1
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
2
|
Chiareli RA, Carvalho GA, Marques BL, Mota LS, Oliveira-Lima OC, Gomes RM, Birbrair A, Gomez RS, Simão F, Klempin F, Leist M, Pinto MCX. The Role of Astrocytes in the Neurorepair Process. Front Cell Dev Biol 2021; 9:665795. [PMID: 34113618 PMCID: PMC8186445 DOI: 10.3389/fcell.2021.665795] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are highly specialized glial cells responsible for trophic and metabolic support of neurons. They are associated to ionic homeostasis, the regulation of cerebral blood flow and metabolism, the modulation of synaptic activity by capturing and recycle of neurotransmitters and maintenance of the blood-brain barrier. During injuries and infections, astrocytes act in cerebral defense through heterogeneous and progressive changes in their gene expression, morphology, proliferative capacity, and function, which is known as reactive astrocytes. Thus, reactive astrocytes release several signaling molecules that modulates and contributes to the defense against injuries and infection in the central nervous system. Therefore, deciphering the complex signaling pathways of reactive astrocytes after brain damage can contribute to the neuroinflammation control and reveal new molecular targets to stimulate neurorepair process. In this review, we present the current knowledge about the role of astrocytes in brain damage and repair, highlighting the cellular and molecular bases involved in synaptogenesis and neurogenesis. In addition, we present new approaches to modulate the astrocytic activity and potentiates the neurorepair process after brain damage.
Collapse
Affiliation(s)
| | | | | | - Lennia Soares Mota
- Department of Pharmacology, Federal University of Goias, Goiânia, Brazil
| | | | | | - Alexander Birbrair
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Renato Santiago Gomez
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Simão
- Research Division, Vascular Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | | | - Marcel Leist
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
3
|
Mederos S, Perea G. GABAergic-astrocyte signaling: A refinement of inhibitory brain networks. Glia 2019; 67:1842-1851. [PMID: 31145508 PMCID: PMC6772151 DOI: 10.1002/glia.23644] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
Abstract
Interneurons play a critical role in precise control of network operation. Indeed, higher brain capabilities such as working memory, cognitive flexibility, attention, or social interaction rely on the action of GABAergic interneurons. Evidence from excitatory neurons and synapses has revealed astrocytes as integral elements of synaptic transmission. However, GABAergic interneurons can also engage astrocyte signaling; therefore, it is tempting to speculate about different scenarios where, based on particular interneuron cell type, GABAergic‐astrocyte interplay would be involved in diverse outcomes of brain function. In this review, we will highlight current data supporting the existence of dynamic GABAergic‐astrocyte communication and its impact on the inhibitory‐regulated brain responses, bringing new perspectives on the ways astrocytes might contribute to efficient neuronal coding.
Collapse
Affiliation(s)
- Sara Mederos
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
4
|
Ghirardini E, Wadle SL, Augustin V, Becker J, Brill S, Hammerich J, Seifert G, Stephan J. Expression of functional inhibitory neurotransmitter transporters GlyT1, GAT-1, and GAT-3 by astrocytes of inferior colliculus and hippocampus. Mol Brain 2018; 11:4. [PMID: 29370841 PMCID: PMC5785846 DOI: 10.1186/s13041-018-0346-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Neuronal inhibition is mediated by glycine and/or GABA. Inferior colliculus (IC) neurons receive glycinergic and GABAergic inputs, whereas inhibition in hippocampus (HC) predominantly relies on GABA. Astrocytes heterogeneously express neurotransmitter transporters and are expected to adapt to the local requirements regarding neurotransmitter homeostasis. Here we analyzed the expression of inhibitory neurotransmitter transporters in IC and HC astrocytes using whole-cell patch-clamp and single-cell reverse transcription-PCR. We show that most astrocytes in both regions expressed functional glycine transporters (GlyTs). Activation of these transporters resulted in an inward current (IGly) that was sensitive to the competitive GlyT1 agonist sarcosine. Astrocytes exhibited transcripts for GlyT1 but not for GlyT2. Glycine did not alter the membrane resistance (RM) arguing for the absence of functional glycine receptors (GlyRs). Thus, IGly was mainly mediated by GlyT1. Similarly, we found expression of functional GABA transporters (GATs) in all IC astrocytes and about half of the HC astrocytes. These transporters mediated an inward current (IGABA) that was sensitive to the competitive GAT-1 and GAT-3 antagonists NO711 and SNAP5114, respectively. Accordingly, transcripts for GAT-1 and GAT-3 were found but not for GAT-2 and BGT-1. Only in hippocampal astrocytes, GABA transiently reduced RM demonstrating the presence of GABAA receptors (GABAARs). However, IGABA was mainly not contaminated by GABAAR-mediated currents as RM changes vanished shortly after GABA application. In both regions, IGABA was stronger than IGly. Furthermore, in HC the IGABA/IGly ratio was larger compared to IC. Taken together, our results demonstrate that astrocytes are heterogeneous across and within distinct brain areas. Furthermore, we could show that the capacity for glycine and GABA uptake varies between both brain regions.
Collapse
Affiliation(s)
- Elsa Ghirardini
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany.,Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, I-20129, Milan, Italy.,Pharmacology and Brain Pathology Lab, Humanitas Clinical and Research Center, via Manzoni 56, I-20089, Rozzano, Italy
| | - Simon L Wadle
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Vanessa Augustin
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Jasmin Becker
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Sina Brill
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Julia Hammerich
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, D-53105, Bonn, Germany
| | - Jonathan Stephan
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schroedinger-Strasse 13, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
5
|
Heterogeneity and function of hippocampal macroglia. Cell Tissue Res 2017; 373:653-670. [PMID: 29204745 DOI: 10.1007/s00441-017-2746-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
The contribution of glial cells to normal and impaired hippocampal function is increasingly being recognized, although important questions as to the mechanisms that these cells use for their crosstalk with neurons and capillaries are still unanswered or lead to controversy. Astrocytes in the hippocampus are morphologically variable and a single cell contacts with its processes more than 100,000 synapses. They predominantly express inward rectifier K+ channels and transporters serving homeostatic function but may also release gliotransmitters to modify neuronal signaling and brain circulation. Intracellular Ca2+ transients are key events in the interaction of astrocytes with neurons and the vasculature. Hippocampal NG2 glia represent a population of cells with proliferative capacity throughout adulthood. Intriguingly, they receive direct synaptic input from pyramidal neurons and interneurons and express a multitude of ion channels and receptors. Despite in-depth knowledge about the features of these transmembrane proteins, the physiological impact of NG2 glial cells and their synaptic input remain nebulous. Because of the low abundance of oligodendrocytes in the hippocampus, limited information is available about their specific properties. Given the multitude of signaling molecules expressed by the various types of hippocampal glial cells (and because of space constraints), we focus, in this review, on those properties that are considered key for the interaction of the respective cell type with its neighborhood.
Collapse
|
6
|
Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18081813. [PMID: 28825683 PMCID: PMC5578199 DOI: 10.3390/ijms18081813] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.
Collapse
|
7
|
Eskandari S, Willford SL, Anderson CM. Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters. ADVANCES IN NEUROBIOLOGY 2017; 16:85-116. [PMID: 28828607 DOI: 10.1007/978-3-319-55769-4_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this review is to highlight recent evidence in support of a 3 Na+: 1 Cl-: 1 GABA coupling stoichiometry for plasma membrane GABA transporters (SLC6A1 , SLC6A11 , SLC6A12 , SLC6A13 ) and how the revised stoichiometry impacts our understanding of the contribution of GABA transporters to GABA homeostasis in synaptic and extrasynaptic regions in the brain under physiological and pathophysiological states. Recently, our laboratory probed the GABA transporter stoichiometry by analyzing the results of six independent measurements, which included the shifts in the thermodynamic transporter reversal potential caused by changes in the extracellular Na+, Cl-, and GABA concentrations, as well as the ratio of charge flux to substrate flux for Na+, Cl-, and GABA under voltage-clamp conditions. The shifts in the transporter reversal potential for a tenfold change in the external concentration of Na+, Cl-, and GABA were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. Charge flux to substrate flux ratios were 0.7 ± 0.1 charges/Na+, 2.0 ± 0.2 charges/Cl-, and 2.1 ± 0.1 charges/GABA. We then compared these experimental results with the predictions of 150 different transporter stoichiometry models, which included 1-5 Na+, 0-5 Cl-, and 1-5 GABA per transport cycle. Only the 3 Na+: 1 Cl-: 1 GABA stoichiometry model correctly predicts the results of all six experimental measurements. Using the revised 3 Na+: 1 Cl-: 1 GABA stoichiometry, we propose that the GABA transporters mediate GABA uptake under most physiological conditions. Transporter-mediated GABA release likely takes place under pathophysiological or extreme physiological conditions.
Collapse
Affiliation(s)
- Sepehr Eskandari
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA.
| | - Samantha L Willford
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| | - Cynthia M Anderson
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| |
Collapse
|
8
|
Petit JM, Magistretti P. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle. Neuroscience 2016; 323:135-56. [DOI: 10.1016/j.neuroscience.2015.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
|
9
|
A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events. PLoS One 2016; 11:e0147292. [PMID: 26849643 PMCID: PMC4743967 DOI: 10.1371/journal.pone.0147292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/01/2016] [Indexed: 12/31/2022] Open
Abstract
Developing a clear understanding of the relationship between cerebral blood flow (CBF) response and neuronal activity is of significant importance because CBF increase is essential to the health of neurons, for instance through oxygen supply. This relationship can be investigated by analyzing multimodal (fMRI, PET, laser Doppler…) recordings. However, the important number of intermediate (non-observable) variables involved in the underlying neurovascular coupling makes the discovery of mechanisms all the more difficult from the sole multimodal data. We present a new computational model developed at the population scale (voxel) with physiologically relevant but simple equations to facilitate the interpretation of regional multimodal recordings. This model links neuronal activity to regional CBF dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial cells called astrocytes via their role in neurotransmitter (glutamate and GABA) recycling and their impact on neighboring vessels. In epilepsy, neuronal networks generate epileptiform discharges, leading to variations in astrocytic and CBF dynamics. In this study, we took advantage of these large variations in neuronal activity magnitude to test the capacity of our model to reproduce experimental data. We compared simulations from our model with isolated epileptiform events, which were obtained in vivo by simultaneous local field potential and laser Doppler recordings in rats after local bicuculline injection. We showed a predominant neuronal contribution for low level discharges and a significant astrocytic contribution for higher level discharges. Besides, neuronal contribution to CBF was linear while astrocytic contribution was nonlinear. Results thus indicate that the relationship between neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in the interpretation of regional recordings.
Collapse
|
10
|
Kirischuk S, Héja L, Kardos J, Billups B. Astrocyte sodium signaling and the regulation of neurotransmission. Glia 2015; 64:1655-66. [DOI: 10.1002/glia.22943] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Sergei Kirischuk
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology; Mainz Germany
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Brian Billups
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University; Acton ACT Australia
| |
Collapse
|
11
|
Falnikar A, Li K, Lepore AC. Therapeutically targeting astrocytes with stem and progenitor cell transplantation following traumatic spinal cord injury. Brain Res 2014; 1619:91-103. [PMID: 25251595 DOI: 10.1016/j.brainres.2014.09.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022]
Abstract
Replacement of lost and/or dysfunctional astrocytes via multipotent neural stem cell (NSC) and lineage-restricted neural progenitor cell (NPC) transplantation is a promising therapeutic approach for traumatic spinal cord injury (SCI). Cell transplantation in general offers the potential to replace central nervous system (CNS) cell types, achieve remyelination, deliver missing gene products, promote and guide axonal growth, modulate the host immune response, deliver neuroprotective factors, and provide a cellular substrate for bridging the lesion site, amongst other possible benefits. A host of cell types that differ in their developmental stage, CNS region and species of derivation, as well as in their phenotypic potential, have been tested in a variety of SCI animal models. Historically in the SCI field, most pre-clinical NSC and NPC transplantation studies have focused on neuronal and oligodendrocyte replacement. However, much less attention has been geared towards targeting astroglial dysfunction in the inured spinal cord, despite the integral roles played by astrocytes in both normal CNS function and in the diseased nervous system. Despite the relative lack of studies, cell transplantation-based targeting of astrocytes dates back to some of the earliest transplant studies in SCI animal models. In this review, we will describe the history of work involving cell transplantation for targeting astrocytes in models of SCI. We will also touch on the current state of affairs in the field, as well as on important future directions as we move forward in trying to develop this approach into a viable strategy for SCI patients. Practical issues such as timing of delivery, route of transplantation and immunesuppression needs are beyond the scope of this review. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Aditi Falnikar
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States
| | - Ke Li
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University Medical College, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States.
| |
Collapse
|
12
|
Stephan J, Friauf E. Functional analysis of the inhibitory neurotransmitter transporters GlyT1, GAT-1, and GAT-3 in astrocytes of the lateral superior olive. Glia 2014; 62:1992-2003. [PMID: 25103283 DOI: 10.1002/glia.22720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/03/2023]
Abstract
Neurotransmitter clearance from the synaptic cleft is a major function of astrocytes and requires neurotransmitter transporters. In the rodent lateral superior olive (LSO), a conspicuous auditory brainstem center, both glycine and GABA mediate synaptic inhibition. However, the main inhibitory input from the medial nucleus of the trapezoid body (MNTB) appears to be glycinergic by postnatal day (P) 14, when circuit maturation is almost accomplished. Using whole-cell patch-clamp recordings at P3-20, we analyzed glycine transporters (GlyT1) and GABA transporters (GAT-1, GAT-3) in mouse LSO astrocytes, emphasizing on their developmental regulation. Application of glycine or GABA induced a dose- and age-dependent inward current and a respective depolarization. The GlyT1-specific inhibitor sarcosine reduced the maximal glycine-induced current (IGly (max) ) by about 60%. The GAT-1 and GAT-3 antagonists NO711 and SNAP5114, respectively, reduced the maximal GABA-induced current (IGABA (max) ) by about 35%. Furthermore, [Cl(-) ]o reduction decreased IGly (max) and IGABA (max) by about 85 to 95%, showing the Cl(-) dependence of GlyT and GAT. IGABA (max) was stronger than IGly (max) , and the ratio increased developmentally from 1.6-fold to 3.7-fold. Together, our results demonstrate the functional presence of the three inhibitory neurotransmitter transporters GlyT1, GAT-1, and GAT-3 in LSO astrocytes. Furthermore, the uptake capability for GABA was higher than for glycine, pointing toward eminent GABAergic signaling in the LSO. GABA may originate from another source than the MNTB-LSO synapses, namely from another projection or from reversal of astrocytic GATs. Thus, neuronal signaling in the LSO appears to be more versatile than previously thought. GLIA 2014;62:1992-2003.
Collapse
Affiliation(s)
- Jonathan Stephan
- Department of Biology, Animal Physiology Group, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
13
|
Melone M, Ciappelloni S, Conti F. A quantitative analysis of cellular and synaptic localization of GAT-1 and GAT-3 in rat neocortex. Brain Struct Funct 2013; 220:885-97. [PMID: 24368619 DOI: 10.1007/s00429-013-0690-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/10/2013] [Indexed: 11/24/2022]
Abstract
High-affinity plasma membrane GABA transporters GAT-1 and GAT-3 contribute to the modulation of GABA-mediated inhibition in adult mammalian cerebral cortex. How GATs regulate inhibition in neocortical circuits remains however poorly understood for the lack of information on key localizational features. In this study, we used quantitative pre- and post-embedding electron microscopy to define the distribution of GAT-1 and GAT-3 in elements contributing to synapses and to unveil their ultrastructural organization at adult cortical GABAergic synapses. GAT-1 and GAT-3 were found in both neuronal and astrocytic processes: GAT-1 was prevalently segregated in neuronal elements and in profiles contributing to synapses, whereas GAT-3 was mostly expressed in astrocytes and did not exhibit a preferential distribution in elements contributing to synapses. Analysis of the ultrastructural distribution of GAT-1 and GAT-3 in the plasma membrane of axon terminals and perisynaptic astrocytic processes of symmetric synapses in relation to the active zone revealed that GAT-1 was more concentrated in restricted perisynaptic and extrasynaptic regions, whereas GAT-3 was prominent in extrasynaptic areas. These studies provide a basis for understanding the role GAT-1 and GAT-3 play in the modulation of GABA-mediated phasic and tonic inhibition in cerebral cortex.
Collapse
Affiliation(s)
- Marcello Melone
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, 60026, Ancona, Italy,
| | | | | |
Collapse
|
14
|
Shahrokhi A, Hassanzadeh G, Vousooghi N, Joghataei MT, Eftekhari S, Zarrindast MR. The effect of tiagabine on physical development and neurological reflexes and their relationship with the γ-aminobutyric acid switch in the rat cerebral cortex during developmental stages. Behav Pharmacol 2013; 24:561-8. [PMID: 26057770 DOI: 10.1097/fbp.0b013e328365422f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, we focused on γ-aminobutyric acid (GABA) signaling through the γ-aminobutyric acid transporter (GAT) in the developing rat cerebral cortex. Tiagabine was used as a GAT inhibitor. The offspring received injections from birth until postnatal day 21 intraperitoneally. Physical development and neurological reflexes were assessed daily. Tiagabine did not influence body weight, the onset and completion of incisor eruption, or the time to appearance of cliff avoidance. However, the onset and completion of eye opening, ear unfolding, and fur growth occurred earlier in treated pups. Further, the slanted board test and righting reflex showed accelerated development (i.e. decreased time to criterion) when compared with the control group. To determine whether the obtained effects are related to the GABA switch, we examined the protein and mRNA expression of the K(+)-Cl(-) cotransporter KCC2 using western blotting and RT-PCR, respectively. Downregulation of KCC2 mRNA and protein levels was observed when GAT was inhibited. The results may indicate a role of GAT in the neurobehavioral changes that accompany the developmental switch in GABA function.
Collapse
Affiliation(s)
- Amene Shahrokhi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
15
|
Sibille J, Pannasch U, Rouach N. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse. J Physiol 2013; 592:87-102. [PMID: 24081156 DOI: 10.1113/jphysiol.2013.261735] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Astroglial processes enclose ∼60% of CA1 hippocampal synapses to form the tripartite synapse. Although astrocytes express ionic channels, neurotransmitter receptors and transporters to detect neuronal activity, the nature, plasticity and impact of the currents induced by neuronal activity on short-term synaptic plasticity remain elusive in hippocampal astrocytes. Using simultaneous electrophysiological recordings of astrocytes and neurons, we found that single stimulation of Schaffer collaterals in hippocampal slices evokes in stratum radiatum astrocytes a complex prolonged inward current synchronized to synaptic and spiking activity in CA1 pyramidal cells. The astroglial current is composed of three components sensitive to neuronal activity, i.e. a long-lasting potassium current mediated by Kir4.1 channels, a transient glutamate transporter current and a slow residual current, partially mediated by GABA transporters and Kir4.1-independent potassium channels. We show that all astroglial membrane currents exhibit activity-dependent short-term plasticity. However, only the astroglial glutamate transporter current displays neuronal-like dynamics and plasticity. As Kir4.1 channel-mediated potassium uptake contributes to 80% of the synaptically evoked astroglial current, we investigated in turn its impact on short-term synaptic plasticity. Using glial conditional Kir4.1 knockout mice, we found that astroglial potassium uptake reduces synaptic responses to repetitive stimulation and post-tetanic potentiation. These results show that astrocytes integrate synaptic activity via multiple ionic channels and transporters and contribute to short-term plasticity in part via potassium clearance mediated by Kir4.1 channels.
Collapse
Affiliation(s)
- Jérémie Sibille
- N. Rouach: Neuroglial Interactions in Cerebral Physiopathology, Collège de France, CIRB, CNRS UMR 7241, INSERM U1050, 11, place Marcelin Berthelot, 75005 Paris, France.
| | | | | |
Collapse
|
16
|
Egawa K, Yamada J, Furukawa T, Yanagawa Y, Fukuda A. Cl⁻ homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses. J Physiol 2013; 591:3901-17. [PMID: 23732644 PMCID: PMC3764636 DOI: 10.1113/jphysiol.2013.257162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The electrophysiological properties and functional role of GABAergic signal transmission from neurons to the gap junction-coupled astrocytic network are still unclear. GABA-induced astrocytic Cl− flux has been hypothesized to affect the driving force for GABAergic transmission by modulating [Cl−]o. Thus, revealing the properties of GABA-mediated astrocytic responses will deepen our understanding of GABAergic signal transmission. Here, we analysed the Cl− dynamics of neurons and astrocytes in CA1 hippocampal GABAergic tripartite synapses, using Cl− imaging during GABA application, and whole cell recordings from interneuron–astrocyte pairs in the stratum lacunosum-moleculare. Astrocytic [Cl−]i was adjusted to physiological conditions (40 mm). Although GABA application evoked bidirectional Cl− flux via GABAA receptors and mouse GABA transporter 4 (mGAT4) in CA1 astrocytes, a train of interneuron firing induced only GABAA receptor-mediated inward currents in an adjacent astrocyte. A GAT1 inhibitor increased the interneuron firing-induced currents and induced bicuculline-insensitive, mGAT4 inhibitor-sensitive currents, suggesting that synaptic spillover of GABA predominantly induced the astrocytic Cl− efflux because GABAA receptors are localized near the synaptic clefts. This GABA-induced Cl− efflux was accompanied by Cl− siphoning via the gap junctions of the astrocytic network because gap junction inhibitors significantly reduced the interneuron firing-induced currents. Thus, Cl− efflux from astrocytes is homeostatically maintained within astrocytic networks. A gap junction inhibitor enhanced the activity-dependent depolarizing shifts of reversal potential of neuronal IPSCs evoked by repetitive stimulation to GABAergic synapses. These results suggest that Cl− conductance within the astrocytic network may contribute to maintaining GABAergic synaptic transmission by regulating [Cl−]o.
Collapse
Affiliation(s)
- Kiyoshi Egawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | |
Collapse
|
17
|
Kersanté F, Rowley SCS, Pavlov I, Gutièrrez-Mecinas M, Semyanov A, Reul JMHM, Walker MC, Linthorst ACE. A functional role for both -aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J Physiol 2013; 591:2429-41. [PMID: 23381899 PMCID: PMC3678035 DOI: 10.1113/jphysiol.2012.246298] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tonic γ-aminobutyric acid (GABA)A receptor-mediated signalling controls neuronal network excitability in the hippocampus. Although the extracellular concentration of GABA (e[GABA]) is critical in determining tonic conductances, knowledge on how e[GABA] is regulated by different GABA transporters (GATs) in vivo is limited. Therefore, we studied the role of GATs in the regulation of hippocampal e[GABA] using in vivo microdialysis in freely moving rats. Here we show that GAT-1, which is predominantly presynaptically located, is the major GABA transporter under baseline, quiescent conditions. Furthermore, a significant contribution of GAT-3 in regulating e[GABA] was revealed by administration of the GAT-3 inhibitor SNAP-5114 during simultaneous blockade of GAT-1 by NNC-711. Thus, the GABA transporting activity of GAT-3 (the expression of which is confined to astrocytes) is apparent under conditions in which GAT-1 is blocked. However, sustained neuronal activation by K+-induced depolarization caused a profound spillover of GABA into the extrasynaptic space and this increase in e[GABA] was significantly potentiated by sole blockade of GAT-3 (i.e. even when uptake of GAT-1 is intact). Furthermore, experiments using tetrodotoxin to block action potentials revealed that GAT-3 regulates extrasynaptic GABA levels from action potential-independent sources when GAT-1 is blocked. Importantly, changes in e[GABA] resulting from both GAT-1 and GAT-3 inhibition directly precipitate changes in tonic conductances in dentate granule cells as measured by whole-cell patch-clamp recording. Thus, astrocytic GAT-3 contributes to the regulation of e[GABA] in the hippocampus in vivo and may play an important role in controlling the excitability of hippocampal cells when network activity is increased.
Collapse
Affiliation(s)
- Flavie Kersanté
- Neurobiology of Stress and Behaviour Research Group, Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Héja L, Nyitrai G, Kékesi O, Dobolyi A, Szabó P, Fiáth R, Ulbert I, Pál-Szenthe B, Palkovits M, Kardos J. Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol 2012; 10:26. [PMID: 22420899 PMCID: PMC3342137 DOI: 10.1186/1741-7007-10-26] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamate and γ-aminobutyric acid (GABA) transporters play important roles in balancing excitatory and inhibitory signals in the brain. Increasing evidence suggest that they may act concertedly to regulate extracellular levels of the neurotransmitters. RESULTS Here we present evidence that glutamate uptake-induced release of GABA from astrocytes has a direct impact on the excitability of pyramidal neurons in the hippocampus. We demonstrate that GABA, synthesized from the polyamine putrescine, is released from astrocytes by the reverse action of glial GABA transporter (GAT) subtypes GAT-2 or GAT-3. GABA release can be prevented by blocking glutamate uptake with the non-transportable inhibitor DHK, confirming that it is the glutamate transporter activity that triggers the reversal of GABA transporters, conceivably by elevating the intracellular Na+ concentration in astrocytes. The released GABA significantly contributes to the tonic inhibition of neurons in a network activity-dependent manner. Blockade of the Glu/GABA exchange mechanism increases the duration of seizure-like events in the low-[Mg2+] in vitro model of epilepsy. Under in vivo conditions the increased GABA release modulates the power of gamma range oscillation in the CA1 region, suggesting that the Glu/GABA exchange mechanism is also functioning in the intact hippocampus under physiological conditions. CONCLUSIONS The results suggest the existence of a novel molecular mechanism by which astrocytes transform glutamatergic excitation into GABAergic inhibition providing an adjustable, in situ negative feedback on the excitability of neurons.
Collapse
Affiliation(s)
- László Héja
- Department of Functional Pharmacology, Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri 59-67, 1025 Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Unichenko P, Myakhar O, Kirischuk S. Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes. Glia 2012; 60:605-14. [PMID: 22279011 DOI: 10.1002/glia.22294] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022]
Abstract
Fast synaptic transmission requires a rapid clearance of the released neurotransmitter from the extracellular space. Glial glutamate transporters (excitatory amino acid transporters, EAATs) strongly contribute to glutamate removal. In this work, we investigated the paired-pulse plasticity of synaptically activated, glutamate transporter-mediated currents (STCs) in cortical layer 2/3 astrocytes. STCs were elicited by local electrical stimulation in layer 4 in the presence of ionotropic glutamate (AMPA and NMDA), GABAA, and GABAB receptor antagonists. In experiments with low [Na(+)]i (5 mM) intrapipette solution, STCs elicited by paired-pulse stimulation demonstrated paired-pulse facilitation (PPF) at short (<250 ms) interstimulus intervals (ISIs) and paired-pulse depression at longer ISIs. In experiments with close to physiological, high [Na(+)]i (20 mM) intrapipette solution, PPF of STCs at short ISIs was significantly reduced. In addition, the STC kinetics was slowed in the presence of high [Na(+)]i. Exogenous GABA increased astrocytic [Na(+)]i, reduced the mean STC amplitude, decreased PPF at short ISIs, and slowed STC kinetics. All GABA-induced changes were blocked by NO-711 and SNAP-5114, GABA transporter (GATs) antagonists. In experiments with the low intrapipette solution, GAT blockade under control conditions decreased PPF at short ISIs both at room and at near physiological temperatures. Dialysis of single astrocyte with low [Na(+)]i solution increased the amplitude and reduced PPR of evoked field potentials recorded in the vicinity of the astrocyte. We conclude that (1) endogenous GABA via GATs may influence EAAT functioning and (2) astrocytic [Na(+)]i modulates the short-term plasticity of STCs and in turn the efficacy of glutamate removal.
Collapse
Affiliation(s)
- Petr Unichenko
- Institute of Physiology and Pathophysiology, Universal Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
20
|
Héja L, Barabás P, Nyitrai G, Kékesi KA, Lasztóczi B, Toke O, Tárkányi G, Madsen K, Schousboe A, Dobolyi A, Palkovits M, Kardos J. Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PLoS One 2009; 4:e7153. [PMID: 19777062 PMCID: PMC2744931 DOI: 10.1371/journal.pone.0007153] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/02/2009] [Indexed: 11/21/2022] Open
Abstract
Background Glutamate (Glu) and γ-aminobutyric acid (GABA) transporters play important roles in regulating neuronal activity. Glu is removed from the extracellular space dominantly by glial transporters. In contrast, GABA is mainly taken up by neurons. However, the glial GABA transporter subtypes share their localization with the Glu transporters and their expression is confined to the same subpopulation of astrocytes, raising the possibility of cooperation between Glu and GABA transport processes. Methodology/Principal Findings Here we used diverse biological models both in vitro and in vivo to explore the interplay between these processes. We found that removal of Glu by astrocytic transporters triggers an elevation in the extracellular level of GABA. This coupling between excitatory and inhibitory signaling was found to be independent of Glu receptor-mediated depolarization, external presence of Ca2+ and glutamate decarboxylase activity. It was abolished in the presence of non-transportable blockers of glial Glu or GABA transporters, suggesting that the concerted action of these transporters underlies the process. Conclusions/Significance Our results suggest that activation of Glu transporters results in GABA release through reversal of glial GABA transporters. This transporter-mediated interplay represents a direct link between inhibitory and excitatory neurotransmission and may function as a negative feedback combating intense excitation in pathological conditions such as epilepsy or ischemia.
Collapse
Affiliation(s)
- László Héja
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ferrara E, Cefaliello C, Eyman M, De Stefano R, Giuditta A, Crispino M. Synaptic mRNAs are modulated by learning. J Neurosci Res 2009; 87:1960-8. [DOI: 10.1002/jnr.22037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
In vitro assessment of paraoxon effects on GABA uptake in rat hippocampal synaptosomes. Toxicol In Vitro 2009; 23:868-73. [PMID: 19460429 DOI: 10.1016/j.tiv.2009.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/20/2009] [Accepted: 05/10/2009] [Indexed: 11/22/2022]
Abstract
Treating organophosphate poisoning is achieved mainly using compounds with anticholinergic characteristics. Nevertheless currently the focus of attention is aimed at examining their interference with other neurotransmitter systems. The present investigation studied the potential interactions between paraoxon and GABA uptake in hippocampal synaptosomes. Wistar rats weighing 200-250 g were used. Hippocampal synaptosomes were prepared and incubated with [(3)H] GABA in the presence of different doses of paraoxon for 10 min at 37 degrees C; and were then layered in chambers of a superfusion system and the [(3)H] GABA uptake was measured. Our finding revealed that mean GABA uptake decreased by 21%, 42%, 37%, 20%, and 8% of the corresponding control values in the presence of paraoxon concentrations of 0.01, 0.1, 1, 10, and 100 microM, respectively which was significant at 0.1 and 1 microM of paraoxon (P<0.05). In conclusion, micromolar concentrations of paraoxon were shown to interfere with GABA uptake in hippocampal synaptosomes, which indicates the GABA transporters may play a role in organophosphate-induced convulsions.
Collapse
|
23
|
Abstract
Neurons have long held the spotlight as the central players of the nervous system, but we must remember that we have equal numbers of astrocytes and neurons in the brain. Are these cells only filling up the space and passively nurturing the neurons, or do they also contribute to information transfer and processing? After several years of intense research since the pioneer discovery of astrocytic calcium waves and glutamate release onto neurons in vitro, the neuronal-glial studies have answered many questions thanks to technological advances. However, the definitive in vivo role of astrocytes remains to be addressed. In addition, it is becoming clear that diverse populations of astrocytes coexist with different molecular identities and specialized functions adjusted to their microenvironment, but do they all belong to the umbrella family of astrocytes? One population of astrocytes takes on a new function by displaying both support cell and stem cell characteristics in the neurogenic niches. Here, we define characteristics that classify a cell as an astrocyte under physiological conditions. We will also discuss the well-established and emerging functions of astrocytes with an emphasis on their roles on neuronal activity and as neural stem cells in adult neurogenic zones.
Collapse
Affiliation(s)
- Doris D. Wang
- Institute for Regeneration Medicine and Neuroscience Graduate Program, University of California San Francisco
| | - Angélique Bordey
- Departments of Neurosurgery, and Cellular and Molecular Physiology, Yale University, New Haven, CT 06520-8082
| |
Collapse
|
24
|
Bragina L, Marchionni I, Omrani A, Cozzi A, Pellegrini-Giampietro DE, Cherubini E, Conti F. GAT-1 regulates both tonic and phasic GABAAreceptor-mediated inhibition in the cerebral cortex. J Neurochem 2008; 105:1781-93. [DOI: 10.1111/j.1471-4159.2008.05273.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Wu Y, Wang W, Richerson GB. The Transmembrane Sodium Gradient Influences Ambient GABA Concentration by Altering the Equilibrium of GABA Transporters. J Neurophysiol 2006; 96:2425-36. [PMID: 16870837 DOI: 10.1152/jn.00545.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tonic inhibition is widely believed to be caused solely by “spillover” of GABA that escapes the synaptic cleft and activates extrasynaptic GABAA receptors. However, an exclusively vesicular source is not consistent with the observation that tonic inhibition can still occur after blocking vesicular release. Here, we made patch-clamp recordings from neurons in rat hippocampal cultures and measured the tonic current that was blocked by bicuculline or gabazine. During perforated patch recordings, the tonic GABA current was decreased by the GAT1 antagonist SKF-89976a. Zero calcium solution did not change the amount of tonic current, despite a large reduction in vesicular GABA release. Perturbations that would be expected to alter the transmembrane sodium gradient influenced the tonic current. For example, in zero calcium Ringer, TTX (which can decrease cytosolic [Na+]) reduced tonic current, whereas veratridine (which can increase cytosolic [Na+]) increased tonic current. Likewise, removal of extracellular sodium led to a large increase in tonic current. The increases in tonic current induced by veratridine and sodium removal were completely blocked by SKF89976a. When these experiments were repeated in hippocampal slices, similar results were obtained except that a GAT1- and GAT3-independent nonvesicular source(s) of GABA was found to contribute to the tonic current. We conclude that multiple sources can contribute to ambient GABA, including spillover and GAT1 reversal. The source of GABA release may be conceptually less important in determining the amount of tonic inhibition than the factors that control the equilibrium of GABA transporters.
Collapse
Affiliation(s)
- Yuanming Wu
- Department of Neurology, LCI-712B, Yale University School of Medicine, 15 York St., PO 208018, New Haven, CT 06520-8018, USA
| | | | | |
Collapse
|
26
|
Enigmatic GABAergic networks in adult neurogenic zones. ACTA ACUST UNITED AC 2006; 53:124-34. [PMID: 16949673 DOI: 10.1016/j.brainresrev.2006.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Revised: 06/08/2006] [Accepted: 07/28/2006] [Indexed: 01/03/2023]
Abstract
The discovery and description of complex GABAergic networks in adult neurogenic zones suggest the intriguing possibility of information transfer from neuronal activity to immature cells. New questions also emerge regarding the mode of GABAergic signaling and the temporal pattern of receptor activation. Non-synaptic (paracrine) signaling communicates information on population size to control the proliferation and migration of progenitor cells in the subventricular zone. How this signaling relates to olfactory bulb network activity, however, remains largely unknown. This review argues that paracrine signaling precedes and then co-exists with synaptic GABAergic signaling, which provides the timing and instruction for cells to properly differentiate and synaptically integrate into an existing network. The evidence examined in this review indicates that the commonly cited mechanism of GABA's action (i.e., depolarization leading to voltage-gated calcium channel activation and calcium entry) needs to be re-examined in the context of the unique cellular properties and organization of the adult neurogenic regions.
Collapse
|
27
|
Gonzalez B, Paz F, Florán L, Aceves J, Erlij D, Florán B. Adenosine A2A receptor stimulation decreases GAT-1-mediated GABA uptake in the globus pallidus of the rat. Neuropharmacology 2006; 51:154-9. [PMID: 16730753 DOI: 10.1016/j.neuropharm.2006.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/17/2006] [Accepted: 03/13/2006] [Indexed: 11/20/2022]
Abstract
We examined modulation of [(3)H]GABA uptake in slices of the rat globus pallidus because stimulation of adenosine A(2A) receptors increases extracellular GABA in this structure. Pharmacological analysis showed that GAT-1 is the main transporter present in these slices. Both adenosine and the A(2A) agonist CGS 21680 reduced GABA uptake. Antagonist ZM 241385 prevented these effects. Agents that increase protein kinase A activity like forskolin and 8-bromo-cAMP also inhibited GABA uptake. The inhibition of uptake produced by these substances and by CGS 21680 was prevented by the protein kinase A blocker H-89. The protein phosphatase blocker okadaic acid reduced uptake; this effect and the response to CGS 21680 were not additive. The effective concentrations of adenosine (EC(50)=15.2microM) are within the range measured in the interstitial fluid under some physiological conditions. Thus, inhibition of uptake may be important in increasing interstitial GABA during endogenous adenosine release.
Collapse
Affiliation(s)
- Brenda Gonzalez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, 07000 México DF, México
| | | | | | | | | | | |
Collapse
|
28
|
Keros S, Hablitz JJ. Subtype-Specific GABA Transporter Antagonists Synergistically Modulate Phasic and Tonic GABAA Conductances in Rat Neocortex. J Neurophysiol 2005; 94:2073-85. [PMID: 15987761 DOI: 10.1152/jn.00520.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAergic inhibition in the brain can be classified as either phasic or tonic. γ-Aminobutyric acid (GABA) uptake by GABA transporters (GATs) can limit the time course of phasic currents arising from endogenous and exogenous GABA, as well as decrease a tonically active GABA current. GABA transporter subtypes 1 and 3 (GAT-1 and GAT-3) are the most heavily expressed of the four known GAT subtypes. The role of GATs in shaping GABA currents in the neocortex has not been explored. We obtained patch-clamp recordings from layer II/III pyramidal cells and layer I interneurons in rat sensorimotor cortex. We found that selective GAT-1 inhibition with NO711 decreased the amplitude and increased the decay time of evoked inhibitory postsynaptic currents (IPSCs) but had no effect on the tonic current or spontaneous IPSCs (sIPSCs). GAT-2/3 inhibition with SNAP-5114 had no effect on IPSCs or the tonic current. Coapplication of NO711 and SNAP-5114 substantially increased tonic currents and synergistically decreased IPSC amplitudes and increased IPSC decay times. sIPSCs were not resolvable with coapplication of NO711 and SNAP-5114. The effects of the nonselective GAT antagonist nipecotic acid were similar to those of NO711 and SNAP-5114 together. We conclude that synaptic GABA levels in neocortical neurons are controlled primarily by GAT-1, but that GAT-1 and GAT-2/3 work together extrasynaptically to limit tonic currents. Inhibition of any one GAT subtype does not increase the tonic current, presumably as a result of increased activity of the remaining transporters. Thus neocortical GAT-1 and GAT-2/3 have distinct but overlapping roles in modulating GABA conductances.
Collapse
Affiliation(s)
- Sotirios Keros
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
29
|
Abstract
The role of GAT-3 transporters in regulating GABA(A) receptor-mediated inhibition was examined in the rat neocortex using an in vitro slice preparation. Pharmacologically isolated GABA(A) receptor-mediated responses were recorded from layer V neocortical pyramidal cells, and the effects of SNAP-5114, a GAT-3 GABA transporter-selective antagonist, were evaluated. Application of SNAP-5114 resulted in a reversible increase in the amplitude of an evoked GABA(A) response in most cells examined, although no effect on the decay time was observed. Examination of the spontaneous output of inhibitory interneurons revealed a reversible increase in the frequency and amplitude of spontaneous inhibitory synaptic currents as a consequence of GAT-3 inhibition. This effect of GAT-3 inhibition on spontaneous inhibitory events was action potential-dependent because no such increases were observed when SNAP-5114 was applied in the presence of TTX. These results demonstrate that GAT-3 transporters regulate inhibitory interneuron output in the neocortex. The increase in inhibitory interneuron excitability resulting from application of SNAP-5114 suggests that inhibition of GAT-3 transporter function results in a reduction in ambient GABA levels, possibly by a reduction in carrier-mediated GABA release via the GAT-3 transporter.
Collapse
Affiliation(s)
- Gregory A Kinney
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, 98104, USA.
| |
Collapse
|
30
|
Weng HR, Dougherty PM. Response properties of dorsal root reflexes in cutaneous C fibers before and after intradermal capsaicin injection in rats. Neuroscience 2005; 132:823-31. [PMID: 15837142 DOI: 10.1016/j.neuroscience.2005.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2005] [Indexed: 11/30/2022]
Abstract
C fiber dorsal root reflexes (DRR) contribute to neurogenic inflammation and possibly also to touch-evoked pain (allodynia) induced by intradermal capsaicin. The responses of C fibers in the sural nerve to graded mechanical stimuli before and following intradermal capsaicin were studied in 39 adult male rats. Two-thirds of 111 fibers were without spontaneous activity, while the remaining fibers averaged 1.41+/-0.25 spontaneous antidromic spikes per second. Among the quiescent C fibers only two had excitatory receptive fields, whereas the active C fibers showed three patterns of activity, an excitatory response, an inhibitory response, or no response to mechanical stimulation. The excitatory responses were to high intensity mechanical stimuli alone, while inhibitory responses were evoked in a graded fashion by both noxious and innocuous mechanical stimuli. Intradermal injection of capsaicin increased spontaneous and evoked DRRs in all C fibers with excitatory responses to mechanical stimuli, but none acquired responses to innocuous stimuli. Capsaicin initially produced inhibition of spontaneous activity in C fibers with inhibitory or no receptive fields, but this later resumed and achieved a rate higher than baseline. Mechanical stimuli re-applied following the resumption of spontaneous discharges failed to produce any response. Spontaneous DRRs were increased by topical application of 1 mM beta-alanine (a competitive antagonist for GABA transporters) and abolished by ipsilateral spinal nerve L5 lesion, verifying antidromic origin. The role of C fiber DRRs in normal sensory transmission and during hyperalgesia is discussed.
Collapse
Affiliation(s)
- H-R Weng
- The Department of Anesthesiology and Pain Medicine, The Division of Anesthesiology and Critical Care, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
31
|
Karakossian M, Spencer S, Gomez A, Padilla O, Sacher A, Loo D, Nelson N, Eskandari S. Novel properties of a mouse gamma-aminobutyric acid transporter (GAT4). J Membr Biol 2005; 203:65-82. [PMID: 15981712 PMCID: PMC3009668 DOI: 10.1007/s00232-004-0732-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We expressed the mouse gamma-aminobutyric acid (GABA) transporter GAT4 (homologous to rat/ human GAT-3) in Xenopus laevis oocytes and examined its functional and pharmacological properties by using electrophysiological and tracer uptake methods. In the coupled mode of transport (Na+/ Cl-/GABA cotransport), there was tight coupling between charge flux and GABA flux across the plasma membrane (2 charges/GABA). Transport was highly temperature-dependent with a temperature coefficient (Q10) of 4.3. The GAT4 turnover rate (1.5 s(-l); -50 mV, 21 degrees C) and temperature dependence suggest physiological turnover rates of 15-20 s(-1). No uncoupled current was observed in the presence of Na+. In the absence of external Na+, GAT4 exhibited two distinct uncoupled currents. (i) A Cl- leak current (ICl(leak)) was observed when Na+ was replaced with choline or tetraethylammonium. The reversal potential of (ICl(leak)) followed the Cl- Nernst potential. (ii) A Li+ leak current (ILi(leak)) was observed when Na+ was replaced with Li+. Both leak currents were inhibited by Na+, and both were temperature-independent (Q10 approximately 1). The two leak modes appeared not to coexist, as Li+ inhibited (ICl(leak)). The results suggest the existence of cation- and anion-selective channel-like pathways in GAT4. Flufenamic acid inhibited GAT4 Na+/Cl-/GABA cotransport, ILi(leak), and ICl(leak), (Ki approximately 30 microM), and the voltage-induced presteady-state charge movements (Ki approximately 440 microM). Flufenamic acid exhibited little or no selectivity for GAT1, GAT2, or GAT3. Sodium and GABA concentration jicroumps revealed that slow Na+ binding to the transporter is followed by rapid GABA-induced translocation of the ligands across the plasma membrane. Thus, Na+ binding and associated conformational changes constitute the rate-limiting steps in the transport cycle.
Collapse
Affiliation(s)
- M.H. Karakossian
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768–4032, USA
| | - S.R. Spencer
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768–4032, USA
| | - A.Q. Gomez
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768–4032, USA
| | - O.R. Padilla
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768–4032, USA
| | - A. Sacher
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - D.D.F. Loo
- Department of Physiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095–1751, USA
| | - N. Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - S. Eskandari
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768–4032, USA
| |
Collapse
|
32
|
Abstract
The GABA transporter GAT1 removes the neurotransmitter GABA from the synaptic cleft by coupling of GABA uptake to the co-transport of two sodium ions and one chloride ion. The aim of this work was to investigate the individual reaction steps of GAT1 after a GABA concentration jump. GAT1 was transiently expressed in HEK293 cells and its pre-steady-state kinetics were studied by combining the patch-clamp technique with the laser-pulse photolysis of caged GABA, which allowed us to generate GABA concentration jumps within <100 micros. Recordings of transport currents generated by GAT1, both in forward and exchange transport modes, showed multiple charge movements that can be separated along the time axis. The individual reactions associated with these charge movements differ from the well-characterized electrogenic "sodium-occlusion" reaction by GAT1. One of the observed electrogenic reactions is shown to be associated with the GABA-translocating half-cycle of the transporter, in contradiction to previous studies that showed no charge movements associated with these reactions. Interestingly, reactions of the GABA-bound transporter were not affected by the absence of extracellular chloride, suggesting that Cl- may not be co-translocated with GABA. Based on the results, a new alternating access sequential-binding model is proposed for GAT1's transport cycle that describes the results presented here and those by others.
Collapse
Affiliation(s)
- Ana Bicho
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | | |
Collapse
|
33
|
Conti F, Minelli A, Melone M. GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. ACTA ACUST UNITED AC 2004; 45:196-212. [PMID: 15210304 DOI: 10.1016/j.brainresrev.2004.03.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 12/16/2022]
Abstract
The extracellular levels of gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the mammalian cerebral cortex, are regulated by specific high-affinity, Na+/Cl- dependent transporters. Four distinct genes encoding GABA transporters (GATs), named GAT-1, GAT-2, GAT-3, and BGT-1 have been identified using molecular cloning. Of these, GAT-1 and -3 are expressed in the cerebral cortex. Studies of the cortical distribution, cellular localization, ontogeny and relationships of GATs with GABA-releasing elements using a variety of light and electron microscopic immunocytochemical techniques have shown that: (i) a fraction of GATs is strategically placed to mediate GABA uptake at fast inhibitory synapses, terminating GABA's action and shaping inhibitory postsynaptic responses; (ii) another fraction may participate in functions such as the regulation of GABA's diffusion to neighboring synapses and of GABA levels in cerebrospinal fluid; (iii) GATs may play a role in the complex processes regulating cortical maturation; and (iv) GATs may contribute to the dysregulation of neuronal excitability that accompanies at least two major human diseases: epilepsy and ischemia.
Collapse
Affiliation(s)
- Fiorenzo Conti
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università Politecnica delle Marche, Via Tronto 10/A, Torrette di Ancona, I-60020 Ancona, Italy.
| | | | | |
Collapse
|
34
|
Abstract
Rapid signaling between vertebrate neurons occurs primarily at synapses, intercellular junctions where quantal release of neurotransmitter triggers rapid changes in membrane conductance through activation of ionotropic receptors. Glial cells express many of these same ionotropic receptors, yet little is known about how receptors in glial cells become activated in situ. Because synapses were thought to be the sole provenance of neurons, it has been assumed that these receptors must be activated following diffusion of transmitter out of the synaptic cleft, or through nonsynaptic mechanisms such as transporter reversal. Two recent reports show that a ubiquitous class of progenitors that express the proteoglycan NG2 (NG2 cells) engage in rapid signaling with glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons through direct neuron-glia synapses. Quantal release of transmitter from neurons at these sites triggers rapid activation of aminomethylisoxazole propionic acid (AMPA) or GABA(A) receptors in NG2 cells. These currents exhibit properties consistent with direct rather than spillover-mediated transmission, and electron micrographic analyses indicate that nerve terminals containing clusters of synaptic vesicles form discrete junctions with NG2 cell processes. Although activation of AMPA or GABA(A) receptors depolarize NG2 cells, these receptors are more likely to serve as routes for ion flux rather than as current sources for depolarization, because the amplitudes of the synaptic transients are small and the resting membrane potential of NG2 cells is highly negative. The ability of both glutamate and GABA to influence the morphology, physiology, and development of NG2 cells in vitro suggests that this rapid form of signaling may play important roles in adapting the behavior of these cells to the needs of surrounding neurons in vivo.
Collapse
Affiliation(s)
- Shih-Chun Lin
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dwight E Bergles
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Marcaggi P, Attwell D. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 2004; 47:217-225. [PMID: 15252810 DOI: 10.1002/glia.20027] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article reviews how the uptake of neurotransmitter by glial amino acid transporters limits the spatial spread of transmitter to preserve the independent operation of nearby synapses, temporally shapes postsynaptic currents, and regulates the effects of tonic transmitter release. We demonstrate the importance of amino acid uptake and recycling mechanisms for preventing the loss of energetically costly neurotransmitter from the brain, and also examine the suggestion that glutamate uptake into glia plays a key role in regulating the energy production of the brain. Finally, we assess the role of glial amino acid transporters in transmitter recycling pathways.
Collapse
Affiliation(s)
- Païkan Marcaggi
- Department of Physiology, University College London, London, United Kingdom
| | - David Attwell
- Department of Physiology, University College London, London, United Kingdom
| |
Collapse
|
36
|
Richerson GB, Wu Y. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol 2003; 90:1363-74. [PMID: 12966170 DOI: 10.1152/jn.00317.2003] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many electrophysiologists view neurotransmitter transporters as tiny vacuum cleaners, operating continuously to lower extracellular neurotransmitter concentration to zero. However, this is not consistent with their known behavior, instead only reducing extracellular neurotransmitter concentration to a finite, nonzero value at which an equilibrium is reached. In addition, transporters are equally able to go in either the forward or reverse direction, and when they reverse, they release their substrate in a calcium-independent manner. Transporter reversal has long been recognized to occur in response to pathological stimuli, but new data demonstrate that some transporters can also reverse in response to physiologically relevant stimuli. This is consistent with theoretical calculations that indicate that the reversal potentials of GABA and glycine transporters are close to the resting potential of neurons under normal conditions and that the extracellular concentration of GABA is sufficiently high when the GABA transporter is at equilibrium to tonically activate high-affinity extrasynaptic GABAA receptors. The equilibrium for the GABA transporter is not static but instead varies continuously as the driving force for the transporter changes. We propose that the GABA transporter plays a dynamic role in control of brain excitability by modulating the level of tonic inhibition in response to neuronal activity.
Collapse
Affiliation(s)
- George B Richerson
- Department of Neurology, Yale University School of Medicine, New Haven 06520, USA.
| | | |
Collapse
|