1
|
Bertoni T, Noel JP, Bockbrader M, Foglia C, Colachis S, Orset B, Evans N, Herbelin B, Rezai A, Panzeri S, Becchio C, Blanke O, Serino A. Pre-movement sensorimotor oscillations shape the sense of agency by gating cortical connectivity. Nat Commun 2025; 16:3594. [PMID: 40234393 PMCID: PMC12000325 DOI: 10.1038/s41467-025-58683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
Our sense of agency, the subjective experience of controlling our actions, is a crucial component of self-awareness and motor control. It is thought to originate from the comparison between intentions and actions across broad cortical networks. However, the underlying neural mechanisms are still not fully understood. We hypothesized that oscillations in the theta-alpha range, thought to orchestrate long-range neural connectivity, may mediate sensorimotor comparisons. To test this, we manipulated the relation between intentions and actions in a tetraplegic user of a brain machine interface (BMI), decoding primary motor cortex (M1) activity to restore hand functionality. We found that the pre-movement phase of low-alpha oscillations in M1 predicted the participant's agency judgements. Further, using EEG-BMI in healthy participants, we found that pre-movement alpha oscillations in M1 and supplementary motor area (SMA) correlated with agency ratings, and with changes in their functional connectivity with parietal, temporal and prefrontal areas. These findings argue for phase-driven gating as a key mechanism for sensorimotor integration and sense of agency.
Collapse
Affiliation(s)
- Tommaso Bertoni
- MySpace Lab, Department of Clinical Neuroscience, University Hospital Lausanne (CHUV), Lausanne, Switzerland.
- C'MoN, Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| | - Jean-Paul Noel
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marcia Bockbrader
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio, USA
| | - Carolina Foglia
- MySpace Lab, Department of Clinical Neuroscience, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Sam Colachis
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, Ohio, USA
| | - Bastien Orset
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nathan Evans
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Bruno Herbelin
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ali Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Cristina Becchio
- C'MoN, Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Olaf Blanke
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neuroscience, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
2
|
Mylius M, Guendelman S, Iliopoulos F, Gallese V, Kaltwasser L. Meditation expertise influences response bias and prestimulus alpha activity in the somatosensory signal detection task. Psychophysiology 2025; 62:e14712. [PMID: 39558602 PMCID: PMC11870818 DOI: 10.1111/psyp.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 11/20/2024]
Abstract
This study investigates the proposed mechanism of mindfulness, its impact on body awareness and interoception, and its potential benefits for mental and physical health. Using psychophysical assessments, we compared 31 expert meditators with 33 matched controls (non-meditators who engage in regular reading, more than 5 h per week) in terms of somatosensory accuracy with a somatosensory signal detection task (SSDT) and interoceptive sensibility via self-report measures. We hypothesized that meditators would demonstrate superior somatosensory accuracy, indicative of heightened body awareness, potentially linked to increased alpha modulation in the somatosensory cortex, as observed via electroencephalography (EEG). In the SSDT, participants attempted to detect near-threshold tactile stimuli presented with a non-informative light in half of the trials. Contrary to our expectations, the findings showed that meditators had a lower decision threshold rather than higher accuracy. EEG results corroborated earlier research, indicating reduced prestimulus alpha power in meditators, suggesting enhanced alpha modulation. Furthermore, a trial-by-trial analysis revealed a negative correlation between prestimulus alpha activity and tactile perception. Compared to controls, meditators also reported greater interoceptive sensibility, less emotional suppression, and fewer difficulties in describing feelings. These findings may imply that enhanced tactile perception is associated with lower prestimulus alpha activity by reducing sensory filtering in the somatosensory cortex, thus increasing response rates without necessarily improving accuracy among meditators.
Collapse
Affiliation(s)
- Maik Mylius
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
- Institute of Computer ScienceGeorg‐August‐Universität GöttingenGöttingenGermany
| | - Simon Guendelman
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| | - Fivos Iliopoulos
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Vittorio Gallese
- Unit of Neuroscience, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Laura Kaltwasser
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
3
|
Wang Q, Gong A, Feng Z, Bai Y, Ziemann U. Interactions of transcranial magnetic stimulation with brain oscillations: a narrative review. Front Syst Neurosci 2024; 18:1489949. [PMID: 39698203 PMCID: PMC11652484 DOI: 10.3389/fnsys.2024.1489949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Brain responses to transcranial magnetic stimulation (TMS) can be recorded with electroencephalography (EEG) and comprise TMS-evoked potentials and TMS-induced oscillations. Repetitive TMS may entrain endogenous brain oscillations. In turn, ongoing brain oscillations prior to the TMS pulse can influence the effects of the TMS pulse. These intricate TMS-EEG and EEG-TMS interactions are increasingly attracting the interest of researchers and clinicians. This review surveys the literature of TMS and its interactions with brain oscillations as measured by EEG in health and disease.
Collapse
Affiliation(s)
- Qijun Wang
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anjuan Gong
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Ricci S, Torrigino D, Minuto M, Casadio M. A Visuo-Haptic System for Nodule Detection Training: Insights From EEG and Behavioral Analysis. IEEE TRANSACTIONS ON HAPTICS 2024; 17:946-956. [PMID: 39499593 DOI: 10.1109/toh.2024.3487522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Medical palpation is a key skill for clinicians. It is typically trained using animal and synthetic models, which however raise ethical concerns and produce high volumes of consumables. An alternative could be visuo-haptic simulations, despite their training efficacy has not been proved yet. The assessment of palpatory skills requires objective methods, that can be achieved by combining performance metrics with electroencephalography (EEG). The goals of this study were to: (i) develop a visuo-haptic system to train nodule detection, combining a Geomagic Touch haptic device with a visuo-haptic simulation of a skin patch and a nodule, implemented using SOFA framework; (ii) assess whether this system could be used for training and evaluation. To do so, we collected performance and EEG data of 19 subjects performing multiple repetitions of a nodule detection task. Results revealed that participants could be divided in low and high performers; the former applied a greater pressure when looking for the nodule and showed a higher EEG alpha (8.5 - 13 ) peak at rest; The latter explored the skin remaining on its surface and were characterized by low alpha power. Furthermore, alpha power positively correlated with error and negatively with palpation depth. Altogether, these results suggest that alpha power might be an indicator of performance, denoting an increase in vigilance, attention, information processing, cognitive processes, and engagement, ultimately affecting strategy and performance. Also, the combination of EEG with performance data can provide an objective measure of the user's palpation ability.
Collapse
|
5
|
Haigh A, Buckby B. Rhythmic Attention and ADHD: A Narrative and Systematic Review. Appl Psychophysiol Biofeedback 2024; 49:185-204. [PMID: 38198019 DOI: 10.1007/s10484-023-09618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
In recent decades, a growing body of evidence has confirmed the existence of rhythmic fluctuations in attention, but the effect of inter-individual variations in these attentional rhythms has yet to be investigated. The aim of this review is to identify trends in the attention deficit/hyperactivity disorder (ADHD) literature that could be indicative of between-subject differences in rhythmic attention. A narrative review of the rhythmic attention and electrophysiological ADHD research literature was conducted, and the commonly-reported difference in slow-wave power between ADHD subjects and controls was found to have the most relevance to an understanding of rhythmic attention. A systematic review of the literature examining electrophysiological power differences in ADHD was then conducted to identify studies with conditions similar to those utilised in the rhythmic attention research literature. Fifteen relevant studies were identified and reviewed. The most consistent finding in the studies reviewed was for no spectral power differences between ADHD subjects and controls. However, the strongest trend in the studies reporting power differences was for higher power in the delta and theta frequency bands and lower power in the alpha band. In the context of rhythmic attention, this trend is suggestive of a slowing in the frequency and/or increase in the amplitude of the attentional oscillation in a subgroup of ADHD subjects. It is suggested that this characteristic electrophysiological modulation could be indicative of a global slowing of the attentional rhythm and/or an increase in the rhythmic recruitment of neurons in frontal attention networks in individuals with ADHD.
Collapse
Affiliation(s)
- Andrew Haigh
- Department of Psychology, James Cook University, Townsville, Australia.
| | - Beryl Buckby
- Department of Psychology, James Cook University, Townsville, Australia
| |
Collapse
|
6
|
Vinao-Carl M, Gal-Shohet Y, Rhodes E, Li J, Hampshire A, Sharp D, Grossman N. Just a phase? Causal probing reveals spurious phasic dependence of sustained attention. Neuroimage 2024; 285:120477. [PMID: 38072338 DOI: 10.1016/j.neuroimage.2023.120477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023] Open
Abstract
For over a decade, electrophysiological studies have reported correlations between attention / perception and the phase of spontaneous brain oscillations. To date, these findings have been interpreted as evidence that the brain uses neural oscillations to sample and predict upcoming stimuli. Yet, evidence from simulations have shown that analysis artefacts could also lead to spurious pre-stimulus oscillations that appear to predict future brain responses. To address this discrepancy, we conducted an experiment in which visual stimuli were presented in time to specific phases of spontaneous alpha and theta oscillations. This allowed us to causally probe the role of ongoing neural activity in visual processing independent of the stimulus-evoked dynamics. Our findings did not support a causal link between spontaneous alpha / theta rhythms and behaviour. However, spurious correlations between theta phase and behaviour emerged offline using gold-standard time-frequency analyses. These findings are a reminder that care should be taken when inferring causal relationships between neural activity and behaviour using acausal analysis methods.
Collapse
Affiliation(s)
- M Vinao-Carl
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute, (UK DRI), Imperial College London, London, UK.
| | - Y Gal-Shohet
- Department of Medical Physics and Engineering, University College London, London, UK
| | - E Rhodes
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute, (UK DRI), Imperial College London, London, UK
| | - J Li
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute, (UK DRI), Imperial College London, London, UK
| | - A Hampshire
- Department of Brain Sciences, Imperial College London, London, UK
| | - D Sharp
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute, (UK DRI), Imperial College London, London, UK; UK Dementia Research Institute, Care Research and Technology Centre (UK DRI-CRT), Imperial College London, London, UK
| | - N Grossman
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute, (UK DRI), Imperial College London, London, UK.
| |
Collapse
|
7
|
Monday HR, Wang HC, Feldman DE. Circuit-level theories for sensory dysfunction in autism: convergence across mouse models. Front Neurol 2023; 14:1254297. [PMID: 37745660 PMCID: PMC10513044 DOI: 10.3389/fneur.2023.1254297] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) exhibit a diverse range of behavioral features and genetic backgrounds, but whether different genetic forms of autism involve convergent pathophysiology of brain function is unknown. Here, we analyze evidence for convergent deficits in neural circuit function across multiple transgenic mouse models of ASD. We focus on sensory areas of neocortex, where circuit differences may underlie atypical sensory processing, a central feature of autism. Many distinct circuit-level theories for ASD have been proposed, including increased excitation-inhibition (E-I) ratio and hyperexcitability, hypofunction of parvalbumin (PV) interneuron circuits, impaired homeostatic plasticity, degraded sensory coding, and others. We review these theories and assess the degree of convergence across ASD mouse models for each. Behaviorally, our analysis reveals that innate sensory detection behavior is heightened and sensory discrimination behavior is impaired across many ASD models. Neurophysiologically, PV hypofunction and increased E-I ratio are prevalent but only rarely generate hyperexcitability and excess spiking. Instead, sensory tuning and other aspects of neural coding are commonly degraded and may explain impaired discrimination behavior. Two distinct phenotypic clusters with opposing neural circuit signatures are evident across mouse models. Such clustering could suggest physiological subtypes of autism, which may facilitate the development of tailored therapeutic approaches.
Collapse
Affiliation(s)
- Hannah R. Monday
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | | | - Daniel E. Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
8
|
Brændholt M, Kluger DS, Varga S, Heck DH, Gross J, Allen MG. Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neurosci Biobehav Rev 2023; 152:105262. [PMID: 37271298 DOI: 10.1016/j.neubiorev.2023.105262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Denmark; The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, South Africa
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| |
Collapse
|
9
|
Kim B, Erickson BA, Fernandez-Nunez G, Rich R, Mentzelopoulos G, Vitale F, Medaglia JD. EEG Phase Can Be Predicted with Similar Accuracy across Cognitive States after Accounting for Power and Signal-to-Noise Ratio. eNeuro 2023; 10:ENEURO.0050-23.2023. [PMID: 37558464 PMCID: PMC10481640 DOI: 10.1523/eneuro.0050-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 08/11/2023] Open
Abstract
EEG phase is increasingly used in cognitive neuroscience, brain-computer interfaces, and closed-loop stimulation devices. However, it is unknown how accurate EEG phase prediction is across cognitive states. We determined the EEG phase prediction accuracy of parieto-occipital alpha waves across rest and task states in 484 participants over 11 public datasets. We were able to track EEG phase accurately across various cognitive conditions and datasets, especially during periods of high instantaneous alpha power and signal-to-noise ratio (SNR). Although resting states generally have higher accuracies than task states, absolute accuracy differences were small, with most of these differences attributable to EEG power and SNR. These results suggest that experiments and technologies using EEG phase should focus more on minimizing external noise and waiting for periods of high power rather than inducing a particular cognitive state.
Collapse
Affiliation(s)
- Brian Kim
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | - Brian A Erickson
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | | | - Ryan Rich
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | - Georgios Mentzelopoulos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104
- Departments of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
- Departments of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Neurology, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
10
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
11
|
Lindenbaum L, Steppacher I, Mehlmann A, Kissler JM. The effect of neural pre-stimulus oscillations on post-stimulus somatosensory event-related potentials in disorders of consciousness. Front Neurosci 2023; 17:1179228. [PMID: 37360157 PMCID: PMC10287968 DOI: 10.3389/fnins.2023.1179228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Brain activity of people in a disorder of consciousness (DoC) is diffuse and different from healthy people. In order to get a better understanding of their cognitive processes and functions, electroencephalographic activity has often been examined in patients with DoC, including detection of event-related potentials (ERPs) and spectral power analysis. However, the relationship between pre-stimulus oscillations and post-stimulus ERPs has rarely been explored in DoC, although it is known from healthy participants that pre-stimulus oscillations predispose subsequent stimulus detection. Here, we examine to what extent pre-stimulus electroencephalography band power in DoC relates to post-stimulus ERPs in a similar way as previously documented in healthy people. 14 DoC patients in an unresponsive wakefulness syndrome (UWS, N = 2) or a minimally conscious state (MCS, N = 12) participated in this study. In an active oddball paradigm patients received vibrotactile stimuli. Significant post-stimulus differences between brain responses to deviant and standard stimulation could be found in six MCS patients (42.86%). Regarding relative pre-stimulus frequency bands, delta oscillations predominated in most patients, followed by theta and alpha, although two patients showed a relatively normal power spectrum. The statistical analysis of the relationship between pre-stimulus power and post-stimulus event-related brain response showed multiple significant correlations in five out of the six patients. Individual results sometimes showed similar correlation patterns as in healthy subjects primarily between the relative pre-stimulus alpha power and post-stimulus variables in later time-intervals. However, opposite effects were also found, indicating high inter-individual variability in DoC patients´ functional brain activity. Future studies should determine on an individual level to what extent the relationship between pre- and post-stimulus brain activity could relate to the course of the disorder.
Collapse
Affiliation(s)
- Laura Lindenbaum
- Department of Psychology, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Inga Steppacher
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | | | - Johanna Maria Kissler
- Department of Psychology, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
12
|
Kraus F, Tune S, Obleser J, Herrmann B. Neural α Oscillations and Pupil Size Differentially Index Cognitive Demand under Competing Audiovisual Task Conditions. J Neurosci 2023; 43:4352-4364. [PMID: 37160365 PMCID: PMC10255021 DOI: 10.1523/jneurosci.2181-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Cognitive demand is thought to modulate two often used, but rarely combined, measures: pupil size and neural α (8-12 Hz) oscillatory power. However, it is unclear whether these two measures capture cognitive demand in a similar way under complex audiovisual-task conditions. Here we recorded pupil size and neural α power (using electroencephalography), while human participants of both sexes concurrently performed a visual multiple object-tracking task and an auditory gap detection task. Difficulties of the two tasks were manipulated independent of each other. Participants' performance decreased in accuracy and speed with increasing cognitive demand. Pupil size increased with increasing difficulty for both the auditory and the visual task. In contrast, α power showed diverging neural dynamics: parietal α power decreased with increasing difficulty in the visual task, but not with increasing difficulty in the auditory task. Furthermore, independent of task difficulty, within-participant trial-by-trial fluctuations in pupil size were negatively correlated with α power. Difficulty-induced changes in pupil size and α power, however, did not correlate, which is consistent with their different cognitive-demand sensitivities. Overall, the current study demonstrates that the dynamics of the neurophysiological indices of cognitive demand and associated effort are multifaceted and potentially modality-dependent under complex audiovisual-task conditions.SIGNIFICANCE STATEMENT Pupil size and oscillatory α power are associated with cognitive demand and effort, but their relative sensitivity under complex audiovisual-task conditions is unclear, as is the extent to which they share underlying mechanisms. Using an audiovisual dual-task paradigm, we show that pupil size increases with increasing cognitive demands for both audition and vision. In contrast, changes in oscillatory α power depend on the respective task demands: parietal α power decreases with visual demand but not with auditory task demand. Hence, pupil size and α power show different sensitivity to cognitive demands, perhaps suggesting partly different underlying neural mechanisms.
Collapse
Affiliation(s)
- Frauke Kraus
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Björn Herrmann
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
13
|
Morrow A, Dou W, Samaha J. Individual alpha frequency appears unrelated to the latency of early visual responses. Front Neurosci 2023; 17:1118910. [PMID: 37113149 PMCID: PMC10126513 DOI: 10.3389/fnins.2023.1118910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
A large body of work has linked neural oscillations in the alpha-band (8-13 Hz) to visual perceptual outcomes. In particular, studies have found that alpha phase prior to stimulus onset predicts stimulus detection, and sensory responses and that the frequency of alpha can predict temporal properties of perception. These findings have bolstered the idea that alpha-band oscillations reflect rhythmic sampling of visual information, however the mechanisms of this are unclear. Recently two contrasting hypotheses have been proposed. According to the rhythmic perception account, alpha oscillations impose phasic inhibition on perceptual processing and primarily modulate the amplitude or strength of visual responses and thus the likelihood of stimulus detection. On the other hand, the discrete perception account proposes that alpha activity discretizes perceptual inputs thereby reorganizing the timing (not only the strength) of perceptual and neural processes. In this paper, we sought neural evidence for the discrete perception account by assessing the correlation between individual alpha frequencies (IAF) and the latency of early visual evoked event-related potential (ERP) components. If alpha cycles were responsible for shifting neural events in time, then we may expect higher alpha frequencies to be associated with earlier afferent visual ERPs. Participants viewed large checkerboard stimuli presented to either the upper or lower visual field that were designed to elicit a large C1 ERP response (thought to index feedforward primary visual cortex activation). We found no reliable correlation between IAF and the C1 latency, or subsequent ERP component latencies, suggesting that the timing of these visual-evoked potentials was not modulated by alpha frequency. Our results thus fail to find evidence for discrete perception at the level of early visual responses but leave open the possibility of rhythmic perception.
Collapse
|
14
|
Wu W, Huang X, Qi X, Lu Y. Bias of Attentional Oscillations in Individuals with Subthreshold Depression: Evidence from a Pre-Cueing Facial Expression Judgment Task. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14559. [PMID: 36361443 PMCID: PMC9654165 DOI: 10.3390/ijerph192114559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Background: Study results regarding attentional bias in depressed individuals are inconsistent. Recent studies have found that attention is a discrete process, alternating between periods of either enhanced or diminished attention sensitivity. Whether a visual target can be detected depends on when it occurs relative to these oscillation rhythms. We infer that the inconsistency of attentional bias may be related to the abnormality of attentional oscillations in depressed individuals. Methods: A pre-cueing attentional task was used. We set 48 levels of stimulus onset asynchrony (SOA) between cues and targets and measured the response time (RT) of participants, as well as their EEG signals. Results: The RTs showed patterns of behavioral oscillations. Repeated-measure ANOVA indicated that subthreshold depressed participants had significantly higher RTs for negative expressions than for neutral but significantly lower RTs for positive than for neutral. The frequency analysis indicated that the RT oscillational frequency of subthreshold depressed participants to negative/positive expressions was different from that to neutral. The EEG time-frequency analysis showed that when faced with negative expressions, the intensity of the neural alpha oscillatory power of subthreshold depressed participants was significantly lower than that of normal controls. When faced with positive expressions, the intensity of neural alpha oscillatory power was significantly higher than that of normal controls. Conclusion: Compared to normal persons, subthreshold depressed individuals may have biases in both the amplitude and frequency of attentional oscillations. These attentional biases correspond to the intensity of their neural alpha wave rhythms.
Collapse
|
15
|
van Bree S, Melcón M, Kolibius LD, Kerrén C, Wimber M, Hanslmayr S. The brain time toolbox, a software library to retune electrophysiology data to brain dynamics. Nat Hum Behav 2022; 6:1430-1439. [PMID: 35726055 DOI: 10.1038/s41562-022-01386-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/12/2022] [Indexed: 12/21/2022]
Abstract
Human thought is highly flexible, achieved by evolving patterns of brain activity across groups of cells. Neuroscience aims to understand cognition in the brain by analysing these intricate patterns. We argue that this goal is impeded by the time format of our data-clock time. The brain is a system with its own dynamics and regime of time, with no intrinsic concern for the human-invented second. Here, we present the Brain Time Toolbox, a software library that retunes electrophysiology data in line with oscillations that orchestrate neural patterns of cognition. These oscillations continually slow down, speed up and undergo abrupt changes, introducing a disharmony between the brain's internal regime and clock time. The toolbox overcomes this disharmony by warping the data to the dynamics of coordinating oscillations, setting oscillatory cycles as the data's new time axis. This enables the study of neural patterns as they unfold in the brain, aiding neuroscientific enquiry into dynamic cognition. In support of this, we demonstrate that the toolbox can reveal results that are absent in a default clock time format.
Collapse
Affiliation(s)
- Sander van Bree
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - María Melcón
- Department of Biological and Health Psychology, Autónoma University of Madrid, Madrid, Spain
| | - Luca D Kolibius
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Casper Kerrén
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| | - Maria Wimber
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Simon Hanslmayr
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Distractibility and impulsivity neural states are distinct from selective attention and modulate the implementation of spatial attention. Nat Commun 2022; 13:4796. [PMID: 35970856 PMCID: PMC9378734 DOI: 10.1038/s41467-022-32385-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
In the context of visual attention, it has been classically assumed that missing the response to a target or erroneously selecting a distractor occurs as a consequence of the (miss)allocation of attention in space. In the present paper, we challenge this view and provide evidence that, in addition to encoding spatial attention, prefrontal neurons also encode a distractibility-to-impulsivity state. Using supervised dimensionality reduction techniques in prefrontal neuronal recordings in monkeys, we identify two partially overlapping neuronal subpopulations associated either with the focus of attention or overt behaviour. The degree of overlap accounts for the behavioral gain associated with the good allocation of attention. We further describe the neural variability accounting for distractibility-to-impulsivity behaviour by a two dimensional state associated with optimality in task and responsiveness. Overall, we thus show that behavioral performance arises from the integration of task-specific neuronal processes and pre-existing neuronal states describing task-independent behavioral states. Failing to detect relevant information has been assumed to be a consequence of misallocation of attention. Here, the authors present findings showing that optimal behavioral performance results from the absence of interference between internal neural states and attention control.
Collapse
|
17
|
α Phase-Amplitude Tradeoffs Predict Visual Perception. eNeuro 2022; 9:ENEURO.0244-21.2022. [PMID: 35105658 PMCID: PMC8868024 DOI: 10.1523/eneuro.0244-21.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
Spontaneous α oscillations (∼10 Hz) have been associated with various cognitive functions, including perception. Their phase and amplitude independently predict cortical excitability and subsequent perceptual performance. However, the causal role of α phase-amplitude tradeoffs on visual perception remains ill-defined. We aimed to fill this gap and tested two clear predictions from the pulsed inhibition theory according to which α oscillations are associated with periodic functional inhibition. (1) High-α amplitude induces cortical inhibition at specific phases, associated with low perceptual performance, while at opposite phases, inhibition decreases (potentially increasing excitation) and perceptual performance increases. (2) Low-α amplitude is less susceptible to these phasic (periodic) pulses of inhibition, leading to overall higher perceptual performance. Here, cortical excitability was assessed in humans using phosphene (illusory) perception induced by single pulses of transcranial magnetic stimulation (TMS) applied over visual cortex at perceptual threshold, and its postpulse evoked activity recorded with simultaneous electroencephalography (EEG). We observed that prepulse α phase modulates the probability to perceive a phosphene, predominantly for high-α amplitude, with a nonoptimal phase for phosphene perception between -π/2 and -π/4. The prepulse nonoptimal phase further leads to an increase in postpulse-evoked activity [event-related potential (ERP)], in phosphene-perceived trials specifically. Together, these results show that α oscillations create periodic inhibitory moments when α amplitude is high, leading to periodic decrease of perceptual performance. This study provides strong causal evidence in favor of the pulsed inhibition theory.
Collapse
|
18
|
Teixeira PEP, Pacheco-Barrios K, Uygur-Kucukseymen E, Machado RM, Balbuena-Pareja A, Giannoni-Luza S, Luna-Cuadros MA, Cardenas-Rojas A, Gonzalez-Mego P, Mejia-Pando PF, Wagner T, Dipietro L, Fregni F. Electroencephalography Signatures for Conditioned Pain Modulation and Pain Perception in Non-Specific Chronic Low Back Pain-an Exploratory Study. PAIN MEDICINE 2021; 23:558-570. [PMID: 34633449 DOI: 10.1093/pm/pnab293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022]
Abstract
Conditioned pain modulation (CPM) can discriminate between healthy and chronic pain patients. However, its relationship with neurophysiological pain mechanisms is poorly understood. Brain oscillations measured by electroencephalography (EEG) might help gain insight into this complex relationship. OBJECTIVE To investigate the relationship between CPM response and self-reported pain intensity in non-specific chronic low back pain (NSCLBP) and explore respective EEG signatures associated to these mechanisms. DESIGN Cross-sectional analysis. Participants: Thirty NSCLBP patients participated. METHODS Self-reported low back pain, questionnaires, mood scales, CPM (static and dynamic quantitative sensory tests), and resting surface EEG data were collected and analyzed. Linear regression models were used for statistical analysis. RESULTS CPM was not significantly correlated with self-reported pain intensity scores. Relative power of EEG in the beta and high beta bands as recorded from the frontal, central, and parietal cortical areas were significantly associated with CPM. EEG relative power at delta and theta bands as recorded from the central area were significantly correlated with self-reported pain intensity scores while controlling for self-reported depression. CONCLUSIONS Faster EEG frequencies recorded from pain perception areas may provide a signature of a potential cortical compensation caused by chronic pain states. Slower EEG frequencies may have a critical role in abnormal pain processing.
Collapse
Affiliation(s)
- Paulo E P Teixeira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,MGH Institute of Health Professions, Boston, MA, USA.,Instituto Wilson Mello, Campinas, SP, Brazil
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, . Lima, Peru
| | - Elif Uygur-Kucukseymen
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Roberto Mathias Machado
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ana Balbuena-Pareja
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Stefano Giannoni-Luza
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Maria Alejandra Luna-Cuadros
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Paola Gonzalez-Mego
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Piero F Mejia-Pando
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Timothy Wagner
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Boston, MA.,Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Laura Dipietro
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Boston, MA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Highland Instruments, Inc., Cambridge, MA, USA
| |
Collapse
|
19
|
Uemura JI, Hoshino A, Igarashi G, Matsui Y, Chishima M, Hoshiyama M. Pre-stimulus alpha oscillation and post-stimulus cortical activity differ in localization between consciously perceived and missed near-threshold somatosensory stimuli. Eur J Neurosci 2021; 54:5518-5530. [PMID: 34251060 PMCID: PMC8456933 DOI: 10.1111/ejn.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 12/04/2022]
Abstract
Conscious perception of a near‐threshold (NT) stimulus is characterized by the pre‐ and post‐stimulus brain state. However, the power of pre‐stimulus neural oscillations and strength of post‐stimulus cortical activity that lead to conscious perception have rarely been examined in individual cortical areas. This is because most previous electro‐ and magnetoencephalography (EEG and MEG, respectively) studies involved scalp‐ and sensor‐level analyses. Therefore, we recorded MEG during a continuous NT somatosensory stimulus detection task and applied the reconstructed source data in order to identify cortical areas where the post‐stimulus cortical activity and pre‐stimulus alpha oscillation predict the conscious perception of NT somatosensory stimuli. We found that the somatosensory hierarchical processing areas, prefrontal areas and cortical areas belonging to the default mode network showed stronger cortical activity for consciously perceived trials in the post‐stimulus period, but the cortical activity in primary somatosensory area (SI) is independent of conscious perception during the early stage of NT stimulus processing. In addition, we revealed that the pre‐stimulus alpha oscillation only in SI is predictive of conscious perception. These findings suggest that the bottom‐up stream of somatosensory information flow following SI and pre‐stimulus alpha activity fluctuation in SI as a top‐down modulation are crucial constituents of conscious perception.
Collapse
Affiliation(s)
- Jun-Ichi Uemura
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Aiko Hoshino
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Go Igarashi
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yusuke Matsui
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Makoto Chishima
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Minoru Hoshiyama
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
20
|
Wolpert N, Tallon-Baudry C. Coupling between the phase of a neural oscillation or bodily rhythm with behavior: Evaluation of different statistical procedures. Neuroimage 2021; 236:118050. [PMID: 33848619 PMCID: PMC8270889 DOI: 10.1016/j.neuroimage.2021.118050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Circular tests are differentially sensitive to different coupling modes. The Watson test is a good all-rounder method. Phase Opposition Sum is robust to imbalances in relative trial number. Modulation Index detects more complex phase-behavior relationships.
Growing experimental evidence points at relationships between the phase of a cortical or bodily oscillation and behavior, using various circular statistical tests. Here, we systematically compare the performance (sensitivity, False Positive rate) of four circular statistical tests (some commonly used, i.e. Phase Opposition Sum, Circular Logistic Regression, others less common, i.e., Watson test, Modulation Index). We created semi-artificial datasets mimicking real two-alternative forced choice experiments with 30 participants, where we imposed a link between a simulated binary behavioral outcome with the phase of a physiological oscillation. We systematically varied the strength of phase-outcome coupling, the coupling mode (1:1 to 4:1), the overall number of trials and the relative number of trials in the two outcome conditions. We evaluated different strategies to estimate phase-outcome coupling chance level, as well as significance at the individual or group level. The results show that the Watson test, although seldom used in the experimental literature, is an excellent first intention test, with a good sensitivity and low False Positive rate, some sensitivity to 2:1 coupling mode and low computational load. Modulation Index, initially designed for continuous variables but that we find useful to estimate coupling between phase and a binary outcome, should be preferred if coupling mode is higher than 2:1. Phase Opposition Sum, coupled with a resampling procedure, is the only test retaining a good sensitivity in the case of a large unbalance in the number of occurrences of the two behavioral outcomes.
Collapse
Affiliation(s)
- Nicolai Wolpert
- Laboratoire de Neurosciences Cognitives et Computationnelles, Ecole Normale Supérieure, Inserm u960, PSL University, 24 rue Lhomond, Paris 75005, France.
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Ecole Normale Supérieure, Inserm u960, PSL University, 24 rue Lhomond, Paris 75005, France
| |
Collapse
|
21
|
Thomaidou MA, Peerdeman KJ, Koppeschaar MI, Evers AWM, Veldhuijzen DS. How Negative Experience Influences the Brain: A Comprehensive Review of the Neurobiological Underpinnings of Nocebo Hyperalgesia. Front Neurosci 2021; 15:652552. [PMID: 33841092 PMCID: PMC8024470 DOI: 10.3389/fnins.2021.652552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
This comprehensive review summarizes and interprets the neurobiological correlates of nocebo hyperalgesia in healthy humans. Nocebo hyperalgesia refers to increased pain sensitivity resulting from negative experiences and is thought to be an important variable influencing the experience of pain in healthy and patient populations. The young nocebo field has employed various methods to unravel the complex neurobiology of this phenomenon and has yielded diverse results. To comprehend and utilize current knowledge, an up-to-date, complete review of this literature is necessary. PubMed and PsychInfo databases were searched to identify studies examining nocebo hyperalgesia while utilizing neurobiological measures. The final selection included 22 articles. Electrophysiological findings pointed toward the involvement of cognitive-affective processes, e.g., modulation of alpha and gamma oscillatory activity and P2 component. Findings were not consistent on whether anxiety-related biochemicals such as cortisol plays a role in nocebo hyperalgesia but showed an involvement of the cyclooxygenase-prostaglandin pathway, endogenous opioids, and dopamine. Structural and functional neuroimaging findings demonstrated that nocebo hyperalgesia amplified pain signals in the spinal cord and brain regions involved in sensory and cognitive-affective processing including the prefrontal cortex, insula, amygdala, and hippocampus. These findings are an important step toward identifying the neurobiological mechanisms through which nocebo effects may exacerbate pain. Results from the studies reviewed are discussed in relation to cognitive-affective and physiological processes involved in nocebo and pain. One major limitation arising from this review is the inconsistency in methods and results in the nocebo field. Yet, while current findings are diverse and lack replication, methodological differences are able to inform our understanding of the results. We provide insights into the complexities and involvement of neurobiological processes in nocebo hyperalgesia and call for more consistency and replication studies. By summarizing and interpreting the challenging and complex neurobiological nocebo studies this review contributes, not only to our understanding of the mechanisms through which nocebo effects exacerbate pain, but also to our understanding of current shortcomings in this field of neurobiological research.
Collapse
Affiliation(s)
- Mia A. Thomaidou
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Kaya J. Peerdeman
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | | | - Andrea W. M. Evers
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
- Medical Delta Healthy Society, Leiden University, Technical University Delft, & Erasmus UniversityRotterdam, Netherlands
- Department of Psychiatry, Leiden University Medical Centre, Leiden, Netherlands
| | - Dieuwke S. Veldhuijzen
- Health, Medical & Neuropsychology Unit, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden, Netherlands
| |
Collapse
|
22
|
Zazio A, Ruhnau P, Weisz N, Wutz A. Pre-stimulus alpha-band power and phase fluctuations originate from different neural sources and exert distinct impact on stimulus-evoked responses. Eur J Neurosci 2021; 55:3178-3190. [PMID: 33539589 DOI: 10.1111/ejn.15138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/22/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
Ongoing oscillatory neural activity before stimulus onset influences subsequent visual perception. Specifically, both the power and the phase of oscillations in the alpha-frequency band (9-13 Hz) have been reported to predict the detection of visual stimuli. Up to now, the functional mechanisms underlying pre-stimulus power and phase effects on upcoming visual percepts are debated. Here, we used magnetoencephalography recordings together with a near-threshold visual detection task to investigate the neural generators of pre-stimulus power and phase and their impact on subsequent visual-evoked responses. Pre-stimulus alpha-band power and phase opposition effects were found consistent with previous reports. Source localization suggested clearly distinct neural generators for these pre-stimulus effects: Power effects were mainly found in occipital-temporal regions, whereas phase effects also involved prefrontal areas. In order to be functionally relevant, the pre-stimulus correlates should influence post-stimulus processing. Using a trial-sorting approach, we observed that only pre-stimulus power modulated the Hits versus Misses difference in the evoked response, a well-established post-stimulus neural correlate of near-threshold perception, such that trials with stronger pre-stimulus power effect showed greater post-stimulus difference. By contrast, no influence of pre-stimulus phase effects were found. In sum, our study shows distinct generators for two pre-stimulus neural patterns predicting visual perception, and that only alpha power impacts the post-stimulus correlate of conscious access. This underlines the functional relevance of prestimulus alpha power on perceptual awareness, while questioning the role of alpha phase.
Collapse
Affiliation(s)
- Agnese Zazio
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Philipp Ruhnau
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Nathan Weisz
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Andreas Wutz
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
23
|
Balasubramaniam R, Haegens S, Jazayeri M, Merchant H, Sternad D, Song JH. Neural Encoding and Representation of Time for Sensorimotor Control and Learning. J Neurosci 2021; 41:866-872. [PMID: 33380468 PMCID: PMC7880297 DOI: 10.1523/jneurosci.1652-20.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to perceive and produce movements in the real world with precise timing is critical for survival in animals, including humans. However, research on sensorimotor timing has rarely considered the tight interrelation between perception, action, and cognition. In this review, we present new evidence from behavioral, computational, and neural studies in humans and nonhuman primates, suggesting a pivotal link between sensorimotor control and temporal processing, as well as describing new theoretical frameworks regarding timing in perception and action. We first discuss the link between movement coordination and interval-based timing by addressing how motor training develops accurate spatiotemporal patterns in behavior and influences the perception of temporal intervals. We then discuss how motor expertise results from establishing task-relevant neural manifolds in sensorimotor cortical areas and how the geometry and dynamics of these manifolds help reduce timing variability. We also highlight how neural dynamics in sensorimotor areas are involved in beat-based timing. These lines of research aim to extend our understanding of how timing arises from and contributes to perceptual-motor behaviors in complex environments to seamlessly interact with other cognitive processes.
Collapse
Affiliation(s)
| | | | | | - Hugo Merchant
- Instituto de Neurobiologia, UNAM, campus Juriquilla, Querétaro, México 76230
| | | | | |
Collapse
|
24
|
Zhang W, Song A, Zeng H, Xu B, Miao M. Closed-Loop Phase-Dependent Vibration Stimulation Improves Motor Imagery-Based Brain-Computer Interface Performance. Front Neurosci 2021; 15:638638. [PMID: 33568973 PMCID: PMC7868341 DOI: 10.3389/fnins.2021.638638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
The motor imagery (MI) paradigm has been wildly used in brain-computer interface (BCI), but the difficulties in performing imagery tasks limit its application. Mechanical vibration stimulus has been increasingly used to enhance the MI performance, but its improvement consistence is still under debate. To develop more effective vibration stimulus methods for consistently enhancing MI, this study proposes an EEG phase-dependent closed-loop mechanical vibration stimulation method. The subject's index finger of the non-dominant hand was given 4 different vibration stimulation conditions (i.e., continuous open-loop vibration stimulus, two different phase-dependent closed-loop vibration stimuli and no stimulus) when performing two tasks of imagining movement and rest of the index finger from his/her dominant hand. We compared MI performance and brain oscillatory patterns under different conditions to verify the effectiveness of this method. The subjects performed 80 trials of each type in a random order, and the average phase-lock value of closed-loop stimulus conditions was 0.71. It was found that the closed-loop vibration stimulus applied in the falling phase helped the subjects to produce stronger event-related desynchronization (ERD) and sustain longer. Moreover, the classification accuracy was improved by about 9% compared with MI without any vibration stimulation (p = 0.012, paired t-test). This method helps to modulate the mu rhythm and make subjects more concentrated on the imagery and without negative enhancement during rest tasks, ultimately improves MI-based BCI performance. Participants reported that the tactile fatigue under closed-loop stimulation conditions was significantly less than continuous stimulation. This novel method is an improvement to the traditional vibration stimulation enhancement research and helps to make stimulation more precise and efficient.
Collapse
Affiliation(s)
- Wenbin Zhang
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Aiguo Song
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Hong Zeng
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Baoguo Xu
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Minmin Miao
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
25
|
Kasten FH, Herrmann CS. Discrete sampling in perception via neuronal oscillations-Evidence from rhythmic, non-invasive brain stimulation. Eur J Neurosci 2020; 55:3402-3417. [PMID: 33048382 DOI: 10.1111/ejn.15006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/26/2022]
Abstract
A variety of perceptual phenomena suggest that, in contrast to our everyday experience, our perception may be discrete rather than continuous. The possibility of such discrete sampling processes inevitably prompts the question of how such discretization is implemented in the brain. Evidence from neurophysiological measurements suggest that neural oscillations, particularly in the lower frequencies, may provide a mechanism by which such discretization can be implemented. It is hypothesized that cortical excitability is rhythmically enhanced or reduced along the positive and negative half-cycle of such oscillations. In recent years, rhythmic non-invasive brain stimulation approaches such as rhythmic transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are increasingly used to test this hypothesis. Both methods are thought to entrain endogenous brain oscillations, allowing them to alter their power, frequency, and phase in order to study their roles in perception. After a brief introduction to the core mechanisms of both methods, we will provide an overview of rTMS and tACS studies probing the role of brain oscillations for discretized perception in different domains and will contrast these results with unsuccessful attempts. Further, we will discuss methodological pitfalls and challenges associated with the methods.
Collapse
Affiliation(s)
- Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing for All", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing for All", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
26
|
Investigating the effects of transcranial alternating current stimulation on primary somatosensory cortex. Sci Rep 2020; 10:17129. [PMID: 33051523 PMCID: PMC7553944 DOI: 10.1038/s41598-020-74072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
Near-threshold tactile stimuli perception and somatosensory temporal discrimination threshold (STDT) are encoded in the primary somatosensory cortex (S1) and largely depend on alpha and beta S1 rhythm. Transcranial alternating current stimulation (tACS) is a non-invasive neurophysiological technique that allows cortical rhythm modulation. We investigated the effects of tACS delivered over S1 at alpha, beta, and gamma frequencies on near-threshold tactile stimuli perception and STDT, as well as phase-dependent tACS effects on near-threshold tactile stimuli perception in healthy subjects. In separate sessions, we tested the effects of different tACS montages, and tACS at the individualised S1 μ-alpha frequency peak, on STDT and near-threshold tactile stimuli perception. We found that tACS applied over S1 at alpha, beta, and gamma frequencies did not modify STDT or near-threshold tactile stimuli perception. Moreover, we did not detect effects of tACS phase or montage. Finally, tACS did not modify near-threshold tactile stimuli perception and STDT even when delivered at the individualised μ-alpha frequency peak. Our study showed that tACS does not alter near-threshold tactile stimuli or STDT, possibly due to the inability of tACS to activate deep S1 layers. Future investigations may clarify tACS effects over S1 in patients with focal dystonia, whose pathophysiology implicates increased STDT.
Collapse
|
27
|
Zrenner C, Galevska D, Nieminen JO, Baur D, Stefanou MI, Ziemann U. The shaky ground truth of real-time phase estimation. Neuroimage 2020; 214:116761. [PMID: 32198050 PMCID: PMC7284312 DOI: 10.1016/j.neuroimage.2020.116761] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 01/02/2023] Open
Abstract
Instantaneous phase of brain oscillations in electroencephalography (EEG) is a measure of brain state that is relevant to neuronal processing and modulates evoked responses. However, determining phase at the time of a stimulus with standard signal processing methods is not possible due to the stimulus artifact masking the future part of the signal. Here, we quantify the degree to which signal-to-noise ratio and instantaneous amplitude of the signal affect the variance of phase estimation error and the precision with which "ground truth" phase is even defined, using both the variance of equivalent estimators and realistic simulated EEG data with known synthetic phase. Necessary experimental conditions are specified in which pre-stimulus phase estimation is meaningfully possible based on instantaneous amplitude and signal-to-noise ratio of the oscillation of interest. An open source toolbox is made available for causal (using pre-stimulus signal only) phase estimation along with a EEG dataset consisting of recordings from 140 participants and a best practices workflow for algorithm optimization and benchmarking. As an illustration, post-hoc sorting of open-loop transcranial magnetic stimulation (TMS) trials according to pre-stimulus sensorimotor μ-rhythm phase is performed to demonstrate modulation of corticospinal excitability, as indexed by the amplitude of motor evoked potentials.
Collapse
Affiliation(s)
- Christoph Zrenner
- Department of Neurology & Stroke, And Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Dragana Galevska
- Department of Neurology & Stroke, And Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jaakko O Nieminen
- Department of Neurology & Stroke, And Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - David Baur
- Department of Neurology & Stroke, And Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Maria-Ioanna Stefanou
- Department of Neurology & Stroke, And Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, And Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
28
|
Spontaneous Brain Oscillations and Perceptual Decision-Making. Trends Cogn Sci 2020; 24:639-653. [PMID: 32513573 DOI: 10.1016/j.tics.2020.05.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Making rapid decisions on the basis of sensory information is essential to everyday behaviors. Why, then, are perceptual decisions so variable despite unchanging inputs? Spontaneous neural oscillations have emerged as a key predictor of trial-to-trial perceptual variability. New work casting these effects in the framework of models of perceptual decision-making has driven novel insight into how the amplitude of spontaneous oscillations impact decision-making. This synthesis reveals that the amplitude of ongoing low-frequency oscillations (<30 Hz), particularly in the alpha-band (8-13 Hz), bias sensory responses and change conscious perception but not, surprisingly, the underlying sensitivity of perception. A key model-based insight is that various decision thresholds do not adapt to alpha-related changes in sensory activity, demonstrating a seeming suboptimality of decision mechanisms in tracking endogenous changes in sensory responses.
Collapse
|
29
|
Haegens S. Entrainment revisited: a commentary on. LANGUAGE, COGNITION AND NEUROSCIENCE 2020; 35:1119-1123. [PMID: 33718510 PMCID: PMC7954236 DOI: 10.1080/23273798.2020.1758335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Saskia Haegens
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Bastiaansen M, Berberyan H, Stekelenburg JJ, Schoffelen JM, Vroomen J. Are alpha oscillations instrumental in multisensory synchrony perception? Brain Res 2020; 1734:146744. [DOI: 10.1016/j.brainres.2020.146744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/18/2023]
|
31
|
Zazio A, Schreiber M, Miniussi C, Bortoletto M. Modelling the effects of ongoing alpha activity on visual perception: The oscillation-based probability of response. Neurosci Biobehav Rev 2020; 112:242-253. [DOI: 10.1016/j.neubiorev.2020.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
|
32
|
Wilsch A, Mercier MR, Obleser J, Schroeder CE, Haegens S. Spatial Attention and Temporal Expectation Exert Differential Effects on Visual and Auditory Discrimination. J Cogn Neurosci 2020; 32:1562-1576. [PMID: 32319865 DOI: 10.1162/jocn_a_01567] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Anticipation of an impending stimulus shapes the state of the sensory systems, optimizing neural and behavioral responses. Here, we studied the role of brain oscillations in mediating spatial and temporal anticipations. Because spatial attention and temporal expectation are often associated with visual and auditory processing, respectively, we directly contrasted the visual and auditory modalities and asked whether these anticipatory mechanisms are similar in both domains. We recorded the magnetoencephalogram in healthy human participants performing an auditory and visual target discrimination task, in which cross-modal cues provided both temporal and spatial information with regard to upcoming stimulus presentation. Motivated by prior findings, we were specifically interested in delta (1-3 Hz) and alpha (8-13 Hz) band oscillatory state in anticipation of target presentation and their impact on task performance. Our findings support the view that spatial attention has a stronger effect in the visual domain, whereas temporal expectation effects are more prominent in the auditory domain. For the spatial attention manipulation, we found a typical pattern of alpha lateralization in the visual system, which correlated with response speed. Providing a rhythmic temporal cue led to increased postcue synchronization of low-frequency rhythms, although this effect was more broadband in nature, suggesting a general phase reset rather than frequency-specific neural entrainment. In addition, we observed delta-band synchronization with a frontal topography, which correlated with performance, especially in the auditory task. Combined, these findings suggest that spatial and temporal anticipations operate via a top-down modulation of the power and phase of low-frequency oscillations, respectively.
Collapse
Affiliation(s)
| | - Manuel R Mercier
- University of Toulouse Paul Sabatier.,Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Jonas Obleser
- University of Lübeck.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Charles E Schroeder
- Columbia University College of Physicians and Surgeons.,Nathan Kline Institute, Orangeburg, SC
| | - Saskia Haegens
- Columbia University College of Physicians and Surgeons.,Radboud University Nijmegen
| |
Collapse
|
33
|
Decoding across sensory modalities reveals common supramodal signatures of conscious perception. Proc Natl Acad Sci U S A 2020; 117:7437-7446. [PMID: 32184331 PMCID: PMC7132110 DOI: 10.1073/pnas.1912584117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An increasing number of studies highlight common brain regions and processes in mediating conscious sensory experience. While most studies have been performed in the visual modality, it is implicitly assumed that similar processes are involved in other sensory modalities. However, the existence of supramodal neural processes related to conscious perception has not been convincingly shown so far. Here, we aim to directly address this issue by investigating whether neural correlates of conscious perception in one modality can predict conscious perception in a different modality. In two separate experiments, we presented participants with successive blocks of near-threshold tasks involving subjective reports of tactile, visual, or auditory stimuli during the same magnetoencephalography (MEG) acquisition. Using decoding analysis in the poststimulus period between sensory modalities, our first experiment uncovered supramodal spatiotemporal neural activity patterns predicting conscious perception of the feeble stimulation. Strikingly, these supramodal patterns included activity in primary sensory regions not directly relevant to the task (e.g., neural activity in visual cortex predicting conscious perception of auditory near-threshold stimulation). We carefully replicate our results in a control experiment that furthermore show that the relevant patterns are independent of the type of report (i.e., whether conscious perception was reported by pressing or withholding a button press). Using standard paradigms for probing neural correlates of conscious perception, our findings reveal a common signature of conscious access across sensory modalities and illustrate the temporally late and widespread broadcasting of neural representations, even into task-unrelated primary sensory processing regions.
Collapse
|
34
|
Migliorati D, Zappasodi F, Perrucci MG, Donno B, Northoff G, Romei V, Costantini M. Individual Alpha Frequency Predicts Perceived Visuotactile Simultaneity. J Cogn Neurosci 2020; 32:1-11. [DOI: 10.1162/jocn_a_01464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Temporal encoding is a key feature in multisensory processing that leads to the integration versus segregation of perceived events over time. Whether or not two events presented at different offsets are perceived as simultaneous varies widely across the general population. Such tolerance to temporal delays is known as the temporal binding window (TBW). It has been recently suggested that individual oscillatory alpha frequency (IAF) peak may represent the electrophysiological correlate of TBW, with IAF also showing a wide variability in the general population (8–12 Hz). In our work, we directly tested this hypothesis by measuring each individual's TBW during a visuotactile simultaneity judgment task while concurrently recording their electrophysiological activity. We found that the individual's TBW significantly correlated with their left parietal IAF, such that faster IAF accounted for narrower TBW. Furthermore, we found that higher prestimulus alpha power measured over the same left parietal regions accounted for more veridical responses of non-simultaneity, which may be explained either by accuracy in perceptual simultaneity or, alternatively, in line with recent proposals by a shift in response bias from more conservative (high alpha power) to more liberal (low alpha power). We propose that the length of an alpha cycle constrains the temporal resolution within which perceptual processes take place.
Collapse
|
35
|
Zoefel B, Davis MH, Valente G, Riecke L. How to test for phasic modulation of neural and behavioural responses. Neuroimage 2019; 202:116175. [PMID: 31499178 PMCID: PMC6773602 DOI: 10.1016/j.neuroimage.2019.116175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
Research on whether perception or other processes depend on the phase of neural oscillations is rapidly gaining popularity. However, it is unknown which methods are optimally suited to evaluate the hypothesized phase effect. Using a simulation approach, we here test the ability of different methods to detect such an effect on dichotomous (e.g., "hit" vs "miss") and continuous (e.g., scalp potentials) response variables. We manipulated parameters that characterise the phase effect or define the experimental approach to test for this effect. For each parameter combination and response variable, we identified an optimal method. We found that methods regressing single-trial responses on circular (sine and cosine) predictors perform best for all of the simulated parameters, regardless of the nature of the response variable (dichotomous or continuous). In sum, our study lays a foundation for optimized experimental designs and analyses in future studies investigating the role of phase for neural and behavioural responses. We provide MATLAB code for the statistical methods tested.
Collapse
Affiliation(s)
- Benedikt Zoefel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229, EV Maastricht, the Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229, EV Maastricht, the Netherlands
| |
Collapse
|
36
|
Pulsed Facilitation of Corticospinal Excitability by the Sensorimotor μ-Alpha Rhythm. J Neurosci 2019; 39:10034-10043. [PMID: 31685655 PMCID: PMC6978939 DOI: 10.1523/jneurosci.1730-19.2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 10/17/2019] [Indexed: 11/21/2022] Open
Abstract
Alpha oscillations (8-14 Hz) are assumed to gate information flow in the brain by means of pulsed inhibition; that is, the phasic suppression of cortical excitability and information processing once per alpha cycle, resulting in stronger net suppression for larger alpha amplitudes due to the assumed amplitude asymmetry of the oscillation. While there is evidence for this hypothesis regarding occipital alpha oscillations, it is less clear for the central sensorimotor μ-alpha rhythm. Probing corticospinal excitability via transcranial magnetic stimulation (TMS) of the primary motor cortex and the measurement of motor evoked potentials (MEPs), we have previously demonstrated that corticospinal excitability is modulated by both amplitude and phase of the sensorimotor μ-alpha rhythm. However, the direction of this modulation, its proposed asymmetry, and its underlying mechanisms remained unclear. We therefore used real-time EEG-triggered single- and paired-pulse TMS in healthy humans of both sexes to assess corticospinal excitability and GABA-A-receptor mediated short-latency intracortical inhibition (SICI) at rest during spontaneous high amplitude μ-alpha waves at different phase angles (peaks, troughs, rising and falling flanks) and compared them to periods of low amplitude (desynchronized) μ-alpha. MEP amplitude was facilitated during troughs and rising flanks, but no phasic suppression was observed at any time, nor any modulation of SICI. These results are best compatible with sensorimotor μ-alpha reflecting asymmetric pulsed facilitation but not pulsed inhibition of motor cortical excitability. The asymmetric excitability with respect to rising and falling flanks of the μ-alpha cycle further reveals that voltage differences alone cannot explain the impact of phase.SIGNIFICANCE STATEMENT The pulsed inhibition hypothesis, which assumes that alpha oscillations actively inhibit neuronal processing in a phasic manner, is highly influential and has substantially shaped our understanding of these oscillations. However, some of its basic assumptions, in particular its asymmetry and inhibitory nature, have rarely been tested directly. Here, we explicitly investigated the asymmetry of modulation and its direction for the human sensorimotor μ-alpha rhythm. We found clear evidence of pulsed facilitation, but not inhibition, in the human motor cortex, challenging the generalizability of the pulsed inhibition hypothesis and advising caution when interpreting sensorimotor μ-alpha changes in the sensorimotor system. This study also demonstrates how specific assumptions about the neurophysiological underpinnings of cortical oscillations can be experimentally tested noninvasively in humans.
Collapse
|
37
|
Madsen KH, Karabanov AN, Krohne LG, Safeldt MG, Tomasevic L, Siebner HR. No trace of phase: Corticomotor excitability is not tuned by phase of pericentral mu-rhythm. Brain Stimul 2019; 12:1261-1270. [DOI: 10.1016/j.brs.2019.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
|
38
|
Wagner J, Makeig S, Hoopes D, Gola M. Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Front Hum Neurosci 2019; 13:263. [PMID: 31427937 PMCID: PMC6689956 DOI: 10.3389/fnhum.2019.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recent applications of simultaneous scalp electroencephalography (EEG) and transcranial magnetic stimulation (TMS) suggest that adapting stimulation to underlying brain states may enhance neuroplastic effects of TMS. It is often assumed that longer-lasting effects of TMS on brain function may be mediated by phasic interactions between TMS pulses and endogenous cortical oscillatory dynamics. The mechanisms by which TMS exerts its neuromodulatory effects, however, remain unknown. Here, we discuss evidence concerning the functional effects on synaptic plasticity of oscillatory cross-frequency coupling in cortical networks as a potential framework for understanding the neuromodulatory effects of TMS. We first discuss evidence for interactions between endogenous oscillatory brain dynamics and externally induced electromagnetic field activity. Alpha band (8-12 Hz) activities are of special interest here because of the wide application and therapeutic effectiveness of rhythmic TMS (rTMS) using a stimulus repetition frequency at or near 10 Hz. We discuss the large body of literature on alpha oscillations suggesting that alpha oscillatory cycles produce periodic inhibition or excitation of neuronal processing through phase-amplitude coupling (PAC) of low-frequency oscillations with high-frequency broadband (or gamma) bursting. Such alpha-gamma coupling may reflect excitability of neuronal ensembles underlying neuroplasticity effects of TMS. We propose that TMS delivery with simultaneous EEG recording and near real-time estimation of source-resolved alpha-gamma PAC might be used to select the precise timing of TMS pulse deliveries so as to enhance the neuroplastic effects of TMS therapies.
Collapse
Affiliation(s)
- Johanna Wagner
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - Scott Makeig
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - David Hoopes
- Department of Radiation Medicine and Applied Sciences, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Mateusz Gola
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States.,Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
39
|
Benedetto A, Morrone MC, Tomassini A. The Common Rhythm of Action and Perception. J Cogn Neurosci 2019; 32:187-200. [PMID: 31210564 DOI: 10.1162/jocn_a_01436] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Research in the last decade has undermined the idea of perception as a continuous process, providing strong empirical support for its rhythmic modulation. More recently, it has been revealed that the ongoing motor processes influence the rhythmic sampling of sensory information. In this review, we will focus on a growing body of evidence suggesting that oscillation-based mechanisms may structure the dynamic interplay between the motor and sensory system and provide a unified temporal frame for their effective coordination. We will describe neurophysiological data, primarily collected in animals, showing phase-locking of neuronal oscillations to the onset of (eye) movements. These data are complemented by novel evidence in humans, which demonstrate the behavioral relevance of these oscillatory modulations and their domain-general nature. Finally, we will discuss the possible implications of these modulations for action-perception coupling mechanisms.
Collapse
|
40
|
Iemi L, Busch NA, Laudini A, Haegens S, Samaha J, Villringer A, Nikulin VV. Multiple mechanisms link prestimulus neural oscillations to sensory responses. eLife 2019; 8:e43620. [PMID: 31188126 PMCID: PMC6561703 DOI: 10.7554/elife.43620] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Spontaneous fluctuations of neural activity may explain why sensory responses vary across repeated presentations of the same physical stimulus. To test this hypothesis, we recorded electroencephalography in humans during stimulation with identical visual stimuli and analyzed how prestimulus neural oscillations modulate different stages of sensory processing reflected by distinct components of the event-related potential (ERP). We found that strong prestimulus alpha- and beta-band power resulted in a suppression of early ERP components (C1 and N150) and in an amplification of late components (after 0.4 s), even after controlling for fluctuations in 1/f aperiodic signal and sleepiness. Whereas functional inhibition of sensory processing underlies the reduction of early ERP responses, we found that the modulation of non-zero-mean oscillations (baseline shift) accounted for the amplification of late responses. Distinguishing between these two mechanisms is crucial for understanding how internal brain states modulate the processing of incoming sensory information.
Collapse
Affiliation(s)
- Luca Iemi
- Department of Neurological SurgeryColumbia University College of Physicians and SurgeonsNew York CityUnited States
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Centre for Cognition and Decision Making, Institute for Cognitive NeuroscienceNational Research University Higher School of EconomicsMoscowRussian Federation
| | - Niko A Busch
- Institute of PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Annamaria Laudini
- Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
| | - Saskia Haegens
- Department of Neurological SurgeryColumbia University College of Physicians and SurgeonsNew York CityUnited States
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| | - Jason Samaha
- Department of PsychologyUniversity of California, Santa CruzSanta CruzUnited States
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
| | - Vadim V Nikulin
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Centre for Cognition and Decision Making, Institute for Cognitive NeuroscienceNational Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyCharité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| |
Collapse
|
41
|
Chota S, VanRullen R. Visual Entrainment at 10 Hz Causes Periodic Modulation of the Flash Lag Illusion. Front Neurosci 2019; 13:232. [PMID: 30930740 PMCID: PMC6428772 DOI: 10.3389/fnins.2019.00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
It has long been debated whether visual processing is, at least partially, a discrete process. Although vision appears to be a continuous stream of sensory information, sophisticated experiments reveal periodic modulations of perception and behavior. Previous work has demonstrated that the phase of endogenous neural oscillations in the 10 Hz range predicts the "lag" of the flash lag effect, a temporal visual illusion in which a static object is perceived to be lagging in time behind a moving object. Consequently, it has been proposed that the flash lag illusion could be a manifestation of a periodic, discrete sampling mechanism in the visual system. In this experiment we set out to causally test this hypothesis by entraining the visual system to a periodic 10 Hz stimulus and probing the flash lag effect (FLE) at different time points during entrainment. We hypothesized that the perceived FLE would be modulated over time, at the same frequency as the entrainer (10 Hz). A frequency analysis of the average FLE time-course indeed reveals a significant peak at 10 Hz as well as a strong phase consistency between subjects (N = 25). Our findings provide causal evidence for fluctuations in temporal perception and indicate an involvement of occipital alpha oscillations.
Collapse
Affiliation(s)
- Samson Chota
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, UMR5549, Université de Toulouse, Toulouse, France
| | - Rufin VanRullen
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, UMR5549, Université de Toulouse, Toulouse, France
| |
Collapse
|
42
|
Haberbosch L, Schmidt S, Jooss A, Köhn A, Kozarzewski L, Rönnefarth M, Scholz M, Brandt SA. Rebound or Entrainment? The Influence of Alternating Current Stimulation on Individual Alpha. Front Hum Neurosci 2019; 13:43. [PMID: 30809139 PMCID: PMC6380175 DOI: 10.3389/fnhum.2019.00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 01/25/2019] [Indexed: 01/11/2023] Open
Abstract
Alternating current stimulation (ACS) is an established means to manipulate intrinsic cortical oscillations. While working towards clinical impact, ACS mechanisms of action remain unclear. For ACS’s well-documented influence on occipital alpha, hypotheses include neuronal entrainment as well as rebound phenomena. As a retinal origin is also discussed, we employed a novel form of ACS with the advantage that it specifically targets occipital alpha-oscillations via retinofugal pathways retinofugal ACS (rACS). We aimed to confirm alpha-enhancement outlasting the duration of stimulation with 10 Hz rACS. To distinguish entrainment from rebound effects, we investigated the correlation between alpha peak frequency change and alpha-enhancement strength. We quantified the alpha band power before and after 10 Hz rACS in 15 healthy subjects. Alpha power enhancement and alpha peak frequency change were assessed over the occipital electrodes and compared to sham stimulation. RACS significantly enhanced occipital alpha power in comparison to sham stimulation (p < 0.05). Alpha peak frequency changed by a mean 0.02 Hz (± 0.04). A greater change in alpha peak frequency did not correlate with greater effects on alpha power. Our findings show an alpha-enhancement consistent with studies conducted for transcranial ACS (tACS) and contribute evidence for a retinal involvement in tACS effects on occipital alpha. Furthermore, the lack of correlation between alpha peak frequency change and alpha-enhancement strength provides an argument against entrainment effects and in favor of a rebound phenomenon.
Collapse
Affiliation(s)
- Linus Haberbosch
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sein Schmidt
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Jooss
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arvid Köhn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Kozarzewski
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Rönnefarth
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Scholz
- Neural Information Processing Group, University of Technology Berlin, Berlin, Germany
| | - Stephan A Brandt
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
43
|
Brickwedde M, Krüger MC, Dinse HR. Somatosensory alpha oscillations gate perceptual learning efficiency. Nat Commun 2019; 10:263. [PMID: 30651567 PMCID: PMC6335466 DOI: 10.1038/s41467-018-08012-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Cognition and perception are closely coupled to alpha power, but whether there is a link between alpha power and perceptual learning efficacy is unknown. Here we show that somatosensory alpha power can be successfully up- and down-regulated with short-term neurofeedback training, which in turn controls subsequent tactile perceptual learning. We find that neurofeedback-induced increases in alpha power lead to enhanced learning, whereas reductions in alpha power impede learning. As a consequence, interindividual learning variability is substantially reduced. No comparable impact is observed for oscillatory power in theta, beta, and lower gamma frequency bands. Our results demonstrate that high pre-learning alpha levels are a requirement for reaching high learning efficiency. These data provide further evidence that alpha oscillations shape the functional architecture of the brain network by gating neural resources and thereby modulating levels of preparedness for upcoming processing.
Collapse
Affiliation(s)
- Marion Brickwedde
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Marie C Krüger
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Hubert R Dinse
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, 44780, Bochum, Germany.
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany.
| |
Collapse
|
44
|
EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities. Brain Stimul 2019; 12:110-118. [DOI: 10.1016/j.brs.2018.09.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 01/22/2023] Open
|
45
|
Kwok EYL, Cardy JO, Allman BL, Allen P, Herrmann B. Dynamics of spontaneous alpha activity correlate with language ability in young children. Behav Brain Res 2018; 359:56-65. [PMID: 30352251 DOI: 10.1016/j.bbr.2018.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/21/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022]
Abstract
Early childhood is a period of tremendous growth in both language ability and brain maturation. To understand the dynamic interplay between neural activity and spoken language development, we used resting-state EEG recordings to explore the relation between alpha oscillations (7-10 Hz) and oral language ability in 4- to 6-year-old children with typical development (N = 41). Three properties of alpha oscillations were investigated: a) alpha power using spectral analysis, b) flexibility of the alpha frequency quantified via the oscillation's moment-to-moment fluctuations, and c) scaling behavior of the alpha oscillator investigated via the long-range temporal correlation in the alpha-amplitude time course. All three properties of the alpha oscillator correlated with children's oral language abilities. Higher language scores were correlated with lower alpha power, greater flexibility of the alpha frequency, and longer temporal correlations in the alpha-amplitude time course. Our findings demonstrate a cognitive role of several properties of the alpha oscillator that has largely been overlooked in the literature.
Collapse
Affiliation(s)
- Elaine Y L Kwok
- Communication Sciences and Disorders, The University of Western Ontario, London, ON, N6G 1H1, Canada.
| | - Janis Oram Cardy
- Communication Sciences and Disorders, The University of Western Ontario, London, ON, N6G 1H1, Canada; Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 5B7, Canada; National Centre for Audiology, The University of Western Ontario, London, ON, N6G 1H1, Canada
| | - Brian L Allman
- National Centre for Audiology, The University of Western Ontario, London, ON, N6G 1H1, Canada; Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Prudence Allen
- Communication Sciences and Disorders, The University of Western Ontario, London, ON, N6G 1H1, Canada; National Centre for Audiology, The University of Western Ontario, London, ON, N6G 1H1, Canada
| | - Björn Herrmann
- Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, ON, N6A 5C2, Canada.
| |
Collapse
|
46
|
Palva S, Palva JM. Roles of Brain Criticality and Multiscale Oscillations in Temporal Predictions for Sensorimotor Processing. Trends Neurosci 2018; 41:729-743. [DOI: 10.1016/j.tins.2018.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
|
47
|
Thies M, Zrenner C, Ziemann U, Bergmann TO. Sensorimotor mu-alpha power is positively related to corticospinal excitability. Brain Stimul 2018; 11:1119-1122. [DOI: 10.1016/j.brs.2018.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/18/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
|
48
|
The pre-stimulus oscillatory alpha phase affects neural correlates of early visual perception. Neurosci Lett 2018; 685:90-95. [PMID: 30130554 DOI: 10.1016/j.neulet.2018.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/07/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
A growing number of studies suggest the phase of ongoing alpha oscillations in the brain influences visual perception. However, it remained largely unconsidered if this is associated with a phase dependence of neurophysiological processes especially in the visual cortex. Therefore, this study investigated the link between the pre-stimulus oscillatory alpha phase and neural correlates of early visual perception. In 64 subjects a 64-channel EEG system was used to examine the phase dependence of pattern-reversal visual evoked potentials (VEP) in a visual perception experiment. The pre-stimulus oscillatory phase over the primary visual cortex was determined for the individual alpha peak frequency (iAPF) as well as the frequency of maximal phase locking (PLFfmax). The phase dependence of VEP latency was determined using single-trial phase sorting. The results indicate a significantly shorter latency for the N75 and P100 components of the VEP between 40°-100° (p < 0.05) and 90°-120° (p < 0.05), respectively when trials were phase-sorted based on the iAPF. In contrast, the PLFfmax phase did not affect the N75 or P100 latency. The study indicates a link between the pre-stimulus alpha phase and neural correlates of early visual perception. These results extend previous behavioral findings to the neurophysiological level and support current models suggesting visual perception is modulated by ongoing alpha oscillations.
Collapse
|
49
|
Valenza G, Greco A, Bianchi M, Nardelli M, Rossi S, Scilingo EP. EEG oscillations during caress-like affective haptic elicitation. Psychophysiology 2018; 55:e13199. [DOI: 10.1111/psyp.13199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Gaetano Valenza
- Department of Information Engineering and the Bioengineering and Robotics Research Center “E. Piaggio,” School of Engineering; University of Pisa; Pisa Italy
| | - Alberto Greco
- Department of Information Engineering and the Bioengineering and Robotics Research Center “E. Piaggio,” School of Engineering; University of Pisa; Pisa Italy
| | - Matteo Bianchi
- Department of Information Engineering and the Bioengineering and Robotics Research Center “E. Piaggio,” School of Engineering; University of Pisa; Pisa Italy
| | - Mimma Nardelli
- Department of Information Engineering and the Bioengineering and Robotics Research Center “E. Piaggio,” School of Engineering; University of Pisa; Pisa Italy
| | - Simone Rossi
- Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit; University of Siena; Siena Italy
| | - Enzo Pasquale Scilingo
- Department of Information Engineering and the Bioengineering and Robotics Research Center “E. Piaggio,” School of Engineering; University of Pisa; Pisa Italy
| |
Collapse
|
50
|
Zrenner C, Desideri D, Belardinelli P, Ziemann U. Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul 2018; 11:374-389. [DOI: 10.1016/j.brs.2017.11.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
|