1
|
Francesconi W, Olivera-Pasilio V, Berton F, Olson SL, Chudoba R, Monroy LM, Krabichler Q, Grinevich V, Dabrowska J. Like sisters but not twins - vasopressin and oxytocin excite BNST neurons via cell type-specific expression of oxytocin receptor to reduce anxious arousal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611656. [PMID: 39282380 PMCID: PMC11398521 DOI: 10.1101/2024.09.06.611656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Interoceptive signals dynamically interact with the environment to shape appropriate defensive behaviors. Hypothalamic hormones arginine-vasopressin (AVP) and oxytocin (OT) regulate physiological states, including water and electrolyte balance, circadian rhythmicity, and defensive behaviors. Both AVP and OT neurons project to dorsolateral bed nucleus of stria terminalis (BNSTDL), which expresses oxytocin receptors (OTR) and vasopressin receptors and mediates fear responses. However, understanding the integrated role of neurohypophysial hormones is complicated by the cross-reactivity of AVP and OT and their mutual receptor promiscuity. Here, we provide evidence that the effects of neurohypophysial hormones on BNST excitability are driven by input specificity and cell type-specific receptor selectivity. We show that OTR-expressing BNSTDL neurons, excited by hypothalamic OT and AVP inputs via OTR, play a major role in regulating BNSTDL excitability, overcoming threat avoidance, and reducing threat-elicited anxious arousal. Therefore, OTR-BNSTDL neurons are perfectly suited to drive the dynamic interactions balancing external threat risk and physiological needs.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Valentina Olivera-Pasilio
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA
| | - Fulvia Berton
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Susan L. Olson
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Rachel Chudoba
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Lorena M. Monroy
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Neuroscience Program, Lake Forest College, Lake Forest, IL, 60045, USA
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Joanna Dabrowska
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
2
|
Chen JY, Wu K, Guo MM, Song W, Huang ST, Zhang YM. The PrL Glu→avBNST GABA circuit rapidly modulates depression-like behaviors in male mice. iScience 2023; 26:107878. [PMID: 37810240 PMCID: PMC10551841 DOI: 10.1016/j.isci.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Depression is a global disease with a high prevalence. Here, we examine the role of the circuit from prelimbic mPFC (PrL) to the anterior ventral bed nucleus of the stria terminalis (avBNST) in depression-like mice through behavioral tests, immunofluorescence, chemogenetics, optogenetics, pharmacology, and fiber photometry. Mice exposed to chronic restraint stress with individual housing displayed depression-like behaviors. Optogenetic or chemogenetic activation of the avBNST-projecting glutamatergic neurons in the PrL had an antidepressant effect. Moreover, we found that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptors (AMPARs) play a dominant role in this circuit. Systemic administration of ketamine profoundly alleviated depression-like behaviors in the mice and rapidly rescued the decreased activity in the PrLGlu→avBNSTGABA circuit. Furthermore, the fast-acting effect of ketamine on depressive behaviors was diminished when the circuit was inhibited. To summarize, activating the PrLGlu→avBNSTGABA circuit quickly ameliorated depression-like behaviors. Thus, we propose the PrLGlu→avBNSTGABA circuit as a target for fast regulation of depression.
Collapse
Affiliation(s)
- Jie-ying Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Ke Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Miao-miao Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Si-ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Yong-mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
3
|
van de Poll Y, Cras Y, Ellender TJ. The neurophysiological basis of stress and anxiety - comparing neuronal diversity in the bed nucleus of the stria terminalis (BNST) across species. Front Cell Neurosci 2023; 17:1225758. [PMID: 37711509 PMCID: PMC10499361 DOI: 10.3389/fncel.2023.1225758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST), as part of the extended amygdala, has become a region of increasing interest regarding its role in numerous human stress-related psychiatric diseases, including post-traumatic stress disorder and generalized anxiety disorder amongst others. The BNST is a sexually dimorphic and highly complex structure as already evident by its anatomy consisting of 11 to 18 distinct sub-nuclei in rodents. Located in the ventral forebrain, the BNST is anatomically and functionally connected to many other limbic structures, including the amygdala, hypothalamic nuclei, basal ganglia, and hippocampus. Given this extensive connectivity, the BNST is thought to play a central and critical role in the integration of information on hedonic-valence, mood, arousal states, processing emotional information, and in general shape motivated and stress/anxiety-related behavior. Regarding its role in regulating stress and anxiety behavior the anterolateral group of the BNST (BNSTALG) has been extensively studied and contains a wide variety of neurons that differ in their electrophysiological properties, morphology, spatial organization, neuropeptidergic content and input and output synaptic organization which shape their activity and function. In addition to this great diversity, further species-specific differences are evident on multiple levels. For example, classic studies performed in adult rat brain identified three distinct neuron types (Type I-III) based on their electrophysiological properties and ion channel expression. Whilst similar neurons have been identified in other animal species, such as mice and non-human primates such as macaques, cross-species comparisons have revealed intriguing differences such as their comparative prevalence in the BNSTALG as well as their electrophysiological and morphological properties, amongst other differences. Given this tremendous complexity on multiple levels, the comprehensive elucidation of the BNSTALG circuitry and its role in regulating stress/anxiety-related behavior is a major challenge. In the present Review we bring together and highlight the key differences in BNSTALG structure, functional connectivity, the electrophysiological and morphological properties, and neuropeptidergic profiles of BNSTALG neurons between species with the aim to facilitate future studies of this important nucleus in relation to human disease.
Collapse
Affiliation(s)
- Yana van de Poll
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yasmin Cras
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tommas J. Ellender
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Zheng C, Wei L, Liu B, Wang Q, Huang Y, Wang S, Li X, Gong H, Wang Z. Dorsal BNST DRD2 + neurons mediate sex-specific anxiety-like behavior induced by chronic social isolation. Cell Rep 2023; 42:112799. [PMID: 37453056 DOI: 10.1016/j.celrep.2023.112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
The dorsal bed nucleus of stria terminalis (dBNST) is a pivotal hub for stress response modulation. Dysfunction of dopamine (DA) network is associated with chronic stress, but the roles of DA network of dBNST in chronic stress-induced emotional disorders remain unclear. We examine the role of dBNST Drd1+ and Drd2+ neurons in post-weaning social isolation (PWSI)-induced behavior deficits. We find that male, but not female, PWSI rats exhibit negative emotional phenotypes and the increase of excitability and E-I balance of dBNST Drd2+ neurons. More importantly, hypofunction of dBNST Drd2 receptor underlies PWSI-stress-induced male-specific neuronal plasticity change of dBNST Drd2+ neurons. Furthermore, chemogenetic activation of dBNST Drd2+ neurons is sufficient to induce anxiogenic effects, while Kir4.1-mediated chronic inhibition of dBNST Drd2+ neurons ameliorate PWSI-induced anxiety-like behaviors. Our findings reveal an important neural mechanism underlying PWSI-induced sex-specific behavioral abnormalities and potentially provide a target for the treatment of social stress-related emotional disorder.
Collapse
Affiliation(s)
- Chaowen Zheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boyi Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxiu Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanwang Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangyi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangning Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215000, China
| | - Hui Gong
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215000, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai 200031, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Guerra DP, Wang W, Souza KA, Moscarello JM. A sex-specific role for the bed nucleus of the stria terminalis in proactive defensive behavior. Neuropsychopharmacology 2023; 48:1234-1244. [PMID: 37142666 PMCID: PMC10267121 DOI: 10.1038/s41386-023-01581-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a forebrain region implicated in aversive responses to uncertain threat. Much of the work on the role of BNST in defensive behavior has used Pavlovian paradigms in which the subject reacts to aversive stimuli delivered in a pattern determined entirely by the experimenter. Here, we explore the contribution of BNST to a task in which subjects learn a proactive response that prevents the delivery of an aversive outcome. To this end, male and female rats were trained to shuttle during a tone to avoid shock in a standard two-way signaled active avoidance paradigm. Chemogenetic inhibition (hM4Di) of BNST attenuated the expression of the avoidance response in male but not female rats. Inactivation of the neighboring medial septum in males produced no effect on avoidance, demonstrating that our effect was specific to BNST. A follow up study comparing hM4Di inhibition to hM3Dq activation of BNST in males replicated the effect of inhibition and demonstrated that activation of BNST extended the period of tone-evoked shuttling. These data support the novel conclusion that BNST mediates two-way avoidance behavior in male rats and suggest the intriguing possibility that the systems underlying proactive defensive behavior are sex-specific.
Collapse
Affiliation(s)
- Diana P Guerra
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Wei Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Justin M Moscarello
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Miura Y, Shanley MR, Urbaez A, Friedman AK. Electrophysiologically distinct bed nucleus of the stria terminalis projections to the ventral tegmental area in mice. Front Neural Circuits 2023; 16:1081099. [PMID: 36698552 PMCID: PMC9870318 DOI: 10.3389/fncir.2022.1081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a highly heterogeneous limbic forebrain structure that serves as a relay connecting autonomic, neuroendocrine and behavioral function. It can be divided into over 16 individual subregions with distinct neuronal subpopulations based on receptors, transmitters, and neuropeptides. Specifically, the BNST projection to the ventral tegmental area (VTA), the dopamine hub of the brain, has been shown to have a crucial role in the stress response. However, in mice there is a lack of unbiased data on the functional diversity of this sub-population which serves as an upstream input to the VTA. The dopaminergic neurons in the VTA modify their ion channel activity and intrinsic membrane properties to adapt to stress in part from inputs from BNST projections. Therefore, we aimed to perform a multi-component characterization of the functional diversity of the BNST-VTA pathway. We studied the passive and active electrophysiological properties of virally identified population of BNST neurons that project to the VTA. We used a comprehensive series of in vitro recordings of electrophysiological variables and performed hierarchical clustering to determine the functional diversity of the projection neurons in the BNST-VTA pathway. Our study revealed four subpopulations in the BNST-VTA pathway, all of which differ in their activation profiles and likely have distinct inputs and function in the VTA. Our results will help resolve the discord in interpretation of the various roles of this electrophysiologically diverse projection and builds a foundation for understanding how the different neuronal types integrate signals.
Collapse
Affiliation(s)
- Yuka Miura
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
- Program in Biology, Graduate Center of the City University of New York, New York, NY, United States
| | - Mary Regis Shanley
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
- Program in Biology, Graduate Center of the City University of New York, New York, NY, United States
| | - Ashley Urbaez
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| | - Allyson K. Friedman
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
- Program in Biology, Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
7
|
Bauer EP. Sex differences in fear responses: Neural circuits. Neuropharmacology 2023; 222:109298. [PMID: 36328063 PMCID: PMC11267399 DOI: 10.1016/j.neuropharm.2022.109298] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Women have increased vulnerability to PTSD and anxiety disorders compared to men. Understanding the neurobiological underpinnings of these disorders is critical for identifying risk factors and developing appropriate sex-specific interventions. Despite the clear clinical relevance of an examination of sex differences in fear responses, the vast majority of pre-clinical research on fear learning and memory formation has exclusively used male animals. This review highlights sex differences in context and cued fear conditioning, fear extinction and fear generalization with a focus on the neural circuits underlying these behaviors in rodents. There are mixed reports of behavioral sex differences in context and cued fear conditioning paradigms, which can depend upon the behavioral indices of fear. However, there is greater evidence of differential activation of the hippocampus, amygdalar nuclei and the prefrontal cortical regions in male and female rodents during context and cued fear conditioning. The bed nucleus of the stria terminalis (BNST), a sexually dimorphic structure, is of particular interest as it differentially contributes to fear responses in males and females. In addition, while the influence of the estrous cycle on different phases of fear conditioning is delineated, the clearest modulatory effect of estrogen is on fear extinction processes. Examining the variability in neural responses and behavior in both sexes should increase our understanding of how that variability contributes to the neurobiology of affective disorders. This article is part of the Special Issue on 'Fear, anxiety and PTSD'.
Collapse
Affiliation(s)
- Elizabeth P Bauer
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY, 10027, United States.
| |
Collapse
|
8
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
9
|
Povysheva N, Zheng H, Rinaman L. Glucagon-like peptide 1 receptor-mediated stimulation of a GABAergic projection from the bed nucleus of the stria terminalis to the hypothalamic paraventricular nucleus. Neurobiol Stress 2021; 15:100363. [PMID: 34277897 PMCID: PMC8271176 DOI: 10.1016/j.ynstr.2021.100363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/14/2023] Open
Abstract
We previously reported that GABAergic neurons within the ventral anterior lateral bed nucleus of the stria terminalis (alBST) express glucagon-like peptide 1 receptor (GLP1R) in rats, and that virally-mediated “knock-down” of GLP1R expression in the alBST prolongs the hypothalamic-pituitary-adrenal axis response to acute stress. Given other evidence that a GABAergic projection pathway from ventral alBST serves to limit stress-induced activation of the HPA axis, we hypothesized that GLP1 signaling promotes activation of GABAergic ventral alBST neurons that project directly to the paraventricular nucleus of the hypothalamus (PVN). After PVN microinjection of fluorescent retrograde tracer followed by preparation of ex vivo rat brain slices, whole-cell patch clamp recordings were made in identified PVN-projecting neurons within the ventral alBST. Bath application of Exendin-4 (a specific GLP1R agonist) indirectly depolarized PVN-projecting neurons in the ventral alBST and adjacent hypothalamic parastrial nucleus (PS) through a network-dependent increase in excitatory synaptic inputs, coupled with a network-independent reduction in inhibitory inputs. Additional retrograde tracing experiments combined with in situ hybridization confirmed that PVN-projecting neurons within the ventral alBST/PS are GABAergic, and do not express GLP1R mRNA. Conversely, GLP1R mRNA is expressed by a subset of neurons that project into the ventral alBST and were likely contained within coronal ex vivo slices, including GABAergic neurons within the oval subnucleus of the dorsal alBST and glutamatergic neurons within the substantia innominata. Our novel findings reveal potential GLP1R-mediated mechanisms through which the alBST exerts inhibitory control over the endocrine HPA axis.
Collapse
Affiliation(s)
- Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Huiyuan Zheng
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
10
|
Francesconi W, Berton F, Olivera-Pasilio V, Dabrowska J. Oxytocin excites BNST interneurons and inhibits BNST output neurons to the central amygdala. Neuropharmacology 2021; 192:108601. [PMID: 33971215 DOI: 10.1016/j.neuropharm.2021.108601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
The dorsolateral bed nucleus of the stria terminalis (BNSTDL) has high expression of oxytocin (OT) receptors (OTR), which were shown to facilitate cued fear. However, the role of OTR in the modulation of BNSTDL activity remains elusive. BNSTDL contains GABA-ergic neurons classified based on intrinsic membrane properties into three types. Using in vitro patch-clamp recordings in male rats, we demonstrate that OT selectively excites and increases spontaneous firing rate of Type I BNSTDL neurons. As a consequence, OT increases the frequency, but not amplitude, of spontaneous inhibitory post-synaptic currents (sIPSCs) selectively in Type II neurons, an effect abolished by OTR antagonist or tetrodotoxin, and reduces spontaneous firing rate in these neurons. These results suggest an indirect effect of OT in Type II neurons, which is mediated via OT-induced increase in firing of Type I interneurons. As Type II BNSTDL neurons were shown projecting to the central amygdala (CeA), we also recorded from retrogradely labeled BNST→CeA neurons and we show that OT increases the frequency of sIPSC in these Type II BNST→CeA output neurons. In contrast, in Type III neurons, OT reduces the amplitude, but not frequency, of both sIPSCs and evoked IPSCs via a postsynaptic mechanism without changing their intrinsic excitability. We present a model of fine-tuned modulation of BNSTDL activity by OT, which selectively excites BNSTDL interneurons and inhibits Type II BNST→CeA output neurons. These results suggest that OTR in the BNST might facilitate cued fear by inhibiting the BNST→CeA neurons.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Fulvia Berton
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Valentina Olivera-Pasilio
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
11
|
Yan WW, Xia M, Chiang J, Levitt A, Hawkins N, Kearney J, Swanson GT, Chetkovich D, Nobis WP. Enhanced Synaptic Transmission in the Extended Amygdala and Altered Excitability in an Extended Amygdala to Brainstem Circuit in a Dravet Syndrome Mouse Model. eNeuro 2021; 8:ENEURO.0306-20.2021. [PMID: 34045209 PMCID: PMC8213443 DOI: 10.1523/eneuro.0306-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy with an increased incidence of sudden death. Evidence of interictal breathing deficits in DS suggests that alterations in subcortical projections to brainstem nuclei may exist, which might be driving comorbidities in DS. The aim of this study was to determine whether a subcortical structure, the bed nucleus of the stria terminalis (BNST) in the extended amygdala, is activated by seizures, exhibits changes in excitability, and expresses any alterations in neurons projecting to a brainstem nucleus associated with respiration, stress response, and homeostasis. Experiments were conducted using F1 mice generated by breeding 129.Scn1a+/- mice with wild-type C57BL/6J mice. Immunohistochemistry was performed to quantify neuronal c-fos activation in DS mice after observed spontaneous seizures. Whole-cell patch-clamp and current-clamp electrophysiology recordings were conducted to evaluate changes in intrinsic and synaptic excitability in the BNST. Spontaneous seizures in DS mice significantly enhanced neuronal c-fos expression in the BNST. Further, the BNST had altered AMPA/NMDA postsynaptic receptor composition and showed changes in spontaneous neurotransmission, with greater excitation and decreased inhibition. BNST to parabrachial nucleus (PBN) projection neurons exhibited intrinsic excitability in wild-type mice, while these projection neurons were hypoexcitable in DS mice. The findings suggest that there is altered excitability in neurons of the BNST, including BNST-to-PBN projection neurons, in DS mice. These alterations could potentially be driving comorbid aspects of DS outside of seizures, including respiratory dysfunction and sudden death.
Collapse
Affiliation(s)
- Wen Wei Yan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Maya Xia
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Jeremy Chiang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Alyssa Levitt
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Nicole Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Jennifer Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Dane Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - William P Nobis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
12
|
Giardino WJ, Pomrenze MB. Extended Amygdala Neuropeptide Circuitry of Emotional Arousal: Waking Up on the Wrong Side of the Bed Nuclei of Stria Terminalis. Front Behav Neurosci 2021; 15:613025. [PMID: 33633549 PMCID: PMC7900561 DOI: 10.3389/fnbeh.2021.613025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep is fundamental to life, and poor sleep quality is linked to the suboptimal function of the neural circuits that process and respond to emotional stimuli. Wakefulness ("arousal") is chiefly regulated by circadian and homeostatic forces, but affective mood states also strongly impact the balance between sleep and wake. Considering the bidirectional relationships between sleep/wake changes and emotional dynamics, we use the term "emotional arousal" as a representative characteristic of the profound overlap between brain pathways that: (1) modulate wakefulness; (2) interpret emotional information; and (3) calibrate motivated behaviors. Interestingly, many emotional arousal circuits communicate using specialized signaling molecules called neuropeptides to broadly modify neural network activities. One major neuropeptide-enriched brain region that is critical for emotional processing and has been recently implicated in sleep regulation is the bed nuclei of stria terminalis (BNST), a core component of the extended amygdala (an anatomical term that also includes the central and medial amygdalae, nucleus accumbens shell, and transition zones betwixt). The BNST encompasses an astonishing diversity of cell types that differ across many features including spatial organization, molecular signature, biological sex and hormonal milieu, synaptic input, axonal output, neurophysiological communication mode, and functional role. Given this tremendous complexity, comprehensive elucidation of the BNST neuropeptide circuit mechanisms underlying emotional arousal presents an ambitious set of challenges. In this review, we describe how rigorous investigation of these unresolved questions may reveal key insights to enhancing psychiatric treatments and global psychological wellbeing.
Collapse
|
13
|
Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling Controls Excitability and Long-Term Depression in Oval Nucleus of the BNST. J Neurosci 2021; 41:435-445. [PMID: 33234610 DOI: 10.1523/jneurosci.1104-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulation of proteins involved in synaptic plasticity is associated with pathologies in the CNS, including psychiatric disorders. The bed nucleus of the stria terminalis (BNST), a brain region of the extended amygdala circuit, has been identified as the critical hub responsible for fear responses related to stress coping and pathologic systems states. Here, we report that one particular nucleus, the oval nucleus of the BNST (ovBNST), is rich in brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptor. Whole-cell patch-clamp recordings of neurons from male mouse ovBNST in vitro showed that the BDNF/TrkB interaction causes a hyperpolarizing shift of the membrane potential from resting value, mediated by an inwardly rectifying potassium current, resulting in reduced neuronal excitability in all major types of ovBNST neurons. Furthermore, BDNF/TrkB signaling mediated long-term depression (LTD) at postsynaptic sites in ovBNST neurons. LTD of ovBNST neurons was prevented by a BDNF scavenger or in the presence of TrkB inhibitors, indicating the contribution to LTD induction. Our data identify BDNF/TrkB signaling as a critical regulator of synaptic activity in ovBNST, which acts at postsynaptic sites to dampen excitability at short and long time scales. Given the central role of ovBNST in mediating maladaptive behaviors associated with stress exposure, our findings suggest a synaptic entry point of the BDNF/TrkB system for adaptation to stressful environmental encounters.
Collapse
|
14
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
15
|
Bed nuclei of the stria terminalis modulate memory consolidation via glucocorticoid-dependent and -independent circuits. Proc Natl Acad Sci U S A 2020; 117:8104-8114. [PMID: 32193346 DOI: 10.1073/pnas.1915501117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There is extensive evidence that glucocorticoid hormones enhance memory consolidation, helping to ensure that emotionally significant events are well remembered. Prior findings suggest that the anteroventral region of bed nuclei of the stria terminalis (avBST) regulates glucocorticoid release, suggesting the potential for avBST activity to influence memory consolidation following an emotionally arousing learning event. To investigate this issue, male Sprague-Dawley rats underwent inhibitory avoidance training and repeated measurement of stress hormones, immediately followed by optogenetic manipulations of either the avBST or its projections to downstream regions, and 48 h later were tested for retention. The results indicate that avBST inhibition augmented posttraining pituitary-adrenal output and enhanced the memory for inhibitory avoidance training. Pretreatment with a glucocorticoid synthesis inhibitor blocked the memory enhancement as well as the potentiated corticosterone response, indicating the dependence of the memory enhancement on glucocorticoid release during the immediate posttraining period. In contrast, posttraining avBST stimulation decreased retention yet had no effect on stress hormonal output. Subsequent experiments revealed that inhibition of avBST input to the paraventricular hypothalamus enhanced stress hormonal output and subsequent retention, whereas stimulation did not affect either. Conversely, stimulation-but not inhibition-of avBST input to the ventrolateral periaqueductal gray impaired consolidation, whereas neither manipulation affected glucocorticoid secretion. These findings indicate that divergent pathways from the avBST are responsible for the mnemonic effects of avBST inhibition versus stimulation and do so via glucocorticoid-dependent and -independent mechanisms, respectively.
Collapse
|
16
|
A bed nucleus of stria terminalis microcircuit regulating inflammation-associated modulation of feeding. Nat Commun 2019; 10:2769. [PMID: 31235690 PMCID: PMC6591327 DOI: 10.1038/s41467-019-10715-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/23/2019] [Indexed: 01/15/2023] Open
Abstract
Loss of appetite or anorexia associated with inflammation impairs quality of life and increases morbidity in many diseases. However, the exact neural mechanism that mediates inflammation-associated anorexia is still poorly understood. Here we identified a population of neurons, marked by the expression of protein kinase C-delta, in the oval region of the bed nucleus of the stria terminalis (BNST), which are activated by various inflammatory signals. Silencing of these neurons attenuates the anorexia caused by these inflammatory signals. Our results demonstrate that these neurons mediate bidirectional control of general feeding behaviors. These neurons inhibit the lateral hypothalamus-projecting neurons in the ventrolateral part of BNST to regulate feeding, receive inputs from the canonical feeding regions of arcuate nucleus and parabrachial nucleus. Our data therefore define a BNST microcircuit that might coordinate canonical feeding centers to regulate food intake, which could offer therapeutic targets for feeding-related diseases such as anorexia and obesity. Inflammation can reduce food intake. Here the authors show that the GABAergic pathway from bed nucleus of stria terminalis to lateral hypothalamus regulates the inflammation induced reduction in feeding in mice.
Collapse
|
17
|
Ch'ng SS, Fu J, Brown RM, Smith CM, Hossain MA, McDougall SJ, Lawrence AJ. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol 2019; 527:2615-2633. [PMID: 30947365 DOI: 10.1002/cne.24695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope® revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.
Collapse
Affiliation(s)
- Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Craig M Smith
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
19
|
Walter AL, Bartsch JC, Datunashvili M, Blaesse P, Lange MD, Pape HC. Physiological Profile of Neuropeptide Y-Expressing Neurons in Bed Nucleus of Stria Terminalis in Mice: State of High Excitability. Front Cell Neurosci 2018; 12:393. [PMID: 30455634 PMCID: PMC6231247 DOI: 10.3389/fncel.2018.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Both, the anterior bed nucleus of the stria terminalis (BNST) and the neuropeptide Y (NPY) system are involved in shaping fear and defensive responses that adapt the organism to potentially life-threatening conditions. NPY is expressed in the BNST but NPY-expressing neurons in this critical hub in the stress response network have not been addressed before. Therefore, we performed whole-cell patch-clamp recordings in acute slices of anterior BNST from Npy-hrGFP transgenic mice to identify and characterize NPY-expressing neurons. We show that NPY-positive and NPY-negative neurons in anterior BNST match the previous classification scheme of type I (Regular Spiking), type II (Low-Threshold Bursting), and type III (fast Inward Rectifying) cells, although the proportion of these physiological phenotypes was similar within both neuronal subpopulations. However, NPY-positive and NPY-negative neurons possessed distinct intrinsic electrophysiological properties. NPY-positive neurons displayed higher input resistance and lower membrane capacitance, corresponding to small cell bodies and shorter less ramified dendrites, as compared to their NPY-negative counterparts. Furthermore, NPY-positive neurons generated higher frequent series of action potentials upon membrane depolarization and displayed significantly lower GABAA receptor-mediated synaptic responsiveness during evoked, spontaneous, and elementary synaptic activity. Taken together, these properties indicate an overall state of high excitability in NPY-positive neurons in anterior BNST. In view of the role of the anterior BNST in anxiety- and stress-related behaviors, these findings suggest a scenario where NPY-positive neurons are preferentially active and responsive to afferent inputs, thereby contributing to adaptation of the organism to stressful environmental encounters.
Collapse
Affiliation(s)
- Achim Leonhard Walter
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Maia Datunashvili
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Peter Blaesse
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Maren Denise Lange
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
20
|
Glutamatergic and gabaergic ventral BNST neurons differ in their physiological properties and responsiveness to noradrenaline. Neuropsychopharmacology 2018; 43:2126-2133. [PMID: 29704000 PMCID: PMC6098041 DOI: 10.1038/s41386-018-0070-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) regulates defensive responses to threats and its anteroventral portion (BNST-AV) is involved. BNST-AV contains a minority of glutamatergic neurons scattered among a dominant population of GABAergic cells. There is evidence that these two cell types might exert opposite influences, the former promoting and the latter reducing anxiety. Although GABAergic cells greatly outnumber glutamatergic neurons in BNST-AV, in some circumstances the influence of glutamatergic cells appears to predominate. Related to this, BNST-AV receives a very strong noradrenaline (NA) input and negative emotional states are associated with a marked rise of NA concentration in BNST-AV. However, it is currently unclear whether NA differentially alters the excitability of glutamatergic and GABAergic BNST-AV neurons. Thus, to shed light on how BNST-AV regulates negative emotional states, the present study compared the physiological properties and NA responsiveness of glutamatergic and GABAergic BNST-AV neurons using whole-cell recordings in transgenic mice that express a fluorescent reporter in either cell group. We found that glutamatergic cells had a slightly more complex morphology than the GABAergic cells, a higher intrinsic excitability, and a different responsiveness to NA. Indeed, while NA inhibited EPSPs in both cell types through α1 and α2 adrenoreceptors, the EPSP reduction seen in glutamatergic cells had a lower amplitude and a shorter duration than in GABAergic cells. These differences were due to the presence of a β-receptor-mediated EPSP enhancement in the glutamatergic cells. Together, our results suggest that multiple properties contribute to the disproportionate influence of glutamatergic BNST-AV neurons.
Collapse
|
21
|
Williams DL, Lilly NA, Edwards IJ, Yao P, Richards JE, Trapp S. GLP-1 action in the mouse bed nucleus of the stria terminalis. Neuropharmacology 2018; 131:83-95. [PMID: 29221794 PMCID: PMC5840513 DOI: 10.1016/j.neuropharm.2017.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/13/2017] [Accepted: 12/03/2017] [Indexed: 01/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) injected into the brain reduces food intake. Similarly, activation of preproglucagon (PPG) cells in the hindbrain which synthesize GLP-1, reduces food intake. However, it is far from clear whether this happens because of satiety, nausea, reduced reward, or even stress. Here we explore the role of the bed nucleus of the stria terminalis (BNST), an area involved in feeding control as well as stress responses, in GLP-1 responses. Using cre-expressing mice we visualized projections of NTS PPG neurons and GLP-1R-expressing BNST cells with AAV-driven Channelrhodopsin-YFP expression. The BNST displayed many varicose YFP+ PPG axons in the ventral and less in the dorsal regions. Mice which express RFP in GLP-1R neurons had RFP+ cells throughout the BNST with the highest density in the dorsal part, suggesting that PPG neuron-derived GLP-1 acts in the BNST. Indeed, injection of GLP-1 into the BNST reduced chow intake during the dark phase, whereas injection of the GLP-1 receptor antagonist Ex9 increased feeding. BNST-specific GLP-1-induced food suppression was less effective in mice on high fat (HF, 60%) diet, and Ex9 had no effect. Restraint stress-induced hypophagia was attenuated by BNST Ex9 treatment, further supporting a role for endogenous brain GLP-1. Finally, whole-cell patch clamp recordings of RFP+ BNST neurons demonstrated that GLP-1 elicited either a depolarizing or hyperpolarizing reversible response that was of opposite polarity to that under dopamine. Our data support a physiological role for BNST GLP-1R in feeding, and suggest complex cellular responses to GLP-1 in this nucleus.
Collapse
Affiliation(s)
- Diana L Williams
- Psychology Department & Program in Neuroscience, Florida State University, USA
| | - Nicole A Lilly
- Psychology Department & Program in Neuroscience, Florida State University, USA
| | - Ian J Edwards
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - Pallas Yao
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - James E Richards
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
22
|
Maruyama C, Deyama S, Nagano Y, Ide S, Kaneda K, Yoshioka M, Minami M. Suppressive effects of morphine injected into the ventral bed nucleus of the stria terminalis on the affective, but not sensory, component of pain in rats. Eur J Neurosci 2017; 47:40-47. [PMID: 29131433 DOI: 10.1111/ejn.13776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Pain is a complex experience with both sensory and affective components. Clinical and preclinical studies have shown that the affective component of pain can be reduced by doses of morphine lower than those necessary to reduce the sensory component. Although the neural mechanisms underlying the effects of morphine on the sensory component of pain have been investigated extensively, those influencing the affective component remain to be elucidated. The bed nucleus of the stria terminalis (BNST) has been implicated in the regulation of various negative emotional states, including aversion, anxiety and fear. Thus, this study aimed to clarify the role of the ventral part of the BNST (vBNST) in the actions of morphine on the affective and sensory components of pain. First, the effects of intra-vBNST injections of morphine on intraplantar formalin-induced conditioned place aversion (CPA) and nociceptive behaviors were investigated. Intra-vBNST injections of morphine reduced CPA without affecting nociceptive behaviors, which suggests that intra-vBNST morphine alters the affective, but not sensory, component of pain. Next, to examine the effects of morphine on neuronal excitability in type II vBNST neurons, whole-cell patch-clamp recordings were performed in brain slices. Bath application of morphine hyperpolarized type II vBNST neurons. Thus, the suppressive effects of intra-vBNST morphine on pain-induced aversion may be due to its inhibitory effects on neuronal excitability in type II vBNST neurons. These results suggest that the vBNST is a key brain region involved in the suppressive effects of morphine on the affective component of pain.
Collapse
Affiliation(s)
- Chikashi Maruyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Satoshi Deyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.,Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Nagano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.,Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
23
|
Cannabinoid CB1 receptors in distinct circuits of the extended amygdala determine fear responsiveness to unpredictable threat. Mol Psychiatry 2017; 22:1422-1430. [PMID: 27698427 DOI: 10.1038/mp.2016.156] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022]
Abstract
The brain circuits underlying behavioral fear have been extensively studied over the last decades. Although the vast majority of experimental studies assess fear as a transient state of apprehension in response to a discrete threat, such phasic states of fear can shift to a sustained anxious apprehension, particularly in face of diffuse cues with unpredictable environmental contingencies. Unpredictability, in turn, is considered an important variable contributing to anxiety disorders. The networks of the extended amygdala have been suggested keys to the control of phasic and sustained states of fear, although the underlying synaptic pathways and mechanisms remain poorly understood. Here, we show that the endocannabinoid system acting in synaptic circuits of the extended amygdala can explain the fear response profile during exposure to unpredictable threat. Using fear training with predictable or unpredictable cues in mice, combined with local and cell-type-specific deficiency and rescue of cannabinoid type 1 (CB1) receptors, we found that presynaptic CB1 receptors on distinct amygdala projections to bed nucleus of the stria terminalis (BNST) are both necessary and sufficient for the shift from phasic to sustained fear in response to an unpredictable threat. These results thereby identify the causal role of a defined protein in a distinct brain pathway for the temporal development of a sustained state of anxious apprehension during unpredictability of environmental influences, reminiscent of anxiety symptoms in humans.
Collapse
|
24
|
The Proinflammatory Cytokine Interleukin 18 Regulates Feeding by Acting on the Bed Nucleus of the Stria Terminalis. J Neurosci 2017; 36:5170-80. [PMID: 27147667 DOI: 10.1523/jneurosci.3919-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/04/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The proinflammatory cytokine IL-18 has central anorexigenic effects and was proposed to contribute to loss of appetite observed during sickness. Here we tested in the mouse the hypothesis that IL-18 can decrease food intake by acting on neurons of the bed nucleus of the stria terminalis (BST), a component of extended amygdala recently shown to influence feeding via its projections to the lateral hypothalamus (LH). We found that both subunits of the heterodimeric IL-18 receptor are highly expressed in the BST and that local injection of recombinant IL-18 (50 ng/ml) significantly reduced c-fos activation and food intake for at least 6 h. Electrophysiological experiments performed in BST brain slices demonstrated that IL-18 strongly reduces the excitatory input on BST neurons through a presynaptic mechanism. The effects of IL-18 are cell-specific and were observed in Type III but not in Type I/II neurons. Interestingly, IL-18-sensitve Type III neurons were recorded in the juxtacapsular BST, a region that contains BST-LH projecting neurons. Reducing the excitatory input on Type III GABAergic neurons, IL-18 can increase the firing of glutamatergic LH neurons through a disinhibitory mechanism. Imbalance between excitatory and inhibitory activity in the LH can induce changes in food intake. Effects of IL-18 were mediated by the IL-18R because they were absent in neurons from animals null for IL-18Rα (Il18ra(-/-)), which lack functional IL-18 receptors. In conclusion, our data show that IL-18 may inhibit feeding by inhibiting the activity of BST Type III GABAergic neurons. SIGNIFICANCE STATEMENT Loss of appetite during sickness is a common and often debilitating phenomenon. Although proinflammatory cytokines are recognized as mediators of these anorexigenic effects, their mechanism and sites of action remain poorly understood. Here we show that interleukin 18, an anorexigenic cytokine, can act on neurons of the bed nucleus of the stria terminalis to reduce food intake via the IL-18 receptor. The findings identify a site and a mode of action that indicate targets for the treatment of cachexia or other eating disorders.
Collapse
|
25
|
Functional Heterogeneity in the Bed Nucleus of the Stria Terminalis. J Neurosci 2017; 36:8038-49. [PMID: 27488624 DOI: 10.1523/jneurosci.0856-16.2016] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Early work stressed the differing involvement of the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) in the genesis of fear versus anxiety, respectively. In 2009, Walker, Miles, and Davis proposed a model of amygdala-BNST interactions to explain these functional differences. This model became extremely influential and now guides a new wave of studies on the role of BNST in humans. Here, we consider evidence for and against this model, in the process highlighting central principles of BNST organization. This analysis leads us to conclude that BNST's influence is not limited to the generation of anxiety-like responses to diffuse threats, but that it also shapes the impact of discrete threatening stimuli. It is likely that BNST-CeA interactions are involved in modulating responses to such threats. In addition, whereas current views emphasize the contributions of the anterolateral BNST region in anxiety, accumulating data indicate that the anteromedial and anteroventral regions also play a critical role. The presence of multiple functional subregions within the small volume of BNST raises significant technical obstacles for functional imaging studies in humans.
Collapse
|
26
|
Deyama S, Sugano Y, Mori S, Amano T, Yoshioka M, Kaneda K, Minami M. Activation of the NMDA receptor–neuronal nitric oxide synthase pathway within the ventral bed nucleus of the stria terminalis mediates the negative affective component of pain. Neuropharmacology 2017; 118:59-68. [DOI: 10.1016/j.neuropharm.2017.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/23/2022]
|
27
|
Daniel SE, Guo J, Rainnie DG. A comparative analysis of the physiological properties of neurons in the anterolateral bed nucleus of the stria terminalis in the Mus musculus, Rattus norvegicus, and Macaca mulatta. J Comp Neurol 2017; 525:2235-2248. [PMID: 28295315 DOI: 10.1002/cne.24202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 02/03/2023]
Abstract
The anterolateral group of the bed nucleus of the stria terminalis (BNSTALG ) is a critical modulator of a variety of rodent and primate behaviors spanning anxiety behavior and drug addiction. Three distinct neuronal cell types have been previously defined in the rat BNSTALG based on differences in the voltage-response to hyperpolarizing and depolarizing current injection. Differences in genetic expression profile between these three cell types suggest electrophysiological cell type may be an indicator for functional differences in the circuit of the rat BNSTALG . Although the behavioral role of the BNST is conserved across species, it is unknown if the same electrophysiological cell types exist in the BNSTALG of the mouse and nonhuman primate. Here, we used whole-cell patch clamp electrophysiology and neuronal reconstructions of biocytin-filled neurons to compare and contrast the electrophysiological and morphological properties of neurons in the BNSTALG from the mouse, rat, and rhesus macaque. We provide evidence that the BNSTALG of all three species contains neurons that match the three defined cell types found in the rat; however, there are intriguing differences in the relative frequency of these cell types as well as electrophysiological and morphological properties of the BNSTALG neurons across species. This study suggests that the overall landscape of the BNSTALG in the primate and mouse may be similar to that of the rat in some aspects but perhaps significantly different in others.
Collapse
Affiliation(s)
- Sarah E Daniel
- Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, Georgia
| | - Jidong Guo
- Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, Georgia
| | - Donald G Rainnie
- Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
28
|
|
29
|
Rodríguez-Sierra OE, Goswami S, Turesson HK, Pare D. Altered responsiveness of BNST and amygdala neurons in trauma-induced anxiety. Transl Psychiatry 2016; 6:e857. [PMID: 27434491 PMCID: PMC5545714 DOI: 10.1038/tp.2016.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 05/08/2016] [Indexed: 12/31/2022] Open
Abstract
A highly conserved network of brain structures regulates the expression of fear and anxiety in mammals. Many of these structures display abnormal activity levels in post-traumatic stress disorder (PTSD). However, some of them, like the bed nucleus of the stria terminalis (BNST) and amygdala, are comprised of several small sub-regions or nuclei that cannot be resolved with human neuroimaging techniques. Therefore, we used a well-characterized rat model of PTSD to compare neuronal properties in resilient vs PTSD-like rats using patch recordings obtained from different BNST and amygdala regions in vitro. In this model, a persistent state of extreme anxiety is induced in a subset of susceptible rats following predatory threat. Previous animal studies have revealed that the central amygdala (CeA) and BNST are differentially involved in the genesis of fear and anxiety-like states, respectively. Consistent with these earlier findings, we found that between resilient and PTSD-like rats were marked differences in the synaptic responsiveness of neurons in different sectors of BNST and CeA, but whose polarity was region specific. In light of prior data about the role of these regions, our results suggest that control of fear/anxiety expression is altered in PTSD-like rats such that the influence of CeA is minimized whereas that of BNST is enhanced. A model of the amygdalo-BNST interactions supporting the PTSD-like state is proposed.
Collapse
Affiliation(s)
- O E Rodríguez-Sierra
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - S Goswami
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - H K Turesson
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - D Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| |
Collapse
|
30
|
Daldrup T, Lesting J, Meuth P, Seidenbecher T, Pape HC. Neuronal correlates of sustained fear in the anterolateral part of the bed nucleus of stria terminalis. Neurobiol Learn Mem 2016; 131:137-46. [DOI: 10.1016/j.nlm.2016.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/23/2022]
|
31
|
Nguyen AQ, Dela Cruz JAD, Sun Y, Holmes TC, Xu X. Genetic cell targeting uncovers specific neuronal types and distinct subregions in the bed nucleus of the stria terminalis. J Comp Neurol 2016; 524:2379-99. [PMID: 26718312 DOI: 10.1002/cne.23954] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 12/27/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) plays an important role in fear, stress, and anxiety. It contains a collection of subnuclei delineated by gross cytoarchitecture features; however, there has yet to be a systematic examination of specific BNST neuronal types and their associated neurochemical makeup. The present study focuses on improved characterization of the anterior BNST based on differing molecular and chemical expression aided by mouse genetics. Specific Cre driver lines crossed with a fluorescent reporter line were used for genetic cell targeting and immunochemical staining. Using this new approach, we were able to robustly identify specific excitatory and inhibitory cell types in the BNST. The presence and distribution of excitatory neurons were firmly established; glutamatergic neurons in the anterior BNST accounted for about 14% and 31% of dorsal and ventral BNST cells, respectively. GABAergic neurons expressing different isoforms of glutamic acid decarboxylase were found to have differential subregional distributions. Almost no parvalbumin-expressing cells were found in the BNST, while somatostatin-expressing cells and calretinin-expressing cells account for modest proportions of BNST cells. In addition, vasoactive intestinal peptide-expressing axonal plexuses were prominent in the oval and juxtacapsular subregions. In addition, we discovered that corticotropin-releasing hormone-expressing cells contain GABAergic and glutamatergic subpopulations. Together, this study reveals new information on excitatory and inhibitory neurons in the BNST, which will facilitate genetic dissection and functional studies of BNST subregions. J. Comp. Neurol. 524:2379-2399, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amanda Q Nguyen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
| | - Julie A D Dela Cruz
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
| | - Yanjun Sun
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA.,Department of Biomedical Engineering, University of California, Irvine, California, USA.,Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| |
Collapse
|
32
|
Daniel SE, Rainnie DG. Stress Modulation of Opposing Circuits in the Bed Nucleus of the Stria Terminalis. Neuropsychopharmacology 2016; 41:103-25. [PMID: 26096838 PMCID: PMC4677121 DOI: 10.1038/npp.2015.178] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/22/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022]
Abstract
The anterior bed nucleus of the stria terminalis (BNST) has been recognized as a critical structure in regulating trait anxiety, contextual fear memory, and appetitive behavior, and is known to be sensitive to stress manipulations. As one of the most complex structures in the central nervous system, the intrinsic circuitry of the BNST is largely unknown; however, recent technological developments have allowed researchers to begin to untangle the internal connections of the nucleus. This research has revealed the possibility of two opposing circuits, one anxiolytic and one anxiogenic, within the BNST, the relative strength of which determines the behavioral outcome. The balance of these pathways is critical in maintaining a normal physiological and behavioral state; however, stress and drugs of abuse can differentially affect the opposing circuitry within the nucleus to shift the balance to a pathological state. In this review, we will examine how stress interacts with the neuromodulators, corticotropin-releasing factor, norepinephrine, dopamine, and serotonin to affect the circuitry of the BNST as well as how synaptic plasticity in the BNST is modulated by stress, resulting in long-lasting changes in the circuit and behavioral state.
Collapse
Affiliation(s)
- Sarah E Daniel
- Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Rainnie
- Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
33
|
Gungor NZ, Yamamoto R, Paré D. Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. J Neurophysiol 2015; 114:2903-11. [PMID: 26400259 DOI: 10.1152/jn.00677.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
It has been proposed that the central amygdala (CeA), particularly its medial sector (CeM), generates brief fear responses to discrete conditioned cues, whereas the bed nucleus of the stria terminalis (BNST) promotes long-lasting, anxiety-like states in response to more diffuse contingencies. Although it is believed that BNST-CeA interactions determine the transition between short- and long-duration responses, the nature of these interactions remains unknown. To shed light on this question, we used a double viral strategy to drive the expression of channelrhodopsin (ChR2) in BNST cells that project to CeA. Next, using patch-clamp recordings in vitro, we investigated the connectivity of infected cells to noninfected cells in BNST and compared the influence of BNST axons on neurons in the medial and lateral (CeL) parts of CeA. CeA-projecting BNST cells were concentrated in the anterolateral (AL) and anteroventral (AV) sectors of BNST. Dense plexuses of BNST axons were observed throughout CeA. In CeA and BNST, light-evoked excitatory postsynaptic potentials accounted for a minority of responses (0-9% of tested cells); inhibition prevailed. The incidence of inhibitory responses was higher in CeM than in CeL (66% and 43% of tested cells, respectively). Within BNST, the connections from CeA-projecting to non-CeA-targeting cells varied as a function of the BNST sector: 50% vs. 9% of tested cells exhibited light-evoked responses in BNST-AL vs. BNST-AV, respectively. Overall, these results suggest that via its projection to CeA, BNST exerts an inhibitory influence over cued fear and that BNST neurons projecting to CeA form contrasting connections in different BNST subnuclei.
Collapse
Affiliation(s)
- Nur Zeynep Gungor
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Ryo Yamamoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
34
|
Luyck K, Luyten L. Can electrical stimulation of the human bed nucleus of the stria terminalis reduce contextual anxiety? An unanswered question. Front Behav Neurosci 2015; 9:69. [PMID: 25852509 PMCID: PMC4362315 DOI: 10.3389/fnbeh.2015.00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/01/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kelly Luyck
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Laura Luyten
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven Leuven, Belgium ; Psychology of Learning and Experimental Psychopathology, Psychology and Educational Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
35
|
Szücs A, Huerta R. Differential effects of static and dynamic inputs on neuronal excitability. J Neurophysiol 2015; 113:232-43. [PMID: 25274346 DOI: 10.1152/jn.00226.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intrinsic excitability of neurons is known to be dynamically regulated by activity-dependent plasticity and homeostatic mechanisms. Such processes are commonly analyzed in the context of input-output functions that describe how neurons fire in response to constant levels of current. However, it is not well understood how changes of excitability as observed under static inputs translate to the function of the same neurons in their natural synaptic environment. Here we performed a computational study and hybrid experiments on rat bed nucleus of stria terminalis neurons to compare the two scenarios. The inward rectifying Kir current (IKir) and the hyperpolarization-activated cation current (Ih) were found to be considerably more effective in regulating the firing under synaptic inputs than under static stimuli. This prediction was experimentally confirmed by dynamic-clamp insertion of a synthetic inwardly rectifying Kir current into the biological neurons. At the same time, ionic currents that activate with depolarization were more effective regulating the firing under static inputs. When two intrinsic currents are concurrently altered such as those under homeostatic regulation, the effects in firing responses under static vs. dynamic inputs can be even more contrasting. Our results show that plastic or homeostatic changes of intrinsic membrane currents can shape the current step responses of neurons and their firing under synaptic inputs in a differential manner.
Collapse
Affiliation(s)
- Attila Szücs
- BioCircuits Institute, University of California, San Diego, La Jolla, California; and Balaton Limnological Institute, Center of Ecology of the Hungarian Academy of Sciences, Tihany, Hungary
| | - Ramon Huerta
- BioCircuits Institute, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
36
|
CGRP inhibits neurons of the bed nucleus of the stria terminalis: implications for the regulation of fear and anxiety. J Neurosci 2014; 34:60-5. [PMID: 24381268 DOI: 10.1523/jneurosci.3473-13.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is thought to generate anxiety-like states via its projections to autonomic and neuroendocrine regulatory structures of the brain. However, because most BNST cells are GABAergic, they are expected to inhibit target neurons. In contrast with this, infusion of calcitonin gene-related peptide (CGRP) into BNST was reported to potentiate anxiety while activating BNST targets. The present study aimed to shed light on this paradox. The CGRP innervation of BNST originates in the pontine parabrachial nucleus and targets its anterolateral sector (BNST-AL). Thus, we investigated the effects of CGRP on BNST-AL neurons using patch recordings in vitro in male rats. CGRP did not alter the passive properties of BNST-AL cells but increased the amplitude of IPSPs evoked by stimulation of the stria terminalis (ST). However, IPSP paired-pulse ratios were unchanged by CGRP, and there was no correlation between IPSP potentiation and variance, suggesting that CGRP acts postsynaptically. Consistent with this, CGRP hyperpolarized the GABA-A reversal of BNST-AL cells. These results indicate that CGRP increases ST-evoked GABA-A IPSPs and hyperpolarizes their reversal potential through a postsynaptic change in Cl(-) homeostasis. Overall, our findings suggest that CGRP potentiates anxiety-like behaviors and increases neural activity in BNST targets, by inhibiting BNST-AL cells, supporting the conclusion that BNST-AL exerts anxiolytic effects.
Collapse
|
37
|
Haufler D, Nagy FZ, Pare D. Neuronal correlates of fear conditioning in the bed nucleus of the stria terminalis. Learn Mem 2013; 20:633-41. [PMID: 24131794 PMCID: PMC3799415 DOI: 10.1101/lm.031799.113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lesion and inactivation studies indicate that the central amygdala (CeA) participates in the expression of cued and contextual fear, whereas the bed nucleus of the stria terminalis (BNST) is only involved in the latter. The basis for this functional dissociation is unclear because CeA and BNST form similar connections with the amygdala and brainstem fear effectors. To address this question, we recorded neurons in the anterolateral (AL) and anteromedial (AM) regions of BNST in rats subjected to auditory fear conditioning. During habituation, few neurons were responsive to the conditioned stimulus (CS). After fear conditioning, 20% of BNST-AL neurons developed inhibitory responses to the CS. In BNST-AM, 26% of neurons developed positive CS responses. The behavior of BNST-AM and -AL neurons during contextual fear paralleled their CS responsiveness: More BNST-AM neurons fired at higher rates during contextual freezing than movement, whereas the opposite was seen in BNST-AL cells. These findings point to regional differences in the activity of BNST-AL and -AM in relation to learned fear, raising the possibility that they exert opposite influences on fear output networks. However, given the similar behavior of BNST-AM and -AL neurons in relation to cued and contextual fear, it remains unclear why lesion and inactivation of BNST differentially affect these two types of fear. Either neurons in a different BNST sector, not explored here, show a different activity profile in relation to the two forms of fear or inactivation/lesion studies inadvertently affected a structure adjacent to BNST, which is involved in contextual fear.
Collapse
Affiliation(s)
- Darrell Haufler
- Center for Molecular & Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|