1
|
Siddiqui S, Khan F, Jamali KS, Musharraf SG. Madecassic Acid Reduces Fast Transient Potassium Channels and Promotes Neurite Elongation in Hippocampal CA1 Neurons. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 19:12-26. [PMID: 31713492 DOI: 10.2174/1871527318666191111105508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Madecassic Acid (MA) is well known to induce neurite elongation. However, its correlation with the expression of fast transient potassium (AKv) channels during neuronal development has not been well studied. Therefore, the present study was designed to investigate the effects of MA on the modulation of AKv channels during neurite outgrowth. METHODS Neurite outgrowth was measured with morphometry software, and Kv4 currents were recorded by using the patch clamp technique. RESULTS The ability of MA to promote neurite outgrowth is dose-dependent and was blocked by using the mitogen/extracellular signal-regulated kinase (MEK) inhibitor U0126. MA reduced the peak current density and surface expression of the AKv channel Kv4.2 with or without the presence of NaN3. The surface expression of Kv4.2 channels was also reduced after MA treatment of growing neurons. Ethylene glycol tetraacetic acid (EGTA) and an N-methyl-D-aspartate (NMDA) receptor blocker, MK801 along with MA prevented the effect of MA on neurite length, indicating that calcium entry through NMDA receptors is necessary for MA-induced neurite outgrowth. CONCLUSION The data demonstrated that MA increased neurite outgrowth by internalizing AKv channels in neurons. Any alterations in the precise density of ion channels can lead to deleterious consequences on health because it changes the electrical and mechanical function of a neuron or a cell. Modulating ion channel's density is exciting research in order to develop novel drugs for the therapeutic treatment of various diseases of CNS.
Collapse
Affiliation(s)
- Sonia Siddiqui
- Department of Biochemistry, Dow University of Health Sciences (DUHS), Karachi, Pakistan.,Department of Neuroscience, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi 75270, Pakistan
| | - Faisal Khan
- Department of Neuroscience, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi 75270, Pakistan
| | - Khawar Saeed Jamali
- Department of Surgery, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Syed Ghulam Musharraf
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi 75270, Pakistan
| |
Collapse
|
2
|
Valle-Leija P, Cancino-Rodezno A, Sánchez-Tafolla BM, Arias E, Elinos D, Feria J, Zetina ME, Morales MA, Cifuentes F. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion. Front Physiol 2017; 8:474. [PMID: 28744222 PMCID: PMC5504415 DOI: 10.3389/fphys.2017.00474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/21/2017] [Indexed: 02/02/2023] Open
Abstract
Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Pablo Valle-Leija
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Angeles Cancino-Rodezno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Berardo M Sánchez-Tafolla
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Erwin Arias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Diana Elinos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Jessica Feria
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - María E Zetina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Miguel A Morales
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Fredy Cifuentes
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| |
Collapse
|
3
|
Cheng C, Xu JM, Yu T. Neutralizing IL-6 reduces heart injury by decreasing nerve growth factor precursor in the heart and hypothalamus during rat cardiopulmonary bypass. Life Sci 2017; 178:61-69. [PMID: 28438640 DOI: 10.1016/j.lfs.2017.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023]
Abstract
AIMS To investigate whether the expression of nerve growth factor precursor (proNGF) changes during cardiopulmonary bypass (CPB) and whether neutralizing interleukin-6 (IL-6) during CPB has cardiac benefits. MAIN METHODS Thirty patients undergoing CPB were recruited and their serum proNGF and troponin-I (TNI) were detected. In addition, rats were divided into three groups: CPB group, CPB with cardiac ischemia-reperfusion (IR) group, and a control group. The pre-CPB standard deviation of N-N intervals (SDNN) and post-CPB SDNN were compared. At the end of CPB, nerve peptide Y (NPY), acetylcholinesterase, cell apoptosis, and proNGF protein expression were measured in the heart and hypothalamus. Another rat cohort undergoing CPB was divided into two groups: an anti-IL-6 group with IL-6 antibody and a control group with phosphate buffer solution. At the end of CPB, serum hs-troponin-T and cardiac caspases 3 and 9 were detected. NPY and proNGF in the heart and hypothalamus were detected. KEY FINDINGS In patients, serum proNGF increased during CPB, and the concentration was positively correlated with TNI. In rats, cardiac autonomic nervous function was disturbed during CPB. More apoptotic cells and higher levels of proNGF were found in the heart and hypothalamus in the CPB groups than in the control groups. Neutralizing IL-6 was beneficial to lower cardiac injury by decreasing proNGF and apoptosis. SIGNIFICANCE CPB induced changes in proNGF in the heart and hypothalamus. Suppressing inflammation attenuated myocardial apoptosis and autonomic nerve function disturbance in CPB rats, likely due in part to regulation of proNGF in the heart and hypothalamus.
Collapse
Affiliation(s)
- Chi Cheng
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun-Mei Xu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Tian Yu
- Department of Anesthesiology, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou 563000, China
| |
Collapse
|
4
|
Cheng LJ, Li GP, Li J, Chen Y, Wang XH. Effects of Fluvastatin on Characteristics of Stellate Ganglion Neurons in a Rabbit Model of Myocardial Ischemia. Chin Med J (Engl) 2017; 129:549-56. [PMID: 26904989 PMCID: PMC4804436 DOI: 10.4103/0366-6999.176991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Stellate ganglion (SG) plays an important role in cardiovascular diseases. The electrical activity of SG neurons is involved in the regulation of the autonomic nervous system. The aim of this research was to evaluate the effects of fluvastatin on the electrophysiological characteristics of SG neurons in a rabbit model of myocardial ischemia (MI). METHODS The MI model was induced by abdominal subcutaneous injections of isoproterenol in rabbits. Using whole-cell patch clamp technique, we studied the characteristic changes of ion channels and action potentials (APs) in isolated SG neurons in control group (n = 20), MI group (n = 20) and fluvastatin pretreated group (fluvastatin group, n = 20), respectively. The protein expression of sodium channel in SG was determined by immunohistochemical analysis. RESULTS MI and the intervention of fluvastatin did not have significantly influence on the characteristics of delayed rectifier potassium channel currents. The maximal peak current density of sodium channel currents in SG neurons along with the characteristics of activation curves, inactivation curves, and recovery curves after inactivation were changed in the MI group. The peak current densities of control group, MI group, and fluvastatin group (n = 10 in each group) were -71.77 ± 23.22 pA/pF, -126.75 ± 18.90 pA/pF, and -86.42 ± 28.30 pA/pF, respectively (F = 4.862, P = 0.008). Fluvastatin can decrease the current amplitude which has been increased by MI. Moreover, fluvastatin induced the inactivation curves and post-inactive recovery curves moving to the position of the control group. But the expression of sodium channel-associated protein (Nav1.7) had no significantly statistical difference among the three groups. The percentages of Nav1.7 protein in control group, MI group, and fluvastatin group (n = 5 in each group) were 21.49 ± 7.33%, 28.53 ± 8.26%, and 21.64 ± 2.78%, respectively (F = 1.495, P = 0.275). Moreover, MI reduced the electrical activity of AP and increased amplitude of AP, fluvastatin pretreatment could recover amplitude and electrical activity of AP. The probability of neurons induced continuous APs were 44.44%, 14.29%, and 28.57% in control group, MI group, and fluvastatin group, respectively. CONCLUSIONS Fluvastatin pretreatment can recover electrophysiology characteristics of ion channel and AP in SG neurons in a rabbit model of MI. It could be considered as potential method for treating coronary heart diseases.
Collapse
Affiliation(s)
| | - Guang-Ping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | | | | | | |
Collapse
|
5
|
Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, Kanazawa H, Paterson DJ, Ripplinger CM. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease. J Physiol 2016; 594:3853-75. [PMID: 27060296 DOI: 10.1113/jp271840] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Physiology and Pharmacology, Department of Medicine Division of Cardiovascular Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mark E Anderson
- Johns Hopkins Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Donald B Hoover
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
6
|
Kovács I, Luna C, Quirce S, Mizerska K, Callejo G, Riestra A, Fernández-Sánchez L, Meseguer VM, Cuenca N, Merayo-Lloves J, Acosta MC, Gasull X, Belmonte C, Gallar J. Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease. Pain 2016; 157:399-417. [PMID: 26675826 PMCID: PMC4733818 DOI: 10.1097/j.pain.0000000000000455] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 12/23/2022]
Abstract
Dry eye disease (DED) affects >10% of the population worldwide, and it provokes an unpleasant sensation of ocular dryness, whose underlying neural mechanisms remain unknown. Removal of the main lachrymal gland in guinea pigs caused long-term reduction of basal tearing accompanied by changes in the architecture and density of subbasal corneal nerves and epithelial terminals. After 4 weeks, ongoing impulse activity and responses to cooling of corneal cold thermoreceptor endings were enhanced. Menthol (200 μM) first excited and then inactivated this augmented spontaneous and cold-evoked activity. Comparatively, corneal polymodal nociceptors of tear-deficient eyes remained silent and exhibited only a mild sensitization to acidic stimulation, whereas mechanonociceptors were not affected. Dryness-induced changes in peripheral cold thermoreceptor responsiveness developed in parallel with a progressive excitability enhancement of corneal cold trigeminal ganglion neurons, primarily due to an increase of sodium currents and a decrease of potassium currents. In corneal polymodal nociceptor neurons, sodium currents were enhanced whereas potassium currents remain unaltered. In healthy humans, exposure of the eye surface to menthol vapors or to cold air currents evoked unpleasant sensations accompanied by increased blinking frequency that we attributed to cold thermoreceptor stimulation. Notably, stimulation with menthol reduced the ongoing background discomfort of patients with DED, conceivably due to use-dependent inactivation of cold thermoreceptors. Together, these data indicate that cold thermoreceptors contribute importantly to the detection and signaling of ocular surface wetness, and develop under chronic eye dryness conditions an injury-evoked neuropathic firing that seems to underlie the unpleasant sensations experienced by patients with DED.
Collapse
Affiliation(s)
- Illés Kovács
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, San Juan de Alicante, Spain
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Carolina Luna
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, San Juan de Alicante, Spain
| | - Susana Quirce
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, San Juan de Alicante, Spain
| | - Kamila Mizerska
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, San Juan de Alicante, Spain
| | - Gerard Callejo
- Laboratory of Neurophysiology, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Riestra
- Instituto Universitario Fernández-Vega, Universidad de Oviedo and Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Laura Fernández-Sánchez
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, San Vicente del Raspeig, Spain
| | - Victor M. Meseguer
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, San Juan de Alicante, Spain
| | - Nicolás Cuenca
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, San Vicente del Raspeig, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo and Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, San Juan de Alicante, Spain
| | - Xavier Gasull
- Laboratory of Neurophysiology, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carlos Belmonte
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, San Juan de Alicante, Spain
- Instituto Universitario Fernández-Vega, Universidad de Oviedo and Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, San Juan de Alicante, Spain
| |
Collapse
|
7
|
Kreipke RE, Birren SJ. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal. J Physiol 2015; 593:5057-73. [PMID: 26420487 DOI: 10.1113/jp270917] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/07/2015] [Indexed: 12/28/2022] Open
Abstract
Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size.
Collapse
Affiliation(s)
- R E Kreipke
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - S J Birren
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| |
Collapse
|
8
|
Springer MG, Kullmann PHM, Horn JP. Virtual leak channels modulate firing dynamics and synaptic integration in rat sympathetic neurons: implications for ganglionic transmission in vivo. J Physiol 2014; 593:803-23. [PMID: 25398531 DOI: 10.1113/jphysiol.2014.284125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/04/2014] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS The synaptic organization of paravertebral sympathetic ganglia enables them to relay activity from the spinal cord to the periphery and thereby control autonomic functions, including blood pressure and body temperature. The present experiments were done to reconcile conflicting observations in tissue culture, intact isolated ganglia and living animals. By recording intracellularly from dissociated neurons and intact ganglia, we found that when electrode damage makes cells leaky it could profoundly distort cellular excitability and the integration of synaptic potentials. The experiments relied on the dynamic clamp method, which allows the creation of virtual ion channels by injecting current into a cell based upon a mathematical model and using rapid feedback between the model and cell. The results support the hypothesis that sympathetic ganglia can produce a 2.4-fold amplification of presynaptic activity. This could aid understanding of the neural hyperactivity that is believed to drive high blood pressure in some patients. ABSTRACT The excitability of rat sympathetic neurons and integration of nicotinic EPSPs were compared in primary cell culture and in the acutely isolated intact superior cervical ganglion using whole cell patch electrode recordings. When repetitive firing was classified by Hodgkin's criteria in cultured cells, 18% displayed tonic class 1 excitability, 36% displayed adapting class 2 excitability and 46% displayed phasic class 3 excitability. In the intact ganglion, 71% of cells were class 1 and 29% were class 2. This diverges from microelectrode reports that nearly 100% of superior cervical ganglion neurons show phasic class 3 firing. The hypothesis that the disparity between patch and microelectrode data arises from a shunt conductance was tested using the dynamic clamp in cell culture. Non-depolarizing shunts of 3-10 nS converted cells from classes 1 and 2 to class 3 dynamics with current-voltage relations that replicated microelectrode data. Primary and secondary EPSPs recorded from the intact superior cervical ganglion were modelled as virtual synapses in cell culture using the dynamic clamp. Stimulating sympathetic neurons with virtual synaptic activity, designed to replicate in vivo recordings of EPSPs in muscle vasoconstrictor neurons, produced a 2.4-fold amplification of presynaptic activity. This gain in postsynaptic output did not differ between neurons displaying the three classes of excitability. Mimicry of microelectrode damage by virtual leak channels reduced and eventually obliterated synaptic gain by inhibiting summation of subthreshold EPSPs. These results provide a framework for interpreting sympathetic activity recorded from intact animals and support the hypothesis that paravertebral ganglia function as activity-dependent amplifiers of spinal output from preganglionic circuitry.
Collapse
Affiliation(s)
- Mitchell G Springer
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
9
|
Nerve growth factor sensitizes adult sympathetic neurons to the proinflammatory peptide bradykinin. J Neurosci 2014; 34:11959-71. [PMID: 25186743 DOI: 10.1523/jneurosci.1536-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Levels of nerve growth factor (NGF) are elevated in inflamed tissues. In sensory neurons, increases in NGF augment neuronal sensitivity (sensitization) to noxious stimuli. Here, we hypothesized that NGF also sensitizes sympathetic neurons to proinflammatory stimuli. We cultured superior cervical ganglion (SCG) neurons from adult male Sprague Dawley rats with or without added NGF and compared their responsiveness to bradykinin, a proinflammatory peptide. The NGF-cultured neurons exhibited significant depolarization, bursts of action potentials, and Ca(2+) elevations after bradykinin application, whereas neurons cultured without NGF showed only slight changes in membrane potential and cytoplasmic Ca(2+) levels. The NGF effect, which requires trkA receptors, takes hours to develop and days to reverse. We addressed the ionic mechanisms underlying this sensitization. NGF did not alter bradykinin-induced M-current inhibition or phosphatidylinositol 4,5-bisphosphate hydrolysis. Maxi-K channel-mediated current evoked by depolarizations was reduced by 50% by culturing neurons in NGF. Application of iberiotoxin or paxilline, blockers of Maxi-K channels, mimicked NGF treatment and sensitized neurons to bradykinin application. A calcium channel blocker also mimicked NGF treatment. We found that NGF reduces Maxi-K channel opening by decreasing the activity of nifedipine-sensitive calcium channels. In conclusion, culture in NGF reduces the activity of L-type calcium channels, and secondarily, the calcium-sensitive activity of Maxi-K channels, rendering sympathetic neurons electrically hyper-responsive to bradykinin.
Collapse
|
10
|
Arias ER, Valle-Leija P, Morales MA, Cifuentes F. Differential contribution of BDNF and NGF to long-term potentiation in the superior cervical ganglion of the rat. Neuropharmacology 2014; 81:206-14. [DOI: 10.1016/j.neuropharm.2014.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 01/28/2014] [Accepted: 02/01/2014] [Indexed: 11/28/2022]
|
11
|
Indo Y. Nerve growth factor, pain, itch and inflammation: lessons from congenital insensitivity to pain with anhidrosis. Expert Rev Neurother 2014; 10:1707-24. [DOI: 10.1586/ern.10.154] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Luther JA, Enes J, Birren SJ. Neurotrophins regulate cholinergic synaptic transmission in cultured rat sympathetic neurons through a p75-dependent mechanism. J Neurophysiol 2012; 109:485-96. [PMID: 23114219 DOI: 10.1152/jn.00076.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sympathetic nervous system regulates many essential physiological systems, and its dysfunction is implicated in cardiovascular diseases. Mechanisms that control the strength of sympathetic output are therefore potential targets for the management of these disorders. Here we show that neurotrophins rapidly potentiate cholinergic transmission between cultured rat sympathetic neurons. We found that brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), acting at the p75 receptor, increased the amplitude of excitatory postsynaptic currents (EPSCs). We observed increased amplitude but not frequency of miniature synaptic currents after p75 activation, suggesting that p75 acts postsynaptically to modulate transmission at these synapses. This neurotrophic modulation enhances cholinergic EPSCs via sphingolipid signaling. Application of sphingolactone-24, an inhibitor of neutral sphingomyelinase, blocked the effect of BDNF, implicating a sphingolipid pathway. Furthermore, application of the p75-associated sphingolipid second messengers C(2)-ceramide and d-erythro-sphingosine restricted to the postsynaptic cell mimicked BDNF application. Postsynaptic blockade of ceramide production with fumonisin, a ceramide synthase inhibitor, blocked the effects of BDNF and d-erythro-sphingosine, implicating ceramide or ceramide phosphate as the active signal. Together these data suggest that neurotrophin signaling, which occurs in vivo via release from sympathetic neurons and target tissues such as the heart, acutely regulates the strength of the sympathetic postganglionic response to central cholinergic inputs. This pathway provides a potential mechanism for modulating the strength of sympathetic drive to target organs such as the heart and could play a role in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- J A Luther
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
13
|
Siao CJ, Lorentz CU, Kermani P, Marinic T, Carter J, McGrath K, Padow VA, Mark W, Falcone DJ, Cohen-Gould L, Parrish DC, Habecker BA, Nykjaer A, Ellenson LH, Tessarollo L, Hempstead BL. ProNGF, a cytokine induced after myocardial infarction in humans, targets pericytes to promote microvascular damage and activation. ACTA ACUST UNITED AC 2012; 209:2291-305. [PMID: 23091165 PMCID: PMC3501352 DOI: 10.1084/jem.20111749] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
proNGF and p75NTR are induced following fatal myocardial infraction and are required for the development of microvascular injury. Treatment of acute cardiac ischemia focuses on reestablishment of blood flow in coronary arteries. However, impaired microvascular perfusion damages peri-infarct tissue, despite arterial patency. Identification of cytokines that induce microvascular dysfunction would provide new targets to limit microvascular damage. Pro–nerve growth factor (NGF), the precursor of NGF, is a well characterized cytokine in the brain induced by injury. ProNGF activates p75 neurotrophin receptor (p75NTR) and sortilin receptors to mediate proapoptotic responses. We describe induction of proNGF by cardiomyocytes, and p75NTR in human arterioles after fatal myocardial infarction, but not with unrelated pathologies. After mouse cardiac ischemia-reperfusion (I-R) injury, rapid up-regulation of proNGF by cardiomyocytes and p75NTR by microvascular pericytes is observed. To identify proNGF actions, we generated a mouse expressing a mutant Ngf allele with impaired processing of proNGF to mature NGF. The proNGF-expressing mouse exhibits cardiac microvascular endothelial activation, a decrease in pericyte process length, and increased vascular permeability, leading to lethal cardiomyopathy in adulthood. Deletion of p75NTR in proNGF-expressing mice rescues the phenotype, confirming the importance of p75NTR-expressing pericytes in the development of microvascular injury. Furthermore, deficiency in p75NTR limits infarct size after I-R. These studies identify novel, nonneuronal actions for proNGF and suggest that proNGF represents a new target to limit microvascular dysfunction.
Collapse
Affiliation(s)
- Chia-Jen Siao
- Division of Hematology/Medical Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lorentz CU, Woodward WR, Tharp K, Habecker BA. Altered norepinephrine content and ventricular function in p75NTR-/- mice after myocardial infarction. Auton Neurosci 2011; 164:13-9. [PMID: 21646052 PMCID: PMC3167025 DOI: 10.1016/j.autneu.2011.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 01/08/2023]
Abstract
Cardiac sympathetic neurons stimulate heart rate and the force of contraction through release of norepinephrine. Nerve growth factor modulates sympathetic transmission through activation of TrkA and p75NTR. Nerve growth factor plays an important role in post-infarct sympathetic remodeling. We used mice lacking p75NTR to examine the effect of altered nerve growth factor signaling on sympathetic neuropeptide expression, cardiac norepinephrine, and ventricular function after myocardial infarction. Infarct size was similar in wildtype and p75NTR-/- mice after ischemia-reperfusion surgery. Likewise, mRNAs encoding vasoactive intestinal peptide, galanin, and pituitary adenylate cyclase activating peptides were identical in wildtype and p75NTR-/- cardiac sympathetic neurons, as was expression of the TrkA neurotrophin receptor. Norepinephrine content was elevated in the base of the p75NTR-/- ventricle compared to wildtype, but levels were identical below the site of occlusion. Left ventricular pressure, dP/dt(MAX), and dP/dt(MIN) were measured under isoflurane anesthesia 3 and 7 days after surgery. Ventricular pressure decreased significantly 3 days after infarction, and deficits in dP/dt(MAX) were revealed by stimulating beta receptors with dobutamine and release of endogenous norepinephrine with tyramine. dP/dt(MIN) was not altered by genotype or surgical group. Few differences were observed between genotypes 3 days after surgery, in contrast to low pressure and dP/dt(MAX) previously reported in control p75NTR-/- animals. Seven days after surgery ventricular pressure and dP/dt(MAX) were significantly lower in p75NTR-/- hearts compared to WT hearts. Thus, the lack of p75NTR did not enhance cardiac function after myocardial infarction.
Collapse
Affiliation(s)
- Christina U. Lorentz
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - William R. Woodward
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kevin Tharp
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Beth A. Habecker
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
15
|
Ramos OV, Torterolo P, Lim V, Chase MH, Sampogna S, Yamuy J. The role of mesopontine NGF in sleep and wakefulness. Brain Res 2011; 1413:9-23. [PMID: 21840513 PMCID: PMC3189444 DOI: 10.1016/j.brainres.2011.06.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
The microinjection of nerve growth factor (NGF) into the cat pontine tegmentum rapidly induces rapid eye movement (REM) sleep. To determine if NGF is involved in naturally-occurring REM sleep, we examined whether it is present in mesopontine cholinergic structures that promote the initiation of REM sleep, and whether the blockade of NGF production in these structures suppresses REM sleep. We found that cholinergic neurons in the cat dorso-lateral mesopontine tegmentum exhibited NGF-like immunoreactivity. In addition, the microinjection of an oligodeoxyribonucleotide (OD) directed against cat NGF mRNA into this region resulted in a reduction in the time spent in REM sleep in conjunction with an increase in the time spent in wakefulness. Sleep and wakefulness returned to baseline conditions 2 to 5 days after antisense OD administration. The preceding antisense OD-induced effects occurred in conjunction with the suppression of NGF-like immunoreactivity within the site of antisense OD injection. These data support the hypothesis that NGF is involved in the modulation of naturally-occurring sleep and wakefulness.
Collapse
Affiliation(s)
- Oscar V Ramos
- Websciences International, Los Angeles, CA 90024, USA
| | | | | | | | | | | |
Collapse
|
16
|
Obreja O, Kluschina O, Mayer A, Hirth M, Schley M, Schmelz M, Rukwied R. NGF enhances electrically induced pain, but not axon reflex sweating. Pain 2011; 152:1856-1863. [DOI: 10.1016/j.pain.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/23/2011] [Accepted: 04/01/2011] [Indexed: 01/16/2023]
|
17
|
Shao BP, Ding YP, Wang JL. The cranial cervical ganglion and its branches in the White yak (Bos grunniens). Anat Histol Embryol 2011; 40:321-5. [PMID: 21923896 DOI: 10.1111/j.1439-0264.2011.01075.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heads of 12 White yaks (four castrated, four male and four female, 3-8 years old) were dissected to study the shape, location and branches of the cranial cervical ganglion macroscopically. The ganglion was a greyish arciform structure, with a mean length of 17.3 mm, a width of 8.0 mm and a thickness of 3.9 mm, located on the rostrolateral surface of m. longus capitis. Approximately 5% of the ganglion was covered laterally by the tympanic bulla and the rest by the m. stylohyoideus. The branches of the cranial cervical ganglion included the internal and external carotid nerves, the sympathetic trunk and communicating branches to the glossopharyngeal nerve, the pharyngeal branch of the vagus nerve and the hypoglossal nerve. In one specimen, the left cranial cervical ganglion was fusiform and only covered by the m. stylohyoideus. Gender differences of the cranial cervical ganglion in the White yak were not observed.
Collapse
Affiliation(s)
- B P Shao
- Key Laboratory of Arid and Grassland Ecology, Ministry of Education, Lanzhou University, China.
| | | | | |
Collapse
|
18
|
Vega A, Luther JA, Birren SJ, Morales MA. Segregation of the classical transmitters norepinephrine and acetylcholine and the neuropeptide Y in sympathetic neurons: modulation by ciliary neurotrophic factor or prolonged growth in culture. Dev Neurobiol 2011; 70:913-28. [PMID: 20715153 DOI: 10.1002/dneu.20834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent evidence has demonstrated that cotransmission from mammalian neurons is not uniquely achieved by costorage and corelease of transmitters and cotransmitters from single varicosities, but also by the concurrent release of mediators segregated in separate synapses of individual neurons. An important question to be addressed is whether neurons show defined patterns of segregation or whether this is a plastic feature. We addressed this question by exploring the segregation pattern of the classical sympathetic transmitters norepinephrine (NE) and acetylcholine (ACh) and the cotransmitter neuropeptide Y (NPY) in sympathetic ganglionic neurons cocultured with cardiac myocytes. Using antibodies against NPY and the vesicular NE and ACh transporters VMAT2 and vesicular acetylcholine transporter (VAChT), we investigated the effect of ciliary neurotrophic factor (CNTF) or long (three weeks) culture periods on the segregation of VMAT2, VAChT, and NPY to separate varicosities. We found that although ganglionic neurons showed cell body coexpression of all the markers examined after three days, VMAT2 was segregated from VAChT in 43% of the VAChT-positive varicosities. In contrast, VMAT2 was only segregated from NPY in 16.3% of the NPY-positive varicosities. Cotransmitter segregation and VAChT expression was potentiated by both CNTF and longer times in culture. We also found two types of varicosities: one was smaller and located further from neuronal somata, and the other was larger, proximal to neuronal somata and had a higher level of segregation. These data demonstrate segregation of classical transmitters in sympathetic neurons and plasticity of neurotransmitter segregation. Finally, we discuss a possible functional correlate of segregation in sympathetic neurons.
Collapse
Affiliation(s)
- A Vega
- Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, México, México
| | | | | | | |
Collapse
|
19
|
Mitra-Ganguli T, Vitko I, Perez-Reyes E, Rittenhouse AR. Orientation of palmitoylated CaVbeta2a relative to CaV2.2 is critical for slow pathway modulation of N-type Ca2+ current by tachykinin receptor activation. ACTA ACUST UNITED AC 2010; 134:385-96. [PMID: 19858358 PMCID: PMC2768804 DOI: 10.1085/jgp.200910204] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The G(q)-coupled tachykinin receptor (neurokinin-1 receptor [NK-1R]) modulates N-type Ca(2+) channel (Ca(V)2.2 or N channel) activity at two distinct sites by a pathway involving a lipid metabolite, most likely arachidonic acid (AA). In another study published in this issue (Heneghan et al. 2009. J. Gen Physiol. doi:10.1085/jgp.200910203), we found that the form of modulation observed depends on which Ca(V)beta is coexpressed with Ca(V)2.2. When palmitoylated Ca(V)beta2a is coexpressed, activation of NK-1Rs by substance P (SP) enhances N current. In contrast, when Ca(V)beta3 is coexpressed, SP inhibits N current. However, exogenously applied palmitic acid minimizes this inhibition. These findings suggested that the palmitoyl groups of Ca(V)beta2a may occupy an inhibitory site on Ca(V)2.2 or prevent AA from interacting with that site, thereby minimizing inhibition. If so, changing the orientation of Ca(V)beta2a relative to Ca(V)2.2 may displace the palmitoyl groups and prevent them from antagonizing AA's actions, thereby allowing inhibition even in the presence of Ca(V)beta2a. In this study, we tested this hypothesis by deleting one (Bdel1) or two (Bdel2) amino acids proximal to the alpha interacting domain (AID) of Ca(V)2.2's I-II linker. Ca(V)betas bind tightly to the AID, whereas the rigid region proximal to the AID is thought to couple Ca(V)beta's movements to Ca(V)2.2 gating. Although Bdel1/beta2a currents exhibited more variable enhancement by SP, Bdel2/beta2a current enhancement was lost at all voltages. Instead, inhibition was observed that matched the profile of N-current inhibition from Ca(V)2.2 coexpressed with Ca(V)beta3. Moreover, adding back exogenous palmitic acid minimized inhibition of Bdel2/beta2a currents, suggesting that when palmitoylated Ca(V)beta2a is sufficiently displaced, endogenously released AA can bind to the inhibitory site. These findings support our previous hypothesis that Ca(V)beta2a's palmitoyl groups directly interact with an inhibitory site on Ca(V)2.2 to block N-current inhibition by SP.
Collapse
Affiliation(s)
- Tora Mitra-Ganguli
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
20
|
Luther JA, Birren SJ. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton Neurosci 2009; 151:46-60. [PMID: 19748836 DOI: 10.1016/j.autneu.2009.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electrical and synaptic properties of neurons are essential for determining the function of the nervous system. Thus, understanding the mechanisms that control the appropriate developmental acquisition and maintenance of these properties is a critical problem in neuroscience. A great deal of our understanding of these developmental mechanisms comes from studies of soluble growth factor signaling between cells in the peripheral nervous system. The sympathetic nervous system has provided a model for studying the role of these factors both in early development and in the establishment of mature properties. In particular, neurotrophins produced by the targets of sympathetic innervation regulate the synaptic and electrophysiological properties of postnatal sympathetic neurons. In this review we examine the role of neurotrophin signaling in the regulation of synaptic strength, neurotransmitter phenotype, voltage-gated currents and repetitive firing properties of sympathetic neurons. Together, these properties determine the level of sympathetic drive to target organs such as the heart. Changes in this sympathetic drive, which may be linked to dysfunctions in neurotrophin signaling, are associated with devastating diseases such as high blood pressure, arrhythmias and heart attack. Neurotrophins appear to play similar roles in modulating the synaptic and electrical properties of other peripheral and central neuronal systems, suggesting that information provided from studies in the sympathetic nervous system will be widely applicable for understanding the neurotrophic regulation of neuronal function in other systems.
Collapse
Affiliation(s)
- Jason A Luther
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
21
|
Luther JA, Birren SJ. p75 and TrkA signaling regulates sympathetic neuronal firing patterns via differential modulation of voltage-gated currents. J Neurosci 2009; 29:5411-24. [PMID: 19403809 PMCID: PMC3326291 DOI: 10.1523/jneurosci.3503-08.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 03/06/2009] [Accepted: 03/18/2009] [Indexed: 12/29/2022] Open
Abstract
Neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) act through the tropomyosin-related receptor tyrosine kinases (Trk) and the pan-neurotrophin receptor (p75) to regulate complex developmental and functional properties of neurons. While NGF activates both receptor types in sympathetic neurons, differential signaling through TrkA and p75 can result in widely divergent functional outputs for neuronal survival, growth, and synaptic function. Here we show that TrkA and p75 signaling pathways have opposing effects on the firing properties of sympathetic neurons, and define a mechanism whereby the relative level of signaling through these two receptors sets firing patterns via coordinate regulation of a set of ionic currents. We show that signaling through the p75 pathway causes sympathetic neurons to fire in a phasic pattern showing marked accommodation. Signaling through the NGF-specific TrkA, on the other hand, causes cells to fire tonically. Neurons switch rapidly between firing patterns, on the order of minutes to hours. We show that changes in firing patterns are caused by neurotrophin-dependent regulation of at least four voltage-gated currents: the sodium current and the M-type, delayed rectifier, and calcium-dependent potassium currents. Neurotrophin release, and thus receptor activation, varies among somatic tissues and physiological state. Thus, these data suggest that target-derived neurotrophins may be an important determinant of the characteristic electrical properties of sympathetic neurons and therefore regulate the functional output of the sympathetic nervous system.
Collapse
Affiliation(s)
- Jason A. Luther
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| | - Susan J. Birren
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
22
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Jia Z, Bei J, Rodat-Despoix L, Liu B, Jia Q, Delmas P, Zhang H. NGF inhibits M/KCNQ currents and selectively alters neuronal excitability in subsets of sympathetic neurons depending on their M/KCNQ current background. ACTA ACUST UNITED AC 2008; 131:575-87. [PMID: 18474635 PMCID: PMC2391251 DOI: 10.1085/jgp.200709924] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
M/KCNQ currents play a critical role in the determination of neuronal excitability. Many neurotransmitters and peptides modulate M/KCNQ current and neuronal excitability through their G protein-coupled receptors. Nerve growth factor (NGF) activates its receptor, a member of receptor tyrosine kinase (RTK) superfamily, and crucially modulates neuronal cell survival, proliferation, and differentiation. In this study, we studied the effect of NGF on the neuronal (rat superior cervical ganglion, SCG) M/KCNQ currents and excitability. As reported before, subpopulation SCG neurons with distinct firing properties could be classified into tonic, phasic-1, and phasic-2 neurons. NGF inhibited M/KCNQ currents by similar proportion in all three classes of SCG neurons but increased the excitability only significantly in tonic SCG neurons. The effect of NGF on excitability correlated with a smaller M-current density in tonic neurons. The present study indicates that NGF is an M/KCNQ channel modulator and the characteristic modulation of the neuronal excitability by NGF may have important physiological implications.
Collapse
Affiliation(s)
- Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China 050017
| | | | | | | | | | | | | |
Collapse
|
24
|
Bloom HL. Beyond beta-blockade: Nerve growth factor and arrhythmia. Heart Rhythm 2007; 4:1214-5. [PMID: 17765624 DOI: 10.1016/j.hrthm.2007.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Indexed: 11/20/2022]
|
25
|
Jia Q, Jia Z, Zhao Z, Liu B, Liang H, Zhang H. Activation of epidermal growth factor receptor inhibits KCNQ2/3 current through two distinct pathways: membrane PtdIns(4,5)P2 hydrolysis and channel phosphorylation. J Neurosci 2007; 27:2503-12. [PMID: 17344388 PMCID: PMC6672518 DOI: 10.1523/jneurosci.2911-06.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
KCNQ2/3 currents are the molecular basis of the neuronal M currents that play a critical role in neuron excitability. Many neurotransmitters modulate M/KCNQ currents through their G-protein-coupled receptors. Membrane PtdIns(4,5)P2 hydrolysis and channel phosphorylation are two mechanisms that have been proposed for modulation of KCNQ2/3 currents. In this study, we studied regulation of KCNQ2/3 currents by the epidermal growth factor (EGF) receptor, a member of another family of membrane receptors, receptor tyrosine kinases. We demonstrate here that EGF induces biphasic inhibition of KCNQ2/3 currents in human embryonic kidney 293 cells and in rat superior cervical ganglia neurons, an initial fast inhibition and a later slow inhibition. Additional studies indicate that the early and late inhibitions resulted from PtdIns(4,5)P2 hydrolysis and tyrosine phosphorylation, respectively. We further demonstrate that these two processes are mutually dependent. This study indicates that EGF is a potent modulator of M/KCNQ currents and provides a new dimension to the understanding of the modulation of these channels.
Collapse
Affiliation(s)
- Qingzhong Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhiying Zhao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Boyi Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Huiling Liang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|