1
|
Li C, Wu S, Lei B, Zang W, Tao X, Yu L. Effect of aerobic exercise on endothelial function in hypertensive and prehypertensive patients: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2025; 43:727-738. [PMID: 40079841 DOI: 10.1097/hjh.0000000000003980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/19/2025] [Indexed: 03/15/2025]
Abstract
Our objective was to explore the effect of aerobic exercise on endothelial function in hypertensive and prehypertensive patients, and to ascertain the optimal duration and intensity of aerobic exercise. Data were synthesized using a random effects model to calculate the weighted mean difference (WMD) and 95% confidence interval (CI). Fifteen studies met the inclusion criteria. Aerobic exercise was found to significantly improve flow-mediated dilation (FMD) in prehypertensive and hypertensive patients (WMD, 2.23; 95% CI, 1.20-3.26; P < 0.0001; I2 = 90%). Aerobic exercise, undertaken at a moderate or, even better, vigorous intensity, and lasting no less than 12 weeks, is an effective approach to improve flow-mediated dilation (FMD) in prehypertensive and hypertensive patients. The effect of aerobic exercise on endothelial function is influenced by participant characteristics: a better health status, a younger age, a larger basal body mass index, and a larger basal FMD were associated with larger improvement in FMD.
Collapse
Affiliation(s)
- Cui Li
- School of Physical Education (Main Campus)
- School of Basic Medical Sciences
| | - Shang Wu
- The First Clinical Medical School, Zhengzhou University, Zhengzhou University, Zhengzhou
| | - Bingkai Lei
- School of Physical Education, Xihua University, Chengdu
| | | | - Xifeng Tao
- School of Physical Education, Xihua University, Chengdu
| | - Laikang Yu
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing Sport University, Beijing
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| |
Collapse
|
2
|
Anderle S, Bonnar O, Henderson J, Shaw K, Chagas AM, McMullan L, Webber A, McGowan K, King SL, Hall CN. APOE4 and sedentary lifestyle synergistically impair neurovascular function in the visual cortex of awake mice. Commun Biol 2025; 8:144. [PMID: 39880935 PMCID: PMC11779976 DOI: 10.1038/s42003-025-07585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE. Energy supply and demand are mismatched in APOE4 mice, with smaller increases in cerebral blood flow, blood volume and blood oxygenation occurring during neuronal activation as blood vessels frequently fail to dilate. Exercise dose-dependently overall improves neurovascular function, with an increased impact of exercise apparent after longer exposure times. Several haemodynamic measures show a larger beneficial effect of exercise in APOE4 vs. APOE3 mice. Thus, APOE4 genotype in conjunction with sedentary behaviour produces the worst neurovascular function. Promotion of physical activity may therefore be particularly important to improve cerebrovascular function and reduce dementia risk in APOE4 carriers.
Collapse
Affiliation(s)
- Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Orla Bonnar
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Joseph Henderson
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kira Shaw
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Andre M Chagas
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Letitia McMullan
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Alexandra Webber
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Kirsty McGowan
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Sarah L King
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Catherine N Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
| |
Collapse
|
3
|
Bilek F, Ercan Z, Deniz G, Ozgul S, Demir CF. High-intensity intermittent exercise increases serum levels of chitinase 3-like protein-1 and matrix metalloproteinase-9 in persons with multiple sclerosis. J Neuroimmunol 2024; 395:578434. [PMID: 39178495 DOI: 10.1016/j.jneuroim.2024.578434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
The study aimed to evaluate the effect of high-intensity intermittent exercise (HIIE) on serum levels of MMP-9 and CHI3L1 in multiple sclerosis. Study group received HIIE twice a week for 12 weeks, while control group received no treatment. In intra-group comparison, study group showed a significant increase in MMP-9 and CHI3L1 levels, while control group showed no significant difference. In intergroup comparison, a significant difference was found only in CHI3L1 levels after treatment. The increase in MMP-9 and CH3L-1 concentrations in study group suggests that these biomarkers may play a role in regulating specific skeletal muscle adaptations due to HIIE.
Collapse
Affiliation(s)
- Furkan Bilek
- Muğla Sıtkı Koçman University, Fethiye Faculty of Health Sciences, Department of Gerontology, Muğla, Türkiye.
| | - Zubeyde Ercan
- Fırat University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Elazığ, Türkiye.
| | - Gulnihal Deniz
- Erzurum Technical University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Erzurum, Türkiye.
| | - Sinem Ozgul
- Fırat University Hospital, Physiotherapy and Rehabilitation Clinic, Elazığ, Türkiye
| | - Caner Feyzi Demir
- Fırat University, School of Medicine, Department of Neurology, Elazığ, Türkiye.
| |
Collapse
|
4
|
Scarpelli MC, Bergamasco JGA, Godwin JS, Mesquita PHC, Chaves TS, Silva DG, Bittencourt D, Dias NF, Medalha Junior RA, Carello Filho PC, Angleri V, Costa LAR, Kavazis AN, Ugrinowitsch C, Roberts MD, Libardi CA. Resistance training-induced changes in muscle proteolysis and extracellular matrix remodeling biomarkers in the untrained and trained states. Eur J Appl Physiol 2024; 124:2749-2762. [PMID: 38653795 DOI: 10.1007/s00421-024-05484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Resistance training (RT) induces muscle growth at varying rates across RT phases, and evidence suggests that the muscle-molecular responses to training bouts become refined or attenuated in the trained state. This study examined how proteolysis-related biomarkers and extracellular matrix (ECM) remodeling factors respond to a bout of RT in the untrained (UT) and trained (T) state. METHODS Participants (19 women and 19 men) underwent 10 weeks of RT. Biopsies of vastus lateralis were collected before and after (24 h) the first (UT) and last (T) sessions. Vastus lateralis cross-sectional area (CSA) was assessed before and after the experimental period. RESULTS There were increases in muscle and type II fiber CSAs. In both the UT and T states, calpain activity was upregulated and calpain-1/-2 protein expression was downregulated from Pre to 24 h. Calpain-2 was higher in the T state. Proteasome activity and 20S proteasome protein expression were upregulated from Pre to 24 h in both the UT and T. However, proteasome activity levels were lower in the T state. The expression of poly-ubiquitinated proteins was unchanged. MMP activity was downregulated, and MMP-9 protein expression was elevated from Pre to 24 h in UT and T. Although MMP-14 protein expression was acutely unchanged, this marker was lower in T state. TIMP-1 protein levels were reduced Pre to 24 h in UT and T, while TIMP-2 protein levels were unchanged. CONCLUSION Our results are the first to show that RT does not attenuate the acute-induced response of proteolysis and ECM remodeling-related biomarkers.
Collapse
Affiliation(s)
- Maíra C Scarpelli
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - João G A Bergamasco
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Joshua S Godwin
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Paulo H C Mesquita
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Talisson S Chaves
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Deivid G Silva
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Diego Bittencourt
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Nathalia F Dias
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Ricardo A Medalha Junior
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Paulo C Carello Filho
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Vitor Angleri
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Luiz A R Costa
- School of Physical Education and Sport, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Andreas N Kavazis
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo - USP, São Paulo, SP, Brazil
- Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL, USA
| | - Michael D Roberts
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA.
| | - Cleiton A Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
5
|
Turkel I, Tahtalioglu S, Celik E, Yazgan B, Kubat GB, Ozerklig B, Kosar SN. Time-course and muscle-specific gene expression of matrix metalloproteinases and inflammatory cytokines in response to acute treadmill exercise in rats. Mol Biol Rep 2024; 51:667. [PMID: 38780696 DOI: 10.1007/s11033-024-09637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1β, Tnf-α, and Tgfβ1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1β, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfβ1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfβ1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Sema Tahtalioglu
- Department of Biotechnology, Institute of Sciences, Amasya University, Amasya, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoğlu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Cisterna B, Lofaro FD, Lacavalla MA, Boschi F, Malatesta M, Quaglino D, Zancanaro C, Boraldi F. Aged gastrocnemius muscle of mice positively responds to a late onset adapted physical training. Front Cell Dev Biol 2023; 11:1273309. [PMID: 38020923 PMCID: PMC10679468 DOI: 10.3389/fcell.2023.1273309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: A regular physical training is known to contribute to preserve muscle mass and strength, maintaining structure and function of neural and vascular compartments and preventing muscle insulin resistance and inflammation. However, physical activity is progressively reduced during aging causing mobility limitations and poor quality of life. Although physical exercise for rehabilitation purposes (e.g., after fractures or cardiovascular events) or simply aiming to counteract the development of sarcopenia is frequently advised by physicians, nevertheless few data are available on the targets and the global effects on the muscle organ of adapted exercise especially if started at old age. Methods: To contribute answering this question for medical translational purposes, the proteomic profile of the gastrocnemius muscle was analyzed in 24-month-old mice undergoing adapted physical training on a treadmill for 12 weeks or kept under a sedentary lifestyle condition. Proteomic data were implemented by morphological and morphometrical ultrastructural evaluations. Results and Discussion: Data demonstrate that muscles can respond to adapted physical training started at old age, positively modulating their morphology and the proteomic profile fostering protective and saving mechanisms either involving the extracellular compartment as well as muscle cell components and pathways (i.e., mitochondrial processes, cytoplasmic translation pathways, chaperone-dependent protein refolding, regulation of skeletal muscle contraction). Therefore, this study provides important insights on the targets of adapted physical training, which can be regarded as suitable benchmarks for future in vivo studies further exploring the effects of this type of physical activity by functional/metabolic approaches.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Maria Assunta Lacavalla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Zancanaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Cisterna B, Boschi F, Lacavalla MA, Vattemi GNA, Zancanaro C, Malatesta M. Physical training promotes remodeling of the skeletal muscle extracellular matrix: An ultrastructural study in a murine model of Down syndrome. Microsc Res Tech 2023; 86:1517-1528. [PMID: 37381675 DOI: 10.1002/jemt.24379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Down syndrome (DS) is a genetically based disease caused by triplication of chromosome 21. DS is characterized by multi-systemic premature aging associated with deficit in motor coordination, balance, and postural control. Using a morphological, morphometrical, and immunocytochemical ultrastructural approach, this study investigated in vastus lateralis muscle of Ts65Dn mouse, a murine model of DS, the effect of an adapted physical training on the extracellular matrix (ECM) characteristics and whether the forecasted exercise-induced ECM remodeling impacts on sarcomere organization. Morphometry demonstrated thicker basement membrane and larger collagen bundles with larger interfibrillar spacing as well as irregularly arrayed myofibrils and lower telethonin density on Z-lines in trisomic versus euploid sedentary mice. In agreement with the multi-systemic premature aging described in DS, these ECM alterations were similar to those previously observed in skeletal muscle of aged mice. Adapted physical training induced remodeling of ECM in both trisomic and euploid mice, that is, enlargement of the collagen bundles associated with hypertrophy of collagen fibrils and reduction of the interfibrillar spacing. A re-alignment of the myofibrils and a higher telethonin density on Z-line was found in trisomic mice. Altogether, our findings suggest that physical training is an effective tool in limiting/counteracting the trisomy-associated musculoskeletal structural anomalies. The current findings constitute a solid experimental background for further study investigating the possible positive effect of physical training on skeletal muscle performance. RESEARCH HIGHLIGHTS: Vastus lateralis muscle of trisomic mice shows aging-like alterations of extracellular matrix. Training promotes extracellular matrix remodeling. Training may be an effective tool to counteract trisomy-associated alterations of skeletal muscle.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Soffritti I, Gravelsina S, D'Accolti M, Bini F, Mazziga E, Vilmane A, Rasa-Dzelzkaleja S, Nora-Krukle Z, Krumina A, Murovska M, Caselli E. Circulating miRNAs Expression in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2023; 24:10582. [PMID: 37445763 DOI: 10.3390/ijms241310582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multifactorial disease that causes increasing morbidity worldwide, and many individuals with ME/CFS symptoms remain undiagnosed due to the lack of diagnostic biomarkers. Its etiology is still unknown, but increasing evidence supports a role of herpesviruses (including HHV-6A and HHV-6B) as potential triggers. Interestingly, the infection by these viruses has been reported to impact the expression of microRNAs (miRNAs), short non-coding RNA sequences which have been suggested to be epigenetic factors modulating ME/CFS pathogenic mechanisms. Notably, the presence of circulating miRNAs in plasma has raised the possibility to use them as valuable biomarkers for distinguishing ME/CFS patients from healthy controls. Thus, this study aimed at determining the role of eight miRNAs, which were selected for their previous association with ME/CFS, as potential circulating biomarkers of the disease. Their presence was quantitatively evaluated in plasma from 40 ME/CFS patients and 20 healthy controls by specific Taqman assays, and the results showed that six out of the eight of the selected miRNAs were differently expressed in patients compared to controls; more specifically, five miRNAs were significantly upregulated (miR-127-3p, miR-142-5p, miR-143-3p, miR-150-5p, and miR-448), and one was downmodulated (miR-140-5p). MiRNA levels directly correlated with disease severity, whereas no significant correlations were observed with the plasma levels of seven pro-inflammatory cytokines or with the presence/load of HHV-6A/6B genome, as judged by specific PCR amplification. The results may open the way for further validation of miRNAs as new potential biomarkers in ME/CFS and increase the knowledge of the complex pathways involved in the ME/CFS development.
Collapse
Affiliation(s)
- Irene Soffritti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Sabine Gravelsina
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia
| | - Maria D'Accolti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Bini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Eleonora Mazziga
- Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Anda Vilmane
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia
| | | | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia
| | - Angelika Krumina
- Faculty of Medicine, Department of Infectology, Rīga Stradiņš University, LV-1006 Riga, Latvia
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, LV-1067 Riga, Latvia
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
10
|
Zmudzka M, Zoladz JA, Majerczak J. The impact of aging and physical training on angiogenesis in the musculoskeletal system. PeerJ 2022; 10:e14228. [PMID: 36348663 PMCID: PMC9637352 DOI: 10.7717/peerj.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is the physiological process of capillary growth. It is strictly regulated by the balanced activity of agents that promote the formation of capillaries (pro-angiogenic factors) on the one hand and inhibit their growth on the other hand (anti-angiogenic factors). Capillary rarefaction and insufficient angiogenesis are some of the main causes that limit blood flow during aging, whereas physical training is a potent non-pharmacological method to intensify capillary growth in the musculoskeletal system. The main purpose of this study is to present the current state of knowledge concerning the key signalling molecules implicated in the regulation of skeletal muscle and bone angiogenesis during aging and physical training.
Collapse
Affiliation(s)
- Magdalena Zmudzka
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
11
|
A Single Bout of Ultra-Endurance Exercise Reveals Early Signs of Muscle Aging in Master Athletes. Int J Mol Sci 2022; 23:ijms23073713. [PMID: 35409073 PMCID: PMC8998696 DOI: 10.3390/ijms23073713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Middle-aged and master endurance athletes exhibit similar physical performance and long-term muscle adaptation to aerobic exercise. Nevertheless, we hypothesized that the short-term plasticity of the skeletal muscle might be distinctly altered for master athletes when they are challenged by a single bout of prolonged moderate-intensity exercise. Six middle-aged (37Y) and five older (50Y) master highly-trained athletes performed a 24-h treadmill run (24TR). Vastus lateralis muscle biopsies were collected before and after the run and assessed for proteomics, fiber morphometry, intramyocellular lipid droplets (LD), mitochondrial oxidative activity, extracellular matrix (ECM), and micro-vascularisation. Before 24TR, muscle fiber type morphometry, intramyocellular LD, oxidative activity, ECM and micro-vascularisation were similar between master and middle-aged runners. For 37Y runners, 24TR was associated with ECM thickening, increased capillary-to-fiber interface, and an 89% depletion of LD in type-I fibers. In contrast, for 50Y runners, 24TR did not alter ECM and capillarization and poorly depleted LDs. Moreover, an impaired succinate dehydrogenase activity and functional class scoring of proteomes suggested reduced oxidative phosphorylation post-24TR exclusively in 50Y muscle. Collectively, our data support that middle-aged and master endurance athletes exhibit distinct transient plasticity in response to a single bout of ultra-endurance exercise, which may constitute early signs of muscle aging for master athletes.
Collapse
|
12
|
Loreti M, Sacco A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med 2022; 7:16. [PMID: 35177651 PMCID: PMC8854427 DOI: 10.1038/s41536-022-00204-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle requires a highly orchestrated coordination between multiple cell types and their microenvironment to exert its function and to maintain its homeostasis and regenerative capacity. Over the past decades, significant advances, including lineage tracing and single-cell RNA sequencing, have contributed to identifying multiple muscle resident cell populations participating in muscle maintenance and repair. Among these populations, muscle stem cells (MuSC), also known as satellite cells, in response to stress or injury, are able to proliferate, fuse, and form new myofibers to repair the damaged tissue. These cells reside adjacent to the myofiber and are surrounded by a specific and complex microenvironment, the stem cell niche. Major components of the niche are extracellular matrix (ECM) proteins, able to instruct MuSC behavior. However, during aging and muscle-associated diseases, muscle progressively loses its regenerative ability, in part due to a dysregulation of ECM components. This review provides an overview of the composition and importance of the MuSC microenvironment. We discuss relevant ECM proteins and how their mutations or dysregulation impact young and aged muscle tissue or contribute to diseases. Recent discoveries have improved our knowledge about the ECM composition of skeletal muscle, which has helped to mimic the architecture of the stem cell niche and improved the regenerative capacity of MuSC. Further understanding about extrinsic signals from the microenvironment controlling MuSC function and innovative technologies are still required to develop new therapies to improve muscle repair.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Westman AM, Peirce SM, Christ GJ, Blemker SS. Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury. PLoS Comput Biol 2021; 17:e1008937. [PMID: 33970905 PMCID: PMC8110270 DOI: 10.1371/journal.pcbi.1008937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle possesses a remarkable capacity for repair and regeneration following a variety of injuries. When successful, this highly orchestrated regenerative process requires the contribution of several muscle resident cell populations including satellite stem cells (SSCs), fibroblasts, macrophages and vascular cells. However, volumetric muscle loss injuries (VML) involve simultaneous destruction of multiple tissue components (e.g., as a result of battlefield injuries or vehicular accidents) and are so extensive that they exceed the intrinsic capability for scarless wound healing and result in permanent cosmetic and functional deficits. In this scenario, the regenerative process fails and is dominated by an unproductive inflammatory response and accompanying fibrosis. The failure of current regenerative therapeutics to completely restore functional muscle tissue is not surprising considering the incomplete understanding of the cellular mechanisms that drive the regeneration response in the setting of VML injury. To begin to address this profound knowledge gap, we developed an agent-based model to predict the tissue remodeling response following surgical creation of a VML injury. Once the model was able to recapitulate key aspects of the tissue remodeling response in the absence of repair, we validated the model by simulating the tissue remodeling response to VML injury following implantation of either a decellularized extracellular matrix scaffold or a minced muscle graft. The model suggested that the SSC microenvironment and absence of pro-differentiation SSC signals were the most important aspects of failed muscle regeneration in VML injuries. The major implication of this work is that agent-based models may provide a much-needed predictive tool to optimize the design of new therapies, and thereby, accelerate the clinical translation of regenerative therapeutics for VML injuries.
Collapse
Affiliation(s)
- Amanda M. Westman
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Ophthalmology, University of Virginia, Charlottesville, Virginia, United States of America
| | - George J. Christ
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (GJC); (SSB)
| | - Silvia S. Blemker
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Ophthalmology, University of Virginia, Charlottesville, Virginia, United States of America
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (GJC); (SSB)
| |
Collapse
|
14
|
Jamka M, Bogdański P, Krzyżanowska-Jankowska P, Miśkiewicz-Chotnicka A, Karolkiewicz J, Duś-Żuchowska M, Mądry R, Lisowska A, Gotz-Więckowska A, Iskakova S, Walkowiak J, Mądry E. Endurance Training Depletes Antioxidant System but Does Not Affect Endothelial Functions in Women with Abdominal Obesity: A Randomized Trial with a Comparison to Endurance-Strength Training. J Clin Med 2021; 10:1639. [PMID: 33921520 PMCID: PMC8068807 DOI: 10.3390/jcm10081639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/02/2023] Open
Abstract
Limited data suggested that inclusion of a strength component into endurance exercises might intensify the beneficial effect of training. However, the available data is limited. Therefore, we aimed to compare the effect of endurance and endurance-strength training on anthropometric parameters, endothelial function, arterial stiffness, antioxidant status, and inflammatory markers in abdominally obese women without serious comorbidities. A total of 101 women were recruited and randomly divided into endurance (n = 52) and endurance-strength (n = 49) groups. During the three-month intervention, both groups performed supervised sixty-minute training three times a week. All studied parameters were measured pre- and post-intervention period. In total, 85 women completed the study. Both training significantly decreased anthropometric parameters. Besides, endurance training decreased endothelial nitric oxide synthase, central aortic systolic pressure, pulse wave velocity, glutathione (GSH), total antioxidant status (TAS), interleukin (IL) 8, matrix metalloproteinase (MMP) 9, and tumor necrosis factor alpha, while endurance-strength training decreased MMP-2 concentrations, and increased IL-6, monocyte chemoattractant protein-1, and MMP-9 levels. We observed significant differences between groups for GSH, TAS, and MMP-9 levels. In summary, endurance and endurance-strength training did not differ in the impact on endothelial function and arterial stiffness. However, endurance training significantly depleted the antioxidant defense, simultaneously reducing MMP-9 levels. The study was retrospectively registered with the German Clinical Trials Register within the number DRKS00019832.
Collapse
Affiliation(s)
- Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego Str. 82, 60-569 Poznań, Poland;
| | - Patrycja Krzyżanowska-Jankowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Anna Miśkiewicz-Chotnicka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, Królowej Jadwigi Str. 27/39, 61-871 Poznań, Poland;
| | - Monika Duś-Żuchowska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Radosław Mądry
- Department of Oncology, Poznan University of Medical Sciences, Szamarzewskiego Str. 84, 60-569 Poznań, Poland;
| | - Aleksandra Lisowska
- Department of Clinical Auxology and Pediatric Nursing, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Szamarzewskiego Str. 84, 60-569 Poznań, Poland;
| | - Saule Iskakova
- Department of Pharmacology, Asfendiyarov Kazakh National Medical University, Tole Bi Str. 94, Almaty 050000, Kazakhstan;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland; (M.J.); (P.K.-J.); (A.M.-C.); (M.D.-Ż.)
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, Święcickiego Str. 6, 60-781 Poznań, Poland;
| |
Collapse
|
15
|
Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 2021; 11:65. [PMID: 33789727 PMCID: PMC8011170 DOI: 10.1186/s13578-021-00579-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmission of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physiological function, and application of ECM in skeletal muscle tissue.
Collapse
|
16
|
Mieszkowski J, Stankiewicz B, Kochanowicz A, Niespodziński B, Borkowska A, Antosiewicz J. Effect of Ischemic Preconditioning on Marathon-Induced Changes in Serum Exerkine Levels and Inflammation. Front Physiol 2020; 11:571220. [PMID: 33192567 PMCID: PMC7609818 DOI: 10.3389/fphys.2020.571220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Participation in a long-distance run, e.g., marathon or ultramarathon, continues to increase. One side effect of long-distance running is excessive inflammation manifested by the rise in inflammatory cytokine levels. We here aimed to elucidate the effects of 10-day ischemic preconditioning (IPC) training on marathon-induced inflammation and to evaluate the role of serum-stored iron in this process. The study involved 19 recreational runners taking part in a marathon. IPC training was performed in the course of four cycles, by inflating and deflating a blood pressure cuff at 5-min intervals (IPC group, n = 10); the control group underwent sham training (n = 9). The levels of inflammatory and others markers (FSTL-1, IL-6, IL-15, leptin, resistin, TIMP-1, OSM, and LIF) were measured before and 24 h after training; and before, immediately after, and 24 h and 7 day after the marathon. The 10-day IPC training increased serum leptin levels. IL-6, IL-10, FLST-1, and resistin levels were increased, while TIMP-1 levels were decreased in all runners after the marathon. The changes were significantly blunted in runners from the IPC group compared with the control group. Baseline serum iron levels correlated with IL-6 and FSTL-1 levels; serum ferritin correlated with IL-6, FSTL-1, and resistin levels after the marathon. Conversely, serum TIMP-1 levels inversely correlated with serum iron levels. Although not evident at baseline, IPC training significantly reduced marathon-induced inflammation. In addition, the reduced responsiveness and attenuation of running-induced inflammation were inversely related to baseline serum iron and ferritin levels.
Collapse
Affiliation(s)
- Jan Mieszkowski
- Department of Gymnastics and Dance, Gdańsk, University of Physical Education and Sport, Gdańsk, Poland
| | - Błażej Stankiewicz
- Department of Biomedical Basis of Physical Culture, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdańsk, University of Physical Education and Sport, Gdańsk, Poland
| | - Bartłomiej Niespodziński
- Department of Anatomy and Biomechanics, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
17
|
Gumpenberger M, Wessner B, Graf A, Narici MV, Fink C, Braun S, Hoser C, Blazevich AJ, Csapo R. Remodeling the Skeletal Muscle Extracellular Matrix in Older Age-Effects of Acute Exercise Stimuli on Gene Expression. Int J Mol Sci 2020; 21:ijms21197089. [PMID: 32992998 PMCID: PMC7583913 DOI: 10.3390/ijms21197089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
With advancing age, the skeletal muscle extracellular matrix (ECM) undergoes fibrotic changes that may lead to increased muscle stiffness, injury susceptibility and strength loss. This study tested the potential of different exercises to counter these changes by stimulating the activity of genes associated with ECM remodeling. Twenty-six healthy men (66.9 ± 3.9 years) were stratified to two of four groups, performing unilateral (i) conventional resistance exercise, (ii) conventional resistance exercise followed by self-myofascial release (CEBR), (iii) eccentric-only exercise (ECC) or (iv) plyometric jumps (PLY). The non-trained leg served as control. Six hours post-exercise, vastus lateralis muscle biopsy samples were analyzed for the expression of genes associated with ECM collagen synthesis (COL1A1), matrix metallopeptidases (collagen degradation; MMPs) and peptidase inhibitors (TIMP1). Significant between-group differences were found for MMP3, MMP15 and TIMP1, with the greatest responses in MMP3 and TIMP1 seen in CEBR and in MMP15 in ECC. MMP9 (3.24–3.81-fold change) and COL1A1 (1.47–2.40-fold change) were increased in CEBR and PLY, although between-group differences were non-significant. The expression of ECM-related genes is exercise-specific, with CEBR and PLY triggering either earlier or stronger remodeling than other stimuli. Training studies will test whether execution of such exercises may help counter age-associated muscle fibrosis.
Collapse
Affiliation(s)
- Matthias Gumpenberger
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
| | - Barbara Wessner
- Centre for Sport Science and University Sports, University of Vienna, Vienna 1150, Austria;
| | - Alexandra Graf
- Institute for Medical Statistics, CeMSIIS, Medical University of Vienna, Vienna 1090, Austria;
| | - Marco V. Narici
- CirMyo Myology Center, Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
| | - Christian Fink
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
- Gelenkpunkt Sports and Joint Surgery, Innsbruck 6020, Austria
| | - Sepp Braun
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
- Gelenkpunkt Sports and Joint Surgery, Innsbruck 6020, Austria
| | - Christian Hoser
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
- Gelenkpunkt Sports and Joint Surgery, Innsbruck 6020, Austria
| | - Anthony J. Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - Robert Csapo
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
- Correspondence: ; Tel.: +43-50-8648-3887
| |
Collapse
|
18
|
Parganlija D, Gehlert S, Herrera F, Rittweger J, Bloch W, Zange J. Enhanced Blood Supply Through Lower Body Negative Pressure During Slow-Paced, High Load Leg Press Exercise Alters the Response of Muscle AMPK and Circulating Angiogenic Factors. Front Physiol 2020; 11:781. [PMID: 32848814 PMCID: PMC7406804 DOI: 10.3389/fphys.2020.00781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022] Open
Abstract
Lower body negative pressure (LBNP) is an established method of simulating the gravitational effects of orthostasis on the cardiovascular system during space flight or at supine body position on Earth. We hypothesized that LBNP added onto leg press exercise would promote leg muscle perfusion, stimulate oxygen consumption, and modify acute molecular responses. Eighteen subjects performed fifteen slow-paced concentric (4 s) and eccentric contractions (4 s) without or with 40 mmHg LBNP. Force corresponding to 6% of the one-repetition maximum (1-RM) at knee flexion gradually increased to 60% 1-RM within the first half of the range of motion, thereafter remaining constant. AMPK and P-AMPK protein expression was determined in biopsies of vastus lateralis. Venous blood samples were used to measure angiogenic factors. Physiological responses to LBNP included an elevated EMG amplitude, higher heart rate and doubling of the cardiac output compared to control (p < 0.001). Muscle total hemoglobin was increased by around 20 μmol/l vs. control (p < 0.001), accompanied by decreasing tissue oxygen saturation and elevated oxygen uptake (p < 0.05). MMP-2 levels were reduced, and the ratio of P-AMPK to AMPK elevated after exercise with LBNP (p < 0.05). MMP-9 similarly increased in both groups, whereas endostatin was only elevated in the control group (p < 0.05). Our results indicate facilitated peripheral blood supply and higher oxygen exploitation leading to activation of the energy sensor AMPK and differential regulation of angiogenic factors involved in muscle tissue remodeling and capillary growth. Simulating orthostasis with LBNP might promote beneficial structural adaptations of skeletal muscles during resistance exercise and contribute to future exercise countermeasures achieving increased muscle strength and endurance during space flight.
Collapse
Affiliation(s)
- Dajana Parganlija
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Sebastian Gehlert
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany.,Department for Biosciences of Sports, Institute of Sport Science, University of Hildesheim, Hildesheim, Germany
| | - Frankyn Herrera
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
19
|
Intracellular Localization in Zebrafish Muscle and Conserved Sequence Features Suggest Roles for Gelatinase A Moonlighting in Sarcomere Maintenance. Biomedicines 2019; 7:biomedicines7040093. [PMID: 31795436 PMCID: PMC6966518 DOI: 10.3390/biomedicines7040093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022] Open
Abstract
Gelatinase A (Mmp2 in zebrafish) is a well-characterized effector of extracellular matrix remodeling, extracellular signaling, and along with other matrix metalloproteinases (MMPs) and extracellular proteases, it plays important roles in the establishment and maintenance of tissue architecture. Gelatinase A is also found moonlighting inside mammalian striated muscle cells, where it has been implicated in the pathology of ischemia-reperfusion injury. Gelatinase A has no known physiological function in muscle cells, and its localization within mammalian cells appears to be due to inefficient recognition of its N-terminal secretory signal. Here we show that Mmp2 is abundant within the skeletal muscle cells of zebrafish, where it localizes to the M-line of sarcomeres and degrades muscle myosin. The N-terminal secretory signal of zebrafish Mmp2 is also challenging to identify, and this is a conserved characteristic of gelatinase A orthologues, suggesting a selective pressure acting to prevent the efficient secretion of this protease. Furthermore, there are several strongly conserved phosphorylation sites within the catalytic domain of gelatinase A orthologues, some of which are phosphorylated in vivo, and which are known to regulate the activity of this protease. We conclude that gelatinase A likely participates in uncharacterized physiological functions within the striated muscle, possibly in the maintenance of sarcomere proteostasis, that are likely regulated by kinases and phosphatases present in the sarcomere.
Collapse
|
20
|
Ren X, Lamb GD, Murphy RM. Distribution and activation of matrix metalloproteinase-2 in skeletal muscle fibers. Am J Physiol Cell Physiol 2019; 317:C613-C625. [PMID: 31241984 DOI: 10.1152/ajpcell.00113.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A substantial intracellular localization of matrix metalloproteinase 2 (MMP2) has been reported in cardiomyocytes, where it plays a role in the degradation of the contractile apparatus following ischemia-reperfusion injury. Whether MMP2 may have a similar function in skeletal muscle is unknown. This study determined that the absolute amount of MMP2 is similar in rat skeletal and cardiac muscle and human muscle (~10-18 nmol/kg muscle wet wt) but is ~50- to 100-fold less than the amount of calpain-1. We compared mechanically skinned muscle fibers, where the extracellular matrix (ECM) is completely removed, with intact fiber segments and found that ~30% of total MMP2 was associated with the ECM, whereas ~70% was inside the muscle fibers. Concordant with whole muscle fractionation, further separation of skinned fiber segments into cytosolic, membranous, and cytoskeletal and nuclear compartments indicated that ~57% of the intracellular MMP2 was freely diffusible, ~6% was associated with the membrane, and ~37% was bound within the fiber. Under native zymography conditions, only 10% of MMP2 became active upon prolonged (17 h) exposure to 20 μM Ca2+, a concentration that would fully activate calpain-1 in seconds to minutes; full activation of MMP2 would require ~1 mM Ca2+. Given the prevalence of intracellular MMP2 in skeletal muscle, it is necessary to investigate its function using physiological conditions, including isolation of any potential functional relevance of MMP2 from that of the abundant protease calpain-1.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Aguilar-Agon KW, Capel AJ, Martin NRW, Player DJ, Lewis MP. Mechanical loading stimulates hypertrophy in tissue-engineered skeletal muscle: Molecular and phenotypic responses. J Cell Physiol 2019; 234:23547-23558. [PMID: 31180593 PMCID: PMC6771594 DOI: 10.1002/jcp.28923] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Mechanical loading of skeletal muscle results in molecular and phenotypic adaptations typified by enhanced muscle size. Studies on humans are limited by the need for repeated sampling, and studies on animals have methodological and ethical limitations. In this investigation, three‐dimensional skeletal muscle was tissue‐engineered utilizing the murine cell line C2C12, which bears resemblance to native tissue and benefits from the advantages of conventional in vitro experiments. The work aimed to determine if mechanical loading induced an anabolic hypertrophic response, akin to that described in vivo after mechanical loading in the form of resistance exercise. Specifically, we temporally investigated candidate gene expression and Akt‐mechanistic target of rapamycin 1 signalling along with myotube growth and tissue function. Mechanical loading (construct length increase of 15%) significantly increased insulin‐like growth factor‐1 and MMP‐2 messenger RNA expression 21 hr after overload, and the levels of the atrophic gene MAFbx were significantly downregulated 45 hr after mechanical overload. In addition, p70S6 kinase and 4EBP‐1 phosphorylation were upregulated immediately after mechanical overload. Maximal contractile force was augmented 45 hr after load with a 265% increase in force, alongside significant hypertrophy of the myotubes within the engineered muscle. Overall, mechanical loading of tissue‐engineered skeletal muscle induced hypertrophy and improved force production.
Collapse
Affiliation(s)
- Kathryn W Aguilar-Agon
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Darren J Player
- Division of Surgery, University College London, London, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
22
|
Hollenbach J, Lopez-Rodriguez E, Mühlfeld C, Schipke J. Voluntary Activity Modulates Sugar-Induced Elastic Fiber Remodeling in the Alveolar Region of the Mouse Lung. Int J Mol Sci 2019; 20:ijms20102438. [PMID: 31108840 PMCID: PMC6567106 DOI: 10.3390/ijms20102438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/11/2023] Open
Abstract
Diabetes and respiratory diseases are frequently comorbid conditions. However, the mechanistic links between hyperglycemia and lung dysfunction are not entirely understood. This study examined the effects of high sucrose intake on lung mechanics and alveolar septal composition and tested voluntary activity as an intervention strategy. C57BL/6N mice were fed a control diet (CD, 7% sucrose) or a high sucrose diet (HSD, 35% sucrose). Some animals had access to running wheels (voluntary active; CD-A, HSD-A). After 30 weeks, lung mechanics were assessed, left lungs were used for stereological analysis and right lungs for protein expression measurement. HSD resulted in hyperglycemia and higher static compliance compared to CD. Lung and septal volumes were increased and the septal ratio of elastic-to-collagen fibers was decreased despite normal alveolar epithelial volumes. Elastic fibers appeared more loosely arranged accompanied by an increase in elastin protein expression. Voluntary activity prevented hyperglycemia in HSD-fed mice. The parenchymal airspace volume, but not the septal volume, was increased. The septal extracellular matrix (ECM) composition together with the protein expression of ECM components was similar to control levels in the HSD-A-group. In conclusion, HSD was associated with elastic fiber remodeling and reduced pulmonary elasticity. Voluntary activity alleviated HSD-induced ECM alterations, possibly by preventing hyperglycemia.
Collapse
Affiliation(s)
- Julia Hollenbach
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), 30625 Hannover, Germany.
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), 30625 Hannover, Germany.
| |
Collapse
|
23
|
Hojman P, Brolin C, Nørgaard-Christensen N, Dethlefsen C, Lauenborg B, Olsen CK, Åbom MM, Krag T, Gehl J, Pedersen BK. IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity. Am J Physiol Endocrinol Metab 2019; 316:E940-E947. [PMID: 30779630 DOI: 10.1152/ajpendo.00414.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IL-6 is secreted from muscles to the circulation during high-intensity and long-duration exercise, where muscle-derived IL-6 works as an energy sensor to increase release of energy substrates from liver and adipose tissues. We investigated the mechanism involved in the exercise-mediated surge in IL-6 during exercise. Using interval-based cycling in healthy young men, swimming exercise in mice, and electrical stimulation of primary human muscle cells, we explored the role of lactate production in muscular IL-6 release during exercise. First, we observed a tight correlation between lactate production and IL-6 release during both strenuous bicycling and electrically stimulated muscle cell cultures. In mice, intramuscular injection of lactate mimicked the exercise-dependent release of IL-6, and pH buffering of lactate production during exercise attenuated IL-6 secretion. Next, we used in vivo bioimaging to demonstrate that intrinsic intramuscular proteases were activated in mice during swimming, and that blockade of protease activity blunted swimming-induced IL-6 release in mice. Last, intramuscular injection of the protease hyaluronidase resulted in dramatic increases in serum IL-6 in mice, and immunohistochemical analyses showed that intramuscular lactate and hyaluronidase injections led to release of IL-6-containing intramyocellular vesicles. We identified a pool of IL-6 located within vesicles of skeletal muscle fibers, which could be readily secreted upon protease activity. This protease-dependent release of IL-6 was initiated by lactate production, linking training intensity and lactate production to IL-6 release during strenuous exercise.
Collapse
Affiliation(s)
- Pernille Hojman
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Copenhagen University Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Camilla Brolin
- Department of Cellular and Molecular Medicine, University of Copenhagen , Copenhagen , Denmark
| | - Nynne Nørgaard-Christensen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Copenhagen University Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Christine Dethlefsen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Copenhagen University Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Britt Lauenborg
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Copenhagen University Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Cecilie Køllner Olsen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Copenhagen University Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Mette Marie Åbom
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Copenhagen University Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Copenhagen University Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology and Palliative Care, Zealand University Hospital , Roskilde , Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Copenhagen University Hospital, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
24
|
Guzzoni V, Selistre-de-Araújo HS, Marqueti RDC. Tendon Remodeling in Response to Resistance Training, Anabolic Androgenic Steroids and Aging. Cells 2018; 7:E251. [PMID: 30544536 PMCID: PMC6316563 DOI: 10.3390/cells7120251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Exercise training (ET), anabolic androgenic steroids (AAS), and aging are potential factors that affect tendon homeostasis, particularly extracellular matrix (ECM) remodeling. The goal of this review is to aggregate findings regarding the effects of resistance training (RT), AAS, and aging on tendon homeostasis. Data were gathered from our studies regarding the impact of RT, AAS, and aging on the calcaneal tendon (CT) of rats. We demonstrated a series of detrimental effects of AAS and aging on functional and biomechanical parameters, including the volume density of blood vessel cells, adipose tissue cells, tendon calcification, collagen content, the regulation of the major proteins related to the metabolic/development processes of tendons, and ECM remodeling. Conversely, RT seems to mitigate age-related tendon dysfunction. Our results suggest that AAS combined with high-intensity RT exert harmful effects on ECM remodeling, and also instigate molecular and biomechanical adaptations in the CT. Moreover, we provide further information regarding the harmful effects of AAS on tendons at a transcriptional level, and demonstrate the beneficial effects of RT against the age-induced tendon adaptations of rats. Our studies might contribute in terms of clinical approaches in favor of the benefits of ET against tendinopathy conditions, and provide a warning on the harmful effects of the misuse of AAS on tendon development.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Departamento de Biologia Molecular e Celular, Universidade Federal da Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | | | - Rita de Cássia Marqueti
- Graduate Program of Rehabilitation Science, University of Brasilia, Distrito Federal, Brasília 70840-901, Distrito Federal, Brazil.
| |
Collapse
|
25
|
Subramanian A, Kanzaki LF, Galloway JL, Schilling TF. Mechanical force regulates tendon extracellular matrix organization and tenocyte morphogenesis through TGFbeta signaling. eLife 2018; 7:e38069. [PMID: 30475205 PMCID: PMC6345564 DOI: 10.7554/elife.38069] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022] Open
Abstract
Mechanical forces between cells and extracellular matrix (ECM) influence cell shape and function. Tendons are ECM-rich tissues connecting muscles with bones that bear extreme tensional force. Analysis of transgenic zebrafish expressing mCherry driven by the tendon determinant scleraxis reveals that tendon fibroblasts (tenocytes) extend arrays of microtubule-rich projections at the onset of muscle contraction. In the trunk, these form a dense curtain along the myotendinous junctions at somite boundaries, perpendicular to myofibers, suggesting a role as force sensors to control ECM production and tendon strength. Paralysis or destabilization of microtubules reduces projection length and surrounding ECM, both of which are rescued by muscle stimulation. Paralysis also reduces SMAD3 phosphorylation in tenocytes and chemical inhibition of TGFβ signaling shortens tenocyte projections. These results suggest that TGFβ, released in response to force, acts on tenocytes to alter their morphology and ECM production, revealing a feedback mechanism by which tendons adapt to tension.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineUnited States
| | - Lauren Fallon Kanzaki
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineUnited States
| | - Jenna Lauren Galloway
- Center for Regenerative Medicine, Department of Orthopaedic SurgeryMassachusetts General Hospital, Harvard Stem Cell InstituteBostonUnited States
| | | |
Collapse
|
26
|
Rooney SI, Torino DJ, Baskin R, Vafa RP, Khandekar PS, Kuntz AF, Soslowsky LJ. Doxycycline improves cage activity, but not exercised, supraspinatus tendon and muscle in a rat model. J Biomech 2018; 80:79-87. [PMID: 30217557 DOI: 10.1016/j.jbiomech.2018.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/16/2018] [Accepted: 08/22/2018] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the effects of doxycycline, a broad-spectrum MMP inhibitor, on cage activity and exercised supraspinatus tendon and muscle using a Sprague-Dawley rat model of non-injurious exercise. Because exercise may alter muscle and tendon MMP activity and matrix turnover, we hypothesized that doxycycline would abolish the beneficial adaptations found with exercise but have no effect on cage activity muscle and tendon properties. Rats were divided into acute or chronic exercise (EX) or cage activity (CA) groups, and half of the rats received doxycycline orally. Animals in acute EX groups were euthanized 24 h after a single bout of exercise (10 m/min, 1 h) on a flat treadmill. Animals in chronic EX groups walked on a flat treadmill and were euthanized at 2 or 8 week time points. Assays included supraspinatus tendon mechanics and histology and muscle fiber morphologic and type analysis. Doxycycline improved tendon mechanical properties and collagen organization in chronic cage activity groups, which was not consistently evident in exercised groups. Combined with exercise, doxycycline decreased average muscle fiber cross-sectional area. Results of this study suggest that administration of doxycycline at pharmaceutical doses induces beneficial supraspinatus tendon adaptations without negatively affecting the muscle in cage activity animals, supporting the use of doxycycline to combat degenerative processes associated with underuse; however, when combined with exercise, doxycycline does not consistently produce the same beneficial adaptations in rat supraspinatus tendons and reduces muscle fiber cross-sectional area, suggesting that doxycycline is not advantageous when combined with activity.
Collapse
Affiliation(s)
| | - Daniel J Torino
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Baskin
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Rameen P Vafa
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Pooja S Khandekar
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Sundblad P, Kölegård R, Rullman E, Gustafsson T. Effects of training with flow restriction on the exercise pressor reflex. Eur J Appl Physiol 2018; 118:1903-1909. [PMID: 29951915 PMCID: PMC6105264 DOI: 10.1007/s00421-018-3911-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 06/10/2018] [Indexed: 12/02/2022]
Abstract
Purpose We hypothesized that 5 weeks of endurance training with blood flow restriction (R-training), providing relative ischemia and stimulation of the muscle chemoreflex, would decrease the exercise pressor reflex (EPR) when compared to training with the same workload in a free-flow condition (NR-training). Methods 10 subjects performed one-leg knee-extension training four times a week during a 5-week period. Both legs were trained with identical workload, with one leg being trained during flow-restriction induced by lower body positive pressure. The EPR was assessed by measuring the increase in heart rate (HR) and mean arterial pressure (MAP) during an isometric knee extension of 35% of max torque for 90 s, this was done before (C), and after training in each leg (R and NR, respectively). Results At the end of isometric contraction, the increase in mean AP (MAP) in the NR-trained leg and in the control condition were 41 ± 4 and 38 ± 4 mmHg, respectively, whereas the increase in the R-trained leg was 30 ± 4 mmHg (p < 0.05 R vs C and NR), corresponding to a decrease of about 25%. A similar patter was observed with respect to responses in HR, where the increase was 28 ± 3 and 28 ± 3 bpm in the NR and C, and 22 ± 4 in the R condition (p < 0.05 R vs C and NR). Conclusions Peripheral metabolic changes induced by relative ischemia are important in modifying the EPR in response to exercise training.
Collapse
Affiliation(s)
- Patrik Sundblad
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, SE-141 86, Stockholm, Sweden.
- Department of Clinical Physiology, Karolinska University Hospital, SE-141 86, Stockholm, Sweden.
| | - Roger Kölegård
- Department of Environmental Physiology, School of Technology and Health, KTH Royal Institute of Technology, Berzelius väg 13, 171 65, Solna, Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, SE-141 86, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, SE-141 86, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| |
Collapse
|
28
|
Wu J, Saovieng S, Cheng IS, Liu T, Hong S, Lin CY, Su IC, Huang CY, Kuo CH. Ginsenoside Rg1 supplementation clears senescence-associated β-galactosidase in exercising human skeletal muscle. J Ginseng Res 2018; 43:580-588. [PMID: 31695564 PMCID: PMC6823780 DOI: 10.1016/j.jgr.2018.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Background Ginsenoside Rg1 has been shown to clear senescence-associated beta-galactosidase (SA-β-gal) in cultured cells. It remains unknown whether Rg1 can influence SA-β-gal in exercising human skeletal muscle. Methods To examine SA-β-gal change, 12 young men (age 21 ± 0.2 years) were enrolled in a randomized double-blind placebo controlled crossover study, under two occasions: placebo (PLA) and Rg1 (5 mg) supplementations 1 h prior to a high-intensity cycling (70% VO2max). Muscle samples were collected by multiple biopsies before and after cycling exercise (0 h and 3 h). To avoid potential effect of muscle biopsy on performance assessment, cycling time to exhaustion test (80% VO2max) was conducted on another 12 participants (age 23 ± 0.5 years) with the same experimental design. Results No changes of SA-β-gal were observed after cycling in the PLA trial. On the contrary, nine of the 12 participants showed complete elimination of SA-β-gal in exercised muscle after cycling in the Rg1 trial (p < 0.05). Increases in apoptotic DNA fragmentation (PLA: +87% vs. Rg1: +133%, p < 0.05) and CD68+ (PLA: +78% vs. Rg1: +121%, p = 0.17) occurred immediately after cycling in both trials. During the 3-h recovery, reverses in apoptotic nuclei content (PLA: +5% vs. Rg1: −32%, p < 0.01) and increases in inducible nitrate oxide synthase and interleukin 6 mRNA levels of exercised muscle were observed only in the Rg1 trial (p < 0.01). Conclusion Rg1 supplementation effectively eliminates senescent cells in exercising human skeletal muscle and improves high-intensity endurance performance.
Collapse
Affiliation(s)
- Jinfu Wu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Suchada Saovieng
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - I-Shiung Cheng
- Laboratory of Exercise Nutrition, National Taichung University of Education, Taichung, Taiwan
| | - Tiemin Liu
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shangyu Hong
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang-Yu Lin
- Laboratory of Exercise Nutrition, National Taichung University of Education, Taichung, Taiwan
| | - I-Chen Su
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| |
Collapse
|
29
|
Guzzoni V, Ribeiro MBT, Lopes GN, de Cássia Marqueti R, de Andrade RV, Selistre-de-Araujo HS, Durigan JLQ. Effect of Resistance Training on Extracellular Matrix Adaptations in Skeletal Muscle of Older Rats. Front Physiol 2018; 9:374. [PMID: 29695977 PMCID: PMC5904267 DOI: 10.3389/fphys.2018.00374] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/27/2018] [Indexed: 01/27/2023] Open
Abstract
Accumulation of connective tissue, particularly extracellular matrix (ECM) proteins, has been observed in skeletal muscles with advancing age. Resistance training (RT) has been widely recommended to attenuate age-induced sarcopenia, even though its effects on the components that control ECM turnover in skeletal muscles remain to be elucidated. Thus, the aim of this study was to determine the effects of RT on connective tissue content and gene expression of key components of ECM in the skeletal muscles of aged rats. Young (3 mo.) and older (21 mo.) adult male Wistar rats were submitted to a RT protocol (ladder climbing with 65, 85, 95, and 100% load), 3 times a week for 12 weeks. Forty-eight hours post-training, the soleus (SOL) and gastrocnemius (GAS) muscles were dissected for histological and mRNA analysis. RT mitigated the age-associated increase of connective tissue content in both muscles, even though mRNA levels of COL-1 and−3 were elevated in older trained rats. Overall, RT significantly elevated the gene expression of key components of connective tissue deposition (TGFβ and CTGF; MMP-2 and-9; TIMP-1 and−2) in the GAS and SOL muscles of older rats. In conclusion, RT blunted the age-induced accumulation of connective tissue concomitant to the upregulation of genes related to synthesis and degradation of the ECM network in the SOL and GAS muscles of older rats. Although our findings indicate that RT plays a crucial role reducing connective tissue accumulation in aged hindlimb muscles, key components of ECM turnover were paradoxically elevated. The phenotypic responses induced by RT were not accompanied by the gene expression of those components related to ECM turnover.
Collapse
Affiliation(s)
| | - Manoel B T Ribeiro
- Department of Physical Education, University of Brasília, Brasília, Brazil
| | - Gisele N Lopes
- Department of Physiological Sciences, Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | | | - Rosângela V de Andrade
- Graduate Program of Genomics and Proteomics, Catholic University of Brasilia, Brasilia, Brazil
| | - Heloisa S Selistre-de-Araujo
- Department of Physiological Sciences, Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - João L Q Durigan
- Graduate Program of Rehabilitation Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
30
|
Alameddine HS, Morgan JE. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J Neuromuscul Dis 2018; 3:455-473. [PMID: 27911334 PMCID: PMC5240616 DOI: 10.3233/jnd-160183] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs' overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis.
Collapse
Affiliation(s)
- Hala S Alameddine
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| |
Collapse
|
31
|
Winchester LJ, Veeranki S, Pushpakumar S, Tyagi SC. Exercise mitigates the effects of hyperhomocysteinemia on adverse muscle remodeling. Physiol Rep 2018; 6:e13637. [PMID: 29595876 PMCID: PMC5875547 DOI: 10.14814/phy2.13637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is known for causing inflammation and vascular remodeling, particularly through production of reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) activation. Although its effect on the skeletal muscle is unclear, HHcy can cause skeletal muscle weakness and functional impairment by induction of inflammatory mediators and macrophage mediated injury. Exercise has been shown to reduce homocysteine levels and therefore, could serve as a promising intervention for HHcy. The purpose of this study was to investigate whether HHcy causes skeletal muscle fibrosis through induction of inflammation and determine whether exercise can mitigate these effects. C57BL/6J (WT) and CBS+/- (HHcy) mice were administered a 6 weeks treadmill exercise protocol. Hindlimb perfusion was measured via laser Doppler. Measurement of skeletal muscle protein expression was done by western blot. Levels of skeletal muscle MMP-9 mRNA were determined by qPCR. Collagen deposition in the skeletal muscle was measured using Masson's trichrome staining. In CBS+/- mice, HHcy manifested with decreased body weight and femoral artery lumen diameter, as well as a trend of lower hindlimb perfusion. These mice displayed increased wall to lumen ratio, mean arterial blood pressure, collagen deposition, and elevated myostatin protein expression. Exercise mitigated the effects above in CBS+/- mice. Skeletal muscle from CBS+/- mice had elevated markers of remodeling and hypoxia: iNOS, EMMPRIN, and MMP-9. We conclude that HHcy causes skeletal muscle fibrosis possibly through induction of EMMPRIN/MMP-9 and exercise is capable of mitigating the pathologies associated with HHcy.
Collapse
Affiliation(s)
- Lee J. Winchester
- School of Kinesiology, Recreation, and SportWestern Kentucky UniversityBowling GreenKentucky
| | | | | | - Suresh C. Tyagi
- Department of PhysiologyUniversity of LouisvilleLouisvilleKentucky
| |
Collapse
|
32
|
Reyngoudt H, Turk S, Carlier PG. 1 H NMRS of carnosine combined with 31 P NMRS to better characterize skeletal muscle pH dysregulation in Duchenne muscular dystrophy. NMR IN BIOMEDICINE 2018; 31:e3839. [PMID: 29130550 DOI: 10.1002/nbm.3839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
Abstract
In recent years, quantitative nuclear magnetic resonance imaging and spectroscopy (NMRI and NMRS) have been used more systematically as outcome measures in natural history and clinical trial studies for Duchenne muscular dystrophy (DMD). Whereas most of these studies have emphasized the evaluation of the fat fraction as an assessment for disease severity, less focus has been placed on metabolic indices measured by NMRS. 31 P NMRS in DMD reveals an alkaline inorganic phosphate (Pi ) pool, originating from either leaky dystrophic myocytes or an increased interstitial space. 1 H NMRS, exploiting the pH-sensitive proton resonances of carnosine, an intracellular dipeptide, was used to distinguish between these two hypotheses. NMR data were obtained in 23 patients with DMD and 14 healthy subjects on a 3-T clinical NMR system. Both 31 P and 1 H NMRS data were acquired at the level of the gastrocnemius medialis muscle. A multi-slice multi-echo imaging acquisition was performed for the determination of water T2 and fat fraction in the same region of interest. Whereas nearly all patients with DMD showed an elevated pH compared with healthy controls when using 31 P NMRS, 1 H NMRS-determined pH was not systematically increased. As expected, the carnosine-based intracellular pH was never found to be alkaline in the absence of a concurrent Pi -based pH elevation. In addition, abnormal intracellular pH, based on carnosine, was never associated with normal water T2 values. We conclude that, in one group of patients, both 1 H and 31 P NMRS showed an alkaline pH, originating from the intracellular compartment and reflecting ionic dysregulation in dystrophic myocytes. In the other patients with DMD, intracellular pH was normal, but an alkaline Pi pool was still present, suggesting an extracellular origin, probably revealing an expanded interstitial volume fraction, often associated with fibrotic changes. The data demonstrate that 1 H NMRS could serve as a biomarker to assess the normalization of intramyocytic pH and sarcolemmal permeability following therapy inducing dystrophin expression in patients with DMD.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Institute of Myology, Paris, France
- CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Suna Turk
- NMR Laboratory, Institute of Myology, Paris, France
- CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Institute of Myology, Paris, France
- CEA, DRF, IBFJ, MIRCen, Paris, France
| |
Collapse
|
33
|
Zamanian M, Hajizadeh M, Shamsizadeh A, Moemenzadeh M, Amirteimouri M, Elshiekh M, Allahtavakoli M. Effects of naringin on physical fatigue and serum MMP-9 concentration in female rats. PHARMACEUTICAL BIOLOGY 2017; 55:423-427. [PMID: 27937032 PMCID: PMC6130689 DOI: 10.1080/13880209.2016.1244553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/20/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Oxidative stress has a critical role in the development of physical fatigue and activation of matrix metalloproteinases-9 (MMP-9). Naringin (Nar) is a bioflavonoid that has antioxidant activity and suppresses MMP-9 expression. OBJECTIVE The present study evaluates the anti-fatigue activity of Nar on physical fatigue and serum MMP-9 concentration in rats. MATERIALS AND METHODS Fifty female Wistar rats were randomly divided into five groups (n = 10); a control group, vehicle group and three Nar treatment groups. The Nar treated groups received different doses of Nar (40, 80 and 160 mg/kg/day) for 30 days. On the 30th day, rats were sacrificed immediately after exhaustive swimming test. Serum MMP-9 concentration and several biochemical parameters related to fatigue were measured. RESULTS Exhaustive swimming time in the Nar-80 group significantly increased 1.78-, 1.53-, 1.5- and 1.3-fold compared with the control, vehicle, Nar-40 and Nar-160 groups, respectively. In addition, exhaustive swimming time in the Nar-160 group significantly increased 1.36-fold compared with the control group. Nar-80 significantly decreased LDH activity by 60.45% and 57.47% compared with the vehicle and control groups, respectively. Furthermore, Nar-80 and Nar-160 increased blood glucose levels by 19.56% and 18.38% compared with the control group, respectively. Nar-80 and Nar-160 significantly decreased serum MMP-9 concentration by 61.57% and 83.39% compared with the control group, respectively. CONCLUSION Based on our data, Nar has anti-fatigue effects which may be attributed to its property in modulating energy metabolism and reducing serum MMP-9 concentration. Thus, Nar may be a promising agent for the treatment of physical fatigue.
Collapse
Affiliation(s)
- Mohammad Zamanian
- Physiology-Pharmacology Research Center and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammadreza Hajizadeh
- Department of Clinical Biochemistry, Rafsanjani University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Moemenzadeh
- Physiology-Pharmacology Research Center and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Morteza Amirteimouri
- Physiology-Pharmacology Research Center and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Elshiekh
- Department of Physiology Faculty of Medicine, University of Medical Sciences, Tehran, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
34
|
Abstract
BACKGROUND Matrix metalloproteinases (MMPs), particularly gelatinase A (MMP-2) and gelatinase B (MMP-9), as well as their tissue inhibitors (TIMP-1 and TIMP-2), are involved in the development of skeletal muscle tissue, in the repair process after muscle injury and in the adaptive modifications induced by physical exercise in skeletal muscle. This paper aims at reviewing results from human studies that investigated the role of gelatinases and their inhibitors in skeletal muscle response to acute physical exercise or training. METHODS Electronic databases PubMed/MEDLINE, Scopus and Web of Science were searched for papers published between January 2000 and February 2017. The papers were eligible when reporting human studies in which MMP-2 and/or MMP-9 and/or the inhibitors TIMP-1/TIMP-2 were evaluated, in blood or muscular tissue, before and after acute physical exercise or before and after a period of structured physical training. We included studies on healthy subjects and patients with chronic metabolic diseases (obesity, diabetes mellitus, metabolic syndrome-MS) or asymptomatic coronary artery disease. We excluded studies on patients with neurological, rheumatologic or neoplastic diseases. RESULTS Studies conducted on muscle biopsies showed an early stimulation of MMP-9 gene transcription as a result of acute exercise, whereas MMP-2 and TIMP transcription resulted from regular repetition of exercise over time. Studies on serum or plasma level of gelatinases and their inhibitors showed an early release of MMP-9 after acute exercise of sufficient intensity, while data on MMP-2 and TIMP were more contrasting. Most of the studies dealing with the effect of training indicated a trend toward reduction in blood gelatinase levels, once again more clear for MMP-9. This result was related to an anti-inflammatory effect of regular exercise and was more evident when training consisted of aerobic activities. This study has limitations: as the initial selection was done through titles and abstracts, incomplete retrieval cannot be excluded, as well as we cannot exclude bias due to selective reporting within studies. CONCLUSION A better knowledge of the molecular events activated by different types of acute exercise and regular training could be of great relevance in order to maximize the benefits of physical activity in healthy subjects and patients.
Collapse
Affiliation(s)
- Rosalia Lo Presti
- Dipartimento di Scienze Psicologiche, Pedagogiche e della Formazione
| | - Eugenia Hopps
- Dipartimento Biomedico di Medicina Interna e Specialistica Università degli Studi di Palermo, Palermo, Italy
| | - Gregorio Caimi
- Dipartimento Biomedico di Medicina Interna e Specialistica Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
35
|
Martinez-Huenchullan S, McLennan SV, Verhoeven A, Twigg SM, Tam CS. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise. Obes Rev 2017; 18:776-790. [PMID: 28474421 DOI: 10.1111/obr.12548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 01/14/2023]
Abstract
Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise.
Collapse
Affiliation(s)
- S Martinez-Huenchullan
- Greg Brown Diabetes & Endocrinology Laboratory and Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - S V McLennan
- Greg Brown Diabetes & Endocrinology Laboratory and Charles Perkins Centre, University of Sydney, Sydney, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.,Department of Chemical Pathology, Royal Prince Alfred Hospital, NSW Health Pathology, Sydney, Australia
| | - A Verhoeven
- Greg Brown Diabetes & Endocrinology Laboratory and Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - S M Twigg
- Greg Brown Diabetes & Endocrinology Laboratory and Charles Perkins Centre, University of Sydney, Sydney, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - C S Tam
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
36
|
Patel SH, D'Lugos AC, Eldon ER, Curtis D, Dickinson JM, Carroll CC. Impact of acetaminophen consumption and resistance exercise on extracellular matrix gene expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2017; 313:R44-R50. [PMID: 28515079 DOI: 10.1152/ajpregu.00019.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/17/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) given during chronic exercise reduces skeletal muscle collagen and cross-linking in rats. We propose that the effect of APAP on muscle extracellular matrix (ECM) may, in part, be mediated by dysregulation of the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs). The purpose of this study was to evaluate the impact of APAP consumption during acute resistance exercise (RE) on several regulators of the ECM in human skeletal muscle. In a double-blinded, placebo-controlled, randomized crossover design, recreationally active men (n = 8, 25 ± 2 yr) performed two trials of knee extension. Placebo (PLA) or APAP (1,000 mg/6 h) was given for 24 h before and immediately following RE. Vastus lateralis biopsies were taken at baseline and 1 and 3 h post-RE. Quantitative RT-PCR was used to determine differences in mRNA expression. MMP-2, type I collagen, and type III collagen mRNA expression was not altered by exercise or APAP (P > 0.05). When compared with PLA, TIMP-1 expression was lower at 1 h post-RE during APAP conditions but greater than PLA at 3 h post-RE (P < 0.05). MMP-9 expression and protein levels were elevated at 3 h post-RE independent of treatment (P < 0.05). Lysyl oxidase expression was greater at 3 h post-RE during APAP consumption (P < 0.05) compared with PLA. MMP-2 and TIMP-1 protein was not altered by RE or APAP (P > 0.05). Phosphorylation of ERK1/2 and p38-MAPK increased (P < 0.05) with RE but was not influenced by APAP. Our findings do not support our hypothesis and suggest that short-term APAP consumption before RE has a small impact on the measured ECM molecules in human skeletal muscle following acute RE.
Collapse
Affiliation(s)
- Shivam H Patel
- Department of Physiology, Midwestern University, Glendale, Arizona.,Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Andrew C D'Lugos
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Exercise Science and Health Promotion, Arizona State University, Phoenix, Arizona; and
| | - Erica R Eldon
- Department of Physiology, Midwestern University, Glendale, Arizona
| | | | - Jared M Dickinson
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Exercise Science and Health Promotion, Arizona State University, Phoenix, Arizona; and
| | - Chad C Carroll
- Department of Physiology, Midwestern University, Glendale, Arizona; .,Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
37
|
Strömberg A, Rullman E, Jansson E, Gustafsson T. Exercise-induced upregulation of endothelial adhesion molecules in human skeletal muscle and number of circulating cells with remodeling properties. J Appl Physiol (1985) 2017; 122:1145-1154. [PMID: 28183821 DOI: 10.1152/japplphysiol.00956.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022] Open
Abstract
Multipotent cells have received great interest because of their potential capacity to repair and remodel peripheral tissues. We examined the effect of an acute exercise bout on the number of circulating cells with known remodeling properties and the level of factors in plasma and skeletal muscle tissue with potential to recruit these cells. Twenty healthy male subjects performed a 60-min cycling exercise. Blood samples for flow cytometry were drawn from 10 subjects (group 1) before and up to 2 h after exercise, and absolute cell counts of the classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocyte (MO) subpopulations and of CD45dimCD34+VEGFR2+ endothelial progenitor cells (EPCs) were measured by bead-based determination. Plasma samples and vastus lateralis muscle biopsies were obtained from the other 10 subjects (group 2). In group 1, all MO subsets were increased directly after exercise, with CD14+CD16++ MOs showing the greatest fold increase. After 2 h, only CD14++CD16- MOs were increased compared with resting levels. The number of EPCs showed a trend toward increasing with exercise (P = 0.08). In group 2, the mRNA levels of the endothelial adhesion molecules ICAM-1, VCAM-1, and E-selectin increased in the skeletal muscle tissue. VEGF-A increased in exercised skeletal muscle and stimulated the expression of VCAM-1 and E-selectin in human umbilical vein endothelial cells. In conclusion, exercise increases MO subsets with different temporal patterns and enhances the capacity of skeletal muscle tissue to recruit circulating cells as shown by increased expression of endothelial adhesion molecules.NEW & NOTEWORTHY In the present study we showed for the first time that the adhesion molecules ICAM-1, VCAM-1, and E-selectin, known to be able to recruit circulating cells to the peripheral tissue, increased in exercised human skeletal muscle concurrently with increased circulating levels of cells shown to have importance for skeletal muscle remodeling. These findings support the concept of cell recruitment from the circulation playing a role in skeletal muscle adaptation to exercise.
Collapse
Affiliation(s)
- Anna Strömberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eva Jansson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
38
|
Garg K, Boppart MD. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche. J Appl Physiol (1985) 2016; 121:1053-1058. [PMID: 27539500 DOI: 10.1152/japplphysiol.00594.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span.
Collapse
Affiliation(s)
- Koyal Garg
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
39
|
Giganti MG, Tresoldi I, Sorge R, Melchiorri G, Triossi T, Masuelli L, Lido P, Albonici L, Foti C, Modesti A, Bei R. Physical exercise modulates the level of serum MMP-2 and MMP-9 in patients with breast cancer. Oncol Lett 2016; 12:2119-2126. [PMID: 27602150 DOI: 10.3892/ol.2016.4887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/19/2016] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) exhibit an important function in extracellular matrix degradation. MMPs modulate the activation of growth factors, cytokines and metastasis. At present, the effect of exercise on serum levels of MMP-2 and -9 remains unclear. The aim of the present study was to investigate the effect of various physical activities on the circulating levels of MMP-2 and -9 in breast cancer (BC) survivors and healthy subjects. A total of 66 female subjects were enrolled in the present study. The cohort included 46 BC survivors and 20 healthy subjects divided into 5 groups: Group A (17 BC survivors, participating in recreational dragon boat paddling), group B (14 BC survivors, participating in recreational physical activity), group C (15 sedentary BC survivors), group D (10 healthy subjects, participating in recreational physical activity) and group E (10 sedentary healthy subjects). ELISA assays revealed a significant increase in the level of circulating MMP-2 in group B compared with all other groups. Recreational physical activity increased the levels of MMP-9 in healthy subjects (group D vs. E), however, the differences were not statistically significant, while in the BC survivor groups the results were opposite, with exercise reducing MMP-9 levels (group B vs. C). Furthermore, a significant increase in MMP-2 was observed in group B lymph node metastasis-positive (N+) subjects compared with group A and C N+ subjects. Thus, the results of the present study indicate that various physical activities modulate the levels of circulating MMP-2 and -9 in BC survivors, and the same exercise program induces a different effect when undertaken by healthy subjects and BC survivors. These results may have important implications with regard to the selection of appropriate physical activities for BC survivors, leading to improvements to their survival and prevention of recurrence, as well as amelioration of physical function, quality of life and fatigue.
Collapse
Affiliation(s)
- Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Roberto Sorge
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Giovanni Melchiorri
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Tamara Triossi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome 'Sapienza', Rome 00185, Italy
| | - Paolo Lido
- Internal Medicine Residency Program, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Calogero Foti
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| |
Collapse
|
40
|
Abstract
Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| |
Collapse
|
41
|
Baum O, Bigler M. Pericapillary basement membrane thickening in human skeletal muscles. Am J Physiol Heart Circ Physiol 2016; 311:H654-66. [PMID: 27371680 DOI: 10.1152/ajpheart.00048.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/19/2016] [Indexed: 01/09/2023]
Abstract
The basement membrane (BM) surrounding capillaries in skeletal muscles varies physiologically in thickness according to age, physical fitness, and anatomical site in humans. Furthermore, the pericapillary BM thickness (CBMT) increases pathophysiologically during several common disease states, including peripheral arterial disease and diabetes mellitus. This review on CBM thickening in human skeletal muscles is two pronged. First, it addresses the advantages/disadvantages of grid- and tablet-based measuring and morphometric techniques that are implemented to assess the CBMT on transmission electron micrographs. Second, it deals with the biology of CBM thickening in skeletal muscles, particularly its possible causes, molecular mechanisms, and functional impact. CBM thickening is triggered by several physical factors, including diabetes-associated glycation, hydrostatic pressure, and inflammation. Increased biosynthesis of type IV collagen expression or repetitive cycles in pericyte or endothelial cell degeneration/proliferation appear to be most critical for CBM accumulation. A thickened CBM obviously poses a greater barrier for diffusion, lowers the microvascular elasticity, and impedes transcytosis of inflammatory cells. Our own morphometric data reveal the CBM enlargement to be not accompanied by the pericyte coverage. Owing to an overlap or redundancy in the capillary supply, CBM thickening in skeletal muscles might not be such a devastating occurrence as in organs with endarterial circulation (e.g., kidney and retina). CBM growth in skeletal muscles can be reversed by training or administration of antidiabetic drugs. In conclusion, CBM thickening in skeletal muscles is a microvascular remodeling process by which metabolic, hemodynamic, and inflammatory forces are integrated together and which could play a hitherto underestimated role in etiology/progression of human diseases.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marius Bigler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
42
|
Taylor CW, Ingham SA, Hunt JEA, Martin NRW, Pringle JSM, Ferguson RA. Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1α and VEGF mRNA expression in trained individuals. Eur J Appl Physiol 2016; 116:1445-54. [PMID: 27251406 PMCID: PMC4943987 DOI: 10.1007/s00421-016-3402-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
Purpose The effects of low-volume interval and continuous ‘all-out’ cycling, matched for total exercise duration, on mitochondrial and angiogenic cell signalling was investigated in trained individuals. Methods In a repeated measures design, 8 trained males (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{{2{\text{peak}}}}$$\end{document}V˙O2peak, 57 ± 7 ml kg−1 min−1) performed two cycling exercise protocols; interval (INT, 4 × 30 s maximal sprints interspersed by 4 min passive recovery) or continuous (CON, 2 min continuous maximal sprint). Muscle biopsies were obtained before, immediately after and 3 h post-exercise. Results Total work was 53 % greater (P = 0.01) in INT compared to CON (71.2 ± 7.3 vs. 46.3 ± 2.7 kJ, respectively). Phosphorylation of AMPKThr172 increased by a similar magnitude (P = 0.347) immediately post INT and CON (1.6 ± 0.2 and 1.3 ± 0.3 fold, respectively; P = 0.011), before returning to resting values at 3 h post-exercise. mRNA expression of PGC-1α (7.1 ± 2.1 vs. 5.5 ± 1.8 fold; P = 0.007), VEGF (3.5 ± 1.2 vs. 4.3 ± 1.8 fold; P = 0.02) and HIF-1α (2.0 ± 0.5 vs. 1.5 ± 0.3 fold; P = 0.04) increased at 3 h post-exercise in response to INT and CON, respectively; the magnitude of which were not different between protocols. Conclusions Despite differences in total work done, low-volume INT and CON ‘all-out’ cycling, matched for exercise duration, provides a similar stimulus for the induction of mitochondrial and angiogenic cell signalling pathways in trained skeletal muscle.
Collapse
Affiliation(s)
- Conor W Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.,English Institute of Sport, EIS Performance Centre, Loughborough University, Loughborough, LE11 3TU, UK.,English Institute of Sport, Manchester Institute of Health and Performance, 299 Alan Turing Way, Manchester, M11 3BS, UK
| | - Stephen A Ingham
- English Institute of Sport, EIS Performance Centre, Loughborough University, Loughborough, LE11 3TU, UK
| | - Julie E A Hunt
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.,Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7YW, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Jamie S M Pringle
- English Institute of Sport, EIS Performance Centre, Loughborough University, Loughborough, LE11 3TU, UK.,British Athletics, National Performance Institute, Loughborough University, Loughborough, LE11 3TU, UK
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
43
|
Linden MA, Sheldon RD, Meers GM, Ortinau LC, Morris EM, Booth FW, Kanaley JA, Vieira-Potter VJ, Sowers JR, Ibdah JA, Thyfault JP, Laughlin MH, Rector RS. Aerobic exercise training in the treatment of non-alcoholic fatty liver disease related fibrosis. J Physiol 2016; 594:5271-84. [PMID: 27104887 DOI: 10.1113/jp272235] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/13/2016] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Physiologically relevant rodent models of non-alcoholic steatohepatitis (NASH) that resemble the human condition are limited. Exercise training and energy restriction are first-line recommendations for the treatment of NASH. Hyperphagic Otsuka Long-Evans Tokushima fatty rats fed a western diet high in fat, sucrose and cholesterol for 24 weeks developed a severe NASH with fibrosis phenotype. Moderate intensity exercise training and modest energy restriction provided some improvement in the histological features of NASH that coincided with alterations in markers of hepatic stellate cell activation and extracellular matrix remodelling. The present study highlights the importance of lifestyle modification, including exercise training and energy restriction, in the regulation of advanced liver disease. ABSTRACT The incidence of non-alcoholic steatohepatitis (NASH) is rising but the efficacy of lifestyle modifications to improve NASH-related outcomes remain unclear. We hypothesized that a western diet (WD) would induce NASH in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat and that lifestyle modification would improve this condition. Eight-week-old Long-Evans Tokushima Otsuka (L) and OLETF (O) rats consumed a control diet (10% kcal fat, 3.5% sucrose) or a WD (45% kcal fat, 17% sucrose, 1% cholesterol) for 24 weeks. At 20 weeks of age, additional WD-fed OLETFs were randomized to sedentary (O-SED), food restriction (O-FR; ∼25% kcal reduction vs. O-SED) or exercise training (O-EX; treadmill running 20 m min(-1) with a 15% incline, 60 min day(-1) , 5 days week(-1) ) conditions for 12 weeks. WD induced a NASH phenotype in OLETFs characterized by hepatic fibrosis (collagen 1α1 mRNA and hydroxyproline content), as well as elevated inflammation and non-alcoholic fatty liver disease activity scores, and hepatic stellate cell activation (α-smooth muscle actin) compared to Long-Evans Tokushima Otsuka rats. FR and EX modestly improved NASH-related fibrosis markers (FR: hydroxyproline content, P < 0.01; EX: collagen 1α1 mRNA, P < 0.05; both: fibrosis score, P < 0.01) and inflammation (both: inflammation score; FR: interleukin-1β and tumor necrosis factor α) vs. O-SED. FR reduced hepatic stellate cell activation markers (transforming growth factor-β protein and α-smooth muscle actin mRNA), whereas EX increased the hepatic stellate cell senescence marker CCN1 (P < 0.01 vs. O-SED). Additionally, both FR and EX normalized extracellular matrix remodelling markers to levels similar to L-WD (P > 0.05). Although neither EX nor FR led to complete resolution of the WD-induced NASH phenotype, both independently benefitted liver fibrosis via altered hepatic stellate cell activation and extracellular matrix remodelling.
Collapse
Affiliation(s)
- Melissa A Linden
- Research Service, Harry S Truman Memorial VA Hospital.,Department of Nutrition and Exercise Physiology
| | - Ryan D Sheldon
- Research Service, Harry S Truman Memorial VA Hospital.,Department of Nutrition and Exercise Physiology
| | - Grace M Meers
- Research Service, Harry S Truman Memorial VA Hospital.,Department of Medicine-Division of Gastroenterology and Hepatology
| | | | - E Matthew Morris
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - Frank W Booth
- Department of Biomedical Sciences.,Department of Medical Pharmacology and Physiology.,Dalton Cardiovascular Research Centre
| | | | | | - James R Sowers
- Research Service, Harry S Truman Memorial VA Hospital.,Medicine-Division of Endocrinology, University of Missouri, Columbia, MO, USA
| | - Jamal A Ibdah
- Research Service, Harry S Truman Memorial VA Hospital.,Department of Medicine-Division of Gastroenterology and Hepatology.,Department of Medical Pharmacology and Physiology
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA.,Kansas City VA Medical Centre, Kansas City, MO, USA
| | | | - R Scott Rector
- Research Service, Harry S Truman Memorial VA Hospital. .,Department of Medicine-Division of Gastroenterology and Hepatology. .,Department of Nutrition and Exercise Physiology.
| |
Collapse
|
44
|
Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 2016; 142:4191-204. [PMID: 26672092 DOI: 10.1242/dev.114777] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tendons and ligaments are extracellular matrix (ECM)-rich structures that interconnect muscles and bones. Recent work has shown how tendon fibroblasts (tenocytes) interact with muscles via the ECM to establish connectivity and strengthen attachments under tension. Similarly, ECM-dependent interactions between tenocytes and cartilage/bone ensure that tendon-bone attachments form with the appropriate strength for the force required. Recent studies have also established a close lineal relationship between tenocytes and skeletal progenitors, highlighting the fact that defects in signals modulated by the ECM can alter the balance between these fates, as occurs in calcifying tendinopathies associated with aging. The dynamic fine-tuning of tendon ECM composition and assembly thus gives rise to the remarkable characteristics of this unique tissue type. Here, we provide an overview of the functions of the ECM in tendon formation and maturation that attempts to integrate findings from developmental genetics with those of matrix biology.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| |
Collapse
|
45
|
|
46
|
Strömberg A, Olsson K, Dijksterhuis JP, Rullman E, Schulte G, Gustafsson T. CX3CL1--a macrophage chemoattractant induced by a single bout of exercise in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2015; 310:R297-304. [PMID: 26632602 DOI: 10.1152/ajpregu.00236.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023]
Abstract
Monocytes/macrophages (MOs/MΦs) are suggested to be crucial for skeletal muscle repair and remodeling. This has been attributed to their proangiogenic potential, secretion of growth factors, and clearance of tissue debris. Skeletal muscle injury increases the number of MΦs in the tissue, and their importance for muscle regeneration has been supported by studies demonstrating that depletion of MOs/MΦs greatly impairs repair after muscle injury. Whether noninjurious exercise leads to induced expression of chemoattractants for MOs/MΦs is poorly investigated. To this end, we analyzed the expression of CX3CL1 (fractalkine), CCL2 (MCP-1), and CCL22 (MDC) in human skeletal muscle after a bout of exercise, all of which are established MO/MΦ chemotactic factors that are expressed by human myoblasts. Muscle biopsies from the musculus vastus lateralis were obtained up to 24 h after 1 h of cycle exercise in healthy individuals and in age-matched nonexercised controls. CX3CL1 increased at both the mRNA and protein level in human skeletal muscle after one bout of exercise. It was not possible to distinguish changes in CCL2 or CCL22 mRNA levels between biopsy vs. exercise effects, and the expression of CCL22 was very low. CX3CL1 mainly localized to the skeletal muscle endothelium, and it increased in human umbilical vein endothelial cells stimulated with tissue fluid from exercised muscle. CX3CL1 increased the expression of proinflammatory and proangiogenic factors in THP-1 monocytes (a human acute monocytic leukemia cell line) and in human primary myoblasts and myotubes. Altogether, this suggests that CX3CL1 participates in cross-talk mechanisms between endothelium and other muscle tissue cells and may promote a shift in the microenvironment toward a more regenerative milieu.
Collapse
Affiliation(s)
- Anna Strömberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; and
| | - Karl Olsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; and
| | - Jacomijn P Dijksterhuis
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; and
| | - Gunnar Schulte
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; and
| |
Collapse
|
47
|
Haas TL, Nwadozi E. Regulation of skeletal muscle capillary growth in exercise and disease. Appl Physiol Nutr Metab 2015; 40:1221-32. [PMID: 26554747 DOI: 10.1139/apnm-2015-0336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| | - Emmanuel Nwadozi
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
48
|
Rooney SI, Tobias JW, Bhatt PR, Kuntz AF, Soslowsky LJ. Genetic Response of Rat Supraspinatus Tendon and Muscle to Exercise. PLoS One 2015; 10:e0139880. [PMID: 26447778 PMCID: PMC4598142 DOI: 10.1371/journal.pone.0139880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise.
Collapse
Affiliation(s)
- Sarah Ilkhanipour Rooney
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John W. Tobias
- Molecular Profiling Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pankti R. Bhatt
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew F. Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Nascimento DDC, Durigan RDCM, Tibana RA, Durigan JLQ, Navalta JW, Prestes J. The response of matrix metalloproteinase-9 and -2 to exercise. Sports Med 2015; 45:269-78. [PMID: 25252612 DOI: 10.1007/s40279-014-0265-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a major group of enzymes that play essential roles in normal functioning of diverse tissues during growth, development, and aging. However, among the MMPs little is known regarding the role of exercise in MMP-9 and MMP-2 function in humans. OBJECTIVE The aim of this study was to provide a systematic comprehensive review of the literature examining the effect of different exercise interventions on MMP-9 and MMP-2 in human investigations. DATA SOURCES A comprehensive systematic database search was performed, including PubMed/MEDLINE, Scopus, ScienceDirect, and Web of Science. STUDY SELECTION Both the acute and chronic effects of exercise were included for evaluation in this systematic review. Inclusion criteria included the use of any type of planned, structured, and repetitive movement and its effects on the MMP-2 and MMP-9 response (obtained from plasma samples), participants (humans only) of any age with or without diseases, sedentary participants and those involved in light, moderate, and vigorous activity, randomized controlled trials (RCTs) and clinical trials (CTs), full text article citations with no restrictions in terms of language, and scored at least 5/11 on the Physiotherapy Evidence Database (PEDro) quality scale. STUDY APPRAISAL AND SYNTHESIS METHODS The PEDro scale was used to appraise study quality of RCTs and CTs. Two reviewers independently reviewed the full texts of all potentially relevant articles for eligibility and disagreements were discussed and resolved. RESULTS Seven studies met the previously determined quality indicators and were reviewed; three were RCTs and four were CTs. In general, the quality of the studies ranged from 5 to 9 out of a maximum of 11 on the PEDro quality criteria scale. Results revealed that chronic aerobic training induces a decrease in MMP-9 and MMP-2 levels, possibly indicating a cardioprotective effect, while resistance exercise training displayed conflicting results. CONCLUSION Alterations in MMP-9 and MMP-2 plasma concentrations may be valuable biomarkers to reflect the influence of exercise on the inflammatory state. Nevertheless, the limited evidence available regarding the effects of exercise on the MMP-9 and MMP-2 response in human participants suggests that further studies are needed to fully define the connection between the role of exercise on the MMP-9 and MMP-2 response.
Collapse
Affiliation(s)
- Dahan da Cunha Nascimento
- Graduation Program on Physical Education, Catholic University of Brasilia, Q.S. 07, Lote 01, EPTC-Bloco G, Brasilia, DF, 71966-700, Brazil,
| | | | | | | | | | | |
Collapse
|
50
|
Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors. Biochem Soc Trans 2015; 42:1616-22. [PMID: 25399579 DOI: 10.1042/bst20140197] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In human skeletal muscle, the capillary net readily adapts according to the level of muscular activity to allow for optimal diffusion conditions for oxygen from the blood to the muscle. Animal studies have demonstrated that stimulation of capillary growth in skeletal muscle can occur either by mechanical or by chemical signalling. Mechanical signals originate from shear stress forces on the endothelial cell layer induced by the blood flowing through the vessel, but include also mechanical stretch and compression of the vascular structures and the surrounding tissue, as the muscle contracts. Depending on the mechanical signal provided, capillary growth may occur either by longitudinal splitting (shear stress) or by sprouting (passive stretch). The mechanical signals initiate angiogenic processes by up-regulation or release of angioregulatory proteins that either promote, modulate or inhibit angiogenesis. A number of such regulatory proteins have been described in skeletal muscle in animal and cell models but also in human skeletal muscle. Important pro-angiogenic factors in skeletal muscle are vascular endothelial growth factor, endothelial nitric oxide synthase and angiopoietin 2, whereas angiostatic factors include thrombospondin-1 and tissue inhibitor of matrix metalloproteinase. Which of these angiogenic factors are up-regulated in the muscle tissue depends on the mechanical and chemical stimulus provided and, consequently, the process by which capillary growth occurs. The present review addresses physiological signals and angiogenic factors in skeletal muscle with a focus on human data.
Collapse
|