosis and hypoxic/normoxic air breathing is a novel approach to investigate the effects of local and systemic hypoxia in respiratory diseases.
Collapse
Affiliation(s)
- Marta Torres
- CIBER de Enfermedades Respiratorias, Bunyola, Spain; Sleep Laboratory, Hospital Clinic, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Mauricio Rojas
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Noelia Campillo
- CIBER de Enfermedades Respiratorias, Bunyola, Spain; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Nayra Cardenes
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Josep M Montserrat
- CIBER de Enfermedades Respiratorias, Bunyola, Spain; Sleep Laboratory, Hospital Clinic, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain; and
| | - Daniel Navajas
- CIBER de Enfermedades Respiratorias, Bunyola, Spain; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Ramon Farré
- CIBER de Enfermedades Respiratorias, Bunyola, Spain; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain; and
| |
Collapse
|
39
|
Conde SV, Sacramento JF, Guarino MP, Gonzalez C, Obeso A, Diogo LN, Monteiro EC, Ribeiro MJ. Carotid body, insulin, and metabolic diseases: unraveling the links. Front Physiol 2014; 5:418. [PMID: 25400585 PMCID: PMC4212612 DOI: 10.3389/fphys.2014.00418] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/10/2014] [Indexed: 11/13/2022] Open
Abstract
The carotid bodies (CB) are peripheral chemoreceptors that sense changes in arterial blood O2, CO2, and pH levels. Hypoxia, hypercapnia, and acidosis activate the CB, which respond by increasing the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brain stem to induce a panoply of cardiorespiratory reflexes aimed, primarily, to normalize the altered blood gases, via hyperventilation, and to regulate blood pressure and cardiac performance, via sympathetic nervous system (SNS) activation. Besides its role in the cardiorespiratory control the CB has been proposed as a metabolic sensor implicated in the control of energy homeostasis and, more recently, in the regulation of whole body insulin sensitivity. Hypercaloric diets cause CB overactivation in rats, which seems to be at the origin of the development of insulin resistance and hypertension, core features of metabolic syndrome and type 2 diabetes. Consistent with this notion, CB sensory denervation prevents metabolic and hemodynamic alterations in hypercaloric feed animal. Obstructive sleep apnea (OSA) is another chronic disorder characterized by increased CB activity and intimately related with several metabolic and cardiovascular abnormalities. In this manuscript we review in a concise manner the putative pathways linking CB chemoreceptors deregulation with the pathogenesis of insulin resistance and arterial hypertension. Also, the link between chronic intermittent hypoxia (CIH) and insulin resistance is discussed. Then, a final section is devoted to debate strategies to reduce CB activity and its use for prevention and therapeutics of metabolic diseases with an emphasis on new exciting research in the modulation of bioelectronic signals, likely to be central in the future.
Collapse
Affiliation(s)
- Sílvia V Conde
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Joana F Sacramento
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Maria P Guarino
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal ; Health Research Unit - UIS, School of Health Sciences, Polytechnic Institute of Leiria Leiria, Portugal
| | - Constancio Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Ciber de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Universidad de Valladolid Valladolid, España
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Ciber de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Universidad de Valladolid Valladolid, España
| | - Lucilia N Diogo
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Emilia C Monteiro
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Maria J Ribeiro
- CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| |
Collapse
|
40
|
Nunes AR, Holmes AP, Conde SV, Gauda EB, Monteiro EC. Revisiting cAMP signaling in the carotid body. Front Physiol 2014; 5:406. [PMID: 25389406 PMCID: PMC4211388 DOI: 10.3389/fphys.2014.00406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022] Open
Abstract
Chronic carotid body (CB) activation is now recognized as being essential in the development of hypertension and promoting insulin resistance; thus, it is imperative to characterize the chemotransduction mechanisms of this organ in order to modulate its activity and improve patient outcomes. For several years, and although controversial, cyclic adenosine monophosphate (cAMP) was considered an important player in initiating the activation of the CB. However, its relevance was partially displaced in the 90s by the emerging role of the mitochondria and molecules such as AMP-activated protein kinase and O2-sensitive K+ channels. Neurotransmitters/neuromodulators binding to metabotropic receptors are essential to chemotransmission in the CB, and cAMP is central to this process. cAMP also contributes to raise intracellular Ca2+ levels, and is intimately related to the cellular energetic status (AMP/ATP ratio). Furthermore, cAMP signaling is a target of multiple current pharmacological agents used in clinical practice. This review (1) provides an outline on the classical view of the cAMP-signaling pathway in the CB that originally supported its role in the O2/CO2 sensing mechanism, (2) presents recent evidence on CB cAMP neuromodulation and (3) discusses how CB activity is affected by current clinical therapies that modify cAMP-signaling, namely dopaminergic drugs, caffeine (modulation of A2A/A2B receptors) and roflumilast (PDE4 inhibitors). cAMP is key to any process that involves metabotropic receptors and the intracellular pathways involved in CB disease states are likely to involve this classical second messenger. Research examining the potential modification of cAMP levels and/or interactions with molecules associated with CB hyperactivity is currently in its beginning and this review will open doors for future explorations.
Collapse
Affiliation(s)
- Ana R Nunes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Andrew P Holmes
- School of Clinical and Experimental Medicine, University of Birmingham Birmingham, UK
| | - Sílvia V Conde
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Estelle B Gauda
- Neonatology Research Laboratories, Department of Pediatrics, Johns Hopkins Medical Institutions, Johns Hopkins University Baltimore, MD, USA
| | - Emília C Monteiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| |
Collapse
|
41
|
Gonzalez C, Conde SV, Gallego-Martín T, Olea E, Gonzalez-Obeso E, Ramirez M, Yubero S, Agapito MT, Gomez-Niñno A, Obeso A, Rigual R, Rocher A. Fernando de Castro and the discovery of the arterial chemoreceptors. Front Neuroanat 2014; 8:25. [PMID: 24860435 PMCID: PMC4026738 DOI: 10.3389/fnana.2014.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/03/2014] [Indexed: 01/27/2023] Open
Abstract
When de Castro entered the carotid body (CB) field, the organ was considered to be a small autonomic ganglion, a gland, a glomus or glomerulus, or a paraganglion. In his 1928 paper, de Castro concluded: “In sum, the Glomus caroticum is innervated by centripetal fibers, whose trophic centers are located in the sensory ganglia of the glossopharyngeal, and not by centrifugal [efferent] or secretomotor fibers as is the case for glands; these are precisely the facts which lead to suppose that the Glomus caroticum is a sensory organ.” A few pages down, de Castro wrote: “The Glomus represents an organ with multiple receptors furnished with specialized receptor cells like those of other sensory organs [taste buds?]…As a plausible hypothesis we propose that the Glomus caroticum represents a sensory organ, at present the only one in its kind, dedicated to capture certain qualitative variations in the composition of blood, a function that, possibly by a reflex mechanism would have an effect on the functional activity of other organs… Therefore, the sensory fiber would not be directly stimulated by blood, but via the intermediation of the epithelial cells of the organ, which, as their structure suggests, possess a secretory function which would participate in the stimulation of the centripetal fibers.” In our article we will recreate the experiments that allowed Fernando de Castro to reach this first conclusion. Also, we will scrutinize the natural endowments and the scientific knowledge that drove de Castro to make the triple hypotheses: the CB as chemoreceptor (variations in blood composition), as a secondary sensory receptor which functioning involves a chemical synapse, and as a center, origin of systemic reflexes. After a brief account of the systemic reflex effects resulting from the CB stimulation, we will complete our article with a general view of the cellular-molecular mechanisms currently thought to be involved in the functioning of this arterial chemoreceptor.
Collapse
Affiliation(s)
- Constancio Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Silvia V Conde
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Teresa Gallego-Martín
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Elena Olea
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Elvira Gonzalez-Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Maria Ramirez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Sara Yubero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Maria T Agapito
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Angela Gomez-Niñno
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Ricardo Rigual
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| | - Asunción Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid Valladolid, España ; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Facultad de Medicina, Universidad de Valladolid Valladolid, España
| |
Collapse
|
42
|
Abstract
Mammalian carotid bodies are the main peripheral arterial chemoreceptors, strategically located at the bifurcation of the common carotid artery. When stimulated these receptors initiate compensatory respiratory and cardiovascular reflexes to maintain homeostasis. Thus, in response to low oxygen (hypoxia) or increased CO2/H(+) (acid hypercapnia), chemoreceptor type I cells depolarize and release excitatory neurotransmitters, such as ATP, which stimulate postsynaptic P2X2/3 receptors on afferent nerve terminals. The afferent discharge is shaped by autocrine and paracrine mechanisms involving both excitatory and inhibitory neuromodulators such as adenosine, serotonin (5-HT), GABA and dopamine. Recent evidence suggests that paracrine activation of P2Y2 receptors on adjacent glia-like type II cells may help boost the ATP signal via the opening of pannexin-1 channels. The presence of an inhibitory efferent innervation, mediated by release of nitric oxide, provides additional control of the afferent discharge. The broad array of neuromodulators and their receptors appears to endow the carotid body with a remarkable plasticity, most apparent during natural and pathophysiological conditions associated with chronic sustained and intermittent hypoxia.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
43
|
Livermore S, Nurse CA. Enhanced adenosine A2breceptor signaling facilitates stimulus-induced catecholamine secretion in chronically hypoxic carotid body type I cells. Am J Physiol Cell Physiol 2013; 305:C739-50. [DOI: 10.1152/ajpcell.00137.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic hypoxia (CHox) augments chemoafferent activity in sensory fibers innervating carotid body (CB) chemoreceptor type I cells; however, the underlying mechanisms are poorly understood. We tested the hypothesis that enhanced paracrine signaling via adenosine (Ado) A2breceptors is involved. Dissociated rat CB cultures were exposed for 24 h to normoxia (Nox, 21% O2) or CHox (2% O2) or treated with the hypoxia mimetic deferoxamine mesylate (DFX), and catecholamine secretion from type I cells was monitored by amperometry. Catecholamine secretion was more robust in CHox and DFX type I cells than Nox controls after acute exposure to acid hypercapnia (10% CO2, pH 7.1) and high K+(75 mM). Exogenous Ado increased catecholamine secretion in a dose-dependent manner, and the EC50was shifted to the right from ∼21 μM Ado in Nox cells to ∼78 μM in CHox cells. Ado-evoked secretion in Nox and CHox cells was markedly inhibited by MRS-1754, an A2breceptor blocker, but was unaffected by SCH-58261, an A2areceptor blocker. Similarly, MRS-1754, but not SCH-58261, partially inhibited high-K+-evoked catecholamine secretion, suggesting a contribution from paracrine activation of A2breceptors by endogenous Ado. CB chemostimuli, acid hypercapnia, and hypoxia elicited a MRS-1754-sensitive rise in intracellular Ca2+that was more robust in CHox and DFX than Nox cells. Taken together, these data suggest that paracrine Ado A2breceptor signaling contributes to stimulus-evoked catecholamine secretion in Nox and CHox CB chemoreceptors; however, the effects of Ado are more robust after CHox.
Collapse
Affiliation(s)
- Simon Livermore
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin A. Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
44
|
Petrosal ganglion responses to acetylcholine and ATP are enhanced by chronic normobaric hypoxia in the rabbit. Respir Physiol Neurobiol 2013; 189:624-31. [PMID: 23969181 DOI: 10.1016/j.resp.2013.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 11/21/2022]
Abstract
In mammals, adaptation to chronic hypoxia requires the integrity of the arterial chemoreceptors, specially the carotid body (CB). Chronic hypoxia increases the sensibility of the CB by acting on the receptor cells, but there is limited information on the effects of chronic hypoxia on the sensory neurons that innervate the CB. Therefore, we studied the responses evoked by ACh and ATP, the main transmitters that generate the chemoafferent activity, on the petrosal ganglion (PG) of rabbits exposed to chronic normobaric hypoxia (CNH) during fourteen days. ATP and ACh increased the activity of PG neurons in a dose-dependent manner, in a similar way than in rabbits not exposed to hypoxia (naïve). However, the duration of the responses were significantly increased by CNH, with the mean maximal responses to ACh and ATP increased by a factor of two and four, respectively. Our results suggest that CNH increases duration of the responses by modifying the expression and/or content of ACh and ATP receptors.
Collapse
|
45
|
Ribeiro MJ, Sacramento JF, Gonzalez C, Guarino MP, Monteiro EC, Conde SV. Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 2013; 62:2905-16. [PMID: 23530003 PMCID: PMC3717872 DOI: 10.2337/db12-1463] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased sympathetic activity is a well-known pathophysiological mechanism in insulin resistance (IR) and hypertension (HT). The carotid bodies (CB) are peripheral chemoreceptors that classically respond to hypoxia by increasing chemosensory activity in the carotid sinus nerve (CSN), causing hyperventilation and activation of the sympathoadrenal system. Besides its role in the control of ventilation, the CB has been proposed as a glucose sensor implicated in the control of energy homeostasis. However, to date no studies have anticipated its role in the development of IR. Herein, we propose that CB overstimulation is involved in the etiology of IR and HT, core metabolic and hemodynamic disturbances of highly prevalent diseases like the metabolic syndrome, type 2 diabetes, and obstructive sleep apnoea. We demonstrate that CB activity is increased in IR animal models and that CSN resection prevents CB overactivation and diet-induced IR and HT. Moreover, we show that insulin triggers CB, highlighting a new role for hyperinsulinemia as a stimulus for CB overactivation. We propose that CB is implicated in the pathogenesis of metabolic and hemodynamic disturbances through sympathoadrenal overactivation and may represent a novel therapeutic target in these diseases.
Collapse
Affiliation(s)
- Maria J. Ribeiro
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
| | - Joana F. Sacramento
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
| | - Constancio Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Instituto de Biología y Genética Molecular, CSIC (Consejo Superior de Investigaciones Cientificas), Ciber de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria P. Guarino
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
| | - Emília C. Monteiro
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
| | - Sílvia V. Conde
- CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
- Corresponding author: Sílvia V. Conde,
| |
Collapse
|
46
|
Conde SV, Ribeiro MJ, Obeso A, Rigual R, Monteiro EC, Gonzalez C. Chronic caffeine intake in adult rat inhibits carotid body sensitization produced by chronic sustained hypoxia but maintains intact chemoreflex output. Mol Pharmacol 2012; 82:1056-65. [PMID: 22930709 DOI: 10.1124/mol.112.081216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sustained hypoxia produces a carotid body (CB) sensitization, known as acclimatization, which leads to an increase in carotid sinus nerve (CSN) activity and ensuing hyperventilation greater than expected from the prevailing partial pressure of oxygen. Whether sustained hypoxia is physiological (high altitude) or pathological (lung disease), acclimatization has a homeostatic implication because it tends to minimize hypoxia. Caffeine, the most commonly ingested psychoactive drug and a nonselective adenosine receptor antagonist, alters CB function and ventilatory responses when administered acutely. Our aim was to investigate the effect of chronic caffeine intake on CB function and acclimatization using four groups of rats: normoxic, caffeine-treated normoxic, chronically hypoxic (12% O₂, 15 days), and caffeine-treated chronically hypoxic rats. Caffeine was administered in drinking water (1 mg/ml). Caffeine ameliorated ventilatory responses to acute hypoxia in normoxic animals without altering the output of the CB (CSN neural activity). Caffeine-treated chronically hypoxic rats exhibited a decrease in the CSN response to acute hypoxia tests but maintained ventilation compared with chronically hypoxic animals. The findings related to CSN neural activity combined with the ventilatory responses indicate that caffeine alters central integration of the CB input to increase the gain of the chemoreflex and that caffeine abolishes CB acclimatization. The putative mechanisms involved in sensitization and its loss were investigated: expression of adenosine receptors in CB (A(2B)) was down-regulated and that in petrosal ganglion (A(2A)) was up-regulated in caffeine-treated chronically hypoxic rats; both adenosine and dopamine release from CB chemoreceptor cells was increased in chronic hypoxia and in caffeine-treated chronic hypoxia groups.
Collapse
Affiliation(s)
- Silvia V Conde
- Department of Pharmacology, Faculty of Medical Sciences, New University of Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
47
|
Piskuric NA, Nurse CA. Expanding role of ATP as a versatile messenger at carotid and aortic body chemoreceptors. J Physiol 2012; 591:415-22. [PMID: 23165772 DOI: 10.1113/jphysiol.2012.234377] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mammals, peripheral arterial chemoreceptors monitor blood chemicals (e.g. O(2), CO(2), H(+), glucose) and maintain homeostasis via initiation of respiratory and cardiovascular reflexes. Whereas chemoreceptors in the carotid bodies (CBs), located bilaterally at the carotid bifurcation, control primarily respiratory functions, those in the more diffusely distributed aortic bodies (ABs) are thought to regulate mainly cardiovascular functions. Functionally, CBs sense partial pressure of O(2) ( ), whereas ABs are considered sensors of O(2) content. How these organs, with essentially a similar complement of chemoreceptor cells, differentially process these two different types of signals remains enigmatic. Here, we review evidence that implicates ATP as a central mediator during information processing in the CB. Recent data allow an integrative view concerning its interactions at purinergic P2X and P2Y receptors within the chemosensory complex that contains elements of a 'quadripartite synapse'. We also discuss recent studies on the cellular physiology of ABs located near the aortic arch, as well as immunohistochemical evidence suggesting the presence of pathways for P2X receptor signalling. Finally, we present a hypothetical 'quadripartite model' to explain how ATP, released from red blood cells during hypoxia, could contribute to the ability of ABs to sense O(2) content.
Collapse
Affiliation(s)
- Nikol A Piskuric
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
48
|
Stéphan-Blanchard E, Bach V, Telliez F, Chardon K. Perinatal nicotine/smoking exposure and carotid chemoreceptors during development. Respir Physiol Neurobiol 2012; 185:110-9. [PMID: 22743051 DOI: 10.1016/j.resp.2012.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/26/2022]
Abstract
Tobacco smoking is still a common habit during pregnancy and is the most important preventable cause of many adverse perinatal outcomes. Prenatal smoking exposure can produce direct actions of nicotine in the fetus with the disruption of body and brain development, and actions on the maternal-fetal unit by causing repeated episodes of hypoxia and exposure to many toxic smoke products (such as carbon monoxide). Specifically, nicotine through binding to nicotinic acetylcholine receptors have ubiquitous effects and can affect carotid chemoreception development through structural, functional and neuroregulatory alterations of the neural circuits involved in the chemoafferent pathway, as well as by interfering with the postnatal resetting of the carotid bodies. Reduced carotid body chemosensitivity and tonic activity have thus been reported by the majority of the human and animal studies. This review focuses on the effects of perinatal exposure to tobacco smoke and nicotine on carotid chemoreceptor function during the developmental period. A description of the effects of smoking and nicotine on the control of breathing related to carotid body activity, and of the possible physiopathological mechanisms at the origin of these disturbances is presented.
Collapse
Affiliation(s)
- E Stéphan-Blanchard
- PériTox-INERIS Laboratory, Jules Verne University of Picardy, Amiens, France.
| | | | | | | |
Collapse
|
49
|
Zhang M, Piskuric NA, Vollmer C, Nurse CA. P2Y2 receptor activation opens pannexin-1 channels in rat carotid body type II cells: potential role in amplifying the neurotransmitter ATP. J Physiol 2012; 590:4335-50. [PMID: 22733659 DOI: 10.1113/jphysiol.2012.236265] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Signal processing in the carotid body (CB) is initiated at receptor glomus (or type I) cells which depolarize and release the excitatory neurotransmitter ATP during chemoexcitation by hypoxia and acid hypercapnia. Glomus cell clusters (GCs) occur in intimate association with glia-like type II cells which express purinergic P2Y2 receptors (P2Y2Rs) but their function is unclear. Here we immunolocalize the gap junction-like protein channel pannexin-1 (Panx-1) in type II cells and show Panx-1 mRNA expression in the rat CB. As expected, type II cell activation within or near isolated GCs by P2Y2R agonists, ATP and UTP (100 μm), induced a rise in intracellular [Ca(2+)]. Moreover in perforated-patch whole cell recordings from type II cells, these agonists caused a prolonged depolarization and a concentration-dependent, delayed opening of non-selective ion channels that was prevented by Panx-1 blockers, carbenoxolone (5 μm) and 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS; 10 μm). Because Panx-1 channels serve as conduits for ATP release, we hypothesized that paracrine, type II cell P2Y2R activation leads to ATP-induced ATP release. In proof-of-principle experiments we used co-cultured chemoafferent petrosal neurones (PNs), which express P2X2/3 purinoceptors, as sensitive biosensors of ATP released from type II cells. In several cases, UTP activation of type II cells within or near GCs led to depolarization or increased firing in nearby PNs, and the effect was reversibly abolished by the selective P2X2/3 receptor blocker, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 10 μm). We propose that CB type II cells may function as ATP amplifiers during chemotransduction via paracrine activation of P2Y2Rs and Panx-1 channels.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | |
Collapse
|
50
|
Bairam A, Niane LM, Joseph V. Role of ATP and adenosine on carotid body function during development. Respir Physiol Neurobiol 2012; 185:57-66. [PMID: 22721945 DOI: 10.1016/j.resp.2012.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 12/28/2022]
Abstract
The carotid body is the main peripheral oxygen sensor involved in cardio-respiratory control under both normoxic and hypoxic conditions. This review focuses on data from newborn animals related to the involvement of the purinergic system in carotid body function during development. We describe the potential effects mediated by ATP and adenosine receptors on ventilation, chemoreceptor activity and their influence on respiratory instability, such as apnea. The conclusions that appear from this review is that in newborn rats, activation of ATP receptors increases the carotid body function although with no age dependent manner, regulates breathing under normoxia, and enhances the initial increase in ventilation in response to hypoxia (likely reflecting carotid body responses). However, activation of adenosine receptors may play a role on carotid body function under chronic conditions, such as intermittent hypoxia or exposure to the adenosine receptor antagonist caffeine. Under the later conditions, an indirect effects involving the carotid body dopaminergic system are observed.
Collapse
Affiliation(s)
- Aida Bairam
- Centre de Recherche, D0-717, Hôpital Saint-François d'Assise, 10, rue de l'Espinay, Québec, Qc, Canada G1L 3L5.
| | | | | |
Collapse
|