1
|
Kokash J, Rumschlag JA, Razak KA. Cortical region-specific recovery of auditory temporal processing following noise-induced hearing loss. Neuroscience 2024; 560:143-157. [PMID: 39284433 DOI: 10.1016/j.neuroscience.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Noise-induced hearing loss (NIHL) studies have focused on the lemniscal auditory pathway, but little is known about how NIHL impacts different cortical regions. Here we compared response recovery trajectories in the auditory and frontal cortices (AC, FC) of mice following NIHL. We recorded EEG responses from awake mice (male n = 15, female n = 14) before and following NIHL (longitudinal design) to quantify event related potentials and gap-in-noise temporal processing. Hearing loss was verified by measuring the auditory brainstem response (ABR) before and at 1-, 10-, 23-, and 45-days after noise-exposure. Resting EEG, event related potentials (ERP) and auditory steady state responses (ASSR) were recorded at the same time-points after NIHL. The inter-trial phase coherence (ITPC) of the ASSR was measured to quantify the ability of AC and FC to synchronize responses to short gaps embedded in noise. Despite the absence of click-evoked ABRs up to 90 dB SPL and up to 45-days post-exposure, ERPs from the AC and FC showed full recovery in ∼ 50 % of the mice to pre-NIHL levels in both AC and FC. The ASSR ITPC was reduced following NIHL in AC and FC in all the mice on day 1 after NIHL. The AC showed full recovery of ITPC over 45-days. Despite ERP amplitude recovery, the FC does not show recovery of ASSR ITPC. These results indicate post-NIHL plasticity with similar response amplitude recovery across AC and FC, but cortical region-specific trajectories in temporal processing recovery.
Collapse
Affiliation(s)
- J Kokash
- Graduate Neuroscience Program, University of California, Riverside, United States
| | - J A Rumschlag
- Graduate Neuroscience Program, University of California, Riverside, United States
| | - K A Razak
- Graduate Neuroscience Program, University of California, Riverside, United States; Department of Psychology, University of California, Riverside, United States.
| |
Collapse
|
2
|
Parameshwarappa V, Norena AJ. The effects of acute and chronic noise trauma on stimulus-evoked activity across primary auditory cortex layers. J Neurophysiol 2024; 131:225-240. [PMID: 38198658 DOI: 10.1152/jn.00427.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Exposure to intense noise environments is a major cause of sensorineural hearing loss and auditory perception disorders, such as tinnitus and hyperacusis, which may have a central origin. The effects of noise-induced hearing loss on the auditory cortex have been documented in many studies. One limitation of these studies, however, is that the effects of noise trauma have been mostly studied at the granular layer (i.e, the main cortical recipient of thalamic input), while the cortex is a very complex structure, with six different layers each having its own pattern of connectivity and role in sensory processing. The present study aims to investigate the effects of acute and chronic noise trauma on the laminar pattern of stimulus-evoked activity in the primary auditory cortex of the anesthetized guinea pig. We show that acute and chronic noise trauma are both followed by an increase in stimulus-evoked cortical responses, mostly in the granular and supragranular layers. The cortical responses are more monotonic as a function of the intensity level after noise trauma. There was minimal change, if any, in local field potential (LFP) amplitude after acute noise trauma, while LFP amplitude was enhanced after chronic noise trauma. Finally, LFP and the current source density analysis suggest that acute but more specifically chronic noise trauma is associated with the emergence of a new sink in the supragranular layer. This result suggests that supragranular layers become a major input recipient. We discuss the possible mechanisms and functional implications of these changes.NEW & NOTEWORTHY Our study shows that cortical activity is enhanced after trauma and that the sequence of cortical column activation during stimulus-evoked response is altered, i.e. the supragranular layer becomes a major input recipient. We speculate that these large cortical changes may play a key role in the auditory hypersensitivity (hyperacusis) that can be triggered after noise trauma in human subjects.
Collapse
Affiliation(s)
- Vinay Parameshwarappa
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Arnaud J Norena
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| |
Collapse
|
3
|
Kumar M, Handy G, Kouvaros S, Zhao Y, Brinson LL, Wei E, Bizup B, Doiron B, Tzounopoulos T. Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage. Nat Commun 2023; 14:4170. [PMID: 37443148 PMCID: PMC10345144 DOI: 10.1038/s41467-023-39732-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Peripheral sensory organ damage leads to compensatory cortical plasticity that is associated with a remarkable recovery of cortical responses to sound. The precise mechanisms that explain how this plasticity is implemented and distributed over a diverse collection of excitatory and inhibitory cortical neurons remain unknown. After noise trauma and persistent peripheral deficits, we found recovered sound-evoked activity in mouse A1 excitatory principal neurons (PNs), parvalbumin- and vasoactive intestinal peptide-expressing neurons (PVs and VIPs), but reduced activity in somatostatin-expressing neurons (SOMs). This cell-type-specific recovery was also associated with cell-type-specific intrinsic plasticity. These findings, along with our computational modelling results, are consistent with the notion that PV plasticity contributes to PN stability, SOM plasticity allows for increased PN and PV activity, and VIP plasticity enables PN and PV recovery by inhibiting SOMs.
Collapse
Affiliation(s)
- Manoj Kumar
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Gregory Handy
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Stylianos Kouvaros
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yanjun Zhao
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lovisa Ljungqvist Brinson
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Eric Wei
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Brandon Bizup
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Brent Doiron
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
4
|
McGill M, Hight AE, Watanabe YL, Parthasarathy A, Cai D, Clayton K, Hancock KE, Takesian A, Kujawa SG, Polley DB. Neural signatures of auditory hypersensitivity following acoustic trauma. eLife 2022; 11:e80015. [PMID: 36111669 PMCID: PMC9555866 DOI: 10.7554/elife.80015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Neurons in sensory cortex exhibit a remarkable capacity to maintain stable firing rates despite large fluctuations in afferent activity levels. However, sudden peripheral deafferentation in adulthood can trigger an excessive, non-homeostatic cortical compensatory response that may underlie perceptual disorders including sensory hypersensitivity, phantom limb pain, and tinnitus. Here, we show that mice with noise-induced damage of the high-frequency cochlear base were behaviorally hypersensitive to spared mid-frequency tones and to direct optogenetic stimulation of auditory thalamocortical neurons. Chronic two-photon calcium imaging from ACtx pyramidal neurons (PyrNs) revealed an initial stage of spatially diffuse hyperactivity, hyper-correlation, and auditory hyperresponsivity that consolidated around deafferented map regions three or more days after acoustic trauma. Deafferented PyrN ensembles also displayed hypersensitive decoding of spared mid-frequency tones that mirrored behavioral hypersensitivity, suggesting that non-homeostatic regulation of cortical sound intensity coding following sensorineural loss may be an underlying source of auditory hypersensitivity. Excess cortical response gain after acoustic trauma was expressed heterogeneously among individual PyrNs, yet 40% of this variability could be accounted for by each cell's baseline response properties prior to acoustic trauma. PyrNs with initially high spontaneous activity and gradual monotonic intensity growth functions were more likely to exhibit non-homeostatic excess gain after acoustic trauma. This suggests that while cortical gain changes are triggered by reduced bottom-up afferent input, their subsequent stabilization is also shaped by their local circuit milieu, where indicators of reduced inhibition can presage pathological hyperactivity following sensorineural hearing loss.
Collapse
Affiliation(s)
- Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Yurika L Watanabe
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
| | - Aravindakshan Parthasarathy
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Dongqin Cai
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kameron Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Anne Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBostonUnited States
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
5
|
Degraded cortical temporal processing in the valproic acid-induced rat model of autism. Neuropharmacology 2022; 209:109000. [PMID: 35182575 DOI: 10.1016/j.neuropharm.2022.109000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/12/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
Hearing disorders, such as abnormal speech perception, are frequently reported in individuals with autism. However, the mechanisms underlying these auditory-associated signature deficits in autism remain largely unknown. In this study, we documented significant behavioral impairments in the sound temporal rate discrimination task for rats prenatally exposed to valproic acid (VPA), a well-validated animal model for studying the pathology of autism. In parallel, there was a large-scale degradation in temporal information-processing in their primary auditory cortices (A1) at both levels of spiking outputs and synaptic inputs. Substantially increased spine density of excitatory neurons and decreased numbers of parvalbumin- and somatostatin-labeled inhibitory inter-neurons were also recorded in the A1 after VPA exposure. Given the fact that cortical temporal processing of sound is associated with speech perception in humans, these results in the animal model of VPA exposure provide insight into a possible neurological mechanism underlying auditory and language-related deficits in individuals with autism.
Collapse
|
6
|
Parameshwarappa V, Pezard L, Norena AJ. Changes in the spatiotemporal pattern of spontaneous activity across a cortical column after noise trauma. J Neurophysiol 2021; 127:239-254. [PMID: 34936500 DOI: 10.1152/jn.00262.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the auditory modality, noise trauma has often been used to investigate cortical plasticity as it causes cochlear hearing loss. One limitation of these past studies, however, is that the effects of noise trauma have been mostly documented at the granular layer, which is the main cortical recipient of thalamic inputs. Importantly, the cortex is composed of six different layers each having its own pattern of connectivity and specific role in sensory processing. The present study aims at investigating the effects of acute and chronic noise trauma on the laminar pattern of spontaneous activity in primary auditory cortex of the anesthetized guinea pig. We show that spontaneous activity is dramatically altered across cortical layers after acute and chronic noise-induced hearing loss. First, spontaneous activity was globally enhanced across cortical layers, both in terms of firing rate and amplitude of spike-triggered average of local field potentials. Second, current source density on (spontaneous) spike-triggered average of local field potentials indicates that current sinks develop in the supra- and infragranular layers. These latter results suggest that supragranular layers become a major input recipient and that the propagation of spontaneous activity over a cortical column is greatly enhanced after acute and chronic noise-induced hearing loss. We discuss the possible mechanisms and functional implications of these changes.
Collapse
Affiliation(s)
- Vinay Parameshwarappa
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Laurent Pezard
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Arnaud Jean Norena
- Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| |
Collapse
|
7
|
Occelli F, Hasselmann F, Bourien J, Puel JL, Desvignes N, Wiszniowski B, Edeline JM, Gourévitch B. Temporal Alterations to Central Auditory Processing without Synaptopathy after Lifetime Exposure to Environmental Noise. Cereb Cortex 2021; 32:1737-1754. [PMID: 34494109 DOI: 10.1093/cercor/bhab310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
People are increasingly exposed to environmental noise through the cumulation of occupational and recreational activities, which is considered harmless to the auditory system, if the sound intensity remains <80 dB. However, recent evidence of noise-induced peripheral synaptic damage and central reorganizations in the auditory cortex, despite normal audiometry results, has cast doubt on the innocuousness of lifetime exposure to environmental noise. We addressed this issue by exposing adult rats to realistic and nontraumatic environmental noise, within the daily permissible noise exposure limit for humans (80 dB sound pressure level, 8 h/day) for between 3 and 18 months. We found that temporary hearing loss could be detected after 6 months of daily exposure, without leading to permanent hearing loss or to missing synaptic ribbons in cochlear hair cells. The degraded temporal representation of sounds in the auditory cortex after 18 months of exposure was very different from the effects observed after only 3 months of exposure, suggesting that modifications to the neural code continue throughout a lifetime of exposure to noise.
Collapse
Affiliation(s)
- Florian Occelli
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Florian Hasselmann
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jérôme Bourien
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Nathalie Desvignes
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Bernadette Wiszniowski
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Jean-Marc Edeline
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Boris Gourévitch
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France.,Institut de l'Audition, Institut Pasteur, INSERM, Paris F-75012, France.,CNRS, France
| |
Collapse
|
8
|
Zelenka O, Novak O, Brunova A, Syka J. Heterogeneous associative plasticity in the auditory cortex induced by fear learning - novel insight into the classical conditioning paradigm. Physiol Res 2021; 70:447-460. [PMID: 33982575 DOI: 10.33549/physiolres.934559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used two-photon calcium imaging with single-cell and cell-type resolution. Fear conditioning induced heterogeneous tuning shifts at single-cell level in the auditory cortex, with shifts both to CS+ frequency and to the control CS- stimulus frequency. We thus extend the view of simple expansion of CS+ tuned regions. Instead of conventional freezing reactions only, we observe selective orienting responses towards the conditioned stimuli. The orienting responses were often followed by escape behavior.
Collapse
Affiliation(s)
- O Zelenka
- Department of Physiology, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
9
|
Wang M, Han Y, Wang X, Liang S, Bo C, Zhang Z, Wang M, Xu L, Zhang D, Liu W, Wang H. Characterization of EGR-1 Expression in the Auditory Cortex Following Kanamycin-Induced Hearing Loss in Mice. J Mol Neurosci 2021; 71:2260-2274. [PMID: 33423191 DOI: 10.1007/s12031-021-01791-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Deprivation of acoustic input during a critical period leads to abnormal auditory development in humans. The molecular basis underlying the susceptibility of auditory cortex to loss of afferent input remains largely unknown. The transcription factor early growth response-1 (EGR-1) expression in the visual cortex has been shown to be crucial in the formation of vision, but the role of EGR-1 during the process of auditory function formation is still unclear. In this study, we presented data showing that EGR-1 was expressed in the neurons of the primary auditory cortex (A1) in mice. We observed that the auditory deprivation induced by kanamycin during the auditory critical period leads to laminar-specific alteration of neuronal distribution and EGR-1 expression in A1. In addition, MK-801 administration inhibited the expression of EGR-1 in A1 and aggravated the abnormal cortical electric response caused by kanamycin injection. Finally, we showed that the expression of PI3K, the phosphorylation of Akt, as well as the phosphorylation of cAMP-responsive element-binding protein (CREB) were decreased in A1 after kanamycin-induced hearing loss. These results characterized the expression of EGR-1 in A1 in response to the acoustic input and suggested the involvement of EGR-1 in auditory function formation.
Collapse
Affiliation(s)
- Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Chuan Bo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Zhenbiao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Mingming Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China.
| |
Collapse
|
10
|
Jeschke M, Happel MFK, Tziridis K, Krauss P, Schilling A, Schulze H, Ohl FW. Acute and Long-Term Circuit-Level Effects in the Auditory Cortex After Sound Trauma. Front Neurosci 2021; 14:598406. [PMID: 33469416 PMCID: PMC7813782 DOI: 10.3389/fnins.2020.598406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Harmful environmental sounds are a prevailing source of chronic hearing impairments, including noise induced hearing loss, hyperacusis, or tinnitus. How these symptoms are related to pathophysiological damage to the sensory receptor epithelia and its effects along the auditory pathway, have been documented in numerous studies. An open question concerns the temporal evolution of maladaptive changes after damage and their manifestation in the balance of thalamocortical and corticocortical input to the auditory cortex (ACx). To address these issues, we investigated the loci of plastic reorganizations across the tonotopic axis of the auditory cortex of male Mongolian gerbils (Meriones unguiculatus) acutely after a sound trauma and after several weeks. We used a residual current-source density analysis to dissociate adaptations of intracolumnar input and horizontally relayed corticocortical input to synaptic populations across cortical layers in ACx. A pure tone-based sound trauma caused acute changes of subcortical inputs and corticocortical inputs at all tonotopic regions, particularly showing a broad reduction of tone-evoked inputs at tonotopic regions around the trauma frequency. At other cortical sites, the overall columnar activity acutely decreased, while relative contributions of lateral corticocortical inputs increased. After 4-6 weeks, cortical activity in response to the altered sensory inputs showed a general increase of local thalamocortical input reaching levels higher than before the trauma. Hence, our results suggest a detailed mechanism for overcompensation of altered frequency input in the auditory cortex that relies on a changing balance of thalamocortical and intracortical input and along the frequency gradient of the cortical tonotopic map.
Collapse
Affiliation(s)
- Marcus Jeschke
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Institute of Biology (IBIO), Otto-von-Guericke University Magdeburg (OVGU), Magdeburg, Germany
- Cognitive Hearing in Primates Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Institute for Auditory Neuroscience Göttingen, University Medical Center, Göttingen, Germany
| | - Max F. K. Happel
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Institute of Biology (IBIO), Otto-von-Guericke University Magdeburg (OVGU), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Konstantin Tziridis
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Patrick Krauss
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Achim Schilling
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Holger Schulze
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Institute of Biology (IBIO), Otto-von-Guericke University Magdeburg (OVGU), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
11
|
Deng D, Masri S, Yao L, Ma X, Cao X, Yang S, Bao S, Zhou Q. Increasing endogenous activity of NMDARs on GABAergic neurons increases inhibition, alters sensory processing and prevents noise-induced tinnitus. Sci Rep 2020; 10:11969. [PMID: 32686710 PMCID: PMC7371882 DOI: 10.1038/s41598-020-68652-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
Selective enhancement of GABAergic inhibition is thought to impact many vital brain functions and interferes with the genesis and/or progression of numerous brain disorders. Here, we show that selectively increasing NMDA receptor activity in inhibitory neurons using an NMDAR positive allosteric modulator (PAM) elevates spiking activity of inhibitory neurons in vitro and in vivo. In vivo infusion of PAM increases spontaneous and sound-evoked spiking in inhibitory and decreases spiking in excitatory neurons, and increases signal-to-noise ratio in the primary auditory cortex. In addition, PAM infusion prior to noise trauma prevents the occurrence of tinnitus and reduction in GABAergic inhibition. These results reveal that selectively enhancing endogenous NMDAR activity on the GABAergic neurons can effectively enhance inhibitory activity and alter excitatory-inhibitory balance, and may be useful for preventing diseases that involve reduced inhibition as the major cause.
Collapse
Affiliation(s)
- Di Deng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Samer Masri
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Lulu Yao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Ma
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xuebing Cao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
12
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
13
|
Reinhard SM, Abundez-Toledo M, Espinoza K, Razak KA. Effects of developmental noise exposure on inhibitory cell densities and perineuronal nets in A1 and AAF of mice. Hear Res 2019; 381:107781. [DOI: 10.1016/j.heares.2019.107781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
14
|
Chen YC, Chen H, Jiang L, Bo F, Xu JJ, Mao CN, Salvi R, Yin X, Lu G, Gu JP. Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI. Front Behav Neurosci 2018; 12:44. [PMID: 29593512 PMCID: PMC5859072 DOI: 10.3389/fnbeh.2018.00044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/03/2022] Open
Abstract
Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach. Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis. Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe. Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the neuropathological mechanisms underlying presbycusis.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Bo
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cun-Nan Mao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Ping Gu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex. Neural Plast 2018; 2018:9828070. [PMID: 29593786 PMCID: PMC5822889 DOI: 10.1155/2018/9828070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/03/2017] [Accepted: 11/26/2017] [Indexed: 11/18/2022] Open
Abstract
Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons), a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains to be elucidated. The present study investigated how auditory cortical PV neurons change following unilateral 1 hour noise exposure (left ear, one octave band noise centered at 16 kHz, 116 dB SPL). Noise exposure elevated the auditory brainstem response threshold of the exposed ear when examined 7 days later. More detectable PV neurons were observed in both sides of the auditory cortex of noise-exposed rats when compared to control. The detectable PV neurons of the left auditory cortex (ipsilateral to the exposed ear) to noise exposure outnumbered those of the right auditory cortex (contralateral to the exposed ear). Quantification of Western blotted bands revealed higher expression level of PV protein in the left cortex. These findings of more active PV neurons in noise-exposed rats suggested that a compensatory mechanism might be initiated to maintain a stable state of the brain.
Collapse
|
16
|
Fröhlich F, Basta D, Strübing I, Ernst A, Gröschel M. Time course of cell death due to acoustic overstimulation in the mouse medial geniculate body and primary auditory cortex. Noise Health 2017; 19:133-139. [PMID: 28615543 PMCID: PMC5501023 DOI: 10.4103/nah.nah_10_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has previously been shown that acoustic overstimulation induces cell death and extensive cell loss in key structures of the central auditory pathway. A correlation between noise-induced apoptosis and cell loss was hypothesized for the cochlear nucleus and colliculus inferior. To determine the role of cell death in noise-induced cell loss in thalamic and cortical structures, the present mouse study (NMRI strain) describes the time course following noise exposure of cell death mechanisms for the ventral medial geniculate body (vMGB), medial MGB (mMGB), and dorsal MGB (dMGB) and the six histological layers of the primary auditory cortex (AI 1-6). Therefore, a terminal deoxynucleotidyl transferase dioxyuridine triphosphate nick-end labeling assay (TUNEL) was performed in these structures 24 h, 7 days, and 14 days after noise exposure (3 h, 115 dB sound pressure level, 5-20 kHz), as well as in unexposed controls. In the dMGB, TUNEL was statistically significant elevated 24 h postexposure. AI-1 showed a decrease in TUNEL after 14 days. There was no statistically significant difference between groups for the other brain areas investigated. dMGB's widespread connection within the central auditory pathway and its nontonotopical organization might explain its prominent increase in TUNEL compared to the other MGB subdivisions and the AI. It is assumed that the onset and peak of noise-induced cell death is delayed in higher areas of the central auditory pathway and takes place between 24 h and 7 days postexposure in thalamic and cortical structures.
Collapse
Affiliation(s)
- Felix Fröhlich
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Ira Strübing
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Moritz Gröschel
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| |
Collapse
|
17
|
Li J, Zhang J, Wang M, Pan J, Chen X, Liao X. Functional imaging of neuronal activity of auditory cortex by using Cal-520 in anesthetized and awake mice. BIOMEDICAL OPTICS EXPRESS 2017; 8:2599-2610. [PMID: 28663893 PMCID: PMC5480500 DOI: 10.1364/boe.8.002599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 06/01/2023]
Abstract
The organization in the primary auditory cortex (Au1) is critical to the basic function of auditory information processing and integration. However, recent mapping experiments using in vivo two-photon imaging with different Ca2+ indicators have reached controversial conclusions on this topic, possibly because of the different sensitivities and properties of the indicators used. Therefore, it is essential to identify a reliable Ca2+ indicator for use in in vivo functional imaging of the Au1, to understand its functional organization. Here, we demonstrate that a previously reported indicator, Cal-520, performs well in both anesthetized and awake conditions. Cal-520 shows a sufficient sensitivity for the detection of single action potentials, and a high signal-to-noise ratio. Cal-520 reliably reported on both spontaneous and sound-evoked neuronal activity in anesthetized and awake mice. After testing with pure tones at a range of frequencies, we confirmed the local heterogeneity of the functional organization of the mouse Au1. Therefore, Cal-520 is a reliable and useful Ca2+ indicator for in vivo functional imaging of the Au1.
Collapse
Affiliation(s)
- Jingcheng Li
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
- These authors contributed equally to this work
| | - Jianxiong Zhang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
- These authors contributed equally to this work
| | - Meng Wang
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Junxia Pan
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
18
|
Nguyen A, Khaleel HM, Razak KA. Effects of noise-induced hearing loss on parvalbumin and perineuronal net expression in the mouse primary auditory cortex. Hear Res 2017; 350:82-90. [PMID: 28460252 DOI: 10.1016/j.heares.2017.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022]
Abstract
Noise induced hearing loss is associated with increased excitability in the central auditory system but the cellular correlates of such changes remain to be characterized. Here we tested the hypothesis that noise-induced hearing loss causes deterioration of perineuronal nets (PNNs) in the auditory cortex of mice. PNNs are specialized extracellular matrix components that commonly enwrap cortical parvalbumin (PV) containing GABAergic interneurons. Compared to somatosensory and visual cortex, relatively less is known about PV/PNN expression patterns in the primary auditory cortex (A1). Whether changes to cortical PNNs follow acoustic trauma remains unclear. The first aim of this study was to characterize PV/PNN expression in A1 of adult mice. PNNs increase excitability of PV+ inhibitory neurons and confer protection to these neurons against oxidative stress. Decreased PV/PNN expression may therefore lead to a reduction in cortical inhibition. The second aim of this study was to examine PV/PNN expression in superficial (I-IV) and deep cortical layers (V-VI) following noise trauma. Exposing mice to loud noise caused an increase in hearing threshold that lasted at least 30 days. PV and PNN expression in A1 was analyzed at 1, 10 and 30 days following the exposure. No significant changes were observed in the density of PV+, PNN+, or PV/PNN co-localized cells following hearing loss. However, a significant layer- and cell type-specific decrease in PNN intensity was seen following hearing loss. Some changes were present even at 1 day following noise exposure. Attenuation of PNN may contribute to changes in excitability in cortex following noise trauma. The regulation of PNN may open up a temporal window for altered excitability in the adult brain that is then stabilized at a new and potentially pathological level such as in tinnitus.
Collapse
Affiliation(s)
- Anna Nguyen
- Bioengineering Program, University of California, Riverside, United States
| | - Haroun M Khaleel
- Psychology Department and Graduate Neuroscience Program, University of California, Riverside, United States
| | - Khaleel A Razak
- Psychology Department and Graduate Neuroscience Program, University of California, Riverside, United States.
| |
Collapse
|