1
|
Wu C, Xie J, Yao Q, Song Y, Yang G, Zhao J, Zhang R, Wang T, Jiang X, Cai X, Gao Y. Intrahippocampal Supramolecular Assemblies Directed Bioorthogonal Liberation of Neurotransmitters to Suppress Seizures in Freely Moving Mice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314310. [PMID: 38655719 DOI: 10.1002/adma.202314310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Indexed: 04/26/2024]
Abstract
The precise delivery of anti-seizure medications (ASM) to epileptic loci remains the major challenge to treat epilepsy without causing adverse drug reactions. The unprovoked nature of epileptic seizures raises the additional need to release ASMs in a spatiotemporal controlled manner. Targeting the oxidative stress in epileptic lesions, here the reactive oxygen species (ROS) induced in situ supramolecular assemblies that synergized bioorthogonal reactions to deliver inhibitory neurotransmitter (GABA) on-demand, are developed. Tetrazine-bearing assembly precursors undergo oxidation and selectively self-assemble under pathological conditions inside primary neurons and mice brains. Assemblies induce local accumulation of tetrazine in the hippocampus CA3 region, which allows the subsequent bioorthogonal release of inhibitory neurotransmitters. For induced acute seizures, the sustained release of GABA extends the suppression than the direct supply of GABA. In the model of permanent damage of CA3, bioorthogonal ligation on assemblies provides a reservoir of GABA that behaves prompt release upon 365 nm irradiation. Incorporated with the state-of-the-art microelectrode arrays, it is elucidated that the bioorthogonal release of GABA shifts the neuron spike waveforms to suppress seizures at the single-neuron precision. The strategy of in situ supramolecular assemblies-directed bioorthogonal prodrug activation shall be promising for the effective delivery of ASMs to treat epilepsy.
Collapse
Affiliation(s)
- Chengling Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingxin Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhao
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ruijia Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ting Wang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
2
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
3
|
Aracava Y, Albuquerque EX, Pereira EFR. (R,S)-trihexyphenidyl, acting via a muscarinic receptor-independent mechanism, inhibits hippocampal glutamatergic and GABAergic synaptic transmissions: Potential relevance for treatment of organophosphorus intoxication. Neuropharmacology 2023; 239:109684. [PMID: 37549771 PMCID: PMC10590273 DOI: 10.1016/j.neuropharm.2023.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Preclinical studies have reported that, compared to the muscarinic receptor (mAChR) antagonist atropine, (R,S)-trihexyphenidyl (THP) more effectively counters the cholinergic crisis, seizures, and neuropathology triggered by organophosphorus (OP)-induced acetylcholinesterase (AChE) inhibition. The greater effectiveness of THP was attributed to its ability to block mAChRs and N-methyl-d-aspartate-type glutamatergic receptors (NMDARs) in the brain. However, THP also inhibits α7 nicotinic receptors (nAChRs). The present study examined whether THP-induced inhibition of mAChRs, α7 nAChRs, and NMDARs is required to suppress glutamatergic synaptic transmission, whose overstimulation sustains OP-induced seizures. In primary hippocampal cultures, THP (1-30 μM) suppressed the frequency of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, respectively) recorded from neurons in nominally Mg2+-free solution. A single sigmoidal function adequately fit the overlapping concentration-response relationships for THP-induced suppression of IPSC and EPSC frequencies yielding an IC50 of 6.3 ± 1.3 μM. Atropine (1 μM), the NMDAR antagonist d,l-2-amino-5-phosphonopentanoic acid (D,L-AP5, 50 μM), and the α7 nAChR antagonist methyllycaconitine (MLA, 10 nM) did not prevent THP-induced inhibition of synaptic transmission. THP (10 μM) did not affect the probability of transmitter release because it had no effect on the frequency of miniature IPSCs and EPSCs recorded in the presence of tetrodotoxin. Additionally, THP had no effect on the amplitudes and decay-time constants of miniature IPSCs and EPSCs; therefore, it did not affect the activity of postsynaptic GABAA and glutamate receptors. This study provides the first demonstration that THP can suppress action potential-dependent synaptic transmission via a mechanism independent of NMDAR, mAChR, and α7 nAChR inhibition.
Collapse
Affiliation(s)
- Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Megarity D, Vroman R, Kriek M, Downey P, Bushell TJ, Zagnoni M. A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience. LAB ON A CHIP 2022; 22:1989-2000. [PMID: 35466333 DOI: 10.1039/d2lc00115b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional in vitro models fail to recapitulate precise microenvironments and animal models of complex disease often have limited translational validity. Microfluidic and organ-on-chip technologies offer an opportunity to develop more physiologically relevant and complex in vitro models of the CNS. They can be developed to allow precise cellular patterning and enhanced experimental capabilities to study neuronal function and dysfunction. To improve ease-of-use of the technology and create new opportunities for novel in vitro studies, we introduce a modular platform consisting of multiple, individual microfluidic units that can be combined in several configurations to create bespoke culture environments. Here, we report proof-of-concept experiments creating complex in vitro models and performing functional analysis of neuronal activity across modular interfaces. This platform technology presents an opportunity to increase our understanding of CNS disease mechanisms and ultimately aid the development of novel therapies.
Collapse
Affiliation(s)
- D Megarity
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - R Vroman
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| | | | - P Downey
- UCB Biopharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - T J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - M Zagnoni
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| |
Collapse
|
5
|
Sakimoto Y, Shintani A, Yoshiura D, Goshima M, Kida H, Mitsushima D. A critical period for learning and plastic changes at hippocampal CA1 synapses. Sci Rep 2022; 12:7199. [PMID: 35504922 PMCID: PMC9065057 DOI: 10.1038/s41598-022-10453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Postnatal development of hippocampal function has been reported in many mammalian species, including humans. To obtain synaptic evidence, we analyzed developmental changes in plasticity after an inhibitory avoidance task in rats. Learning performance was low in infants (postnatal 2 weeks) but clearly improved from the juvenile period (3-4 weeks) to adulthood (8 weeks). One hour after the training, we prepared brain slices and sequentially recorded miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) from the same hippocampal CA1 neuron. Although the training failed to affect the amplitude of either mEPSCs or mIPSCs at 2 weeks, it increased mEPSC, but not mIPSC, amplitude at 3 weeks. At 4 weeks, the training had increased the amplitude of both mEPSCs and mIPSCs, whereas mIPSC, but not mEPSC, amplitude was increased at 8 weeks. Because early-life physiological functions can affect performance, we also evaluated sensory-motor functions together with emotional state and found adequate sensory/motor functions from infancy to adulthood. Moreover, by analyzing performance of rats in multiple hippocampal-dependent tasks, we found that the developmental changes in the performance are task dependent. Taken together, these findings delineate a critical period for learning and plastic changes at hippocampal CA1 synapses.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan.
| | - Ako Shintani
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Daiki Yoshiura
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Makoto Goshima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan.
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
6
|
Mele M, Vieira R, Correia B, De Luca P, Duarte FV, Pinheiro PS, Duarte CB. Transient incubation of cultured hippocampal neurons in the absence of magnesium induces rhythmic and synchronized epileptiform-like activity. Sci Rep 2021; 11:11374. [PMID: 34059735 PMCID: PMC8167095 DOI: 10.1038/s41598-021-90486-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
Cell culture models are important tools to study epileptogenesis mechanisms. The aim of this work was to characterize the spontaneous and synchronized rhythmic activity developed by cultured hippocampal neurons after transient incubation in zero Mg2+ to model Status Epilepticus. Cultured hippocampal neurons were transiently incubated with a Mg2+-free solution and the activity of neuronal networks was evaluated using single cell calcium imaging and whole-cell current clamp recordings. Here we report the development of synchronized and spontaneous [Ca2+]i transients in cultured hippocampal neurons immediately after transient incubation in a Mg2+-free solution. Spontaneous and synchronous [Ca2+]i oscillations were observed when the cells were then incubated in the presence of Mg2+. Functional studies also showed that transient incubation in Mg2+-free medium induces neuronal rhythmic burst activity that was prevented by antagonists of glutamate receptors. In conclusion, we report the development of epileptiform-like activity, characterized by spontaneous and synchronized discharges, in cultured hippocampal neurons transiently incubated in the absence of Mg2+. This model will allow studying synaptic alterations contributing to the hyperexcitability that underlies the development of seizures and will be useful in pharmacological studies for testing new drugs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Ricardo Vieira
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Bárbara Correia
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Pasqualino De Luca
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Filipe V Duarte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Paulo S Pinheiro
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Amoateng P, Tagoe TA, Karikari TK, Kukuia KKE, Osei-Safo D, Woode E, Frenguelli BG, Kombian SB. Synedrella nodiflora Extract Depresses Excitatory Synaptic Transmission and Chemically-Induced In Vitro Seizures in the Rat Hippocampus. Front Pharmacol 2021; 12:610025. [PMID: 33762938 PMCID: PMC7982396 DOI: 10.3389/fphar.2021.610025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/07/2021] [Indexed: 01/14/2023] Open
Abstract
Extracts of the tropical Cinderella plant Synedrella nodiflora are used traditionally to manage convulsive conditions in the West African sub-region. This study sought to determine the neuronal basis of the effectiveness of these plant extracts to suppress seizure activity. Using the hippocampal slice preparation from rats, the ability of the extract to depress excitatory synaptic transmission and in vitro seizure activity were investigated. Bath perfusion of the hydro-ethanolic extract of Synedrella nodiflora (SNE) caused a concentration-dependent depression of evoked field excitatory postsynaptic potentials (fEPSPs) recorded extracellularly in the CA1 region of the hippocampus with maximal depression of about 80% and an estimated IC50 of 0.06 mg/ml. The SNE-induced fEPSP depression was accompanied by an increase in paired pulse facilitation. The fEPSP depression only recovered partially after 20 min washing out. The effect of SNE was not stimulus dependent as it was present even in the absence of synaptic stimulation. Furthermore, it did not show desensitization as repeat application after 10 min washout produced the same level of fEPSP depression as the first application. The SNE effect on fEPSPs was not via adenosine release as it was neither blocked nor reversed by 8-CPT, an adenosine A1 receptor antagonist. In addition, SNE depressed in vitro seizures induced by zero Mg2+ and high K+ -containing artificial cerebrospinal fluid (aCSF) in a concentration-dependent manner. The results show that SNE depresses fEPSPs and spontaneous bursting activity in hippocampal neurons that may underlie its ability to abort convulsive activity in persons with epilepsy.
Collapse
Affiliation(s)
- Patrick Amoateng
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Thomas A Tagoe
- Department of Physiology, UG Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kennedy K E Kukuia
- Department of Medical Pharmacology, UG Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Eric Woode
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Bruno G Frenguelli
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Samuel B Kombian
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Health Science Center, Kuwait University, Safat, Kuwait.,Department of Pharmacology and Toxicology, School of Medicine and Medical Sciences, University for Development Studies, Tamale, Ghana
| |
Collapse
|
8
|
Ghosh Dastidar S, Das Sharma S, Chakraborty S, Chattarji S, Bhattacharya A, Muddashetty RS. Distinct regulation of bioenergetics and translation by group I mGluR and NMDAR. EMBO Rep 2020; 21:e48037. [PMID: 32351028 PMCID: PMC7271334 DOI: 10.15252/embr.201948037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity is responsible for the high energy consumption in the brain. However, the cellular mechanisms draining ATP upon the arrival of a stimulus are yet to be explored systematically at the post-synapse. Here, we provide evidence that a significant fraction of ATP is consumed upon glutamate stimulation to energize mGluR-induced protein synthesis. We find that both mGluR and NMDAR alter protein synthesis and ATP consumption with distinct kinetics at the synaptic-dendritic compartments. While mGluR activation leads to a rapid and sustained reduction in neuronal ATP levels, NMDAR activation has no immediate impact on the same. ATP consumption correlates inversely with the kinetics of protein synthesis for both receptors. We observe a persistent elevation in protein synthesis within 5 minutes of mGluR activation and a robust inhibition of the same within 2 minutes of NMDAR activation, assessed by the phosphorylation status of eEF2 and metabolic labeling. However, a delayed protein synthesis-dependent ATP expenditure ensues after 15 minutes of NMDAR stimulation. We identify a central role for AMPK in the correlation between protein synthesis and ATP consumption. AMPK is dephosphorylated and inhibited upon mGluR activation, while it is phosphorylated upon NMDAR activation. Perturbing AMPK activity disrupts receptor-specific modulations of eEF2 phosphorylation and protein synthesis. Our observations, therefore, demonstrate that the regulation of the AMPK-eEF2 signaling axis by glutamate receptors alters neuronal protein synthesis and bioenergetics.
Collapse
Affiliation(s)
- Sudhriti Ghosh Dastidar
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Shreya Das Sharma
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- The University of Trans‐Disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Sumita Chakraborty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Sumantra Chattarji
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- National Center for Biological SciencesBangaloreIndia
| | - Aditi Bhattacharya
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Ravi S Muddashetty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| |
Collapse
|
9
|
Shiono S, Williamson J, Kapur J, Joshi S. Progesterone receptor activation regulates seizure susceptibility. Ann Clin Transl Neurol 2019; 6:1302-1310. [PMID: 31353848 PMCID: PMC6649646 DOI: 10.1002/acn3.50830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Progesterone is a potent neuromodulator that exerts effects on the brain through neurosteroids, progesterone receptors (PRs), and other molecules. Whether PR activation regulates seizures is not known. We determined whether PR activation increased seizure susceptibility. METHODS Adult female rats that developed epilepsy following lithium-pilocarpine-induced status epilepticus (SE) were used. Seizures were recorded by continuous-video EEG and read by an individual blinded to the treatment of the animals. The animals were treated for a week with progesterone (50 mg/kg per day), and the effect of progesterone withdrawal on seizure frequency was assessed during the subsequent week. During the week of progesterone treatment, the animals were treated with PR antagonist RU-486 (10 mg/kg per day) or a vehicle control, which was administered 30 min before progesterone. In another set of animals, we determined the effect of the PR agonist Nestorone (3 mg/kg per day) on seizure frequency. The animals were treated with Nestorone or vehicle for a week, and seizure frequencies at baseline and during the treatment week were compared. RESULTS Progesterone withdrawal induced twofold increase in seizures in 57% of animals (n = 14). RU-486 treatment in combination with progesterone, prevented this increase, and a smaller fraction of animals (17%) experienced withdrawal seizures (n = 13). The specific activation of PRs by Nestorone also increased the seizure frequency. Forty-six percent (n = 14) of Nestorone-treated animals experienced at least a 50% increase in seizures compared to only 9% of the vehicle-treated animals (n = 11). INTERPRETATION PR activation increased seizure frequency in epileptic animals. Thus, PRs may be novel targets for treating catamenial epilepsy.
Collapse
Affiliation(s)
- Shinnosuke Shiono
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908
| | - John Williamson
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908
| | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908
- Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginia22908
- UVA Brain Institute, University of VirginiaCharlottesvilleVirginia22908
| | - Suchitra Joshi
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908
| |
Collapse
|
10
|
Fenske P, Grauel MK, Brockmann MM, Dorrn AL, Trimbuch T, Rosenmund C. Autaptic cultures of human induced neurons as a versatile platform for studying synaptic function and neuronal morphology. Sci Rep 2019; 9:4890. [PMID: 30894602 PMCID: PMC6427022 DOI: 10.1038/s41598-019-41259-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
Recently developed technology to differentiate induced pluripotent stem cells (iPSCs) into human induced neurons (iNs) provides an exciting opportunity to study the function of human neurons. However, functional characterisations of iNs have been hampered by the reliance on mass culturing protocols which do not allow assessment of synaptic release characteristics and neuronal morphology at the individual cell level with quantitative precision. Here, we have developed for the first time a protocol to generate autaptic cultures of iPSC-derived iNs. We show that our method efficiently generates mature, autaptic iNs with robust spontaneous and action potential-driven synaptic transmission. The synaptic responses are sensitive to modulation by metabotropic receptor agonists as well as potentiation by acute phorbol ester application. Finally, we demonstrate loss of evoked and spontaneous release by Unc13A knockdown. This culture system provides a versatile platform allowing for quantitative and integrative assessment of morphophysiological and molecular parameters underlying human synaptic transmission.
Collapse
Affiliation(s)
- Pascal Fenske
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - M Katharina Grauel
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Anja L Dorrn
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117, Berlin, Germany. .,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117, Berlin, Germany. .,Berlin Institute of Health, Anna-Louise-Karsch-Straße 2, 10178, Berlin, Germany.
| |
Collapse
|
11
|
Zhuang W, Li T, Wang C, Shi X, Li Y, Zhang S, Zhao Z, Dong H, Qiao Y. Berberine exerts antioxidant effects via protection of spiral ganglion cells against cytomegalovirus-induced apoptosis. Free Radic Biol Med 2018; 121:127-135. [PMID: 29715550 DOI: 10.1016/j.freeradbiomed.2018.04.575] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) is the leading cause of sensorineural hearing loss (SNHL) in children because of its damage to the cochlea and spiral ganglion cells. Therefore, it has become a top priority to devise new methods to effectively protect spiral ganglion cells from damage. Berberine (BBR) has gained attention for its vast beneficial biological effects through immunomodulation, and its anti-inflammatory and anti-apoptosis properties. However, the effect of BBR on spiral ganglion cells and molecular mechanisms are still unclear. This study aims to investigate whether BBR has an anti-apoptosis effect in CMV-induced apoptosis in cultured spiral ganglion cells and explore the possible mechanism. In this study, TUNEL and MTT assays significantly demonstrated that low doses of BBR did not promote cell apoptosis and they also inhibited the CMV-induced cultured spiral ganglion cell apoptosis. Immunofluorescence and Western blot assays indicated that the anti-apoptosis effect of BBR was related to Nox3. Mitochondrial calcium and Western blot assays revealed that NMDAR1 mediated this anti-apoptosis effect. Our results demonstrated that BBR exerted an anti-apoptosis effect against CMV in cultured spiral ganglion cells, and the mechanism is related to NMDAR1/Nox3-mediated mitochondrial reactive oxygen species (ROS) generation.
Collapse
Affiliation(s)
- Wei Zhuang
- Clinical Hearing Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, China
| | - Ting Li
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou 221004, China
| | - Caiji Wang
- The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xi Shi
- The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yalan Li
- The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shili Zhang
- The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zeqi Zhao
- The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongyan Dong
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yuehua Qiao
- Clinical Hearing Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, China; The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
12
|
Prolonged seizure activity causes caspase dependent cleavage and dysfunction of G-protein activated inwardly rectifying potassium channels. Sci Rep 2017; 7:12313. [PMID: 28951616 PMCID: PMC5615076 DOI: 10.1038/s41598-017-12508-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Recurrent high-frequency epileptic seizures cause progressive hippocampal sclerosis, which is associated with caspase-3 activation and NMDA receptor-dependent excitotoxicity. However, the identity of caspase-3 substrates that contribute to seizure-induced hippocampal atrophy remains largely unknown. Here, we show that prolonged high-frequency epileptiform discharges in cultured hippocampal neurons leads to caspase-dependent cleavage of GIRK1 and GIRK2, the major subunits of neuronal G protein-activated inwardly rectifying potassium (GIRK) channels that mediate membrane hyperpolarization and synaptic inhibition in the brain. We have identified caspase-3 cleavage sites in GIRK1 (387ECLD390) and GIRK2 (349YEVD352). The YEVD motif is highly conserved in GIRK2-4, and located within their C-terminal binding sites for Gβγ proteins that mediate membrane-delimited GIRK activation. Indeed, the cleaved GIRK2 displays reduced binding to Gβγ and cannot coassemble with GIRK1. Loss of an ER export motif upon cleavage of GIRK2 abolishes surface and current expression of GIRK2 homotetramic channels. Lastly, kainate-induced status epilepticus causes GIRK1 and GIRK2 cleavage in the hippocampus in vivo. Our findings are the first to show direct cleavage of GIRK1 and GIRK2 subunits by caspase-3, and suggest the possible role of caspase-3 mediated down-regulation of GIRK channel function and expression in hippocampal neuronal injury during prolonged epileptic seizures.
Collapse
|
13
|
Tinning PW, Franssen AJPM, Hridi SU, Bushell TJ, McConnell G. A 340/380 nm light-emitting diode illuminator for Fura-2 AM ratiometric Ca 2+ imaging of live cells with better than 5 nM precision. J Microsc 2017; 269:212-220. [PMID: 28837217 PMCID: PMC5836901 DOI: 10.1111/jmi.12616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023]
Abstract
We report the first demonstration of a fast wavelength‐switchable 340/380 nm light‐emitting diode (LED) illuminator for Fura‐2 ratiometric Ca2+ imaging of live cells. The LEDs closely match the excitation peaks of bound and free Fura‐2 and enables the precise detection of cytosolic Ca2+ concentrations, which is only limited by the Ca2+ response of Fura‐2. Using this illuminator, we have shown that Fura‐2 acetoxymethyl ester (AM) concentrations as low as 250 nM can be used to detect induced Ca2+ events in tsA‐201 cells and while utilising the 150 μs switching speeds available, it was possible to image spontaneous Ca2+ transients in hippocampal neurons at a rate of 24.39 Hz that were blunted or absent at typical 0.5 Hz acquisition rates. Overall, the sensitivity and acquisition speeds available using this LED illuminator significantly improves the temporal resolution that can be obtained in comparison to current systems and supports optical imaging of fast Ca2+ events using Fura‐2.
Collapse
Affiliation(s)
- P W Tinning
- Department of Physics, SUPA University of Strathclyde, Glasgow, U.K
| | - A J P M Franssen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - S U Hridi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - T J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - G McConnell
- Centre for Biophotonics, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
14
|
Guo Y, Su ZJ, Chen YK, Chai Z. Brain-derived neurotrophic factor/neurotrophin 3 regulate axon initial segment location and affect neuronal excitability in cultured hippocampal neurons. J Neurochem 2017; 142:260-271. [DOI: 10.1111/jnc.14050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Yu Guo
- State Key Laboratory of Membrane Biology; College of Life Sciences; Peking University; Beijing China
| | - Zi-jun Su
- State Key Laboratory of Membrane Biology; College of Life Sciences; Peking University; Beijing China
| | - Yi-kun Chen
- State Key Laboratory of Membrane Biology; College of Life Sciences; Peking University; Beijing China
| | - Zhen Chai
- State Key Laboratory of Membrane Biology; College of Life Sciences; Peking University; Beijing China
| |
Collapse
|
15
|
Cai S, Ling C, Lu J, Duan S, Wang Y, Zhu H, Lin R, Chen L, Pan X, Cai M, Gu H. EGAR, A Food Protein-Derived Tetrapeptide, Reduces Seizure Activity in Pentylenetetrazole-Induced Epilepsy Models Through α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionate Receptors. Neurotherapeutics 2017; 14:212-226. [PMID: 27783277 PMCID: PMC5233631 DOI: 10.1007/s13311-016-0489-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A primary pathogeny of epilepsy is excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs). To find potential molecules to inhibit AMPARs, high-throughput screening was performed in a library of tetrapeptides in silico. Computational results suggest that some tetrapeptides bind stably to the AMPAR. We aligned these sequences of tetrapeptide candidates with those from in vitro digestion of the trout skin protein. Among salmon-derived products, Glu-Gly-Ala-Arg (EGAR) showed a high biological affinity toward AMPAR when tested in silico. Accordingly, natural EGAR was hypothesized to have anticonvulsant activity, and in vitro experiments showed that EGAR selectively inhibited AMPAR-mediated synaptic transmission without affecting the electrophysiological properties of hippocampal pyramidal neurons. In addition, EGAR reduced neuronal spiking in an in vitro seizure model. Moreover, the ability of EGAR to reduce seizures was evaluated in a rodent epilepsy model. Briefer and less severe seizures versus controls were shown after mice were treated with EGAR. In conclusion, the promising experimental results suggest that EGAR inhibitor against AMPARs may be a target for antiepilepsy pharmaceuticals. Epilepsy is a common brain disorder characterized by the occurrence of recurring, unprovoked seizures. Twenty to 30 % of persons with epilepsy do not achieve adequate seizure control with any drug. Here we provide a possibility in which a natural and edible tetrapeptide, EGAR, can act as an antiepileptic agent. We have combined computation with in vitro experiments to show how EGAR modulates epilepsy. We also used an animal model of epilepsy to prove that EGAR can inhibit seizures in vivo. This study suggests EGAR as a potential pharmaceutical for the treatment of epilepsy.
Collapse
Affiliation(s)
- Song Cai
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chuwen Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jun Lu
- Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Songwei Duan
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yingzhao Wang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huining Zhu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ruibang Lin
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Liang Chen
- Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Xingchang Pan
- Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Muyi Cai
- Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China.
| | - Huaiyu Gu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
16
|
NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory. Sci Rep 2016; 6:35256. [PMID: 27739540 PMCID: PMC5064360 DOI: 10.1038/srep35256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 01/10/2023] Open
Abstract
The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.
Collapse
|
17
|
Creatine Enhances Transdifferentiation of Bone Marrow Stromal Cell-Derived Neural Stem Cell Into GABAergic Neuron-Like Cells Characterized With Differential Gene Expression. Mol Neurobiol 2016; 54:1978-1991. [PMID: 26910814 DOI: 10.1007/s12035-016-9782-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
Creatine was reported to induce bone marrow stromal cells (BMSC) into GABAergic neuron-like cells (GNLC). In a previous study, creatine was used as a single inducer for BMSC into GNLC with low yield. In this study, BMSC-derived neurospheres (NS) have been used in generating GABAergic phenotype. The BMSC were isolated from adult rats and used in generating neurospheres and used for producing neural stem cells (NSC). A combination of all-trans-retinoic acid (RA), the ciliary neurotrophic factor (CNTF), and creatine was used in order to improve the yield of GNLC. We also used other protocols for the transdifferentiation including RA alone; RA and creatine; RA and CNTF; and RA, CNTF, and creatine. The BMSC, NSC, and GNLC were characterized by specific markers. The activity of the GNLC was evaluated using FM1-43. The isolated BMSC expressed Oct4, fibronectin, and CD44. The NS were immunoreactive to nestin and SOX2, the NSC were immunoreactive to nestin, NF68 and NF160, while the GNLC were immunoreactive to GAD1/2, VGAT, GABA, and synaptophysin. Oct4 and c-MYC, pluripotency genes, were expressed in the BMSC, while SOX2 and c-MYC were expressed in the NSC. The activity of GNLC indicates that the synaptic vesicles were released upon stimulation. The conclusion is that the combination of RA, CNTF, and creatine induced differentiation of neurosphere-derived NSC into GNLC within 1 week. This protocol gives higher yield than the other protocols used in this study. The mechanism of induction was clearly associated with several differential pluripotent genes.
Collapse
|
18
|
Zanelli SA, Rajasekaran K, Grosenbaugh DK, Kapur J. Increased excitability and excitatory synaptic transmission during in vitro ischemia in the neonatal mouse hippocampus. Neuroscience 2015; 310:279-89. [PMID: 26404876 DOI: 10.1016/j.neuroscience.2015.09.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The present study tested the hypothesis that exposure to in vitro hypoxia-ischemia alters membrane properties and excitability as well as excitatory synaptic transmission of CA1 pyramidal neurons in the neonatal mouse. METHODS Experiments were conducted in hippocampal slices in P7-P9 C57Bl/6 mice using whole-cell patch clamp in current- and voltage-clamp mode. Passive membrane potential (Vm), input resistance (Rin) and active (action potential (AP) threshold and amplitude) membrane properties of CA1 pyramidal neurons were assessed at baseline, during 10 min in vitro ischemia (oxygen-glucose deprivation (OGD)) and during reoxygenation. Spontaneous and miniature excitatory post-synaptic currents (s and mEPSCs) were studied under similar conditions. RESULTS OGD caused significant depolarization of CA1 pyramidal neurons as well as decrease in AP threshold and increase in AP amplitude. These changes were blocked by the application of tetrodotoxin (TTX), indicating Na(+) channels' involvement. Following 10 min of reoxygenation, significant membrane hyperpolarization was noted and it was associated with a decrease in Rin. AP threshold and amplitude returned to baseline during that stage. sEPSC and mEPSC frequency increased during both OGD and reoxygenation but their amplitude remained unchanged. Additionally, we found that OGD decreases Ih (hyperpolarization activated current) in CA1 neurons from neonatal mice and this effect persists during reoxygenation. SIGNIFICANCE These results indicate that in vitro ischemia leads to changes in membrane excitability mediated by sodium and potassium channels. Further, it results in enhanced neurotransmitter release from presynaptic terminals. These changes are likely to represent one of the mechanisms of hypoxia/ischemia-mediated seizures in the neonatal period.
Collapse
Affiliation(s)
- S A Zanelli
- Department of Pediatrics, University of Virginia, Charlottesville, VA, United States.
| | - K Rajasekaran
- Department of Neurology, University of Virginia, Charlottesville, VA, United States.
| | - D K Grosenbaugh
- Department of Neurology, University of Virginia, Charlottesville, VA, United States.
| | - J Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
19
|
Johnson SE, Hudson JL, Kapur J. Synchronization of action potentials during low-magnesium-induced bursting. J Neurophysiol 2015; 113:2461-70. [PMID: 25609103 PMCID: PMC4416584 DOI: 10.1152/jn.00286.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/20/2015] [Indexed: 01/26/2023] Open
Abstract
The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg(2+) model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg(2+). In decreased Mg(2+) medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg(2+) media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg(2+) concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks.
Collapse
Affiliation(s)
- Sarah E Johnson
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia; and
| | - John L Hudson
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia; and
| | - Jaideep Kapur
- Departments of Neurology and Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
20
|
Huberfeld G, Blauwblomme T, Miles R. Hippocampus and epilepsy: Findings from human tissues. Rev Neurol (Paris) 2015; 171:236-51. [PMID: 25724711 PMCID: PMC4409112 DOI: 10.1016/j.neurol.2015.01.563] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022]
Abstract
Surgical removal of the epileptogenic zone provides an effective therapy for several focal epileptic syndromes. This surgery offers the opportunity to study pathological activity in living human tissue for pharmacoresistant partial epilepsy syndromes including temporal lobe epilepsies with hippocampal sclerosis, cortical dysplasias, epilepsies associated with tumors and developmental malformations. Slices of tissue from patients with these syndromes retain functional neuronal networks and may generate epileptic activities. The properties of cells in this tissue may not be greatly changed, but excitatory synaptic transmission is often enhanced and GABAergic inhibition is preserved. Typically epileptic activity is not generated spontaneously by the neocortex, whether dysplastic or not, but can be induced by convulsants. The initiation of ictal discharges in the neocortex depends on both GABAergic signaling and increased extracellular potassium. In contrast, a spontaneous interictal-like activity is generated by tissues from patients with temporal lobe epilepsies associated with hippocampal sclerosis. This activity is initiated, not in the hippocampus but in the subiculum, an output region, which projects to the entorhinal cortex. Interictal events seem to be triggered by GABAergic cells, which paradoxically excite about 20% of subicular pyramidal cells while simultaneously inhibiting the majority. Interictal discharges thus depend on both GABAergic and glutamatergic signaling. The depolarizing effects of GABA depend on a pathological elevation in levels of chloride in some subicular cells, similar to those of developmentally immature cells. Such defect is caused by a perturbed expression of the cotransporters regulating intracellular chloride concentration, the importer NKCC1 and the extruder KCC2. Blockade of NKCC1 actions by the diuretic bumetanide restores intracellular chloride and thus hyperpolarizing GABAergic actions and consequently suppressing interictal activity.
Collapse
Affiliation(s)
- G Huberfeld
- Département de neurophysiologie, Sorbonne universités, UPMC - université Paris 06, UPMC, CHU de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France; INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity, University Paris Descartes, Sorbonne Paris Cité, CEA, 12, rue de l'École-de-Médecine, 75006 Paris, France.
| | - T Blauwblomme
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity, University Paris Descartes, Sorbonne Paris Cité, CEA, 12, rue de l'École-de-Médecine, 75006 Paris, France; Neurosurgery Department, Necker-Enfants Malades Hospital, University Paris Descartes, PRES Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France
| | - R Miles
- Inserm U1127, CNRS UMR7225, Sorbonne universités, UPMC - université Paris 6 UMR S1127, Institut du cerveau et de la moelle épinière, 47, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
21
|
Cholinergic differentiation of neural stem cells generated from cell aggregates-derived from Human Bone marrow stromal cells. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
22
|
Kovac S, Domijan AM, Walker MC, Abramov AY. Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 2014; 5:e1442. [PMID: 25275601 PMCID: PMC4649505 DOI: 10.1038/cddis.2014.390] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022]
Abstract
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly, however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS production was accompanied by an increase in intracellular [Na(+)] through NMDA receptor activation. Inhibition of NADPH or XO markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-induced neuronal cell death and identify novel therapeutic targets.
Collapse
Affiliation(s)
- S Kovac
- 1] UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK [2] Department of Neurology, University of Muenster, Muenster 48149, Germany
| | - A-M Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| | - M C Walker
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - A Y Abramov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
23
|
Eckel R, Szulc B, Walker MC, Kittler JT. Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity. Neuropharmacology 2014; 88:82-90. [PMID: 25245802 PMCID: PMC4239296 DOI: 10.1016/j.neuropharm.2014.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022]
Abstract
Fast inhibitory signalling in the mammalian brain is mediated by gamma-aminobutyric acid type A receptors (GABAARs), which are targets for anti-epileptic therapy such as benzodiazepines. GABAARs undergo tightly regulated trafficking processes that are essential for maintenance and physiological modulation of inhibitory strength. The trafficking of GABAARs to and from the membrane is altered during prolonged seizures such as in Status Epilepticus (SE) and has been suggested to contribute to benzodiazepine pharmacoresistance in patients with SE. However, the intracellular signalling mechanisms that cause this modification in GABAAR trafficking remain poorly understood. In this study, we investigate the surface stability of GABAARs during SE utilising the low Mg(2+) model in hippocampal rat neurons. Live-cell imaging of super ecliptic pHluorin (SEP)-tagged α2 subunit containing GABAARs during low Mg(2+) conditions reveals that the somatic surface receptor pool undergoes down-regulation dependent on N-methyl-d-aspartate receptor (NMDAR) activity. Analysis of the intracellular Ca(2+) signal during low Mg(2+) using the Ca(2+)-indicator Fluo4 shows that this reduction of surface GABAARs correlates well with the timeline of intracellular Ca(2+) changes. Furthermore, we show that the activation of the phosphatase calcineurin was required for the decrease in surface GABAARs in neurons undergoing epileptiform activity. These results indicate that somatic modulation of GABAAR trafficking during epileptiform activity in vitro is mediated by calcineurin activation which is linked to changes in intracellular Ca(2+) concentrations. These mechanisms could account for benzodiazepine pharmacoresistance and the maintenance of recurrent seizure activity, and reveal potential novel targets for the treatment of SE.
Collapse
Affiliation(s)
- Ramona Eckel
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Blanka Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
24
|
Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII α in epileptic hippocampal neurons. PLoS One 2014; 9:e102161. [PMID: 25010576 PMCID: PMC4092074 DOI: 10.1371/journal.pone.0102161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 06/15/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II α expression in a model of epileptic neurons were investigated. Method Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II α protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results The CaMK II α expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion GLP may inhibit calcium overload and promote CaMK II α expression to protect epileptic neurons.
Collapse
|
25
|
Wang XM, Jia RH, Wei D, Cui WY, Jiang W. MiR-134 blockade prevents status epilepticus like-activity and is neuroprotective in cultured hippocampal neurons. Neurosci Lett 2014; 572:20-5. [PMID: 24810882 DOI: 10.1016/j.neulet.2014.04.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 11/26/2022]
Abstract
Status epilepticus (SE) is a life-threatening neurological disorder associated with significant morbidity and mortality. MicroRNAs (miRNAs) are small, non-coding RNAs that act post-transcriptionally modulating messenger RNA (mRNA) translation or stability which may have important roles in the pathogenesis of epilepsy. It has been reported that silencing microRNA-134 in vivo has significant neuroprotective and prolonged seizure-suppressive effects. However, the mechanism by which miR-134 inhibition suppressed seizures and whether miR-134 inhibition works in an in vitro model of SE, is unknown. Compared to a complex in vivo system, in vitro models of SE-like electrographic activity can be powerful tools to study this miRNA. Using a cell culture model of low Mg(2+) treatment of rat hippocampal neurons, we found SE-like electrographic activity increased expression of miR-134. Inhibiting expression of miR-134 using an inhibitor lentivirus with two miR-134 binding sites reduced SE-like electrographic activity in the hippocampal neurons and reduced neuronal death. This study provides direct evidence that inhibition of miR-134 can block status epilepticus-like discharges and is neuroprotective in hippocampal neuronal cultures and implies that inhibiting miR-134 may be a potential candidate for the clinical treatment of SE.
Collapse
Affiliation(s)
- Xiao-Mu Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Rui-Hua Jia
- Department of Neurology, People's Liberation Army 457th Hospital, Wuhan 430012, China
| | - Dong Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Yun Cui
- Tianjin Neurological Institute, Tianjin 30052, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
26
|
Ding J, Wang JJ, Huang C, Wang L, Deng S, Xu TL, Ge WH, Li WG, Li F. Curcumol from Rhizoma Curcumae suppresses epileptic seizure by facilitation of GABA(A) receptors. Neuropharmacology 2014; 81:244-55. [PMID: 24565642 DOI: 10.1016/j.neuropharm.2014.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Rhizoma Curcumae is a common Chinese dietary spice used in South Asia and China for thousands of years. As the main extract, Rhizoma Curcumae oil has attracted a great interest due to its newly raised therapeutic activities including its pharmacological effects upon central nervous system such as neuroprotection, cognitive enhancement, and anti-seizure efficacy; however the molecular mechanisms and the target identification remain to be established. Here we characterize an inhibitory effect of curcumol, a major bioactive component of Rhizoma Curcumae oil, on the excitability of hippocampal neurons in culture, the basal locomotor activity of freely moving animals, and the chemically induced seizure activity in vivo. Electrophysiological recording showed that acute application of curcumol significantly facilitated the γ-aminobutyric acid (GABA)-activated current in cultured mouse hippocampal neurons and in human embryonic kidney cells expressing α1- or α5-containing A type GABA (GABAA) receptors in a concentration-dependent manner. Measurement of tonic and miniature inhibitory postsynaptic GABAergic currents in hippocampal slices indicated that curcumol enhanced both forms of inhibition. In both pentylenetetrazole and kainate seizure models, curcumol suppressed epileptic activity in mice by prolonging the latency to clonic and tonic seizures and reducing the mortality as well as the susceptibility to seizure, presumably by facilitating the activation of GABAA receptors. Taken together, our results identified curcumol as a novel anti-seizure agent which inhibited neuronal excitability through enhancing GABAergic inhibition.
Collapse
Affiliation(s)
- Jing Ding
- Department of Chinese Materia Medica, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China; Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing-Jing Wang
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chen Huang
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wang
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shining Deng
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Tian-Le Xu
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Hong Ge
- Department of Chinese Materia Medica, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei-Guang Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China; Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China.
| |
Collapse
|
27
|
Baj G, Patrizio A, Montalbano A, Sciancalepore M, Tongiorgi E. Developmental and maintenance defects in Rett syndrome neurons identified by a new mouse staging system in vitro. Front Cell Neurosci 2014; 8:18. [PMID: 24550777 PMCID: PMC3914021 DOI: 10.3389/fncel.2014.00018] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/11/2014] [Indexed: 12/02/2022] Open
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder associated with intellectual disability, mainly caused by loss-of-function mutations in the MECP2 gene. RTT brains display decreased neuronal size and dendritic arborization possibly caused by either a developmental failure or a deficit in the maintenance of dendritic arbor structure. To distinguish between these two hypotheses, the development of Mecp2-knockout mouse hippocampal neurons was analyzed in vitro. Since a staging system for the in vitro development of mouse neurons was lacking, mouse and rat hippocampal neurons development was compared between 1–15 days in vitro (DIV) leading to a 6-stage model for both species. Mecp2-knockout hippocampal neurons displayed reduced growth of dendritic branches from stage 4 (DIV4) onwards. At stages 5–6 (DIV9-15), synapse number was lowered in Mecp2-knockout neurons, suggesting increased synapse elimination. These results point to both a developmental and a maintenance setback affecting the final shape and function of neurons in RTT.
Collapse
Affiliation(s)
- Gabriele Baj
- Department of Life Sciences, BRAIN Center for Neuroscience, University of Trieste Trieste, Italy
| | - Angela Patrizio
- Department of Life Sciences, BRAIN Center for Neuroscience, University of Trieste Trieste, Italy
| | - Alberto Montalbano
- Department of Life Sciences, BRAIN Center for Neuroscience, University of Trieste Trieste, Italy
| | - Marina Sciancalepore
- Department of Life Sciences, BRAIN Center for Neuroscience, University of Trieste Trieste, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, BRAIN Center for Neuroscience, University of Trieste Trieste, Italy
| |
Collapse
|
28
|
Pacico N, Mingorance-Le Meur A. New in vitro phenotypic assay for epilepsy: fluorescent measurement of synchronized neuronal calcium oscillations. PLoS One 2014; 9:e84755. [PMID: 24416277 PMCID: PMC3885603 DOI: 10.1371/journal.pone.0084755] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/18/2013] [Indexed: 12/20/2022] Open
Abstract
Research in the epilepsy field is moving from a primary focus on controlling seizures to addressing disease pathophysiology. This requires the adoption of resource- and time-consuming animal models of chronic epilepsy which are no longer able to sustain the testing of even moderate numbers of compounds. Therefore, new in vitro functional assays of epilepsy are needed that are able to provide a medium throughput while still preserving sufficient biological context to allow for the identification of compounds with new modes of action. Here we describe a robust and simple fluorescence-based calcium assay to measure epileptiform network activity using rat primary cortical cultures in a 96-well format. The assay measures synchronized intracellular calcium oscillations occurring in the population of primary neurons and is amenable to medium throughput screening. We have adapted this assay format to the low magnesium and the 4-aminopyridine epilepsy models and confirmed the contribution of voltage-gated ion channels and AMPA, NMDA and GABA receptors to epileptiform activity in both models. We have also evaluated its translatability using a panel of antiepileptic drugs with a variety of modes of action. Given its throughput and translatability, the calcium oscillations assay bridges the gap between simplified target-based screenings and compound testing in animal models of epilepsy. This phenotypic assay also has the potential to be used directly as a functional screen to help identify novel antiepileptic compounds with new modes of action, as well as pathways with previously unknown contribution to disease pathophysiology.
Collapse
Affiliation(s)
- Nathalie Pacico
- Neurosciences Therapeutic Area, New Medicines, UCB Pharma, Braine-L’Alleud, Belgium
| | - Ana Mingorance-Le Meur
- Neurosciences Therapeutic Area, New Medicines, UCB Pharma, Braine-L’Alleud, Belgium
- * E-mail:
| |
Collapse
|
29
|
Charkhkar H, Knaack GL, Mandal HS, Keefer EW, Pancrazio JJ. Effects of carbon nanotube and conducting polymer coated microelectrodes on single-unit recordings in vitro. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:469-473. [PMID: 25569998 DOI: 10.1109/embc.2014.6943630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neuronal networks cultured on microelectrode arrays (MEAs) have been utilized as biosensors that can detect all or nothing extracellular action potentials, or spikes. Coating the microelectrodes with carbon nanotubes (CNTs), either pristine or conjugated with a conductive polymer, has been previously reported to improve extracellular recordings presumably via reduction in microelectrode impedance. The goal of this work was to examine the basis of such improvement in vitro. Every other microelectrode of in vitro MEAs was electrochemically modified with either conducting polymer, poly-3,4-ethylenedioxythiophene (PEDOT) or a blend of CNT and PEDOT. Mouse cortical tissue was dissociated and cultured on the MEAs to form functional neuronal networks. The performance of the modified and unmodified microelectrodes was evaluated by activity measures such as spike rate, spike amplitude, burst duration and burst rate. We observed that the yield, defined as percentage of microelectrodes with neuronal activity, was significantly higher by 55% for modified microelectrodes compared to the unmodified sites. However, the spike rate and burst parameters were similar for modified and unmodified microelectrodes suggesting that neuronal networks were not physiologically altered by presence of PEDOT or PEDOT-CNT. Our observations from immunocytochemistry indicated that neuronal cells were more abundant in proximity to modified microelectrodes.
Collapse
|
30
|
Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays. BMC Neurosci 2013; 14:38. [PMID: 23530974 PMCID: PMC3644495 DOI: 10.1186/1471-2202-14-38] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 03/08/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. RESULTS Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. CONCLUSIONS We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.
Collapse
|
31
|
Huang C, Li WG, Zhang XB, Wang L, Xu TL, Wu D, Li Y. Alpha-asarone from Acorus gramineus alleviates epilepsy by modulating A-Type GABA receptors. Neuropharmacology 2013; 65:1-11. [DOI: 10.1016/j.neuropharm.2012.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 08/08/2012] [Accepted: 09/02/2012] [Indexed: 11/25/2022]
|
32
|
Yu YH, Xie W, Bao Y, Li HM, Hu SJ, Xing JL. Saikosaponin a mediates the anticonvulsant properties in the HNC models of AE and SE by inhibiting NMDA receptor current and persistent sodium current. PLoS One 2012; 7:e50694. [PMID: 23209812 PMCID: PMC3510157 DOI: 10.1371/journal.pone.0050694] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, yet its treatment remains unsatisfactory. Saikosaponin a (SSa), a triterpene saponin derived from Bupleurum chinensis DC., has been demonstrated to have significant antiepileptic activity in a variety of epilepsy models in vivo. However, the electrophysiological activities and mechanisms of the antiepileptic properties of SSa remain unclear. In this study, whole-cell current-clamp recordings were used to evaluate the anticonvulsant activities of SSa in the hippocampal neuronal culture (HNC) models of acquired epilepsy (AE) and status epilepticus (SE). Whole-cell voltage-clamp recordings were used to evaluate the modulation effects of SSa on NMDA-evoked current and sodium currents in cultured hippocampal neurons. We found that SSa effectively terminated spontaneous recurrent epileptiform discharges (SREDs) in the HNC model of AE and continuous epileptiform high-frequency bursts (SE) in the HNC model of SE, in a concentration-dependent manner with an IC(50) of 0.42 µM and 0.62 µM, respectively. Furthermore, SSa significantly reduced the peak amplitude of NMDA-evoked current and the peak current amplitude of I(NaP). These results suggest for the first time that the inhibitions of NMDA receptor current and I(NaP) may be the underlying mechanisms of SSa's anticonvulsant properties, including the suppression of SREDs and SE in the HNC models of AE and SE. In addition, effectively abolishing the refractory SE implies that SSa may be a potential anticonvulsant candidate for the clinical treatment of epilepsy.
Collapse
Affiliation(s)
- Yun-Hong Yu
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guang Zhou, People’s Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
- Institute of Neuroscience, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Wei Xie
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guang Zhou, People’s Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
- * E-mail: (WX); (JLX)
| | - Yong Bao
- Department of Neurology, Traditional Chinese Hospital of Lu’an, Lu’an, People’s Republic of China
| | - Hui-Ming Li
- Institute of Neuroscience, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - San-Jue Hu
- Institute of Neuroscience, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jun-Ling Xing
- Institute of Neuroscience, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (WX); (JLX)
| |
Collapse
|
33
|
Rajasekaran K, Todorovic M, Kapur J. Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus. Ann Neurol 2012; 72:91-102. [PMID: 22829271 DOI: 10.1002/ana.23570] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE A study was undertaken to characterize the plasticity of AMPA receptor (AMPAR)-mediated neurotransmission in the hippocampus during status epilepticus (SE). METHODS SE was induced by pilocarpine, and animals were studied 10 minutes (refractory SE) or 60 minutes (late SE) after the onset of the first grade 5 seizures. AMPAR-mediated currents were recorded from CA1 pyramidal neurons and dentate granule cells (DGCs) by voltage clamp technique. The surface expression of GluA2 subunit on hippocampal membranes was determined using a biotinylation assay. GluA2 internalization and changes in intracellular calcium ([Ca](i)) levels were studied in hippocampal cultures using immunocytochemical and live-imaging techniques. AMPAR antagonist treatment of SE was evaluated by video and electroencephalography. RESULTS AMPAR-mediated currents recorded from CA1 neurons from refractory and late SE animals were inwardly rectifying, and philanthotoxin-sensitive; similar changes were observed in recordings obtained from DGCs from refractory SE animals. GluA2 subunit surface expression was reduced in the hippocampus during refractory and late SE. In cultured hippocampal pyramidal neurons, recurrent bursting diminished surface expression of the GluA2 subunit and enhanced its internalization rate. Recurrent bursting-induced increase in [Ca](i) levels was reduced by selective inhibition of GluA2-lacking AMPARs. GYKI-52466 terminated diazepam-refractory SE. INTERPRETATION During SE, there is rapid, ongoing plasticity of AMPARs with the expression of GluA2-lacking AMPARs. These receptors provide another source of Ca(2+) entry into the principal neurons. Benzodiazepam-refractory SE can be terminated by AMPAR antagonism. The data identify AMPARs as a potential therapeutic target for the treatment of SE.
Collapse
|
34
|
Todorovic MS, Cowan ML, Balint CA, Sun C, Kapur J. Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Res 2012; 101:268-76. [PMID: 22578704 DOI: 10.1016/j.eplepsyres.2012.04.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 04/08/2012] [Accepted: 04/17/2012] [Indexed: 11/17/2022]
Abstract
Organophosphates (OPs) inhibit the enzyme cholinesterase and cause accumulation of acetylcholine, and are known to cause seizures and status epilepticus (SE) in humans. The animal models of SE caused by organophosphate analogs of insecticides are not well characterized. SE caused by OPs paraoxon and diisopropyl fluorophosphate (DFP) in rats was characterized by electroencephalogram (EEG), behavioral observations and response to treatment with the benzodiazepine diazepam administered at various stages of SE. A method for SE induction using intrahippocampal infusion of paraoxon was also tested. Infusion of 200nmol paraoxon into the hippocampus caused electrographic seizures in 43/52 (82.7%) animals tested; and of these animals, 14/43 (30%) had self-sustaining seizures that lasted 4-18h after the end of paraoxon infusion. SE was also induced by peripheral subcutaneous injection of diisopropyl fluorophosphate (DFP, 1.25mg/kg) or paraoxon (1.00mg/kg) to rats pretreated with atropine (2mg/kg) and 2-pralidoxime (2-PAM, 50mg/kg) 30min prior to OP injection. SE occurred in 78% paraoxon-treated animals and in 79% of DFP-treated animals. Diazepam (10mg/kg) was administered 10min and 30min after the onset of continuous EEG seizures induced by paraoxon and it terminated SE in a majority of animals at both time points. DFP-induced SE was terminated in 60% animals when diazepam was administered 10min after the onset of continuous EEG seizure activity but diazepam did not terminate SE in any animal when it was administered 30min after the onset of continuous seizures. These studies demonstrate that both paraoxon and DFP can induce SE in rats but refractoriness to diazepam is a feature of DFP induced SE.
Collapse
Affiliation(s)
- Marko S Todorovic
- Department of Neurology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
35
|
Kovac S, Domijan AM, Walker MC, Abramov AY. Prolonged seizure activity impairs mitochondrial bioenergetics and induces cell death. J Cell Sci 2012; 125:1796-806. [PMID: 22328526 DOI: 10.1242/jcs.099176] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The mechanisms underlying neuronal death following excessive activity such as occurs during prolonged seizures are unclear, but mitochondrial dysfunction has been hypothesised to play a role. Here, we tested this with fluorescence imaging techniques in rat glio-neuronal neocortical co-cultures using low Mg(2+) levels to induce seizure-like activity. Glutamate activation of NMDA receptors resulted in Ca(2+) oscillations in neurons and a sustained depolarisation of the mitochondrial membrane potential, which was cyclosporine A sensitive, indicating mitochondrial permeability and transition pore opening. It was also dependent on glutamate release and NMDA receptor activation, because depolarisation was not observed after depleting vesicular glutamate with vacuolar-type H(+)-ATPase concanamycin A or blocking NMDA receptors with APV. Neuronal ATP levels in soma and dendrites decreased significantly during prolonged seizures and correlated with the frequency of the oscillatory Ca(2+) signal, indicative of activity-dependent ATP consumption. Blocking mitochondrial complex I, complex V or uncoupling mitochondrial oxidative phosphorylation under low-Mg(2+) conditions accelerated activity-dependent neuronal ATP consumption. Neuronal death increased after two and 24 hours of low Mg(2+) levels compared with control treatment, and was reduced by supplementation with the mitochondrial complex I substrate pyruvate. These findings demonstrate a crucial role for mitochondrial dysfunction in seizure-activity-induced neuronal death, and that strategies aimed at redressing this are neuroprotective.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, London, UK
| | | | | | | |
Collapse
|
36
|
Homeostatic strengthening of inhibitory synapses is mediated by the accumulation of GABA(A) receptors. J Neurosci 2012; 31:17701-12. [PMID: 22131430 DOI: 10.1523/jneurosci.4476-11.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mechanisms of homeostatic plasticity scale synaptic strength according to changes in overall activity to maintain stability in neuronal network function. This study investigated mechanisms of GABAergic homeostatic plasticity. Cultured neurons exposed to depolarizing conditions reacted with an increased firing rate (high activity, HA) that normalized to control levels after 48 h of treatment. HA-treated hippocampal neurons displayed an attenuated response to further changes in depolarization, and the firing rate in HA-treated neurons increased above normalized levels when inhibition was partially reduced back to the level of control neurons. The amplitude and frequency of mIPSCs in hippocampal neurons increased after 48 h of HA, and increases in the size of GABA(A) receptor γ2 subunit clusters and presynaptic GAD-65 puncta were observed. Investigation of the time course of inhibitory homeostasis suggested that accumulation of GABA(A) receptors preceded presynaptic increases in GAD-65 puncta size. Interestingly, the size of GABA(A) receptor γ2 subunit clusters that colocalized with GAD-65 were larger at 12 h, coinciding in time with the increase found in mIPSC amplitude. The rate of internalization of GABA(A) receptors, a process involved in regulating the surface expression of inhibitory receptors, was slower in HA-treated neurons. These data also suggest that increased receptor expression was consolidated with presynaptic changes. HA induced an increase in postsynaptic GABA(A) receptors through a decrease in the rate of internalization, leading to larger synaptically localized receptor clusters that increased GABAergic synaptic strength and contributed to the homeostatic stabilization of neuronal firing rate.
Collapse
|
37
|
Phillips MA, Colonnese MT, Goldberg J, Lewis LD, Brown EN, Constantine-Paton M. A synaptic strategy for consolidation of convergent visuotopic maps. Neuron 2011; 71:710-24. [PMID: 21867886 DOI: 10.1016/j.neuron.2011.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2011] [Indexed: 11/17/2022]
Abstract
The mechanisms by which experience guides refinement of converging afferent pathways are poorly understood. We describe a vision-driven refinement of corticocollicular inputs that determines the consolidation of retinal and visual cortical (VC) synapses on individual neurons in the superficial superior colliculus (sSC). Highly refined corticocollicular terminals form 1-2 days after eye-opening (EO), accompanied by VC-dependent filopodia sprouting on proximal dendrites, and PSD-95 and VC-dependent quadrupling of functional synapses. Delayed EO eliminates synapses, corticocollicular terminals, and spines on VC-recipient dendrites. Awake recordings after EO show that VC and retina cooperate to activate sSC neurons, and VC light responses precede sSC responses within intervals promoting potentiation. Eyelid closure is associated with more protracted cortical visual responses, causing the majority of VC spikes to follow those of the colliculus. These data implicate spike-timing plasticity as a mechanism for cortical input survival, and support a cooperative strategy for retinal and cortical coinnervation of the sSC.
Collapse
Affiliation(s)
- Marnie A Phillips
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Pissadaki EK, Sidiropoulou K, Reczko M, Poirazi P. Encoding of spatio-temporal input characteristics by a CA1 pyramidal neuron model. PLoS Comput Biol 2010; 6:e1001038. [PMID: 21187899 PMCID: PMC3002985 DOI: 10.1371/journal.pcbi.1001038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 11/19/2010] [Indexed: 11/26/2022] Open
Abstract
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. Pyramidal neurons in the hippocampus are crucially involved in learning and memory functions, but the ways in which they contribute to the processing of sensory inputs and their internal representation remain mostly unclear. The principal neurons of the CA1 region of the hippocampus are surrounded by at least 21 different types of interneurons. This feature, together with the fact that CA1 pyramidal dendrites associate two major glutamatergic inputs arriving from the entorhinal cortex, makes it laborious to track the ‘how’ and ‘what’ of synaptic integration. The present study tries to shed light on the ‘what’, that is, the information content of the CA1 discharge pattern. Using a detailed biophysical CA1 neuron model, we show that the output of the model neuron contains spatial and temporal features of the incoming synaptic input. This information lies in the temporal pattern of the inter-spike intervals produced during the bursting activity which is induced by the temporal coincidence of the two activated synaptic streams. Our findings suggest that CA1 pyramidal neurons may be capable of capturing features of the ongoing network activity via the use of a temporal code for information transfer.
Collapse
Affiliation(s)
- Eleftheria Kyriaki Pissadaki
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
- * E-mail: (EKP); (PP)
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Martin Reczko
- Institute of Molecular Oncology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
- * E-mail: (EKP); (PP)
| |
Collapse
|
39
|
Dovgan AV, Cherkas VP, Stepanyuk AR, Fitzgerald DJ, Haynes LP, Tepikin AV, Burgoyne RD, Belan PV. Decoding glutamate receptor activation by the Ca2+ sensor protein hippocalcin in rat hippocampal neurons. Eur J Neurosci 2010; 32:347-58. [PMID: 20704590 PMCID: PMC3069492 DOI: 10.1111/j.1460-9568.2010.07303.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hippocalcin is a Ca2+-binding protein that belongs to a family of neuronal Ca2+sensors and is a key mediator of many cellular functions including synaptic plasticity and learning. However, the molecular mechanisms involved in hippocalcin signalling remain illusive. Here we studied whether glutamate receptor activation induced by locally applied or synaptically released glutamate can be decoded by hippocalcin translocation. Local AMPA receptor activation resulted in fast hippocalcin-YFP translocation to specific sites within a dendritic tree mainly due to AMPA receptor-dependent depolarization and following Ca2+influx via voltage-operated calcium channels. Short local NMDA receptor activation induced fast hippocalcin-YFP translocation in a dendritic shaft at the application site due to direct Ca2+influx via NMDA receptor channels. Intrinsic network bursting produced hippocalcin-YFP translocation to a set of dendritic spines when they were subjected to several successive synaptic vesicle releases during a given burst whereas no translocation to spines was observed in response to a single synaptic vesicle release and to back-propagating action potentials. The translocation to spines required Ca2+influx via synaptic NMDA receptors in which Mg2+ block is relieved by postsynaptic depolarization. This synaptic translocation was restricted to spine heads and even closely (within 1–2 μm) located spines on the same dendritic branch signalled independently. Thus, we conclude that hippocalcin may differentially decode various spatiotemporal patterns of glutamate receptor activation into site- and time-specific translocation to its targets. Hippocalcin also possesses an ability to produce local signalling at the single synaptic level providing a molecular mechanism for homosynaptic plasticity.
Collapse
Affiliation(s)
- A V Dovgan
- Department of General Physiology of the Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Samoilova M, Weisspapir M, Abdelmalik P, Velumian AA, Carlen PL. Chronicin vitroketosis is neuroprotective but not anti-convulsant. J Neurochem 2010; 113:826-35. [DOI: 10.1111/j.1471-4159.2010.06645.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurones of the rat entorhinal cortex in vitro. Neuroscience 2010; 167:456-74. [PMID: 20167261 PMCID: PMC2877872 DOI: 10.1016/j.neuroscience.2010.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/26/2010] [Accepted: 02/10/2010] [Indexed: 12/22/2022]
Abstract
Although most anti-epileptic drugs are considered to have a primary molecular target, it is clear that their actions are unlikely to be limited to effects on a single aspect of inhibitory synaptic transmission, excitatory transmission or voltage-gated ion channels. Systemically administered drugs can obviously simultaneously access all possible targets, so we have attempted to determine the overall effect of diverse agents on the balance between GABAergic inhibition, glutamatergic excitation and cellular excitability in neurones of the rat entorhinal cortex in vitro. We used an approach developed for estimating global background synaptic excitation and inhibition from fluctuations in membrane potential obtained by intracellular recordings. We have previously validated this approach in entorhinal cortical neurones [Greenhill and Jones (2007a) Neuroscience 147:884–892]. Using this approach, we found that, despite their differing pharmacology, the drugs tested (phenytoin, lamotrigine, valproate, gabapentin, felbamate, tiagabine) were unified in their ability to increase the ratio of background GABAergic inhibition to glutamatergic excitation. This could occur as a result of decreased excitation concurrent with increased inhibition (phenytoin, lamotrigine, valproate), a decrease in excitation alone (gabapentin, felbamate), or even with a differential increase in both (tiagabine). Additionally, we found that the effects on global synaptic conductances agreed well with whole cell patch recordings of spontaneous glutamate and GABA release (our previous studies and further data presented here). The consistency with which the synaptic inhibition:excitation ratio was increased by the antiepileptic drugs tested was matched by an ability of all drugs to concurrently reduce intrinsic neuronal excitability. Thus, it seems possible that specific molecular targets among antiepileptic drugs are less important than the ability to increase the inhibition:excitation ratio and reduce overall neuronal and network excitability.
Collapse
|
42
|
Kozhemyakin M, Rajasekaran K, Kapur J. Central cholinesterase inhibition enhances glutamatergic synaptic transmission. J Neurophysiol 2010; 103:1748-57. [PMID: 20107127 DOI: 10.1152/jn.00949.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central cholinergic overstimulation results in prolonged seizures of status epilepticus in humans and experimental animals. Cellular mechanisms of underlying seizures caused by cholinergic stimulation remain uncertain, but enhanced glutamatergic transmission is a potential mechanism. Paraoxon, an organophosphate cholinesterase inhibitor, enhanced glutamatergic transmission on hippocampal granule cells synapses by increasing the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in a concentration-dependent fashion. The amplitude of mEPSCs was not increased, which suggested the possibility of enhanced action potential-dependent release. Analysis of EPSCs evoked by minimal stimulation revealed reduced failures and increased amplitude of evoked responses. The ratio of amplitudes of EPSCs evoked by paired stimuli was also altered. The effect of paraoxon on glutamatergic transmission was blocked by the muscarinic antagonist atropine and partially mimicked by carbachol. The nicotinic receptor antagonist α -bungarotoxin did not block the effects of paraoxon; however, nicotine enhanced glutamatergic transmission. These studies suggested that cholinergic overstimulation enhances glutamatergic transmission by enhancing neurotransmitter release from presynaptic terminals.
Collapse
Affiliation(s)
- Maxim Kozhemyakin
- Dept. of Neurology, University of Virginia-HSC, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
43
|
Nitric oxide alters GABAergic synaptic transmission in cultured hippocampal neurons. Brain Res 2009; 1297:23-31. [PMID: 19699726 DOI: 10.1016/j.brainres.2009.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 01/23/2023]
Abstract
Nitric oxide (NO) production increases during hypoxia/ischemia-reperfusion in the immature brain and is associated with neurotoxicity. NO at physiologic concentrations has been shown to modulate GABAergic (gamma-aminobutyric acid) synaptic transmission in the adult brain. However, the effects of neurotoxic concentrations of NO (relevant to hypoxia-ischemia) on GABAergic synaptic transmission remain unknown. The present study tests the hypothesis that nNOS is expressed at GABAergic synapses and that exposure to neurotoxic concentrations of NO results in enhanced GABAergic synaptic transmission in cultured hippocampal neurons (days-in-vitro 10-14) prepared from fetal rats. Using double immunocytochemistry techniques, we were able to demonstrate that nNOS is co-localized to both presynaptic and postsynaptic markers of GABAergic synapses. The effects of NO on GABAergic synaptic transmission were then studied using whole cell patch-clamp electrophysiology. Spontaneous and miniature inhibitory postsynaptic currents (sIPSCS and mIPSCs) were recorded prior to and after exposure to 250 microM of the NO donor diethyleneamine/nitric oxide adduct (DETA-NO). Exposure to DETA-NO resulted in increased sIPSCs and mIPSCs frequency, indicating that neurotoxic concentrations of NO enhance GABAergic synaptic transmission in cultured hippocampal neurons. Because GABA synapses appear to be excitatory in the immature brain, this effect may contribute to overall enhanced synaptic transmission and hyperexcitability. We speculate that NO represents one of the mechanisms by which hypoxia-ischemia increases seizure susceptibility in the immature brain.
Collapse
|
44
|
Joshi S, Kapur J. Slow intracellular accumulation of GABA(A) receptor delta subunit is modulated by brain-derived neurotrophic factor. Neuroscience 2009; 164:507-19. [PMID: 19665523 DOI: 10.1016/j.neuroscience.2009.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/26/2022]
Abstract
GABA(A) receptors composed of the gamma2 and delta subunits have distinct properties, functions and subcellular localization, and pathological conditions differentially modulate their surface expression. Recent studies demonstrate that acute seizure activity accelerated trafficking of the gamma2 and beta2/3 subunits but not that of the delta subunit. The trafficking of the gamma2 and beta2/3 subunits is relatively well understood but that of the delta subunit has not been studied. We compared intracellular accumulation of the delta and gamma2 subunits in cultured hippocampal neurons using an antibody feeding technique. Intracellular accumulation of the delta subunit peaked between 3 and 6 h, whereas, maximum internalization of the gamma2 subunit took 30 min. In the organotypic hippocampal slice cultures internalization of the delta subunit studied using a biotinylation assay revealed highest accumulation between 3 and 5 h and that of the gamma2 subunit between 15 and 45 min. The surface half-life of the delta subunit was 171 min in cultured hippocampal neurons and 102 min in the organotypic hippocampal slice cultures. In the subsequent studies, internalization of the delta subunit was found to be dependent on network activity but independent of ligand-binding. Brain-derived neurotrophic factor (BDNF) reduced buildup of the delta subunit in the cytoplasmic compartments and increased its surface expression, and this BDNF effect was independent of network activity. BDNF effect was mediated by activation of TrkB receptors, PLCgamma and PKC. Increase in the basal PKC activity augmented cell surface stability of the delta subunit. These results suggest that rate of intracellular accumulation of the delta subunit was distinct and modulated by BDNF.
Collapse
Affiliation(s)
- S Joshi
- Department of Neurology, Box 800394, University of Virginia, Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|
45
|
Pinato G, Pegoraro S, Iacono G, Ruaro ME, Torre V. Calcium control of gene regulation in rat hippocampal neuronal cultures. J Cell Physiol 2009; 220:727-47. [PMID: 19441076 DOI: 10.1002/jcp.21820] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Blockage of GABA-A receptors in hippocampal neuronal cultures triggers synchronous bursts of spikes initiating neuronal plasticity, partly mediated by changes of gene expression. By using specific pharmacological blockers, we have investigated which sources of Ca2+ entry primarily control changes of gene expression induced by 20 microM gabazine applied for 30 min (GabT). Intracellular Ca2+ transients were monitored with Ca2+ imaging while recording electrical activity with patch clamp microelectrodes. Concomitant transcription profiles were obtained using Affymetrix oligonucleotide microarrays and confirmed with quantitative RT-PCR. Blockage of NMDA receptors with 2-amino-5-phosphonovaleric acid (APV) did not reduce significantly somatic Ca2+ transients, which, on the contrary, were reduced by selective blockage of L, N, and P/Q types voltage gated calcium channels (VGCCs). Therefore, we investigated changes of gene expression in the presence of blockers of NMDA receptors and L, N, and P/Q VGCCs. Our results show that: (i) among genes upregulated by GabT, there are genes selectively dependent on NMDA activation, genes selectively dependent on L-type VGCCs and genes dependent on the activation of both channels; (ii) the majority of genes requires the concomitant activation of NMDA receptors and Ca2+ entry through VGCCs; (iii) blockage of N and P/Q VGCCs has an effect similar but not identical to blockage of L-type VGCCs.
Collapse
|
46
|
Zhang HX, Hyrc K, Thio LL. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine. J Physiol 2009; 587:3207-20. [PMID: 19433577 DOI: 10.1113/jphysiol.2009.168757] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sarcosine is an amino acid involved in one-carbon metabolism and a promising therapy for schizophrenia because it enhances NMDA receptor (NMDAR) function by inhibiting glycine uptake. The structural similarity between sarcosine and glycine led us to hypothesize that sarcosine is also an agonist like glycine. We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons. We found that sarcosine is an NMDAR co-agonist at the glycine binding site. However, sarcosine differed from glycine because less NMDAR desensitization occurred with sarcosine than with glycine as the co-agonist. This finding led us to examine whether the physiological effects of NMDAR activation with these two co-agonists are the same. The difference in desensitization probably accounts for rises in intracellular Ca(2+), as assessed by the fluorescent indicator fura-FF, being larger when NMDAR activation occurred with sarcosine than with glycine. In addition, Ca(2+)-activated K(+) currents following NMDAR activation were larger with sarcosine than with glycine. Compared to glycine, NMDAR-mediated autaptic currents decayed faster with sarcosine suggesting that NMDAR deactivation also differs with these two co-agonists. Despite these differences, NMDAR-dependent neuronal death as assessed by propidium iodide was similar with both co-agonists. The same was true for neuronal bursting. Thus, sarcosine may enhance NMDAR function by more than one mechanism and may have different effects from other NMDAR co-agonists.
Collapse
Affiliation(s)
- Hai Xia Zhang
- Washington University, Department of Neurology, St Louis, MO 63110, USA
| | | | | |
Collapse
|
47
|
Zhang XB, Jiang P, Gong N, Hu XL, Fei D, Xiong ZQ, Xu L, Xu TL. A-type GABA receptor as a central target of TRPM8 agonist menthol. PLoS One 2008; 3:e3386. [PMID: 18852885 PMCID: PMC2560999 DOI: 10.1371/journal.pone.0003386] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/17/2008] [Indexed: 01/17/2023] Open
Abstract
Menthol is a widely-used cooling and flavoring agent derived from mint leaves. In the peripheral nervous system, menthol regulates sensory transduction by activating TRPM8 channels residing specifically in primary sensory neurons. Although behavioral studies have implicated menthol actions in the brain, no direct central target of menthol has been identified. Here we show that menthol reduces the excitation of rat hippocampal neurons in culture and suppresses the epileptic activity induced by pentylenetetrazole injection and electrical kindling in vivo. We found menthol not only enhanced the currents induced by low concentrations of GABA but also directly activated GABAA receptor (GABAAR) in hippocampal neurons in culture. Furthermore, in the CA1 region of rat hippocampal slices, menthol enhanced tonic GABAergic inhibition although phasic GABAergic inhibition was unaffected. Finally, the structure-effect relationship of menthol indicated that hydroxyl plays a critical role in menthol enhancement of tonic GABAAR. Our results thus reveal a novel cellular mechanism that may underlie the ambivalent perception and psychophysical effects of menthol and underscore the importance of tonic inhibition by GABAARs in regulating neuronal activity.
Collapse
Affiliation(s)
- Xiao-Bing Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Jiang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Neng Gong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ling Hu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Da Fei
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Xu
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tian-Le Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
48
|
Corner MA. Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live 'model' systems for the development of intrinsically generated bioelectric slow-wave sleep patterns. ACTA ACUST UNITED AC 2008; 59:221-44. [PMID: 18722470 DOI: 10.1016/j.brainresrev.2008.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
A survey is presented of recent experiments which utilize spontaneous neuronal spike trains as dependent and/or independent variables in developing cerebral cortex cultures when synaptic transmission is interfered with for varying periods of time. Special attention is given to current difficulties in selecting suitable preparations for carrying out biologically relevant developmental studies, and in applying spike-train analysis methods with sufficient resolution to detect activity-dependent age and treatment effects. A hierarchy of synchronized nested burst discharges which approximate early slow-wave sleep patterns in the intact organism is established as a stable basis for isolated cortex function. The complexity of reported long- and short-term homeostatic responses to experimental interference with synaptic transmission is reviewed, and the crucial role played by intrinsically generated bioelectric activity in the maturation of cortical networks is emphasized.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Huberfeld G, Clemenceau S, Cohen I, Pallud J, Wittner L, Navarro V, Baulac M, Miles R. [Epileptiform activities generated in vitro by human temporal lobe tissue]. Neurochirurgie 2008; 54:148-58. [PMID: 18420229 DOI: 10.1016/j.neuchi.2008.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/28/2022]
Abstract
Drug-resistant partial epilepsies, including temporal lobe epilepsies with hippocampal sclerosis and cortical dysplasias, offer the opportunity to study human epileptic activity in vitro since the preferred therapy often consists of the surgical removal of the epileptogenic zone. Slices of this tissue retain functional neuronal networks and may generate epileptic activity. The properties of cells in this tissue do not seem to be significantly changed, but excitatory synaptic characteristics are enhanced and GABAergic inhibition is preserved. Typically, epileptic activity is not generated spontaneously by the neocortex, whether dysplastic or not, but can be induced by convulsants. The initiation of ictal discharges in neocortex depends on both GABAergic signaling and increased extracellular potassium. In contrast, a spontaneous interictal-like activity is generated by tissues from patients with temporal lobe epilepsies associated with hippocampal sclerosis. This activity is initiated not in the hippocampus but in the subiculum, an output region that projects to the entorhinal cortex. Interictal events seem to be triggered by GABAergic cells, which paradoxically excite approximately 20% of subicular pyramidal cells, while simultaneously inhibiting the majority. Interictal discharges are therefore sustained by both GABAergic and glutamatergic signaling. The atypical depolarizing effects of GABA depend on a pathological elevation in the basal levels of chloride in some subicular cells, similar to those of developmentally immature cells. This defect is caused by the perturbation of the expression of the cotransporters regulating the intracellular chloride concentration, the importer NKCC1, and the extruder KCC2. Blockade of excessive NKCC1 by the diuretic bumetanide restores intracellular chloride and thus hyperpolarizing GABAergic actions, suppressing interictal activity.
Collapse
Affiliation(s)
- G Huberfeld
- Inserm U739 Cortex & Epilepsie, université Pierre-et-Marie-Curie, CHU de la Pitié-Salpêtrière, 105, boulevard de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Xu L, Rensing N, Yang XF, Zhang HX, Thio LL, Rothman SM, Weisenfeld AE, Wong M, Yamada KA. Leptin inhibits 4-aminopyridine- and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents. J Clin Invest 2008; 118:272-80. [PMID: 18097472 DOI: 10.1172/jci33009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 10/24/2007] [Indexed: 12/23/2022] Open
Abstract
Leptin is a hormone that reduces excitability in some hypothalamic neurons via leptin receptor activation of the JAK2 and PI3K intracellular signaling pathways. We hypothesized that leptin receptor activation in other neuronal subtypes would have anticonvulsant activity and that intranasal leptin delivery would be an effective route of administration. We tested leptin's anticonvulsant action in 2 rodent seizure models by directly injecting it into the cortex or by administering it intranasally. Focal seizures in rats were induced by neocortical injections of 4-aminopyridine, an inhibitor of voltage-gated K+ channels. These seizures were briefer and less frequent upon coinjection of 4-aminopyridine and leptin. In mice, intranasal administration of leptin produced elevated brain and serum leptin levels and delayed the onset of chemical convulsant pentylenetetrazole-induced generalized convulsive seizures. Leptin also reduced neuronal spiking in an in vitro seizure model. Leptin inhibited alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor-mediated synaptic transmission in mouse hippocampal slices but failed to inhibit synaptic responses in slices from leptin receptor-deficient db/db mice. JAK2 and PI3K antagonists prevented leptin inhibition of AMPAergic synaptic transmission. We conclude that leptin receptor activation and JAK2/PI3K signaling may be novel targets for anticonvulsant treatments. Intranasal leptin administration may have potential as an acute abortive treatment for convulsive seizures in emergency situations.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|