1
|
Hayes JA, Mendenhall JL, Brush BR, Del Negro CA. 4-Aminopyridine-sensitive outward currents in preBötzinger complex neurons influence respiratory rhythm generation in neonatal mice. J Physiol 2008; 586:1921-36. [PMID: 18258659 DOI: 10.1113/jphysiol.2008.150946] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We measured a low-threshold, inactivating K+ current, i.e. A-current (I(A)), in respiratory neurons of the preBötzinger complex (preBötC) in rhythmically active slice preparations from neonatal C57BL/6 mice. The majority of inspiratory neurons (21/34 = 61.8%), but not expiratory neurons (1/8 = 12.5%), expressed I(A). In whole-cell and somatic outside-out patches I(A) activated at -60 mV (half-activation voltage measured -16.3 mV) and only fully inactivated above -40 mV (half-inactivation voltage measured -85.6 mV), indicating that I(A) can influence membrane trajectory at baseline voltages during respiratory rhythm generation in vitro. 4-Aminopyridine (4-AP, 2 mm) attenuated I(A) in both whole-cell and somatic outside-out patches. In the context of rhythmic network activity, 4-AP caused irregular respiratory-related motor output on XII nerves and disrupted rhythmogenesis as detected with whole-cell and field recordings in the preBötC. Whole-cell current-clamp recordings showed that 4-AP changed the envelope of depolarization underlying inspiratory bursts (i.e. inspiratory drive potentials) from an incrementing pattern to a decrementing pattern during rhythm generation and abolished current pulse-induced delayed excitation. These data suggest that I(A) opposes excitatory synaptic depolarizations at baseline voltages of approximately -60 mV and influences the inspiratory burst pattern. We propose that I(A) promotes orderly recruitment of constituent rhythmogenic neurons by minimizing the activity of these neurons until they receive massive coincident synaptic input, which reduces the periodic fluctuations of inspiratory activity.
Collapse
Affiliation(s)
- John A Hayes
- Department of Applied Science, McGlothlin-Street Hall, Room 318, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | | | | | |
Collapse
|
2
|
Molineux ML, Fernandez FR, Mehaffey WH, Turner RW. A-type and T-type currents interact to produce a novel spike latency-voltage relationship in cerebellar stellate cells. J Neurosci 2006; 25:10863-73. [PMID: 16306399 PMCID: PMC6725871 DOI: 10.1523/jneurosci.3436-05.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modification of first-spike latencies by low-threshold and inactivating K+ currents (IA) have important implications in neuronal coding and synaptic integration. To date, cells in which first-spike latency characteristics have been analyzed have shown that increased hyperpolarization results in longer first-spike latencies, producing a monotonic relationship between first-spike latency and membrane voltage. Previous work has established that cerebellar stellate cells express members of the Kv4 potassium channel subfamily, which underlie IA in many central neurons. Spike timing in stellate cells could be particularly important to cerebellar output, because the discharge of even single spikes can significantly delay spike discharge in postsynaptic Purkinje cells. In the present work, we studied the first-spike latency characteristics of stellate cells. We show that first-spike latency is nonmonotonic, such that intermediate levels of prehyperpolarization produce the longest spike latencies, whereas greater hyperpolarization or depolarization reduces spike latency. Moreover, the range of first-spike latency values can be substantial in spanning 20-128 ms with preceding membrane shifts of <10 mV. Using patch clamp and modeling, we illustrate that spike latency characteristics are the product of an interplay between IA and low-threshold calcium current (IT) that requires a steady-state difference in the inactivation parameters of the currents. Furthermore, we show that the unique first-spike latency characteristics of stellate cells have important implications for the integration of coincident IPSPs and EPSPs, such that inhibition can shift first-spike latency to differentially modulate the probability of firing.
Collapse
Affiliation(s)
- Michael L Molineux
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
3
|
Heidel E, Pflüger HJ. Ion currents and spiking properties of identified subtypes of locust octopaminergic dorsal unpaired median neurons. Eur J Neurosci 2006; 23:1189-206. [PMID: 16553782 DOI: 10.1111/j.1460-9568.2006.04655.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efferent dorsal unpaired median (DUM) neurons are key elements of an insect neuromodulatory system. In locusts, subpopulations of DUM neurons mediate octopaminergic modulation at specific targets depending on their activity during different behaviours. This study investigates whether in addition to synaptic inputs, activity in DUM neurons depends on intrinsic membrane properties. Intracellular in situ recordings and whole-cell patch-clamp recordings from freshly isolated somata characterize somatic voltage signals and the underlying ion currents of individual subtypes of DUM neurons identified beforehand by a vital retrograde tracing technique. Na(+), Ca(2+), K(+) currents and a hyperpolarization-activated (I(h)) current are described in detail for their (in-)activation properties and subtype-specific current densities. In addition, a Ca(2+)-dependent K(+) current is demonstrated by its sensitivity to cadmium and charybdotoxin. This complex current composition determines somatic excitability similar in all subtypes of DUM neurons. Both Na(+) and Ca(2+) currents generate overshooting somatic action potentials. Repolarizing K(+) currents, in particular transient, subthreshold-activating A-currents, regulate the firing frequency and cause delayed excitation by shunting depolarizing input. An opposing hyperpolarization-activated (I(h)) current contributes to the resting membrane potential and induces rebound activity after prolonged inhibition phases. A quantitative analysis reveals subtype-specific differences in current densities with more inhibitory I(K) but less depolarizing I(Na) and I(h) - at least in DUM3 neurons promoting a reliable suppression of their activity as observed during behaviour. In contrast, DUM neurons that are easily activated during behaviour (DUM3,4,5 and DUMETi) express less I(K) and a pronounced depolarizing I(h) promoting excitability.
Collapse
Affiliation(s)
- E Heidel
- Department of Biology/Chemistry/Pharmacy, Institute of Biology, Neurobiology Unit, Free University of Berlin, Germany
| | | |
Collapse
|
4
|
Choi JC, Park D, Griffith LC. Electrophysiological and Morphological Characterization of Identified Motor Neurons in theDrosophilaThird Instar Larva Central Nervous System. J Neurophysiol 2004; 91:2353-65. [PMID: 14695352 DOI: 10.1152/jn.01115.2003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used dye fills and electrophysiological recordings to identify and characterize a cluster of motor neurons in the third instar larval ventral ganglion. This cluster of neurons is similar in position to the well-studied embryonic RP neurons. Dye fills of larval dorsomedial neurons demonstrate that individual neurons within the cluster can be reproducibly identified by observing their muscle targets and bouton morphology. The terminal targets of these five neurons are body wall muscles 6/7, 1, 14, and 30 and the intersegmental nerve (ISN) terminal muscles (1, 2, 3, 4, 9, 10, 19, 20). All cells except the ISN neuron, which has a type Is ending, display type Ib boutons. Two of these neurons appear to be identical to the embryonic RP3 and aCC cells, which define the most proximal and distal innervations within a hemisegment. The targets of the other neurons in the larval dorsomedial cluster do not correspond to embryonic targets of the neurons in the RP cluster, suggesting rewiring of this circuit during early larval stages. Electrophysiological studies of the five neurons in current clamp revealed that type Is neurons have a longer delay in the appearance of the first spike compared with type Ib neurons. Genetic, biophysical, and pharmacological studies in current and voltage clamp show this delay is controlled by the kinetics and voltage sensitivity of inactivation of a current whose properties suggest that it may be the Shal IAcurrent. The combination of genetic identification and whole cell recording allows us to directly explore the cellular substrates of neural and locomotor behavior in an intact system.
Collapse
Affiliation(s)
- James C Choi
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110,USA
| | | | | |
Collapse
|
5
|
Schneider SP. Spike frequency adaptation and signaling properties of identified neurons in rodent deep spinal dorsal horn. J Neurophysiol 2003; 90:245-58. [PMID: 12634280 DOI: 10.1152/jn.01012.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using whole cell recordings, I analyzed the intrinsic discharge properties for 285 neurons in Rexed's laminae III-V of isolated hamster spinal cord preparations. Neurons were characterized by their responses to step-wise and ramp-hold depolarizing current applied through the recording pipettes. Tonic cells (133/285; 47%) fired repetitively during step-wise current application. Firing decayed linearly (-0.14 to -4.3 imp . s(-1) . s(-1)) or was bimodal, with an initial exponential phase (tau approximately 450 ms) followed by a linear decline (-0.02 to -6.3 imp . s(-1) . s(-1)); discharge frequency was unrelated to current trajectory. Phasic-firing cells (108/285; 38%) responded with a burst discharge having an initial rapid, exponential decrease (tau approximately 30 ms) and subsequent linear decline (-1 to -78 imp . s(-1) . s(-1)). Phasic cells were activated preferentially by fast current ramps (slope, 70 pA/s-2.2 nA/s) with the number and frequency of impulses increasing with current slope. Delayed-firing cells (44/285; 15%), responded to current steps with an accelerating firing following a substantial latent period (0.5-4 s) and discharged during current ramps with slopes less than approximately 100 pA/s. Intracellular staining revealed a significant association between electrophysiological profile and neuronal morphology. A majority of presumed projection cells (22/30; 73%) exhibited tonic firing to step-wise activation. The preponderance of phasic and delayed firing cells, 93% (42/45) and 71% (12/17), respectively, were interneurons with local or intersegmental terminations. Differential sensitivity to static and time-varying components of membrane current suggest differences in neuronal signaling properties that may have important implications for integration of mechanosensory information in the deep spinal dorsal horn.
Collapse
Affiliation(s)
- S P Schneider
- Department of Physiology and Neuroscience Program, Michigan State University, E. Lansing, Michigan 48824-3320, USA.
| |
Collapse
|
6
|
Nolen TG, Johnson PM. Defensive inking in Aplysia spp: multiple episodes of ink secretion and the adaptive use of a limited chemical resource. J Exp Biol 2001; 204:1257-68. [PMID: 11249836 DOI: 10.1242/jeb.204.7.1257] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The seahare Aplysia spp. extracts many of its defensive chemicals from its red seaweed diet, including its purple ink, which is an effective deterrent against predators such as anemones and crabs. It is believed that the inking behavior is a high-threshold, all-or-none fixed act that nearly completely depletes the seahare of its ink supply. If a seahare depletes its gland of ink, it must seek out a source of red seaweed and then feed for at least 2 days to replenish its ink supply. This suggests that the animal would not be able to deploy ink more than once in rapid succession in response to successive attacks from one or more predators. However, we found that Aplysia spp. can secrete ink in response to three or more successive stimulations with (i) anemone tentacles, (ii) a mechanical stimulus, consisting of grabbing and lifting the animal from the substratum, or (iii) a noxious electric shock. A spectro-photometric measure of ink secretion showed that only approximately 48 % of the gland's releasable ink reserves are deployed initially. Thus, deployment of this defensive chemical is not strictly all-or-nothing, although the trigger mechanism is. Moreover, the animal tends to secrete a relatively fixed proportion (30–50 %) of its available ink reserves even after its gland has been depleted to approximately half its initial content. Since an animal need only use a proportion of its ink reserves to deter an attacker effectively, the inking behavior is adaptive in its economical use of a limited resource.
Collapse
Affiliation(s)
- T G Nolen
- Department of Biology, State University of New York, New Paltz, NY 12561, USA.
| | | |
Collapse
|
7
|
Delord B, Baraduc P, Costalat R, Burnod Y, Guigon E. A model study of cellular short-term memory produced by slowly inactivating potassium conductances. J Comput Neurosci 2000; 8:251-73. [PMID: 10809015 DOI: 10.1023/a:1008902110844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We analyzed the cellular short-term memory effects induced by a slowly inactivating potassium (Ks) conductance using a biophysical model of a neuron. We first described latency-to-first-spike and temporal changes in firing frequency as a function of parameters of the model, injected current and prior history of the neuron (deinactivation level) under current clamp. This provided a complete set of properties describing the Ks conductance in a neuron. We then showed that the action of the Ks conductance is not generally appropriate for controlling latency-to-first-spike under random synaptic stimulation. However, reliable latencies were found when neuronal population computation was used. Ks inactivation was found to control the rate of convergence to steady-state discharge behavior and to allow frequency to increase at variable rates in sets of synaptically connected neurons. These results suggest that inactivation of the Ks conductance can have a reliable influence on the behavior of neuronal populations under real physiological conditions.
Collapse
Affiliation(s)
- B Delord
- INSERM U483, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
8
|
Abstract
Although in vitro analyses of long-term changes in the sensorimotor connection of Aplysia have been used extensively to understand long-term sensitization, relatively little is known about the ways in which the connection is modified by learning in vivo. Moreover, sites other than the sensory neurons might be modified as well. In this paper, several different biophysical properties of sensory neurons, motor neurons, and LPl17, an identified interneuron, were examined. Membrane properties of sensory neurons, which were expressed as increased excitability and increased spike afterdepolarization, were affected by the training. The biophysical properties of motor neurons also were affected by training, resulting in hyperpolarization of the resting membrane potential and a decrease in spike threshold. These results suggest that motor neurons are potential loci for storage of the memory in sensitization. The strength of the connection between sensory and motor neurons was affected by the training, although the connection between LPl17 and the motor neuron was unaffected. Biophysical properties of LPl17 were unaffected by training. The results emphasize the importance of plasticity at sensory-motor synapses and are consistent with the idea that there are multiple sites of plasticity distributed throughout the nervous system.
Collapse
|
9
|
Hurwitz I, Kupfermann I, Susswein AJ. Different roles of neurons B63 and B34 that are active during the protraction phase of buccal motor programs in Aplysia californica. J Neurophysiol 1997; 78:1305-19. [PMID: 9310422 DOI: 10.1152/jn.1997.78.3.1305] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The buccal ganglion of Aplysia contains a central pattern generator (CPG) that organizes sequences of radula protraction and retraction during food ingestion and egestion. Neurons B63 and B34 have access to, or are elements of, the CPG. Both neurons are depolarized along with B31/B32 during the protraction phase of buccal motor programs. Both cells excite the contralateral B31/B32 neurons and inhibit B64 and other neurons active during the retraction phase. B63 and B34 also both have an axon exiting the buccal ganglia via the contralateral cerebrobuccal connective. Despite their similarities, B63 and B34 differ in a number of properties, which reflects their different functions. B63 fires during both ingestion and egestion-like buccal motor programs, whereas B34 fires only during egestion-like programs. The bilateral B63 neurons, along with the bilateral B31 and B32 neurons, act as a single functional unit. Sufficient depolarization of any of these neurons activates them all and initiates a buccal motor program. B63 is electrically coupled to both the ipsilateral and the contralateral B31/B32 neurons but monosynaptically excites the contralateral neurons with a mixed electrical and chemical excitatory postsynaptic potential (EPSP). Positive feedback caused by electrical and chemical EPSPs between B63 and B31/B32 contributes to the sustained depolarization in B31/B32 and the firing of B63 during the protraction phase of a buccal motor program. B34 is excited during the protraction phase of all buccal motor programs, but, unlike B63, it does not always reach firing threshold. The neuron fires in response to current injection only after it is depolarized for 1-2 s or after preceding buccal motor programs in which it is depolarized. Firing of B34 produces facilitating EPSPs in the contralateral B31/B32 and B63 neurons and can initiate a buccal motor program. Firing in B34 is strongly correlated with firing in the B61/B62 motor neurons, which innervate the muscle (I2) responsible for much of protraction. B34 monosynaptically excites these motor neurons. B34 firing is also correlated with firing in motor neuron B8 during the protraction phase of a buccal motor program. B8 innervates the I4 radula closer muscle, which in egestion movements is active during protraction and in ingestion movements is active during retraction. B34 has a mixed, but predominantly excitatory, effect on B8 via a slow conductance-decrease EPSP. Thus firing in B34 leads to amplification of radula protraction that is coupled with radula closing, a pattern characteristic of egestion.
Collapse
Affiliation(s)
- I Hurwitz
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
10
|
Sugita S, Baxter DA, Byrne JH. Differential effects of 4-aminopyridine, serotonin, and phorbol esters on facilitation of sensorimotor connections in Aplysia. J Neurophysiol 1997; 77:177-85. [PMID: 9120559 DOI: 10.1152/jn.1997.77.1.177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Serotonergic modulation of sensory neurons in Aplysia and their synaptic connections with follower cells has been used extensively as a model system with which to study mechanisms underlying neuronal plasticity. Serotonin (5-HT)-induced facilitation of sensorimotor connections is due to at least two processes: a process related to the broadening of presynaptic action potentials and a spike-duration-independent (SDI) process that may involve mobilization of transmitter. We have examined the relationship between spike broadening and synaptic facilitation of relatively nondepressed sensorimotor connections in the intact pleural-pedal ganglia. Previously, 5-HT-induced spike broadening in the sensory neuron was shown to be primarily due to the modulation of a voltage-dependent K+ current (Ik.v). Low concentrations (20-30 microM) of 4-aminopyridine (4-AP) were used to rather selectively block Ik.v. 4-AP increased spike duration in the sensory neuron and the excitatory postsynaptic potential (EPSP) in the motor neuron. The temporal development of 4-AP-induced spike broadening closely parallel that of synaptic facilitation. Thus spike broadening via the reduction of Ik.v can directly contribute to synaptic facilitation. The relationship between spike broadening induced by 5-HT (10 microM) and enhancement of the EPSP was also analyzed. We found that components of 5-HT-induced synaptic facilitation preceded the development of 5-HT-induced spike broadening. The comparison between the results of 4-AP and 5-HT revealed that the SDI processes made an important contribution to the rapid development of 5-HT-induced synaptic facilitation and that spike broadening made an important contribution to its maintenance. The SDI process and a slowly developing component of 5-HT-induced spike broadening are mediated, at least in part, by the activation of protein kinase C (PKC). Application of phorbol 12,13-diacetate (PDAc), an activator of PKC, partially mimicked the effects of 5-HT on spike duration and the EPSP. PDAc-induced enhancement of the EPSP preceded the slower development of PDAc-induced spike broadening. Like 5-HT, PDAc enhanced the EPSP via both spike broadening and the SDI processes. In addition, a 15-min exposure to PDAc occluded 5-HT-induced enhancement of the EPSP, suggesting that PKC and 5-HT engage similar or overlapping mechanisms. On the basis of these results and others, we propose a time-dependent hypothesis for the 5-HT-induced synaptic facilitation of nondepressed synapses, in which multiple second-messenger/protein kinase systems mediate the actions of 5-HT via both spike-duration-dependent and SDI processes.
Collapse
Affiliation(s)
- S Sugita
- Department of Neurobiology and Anatomy, University of Texas Medical School-Houston 77225, USA
| | | | | |
Collapse
|
11
|
The role of K+ currents in frequency-dependent spike broadening in Aplysia R20 neurons: a dynamic-clamp analysis. J Neurosci 1996. [PMID: 8753871 DOI: 10.1523/jneurosci.16-13-04089.1996] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The R20 neurons of Aplysia exhibit frequency-dependent spike broadening. Previously, we had used two-electrode voltage clamp to examine the mechanisms of this spike broadening (Ma and Koester, 1995). We identified three K+ currents that mediate action-potential repolarization: a transient A-type K+ current (I(Adepol)), a delayed rectifier current (IK-V), and a Ca(2+)-sensitive K+ current(IK-CA). A major constraint in that study was the lack of completely selective blockers for I(Adepol) and I(K-V), resulting in an inability to assess directly the effects of their activation and inactivation on spike broadening. In the present study, the dynamic-clamp technique, which employs computer simulation to inject biologically realistic currents into a cell under current-clamp conditions (Sharp et al., 1993a,b), was used either to block I(Adepol) or I(K-V) or to modify their inactivation properties. The data in this paper, together with earlier results, lead to the following hypothesis for the mechanism of spike broadening in the R20 cells. As the spike train progresses, the primary responsibility for spike repolarization gradually shifts from I(Adepol) to I(K-V) to I(K-Ca). This sequence can be explained on the basis of the relative rates of activation and inactivation of each current with respect to the constantly changing spike durations, the cumulative inactivation of I(Adepol) and I(K-V), and the progressive potentiation of I(K-Ca). Positive feedback interactions between spike broadening and inactivation contribute to the cumulative inactivation of both I(Adepol) and I(K-V). The data also illustrate that when two or more currents have similar driving forces and partially overlapping activation characteristics, selectively blocking one current under current-clamp conditions can lead to a significant underestimate of its normal physiological importance.
Collapse
|
12
|
Stopfer M, Chen X, Carew TJ. Evoked ink release in Aplysia produces inhibition of the siphon withdrawal reflex in neighboring conspecifics. BEHAVIORAL AND NEURAL BIOLOGY 1993; 60:196-204. [PMID: 8297315 DOI: 10.1016/0163-1047(93)90352-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aplysia californica exhibit a dramatic defensive reaction, the release of a cloud of dark purple ink, in response to noxious stimuli. Although the neural control of this behavior has been studied rather extensively, the functional significance of the inking response is not well understood. We have found that ink released by animals that are subjected to noxious stimuli rapidly induces inhibition of the tail-elicited siphon withdrawal reflex in neighboring Aplysia. Further experiments indicated that the inhibitor is the ink itself, and not some other substance released by the donor animals. Finally, we examined whether ink-induced inhibition of siphon withdrawal might be a secondary consequence of an elevated competing response such as increased locomotion. We found that locomotion is not affected by the concentrations of ink we employed, indicating that the ink probably modulates the withdrawal reflex directly. Because the neural circuits responsible for both tail-elicited siphon withdrawal and the inking response have already been partly delineated, one can now bring the neurobiological advantages of Aplysia to bear on the ethologically important issue of signaling between conspecifics.
Collapse
Affiliation(s)
- M Stopfer
- Department of Psychology, Yale University, New Haven, Connecticut 06520-8205
| | | | | |
Collapse
|
13
|
Shapiro E, Brown SD, Saltiel AR, Schwartz JH. Short-term action of insulin on Aplysia neurons: generation of a possible novel modulator of ion channels. JOURNAL OF NEUROBIOLOGY 1991; 22:55-62. [PMID: 1707088 DOI: 10.1002/neu.480220106] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In mollusks as in other animals, peptides can act as hormones, growth factors, and neurotransmitters. The presence of insulin in vertebrate brain as well as its actions on nerve cells led us to examine the electrophysiological effects of the mammalian hormone on Aplysia neurons. Application of insulin extracellularly causes hyperpolarization of L14 and L10, identified neurons of the abdominal ganglion. This hyperpolarization is associated with a decreased membrane conductance that reverses at -35 mV. We also injected inositol phosphate glycan (IPG) into the identified neurons. This complex sugar, which was purified from rat liver and which is a putative second messenger for insulin in nonneural vertebrate cells (Saltiel and Cuatrecasas, 1986; Saltiel, Osterman, and Darnell, 1988), causes hyperpolarization with decreased membrane conductance in L14 and L10 similar to the effects of insulin. Furthermore, exposure of isolated ganglia to insulin results in the generation of IPG with a compensating decrease in its glycosyl-phosphatidylinositol precursor. We suggest that, in addition to its other roles, insulin may function as a neuropeptide transmitter using IPG as a second messenger.
Collapse
Affiliation(s)
- E Shapiro
- Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
14
|
Piomelli D, Feinmark SJ, Shapiro E, Schwartz JH. 12-keto-eicosatetraenoic acid. A biologically active eicosanoid in the nervous system of Aplysia. Ann N Y Acad Sci 1989; 559:208-18. [PMID: 2774398 DOI: 10.1111/j.1749-6632.1989.tb22610.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The lipoxygenase product 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12-HPETE), stimulates the synaptic response produced by the modulatory transmitter histamine and the neuroactive peptide Phe-Met-Arg-Phe-amide (FMRFamide) in identified neurons of the marine mollusk Aplysia californica. The 12-lipoxygenase pathway has not yet been fully characterized, but 12-HPETE is known to be metabolized further. Therefore, we began to search for other metabolites in order to investigate whether the actions of 12-HPETE might require its conversion to other active products. We have identified 12-keto-5,8,10,14-eicosatetraenoic acid (12-KETE) as a metabolite of 12-HPETE formed by Aplysia nervous tissue. 12-KETE was identified in incubations of the tissue with arachidonic acid using HPLC, UV spectrometry, and gas-chromatography/mass spectrometry. [3H]12-KETE is formed from endogenous lipid stores in nervous tissue, labeled with [3H]arachidonic acid upon stimulation by application of histamine. In L14 and L10 cells, identified neurons in the abdominal ganglion, applications of 12-KETE elicit changes in membrane potential similar to those evoked by histamine. Another metabolite of 12-HPETE, 12(s)-hydroxy-5,8,10,14-eicosatetraenoic acid [12(S)-HETE], is inactive. These results support the hypothesis that 12-HPETE and its metabolite, 12-KETE, participate in transduction of histamine responses in Aplysia neurons.
Collapse
Affiliation(s)
- D Piomelli
- Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
15
|
Krontiris-Litowitz JK, Cooper BF, Walters ET. Humoral factors released during trauma of Aplysia body wall. I. Body wall contraction, cardiac modulation, and central reflex suppression. J Comp Physiol B 1989; 159:211-23. [PMID: 2760287 DOI: 10.1007/bf00691742] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Mechanical or electrical stimulation of isolated sections of body wall produced contractions that were graded with the intensity of the stimulus. Injury of body wall with shallow incisions produced extremely persistent contractions. 2. Long-lasting contraction of isolated body wall was also produced by brief application of "stimulated body wall wash" (SBW), sea water which was first washed through another section of body wall subjected to intense mechanical or electrical stimulation. Contractions were produced by SBW diluted to concentrations as low as 1% of the initial concentration. Contractions produced by prolonged application of SBW showed little fatigue, tachyphylaxis, or desensitization. 3. SBW caused contraction of isolated sections of body wall from all regions of the body, including tail, parapodia, siphon, purple gland, rhinophores, and anterior tentacles. SBW also caused contraction of isolated lateral columellar muscle and of the gill. 4. 30 mM CoCl2 blocked the release of contractile factors into electrically stimulated body wall and reduced but did not abolish contractile responses of unstimulated body wall to perfused SBW. SBW contractions were unchanged by disconnection of the perfused tissue to the CNS. 5. Hemolymph collected from the neck of an intact donor following strong electrical stimulation of the tail or excision of a parapodium ('stimulated hemolymphh, SHL) caused long-lasting contractions which were larger than those produced by control hemolymph (CHL) collected prior to stimulation of the donor. 6. Similarities between body wall contractions produced by SHL and by SBW, including their occurrence in 30 mM CoCl2, suggest that some of the contractile activity in SHL may be directly released from traumatized body wall. 7. SHL caused significantly greater cardioacceleration of the isolated heart than did CHL. Similarities between the cardioacceleration produced by SHL and by SBW suggest that a source of cardiac activity in SHL may be traumatized body wall. 8. SBW suppressed the gill-withdrawal reflex when applied selectively to the sheathed or desheathed abdominal ganglion. SBW-induced suppression was associated with significant reduction of evoked spike activity in identified gill motor neurons. SHL collected 1-2 h after noxious stimulation caused weak but significant suppression of the gill-withdrawal reflex when applied to the fully sheathed abdominal ganglion.
Collapse
Affiliation(s)
- J K Krontiris-Litowitz
- Department of Physiology and Cell Biology, University of Texas Medical School, Houston 77225
| | | | | |
Collapse
|
16
|
Abstract
A central aspect of neuronal function is how each nerve cell translated synaptic input into a sequence of action potentials that carry information along the axon, coded as spike frequency. When transduction from a graded depolarizing input to spikes is studied by injecting a depolarizing current, there is often a remarkably long delay to the first action potential, both in mammalian and molluscan neurons. Here, I report that the delayed excitation in rat hippocampal neurons is due to a slowly inactivating potassium current, ID. ID co-exists with other voltage-gated K+ currents, including a fast A current and a slow delayed rectifier current. As ID activates in the subthreshold range, and takes tens of seconds to recover from inactivation, it enables the cell to integrate separate depolarizing inputs over long times. ID also makes the encoding properties of the cell exceedingly sensitive to the prevailing membrane potential.
Collapse
Affiliation(s)
- J F Storm
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794
| |
Collapse
|
17
|
Piomelli D, Feinmark SJ, Shapiro E, Schwartz JH. Formation and biological activity of 12-ketoeicosatetraenoic acid in the nervous system of Aplysia. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37431-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Guthrie PB. Non-linear summation at an identified synapse in Aplysia. Brain Res 1986; 386:364-70. [PMID: 3022884 DOI: 10.1016/0006-8993(86)90173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The degree of non-linear summation of postsynaptic potentials at the RC1-R15 synapse in Aplysia californica was determined. Two independent methods were used to reduce the size of the postsynaptic potential: voltage clamp of the postsynaptic potential and pharmacologic blockade of the postsynaptic receptors. Results from both methods demonstrate that non-linear summation is significant at this synapse. The non-linear correction formula of Stevens produces a reasonable compensation of measured EPSP amplitudes for the contribution of non-linear summation. The experiments also provide additional evidence that all of the variations in EPSP amplitude seen at this synapse are due to changes in the number of postsynaptic channels opened and not due to changes in the non-synaptic membrane properties of R15.
Collapse
|
19
|
Kasai H, Kameyama M, Yamaguchi K, Fukuda J. Single transient K channels in mammalian sensory neurons. Biophys J 1986; 49:1243-7. [PMID: 2424519 PMCID: PMC1329709 DOI: 10.1016/s0006-3495(86)83754-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A single-channel recording of the transient outward current (A-current) was obtained from dorsal root ganglion cells in culture using patch-clamp techniques. Depolarization of the membrane patch elicited pulse like current of a uniform amplitude in an outward direction, of which the unitary conductance was 20 pS. Alteration of extracellular ionic compositions indicated that the charge carriers were K ions. A systematic study was made on the voltage-dependence of the ensemble average current; (a) the activation started at a potential around -60 mV; (b) the time course of the activation was relatively rapid; (c) the channel was completely inactivated at a potential positive to -40 mV. Two time constants (tau f = 100 ms and tau s = 4,000 ms) were detected in the decay of the current indicating that the channels had two different states of inactivation. A convulsant, 4-aminopyridine (4-AP), acted on the channel only from the intracellular side of the membrane. 4-AP (5 mM) reduced not only mean open time (by 50%) but also the single-channel conductance (by 20%). The properties of the channel were independent of Ca ions in the intracellular space.
Collapse
|
20
|
Neary JT. Modulation of ion channels by Ca2+-activated protein phosphorylation: a biochemical mechanism for associative learning. PROGRESS IN BRAIN RESEARCH 1986; 69:91-106. [PMID: 2451841 DOI: 10.1016/s0079-6123(08)61051-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Fowler JC, Partridge LD. The effect of pentylenetetrazol on inward currents of non-bursting neurons and its role in plateau formation. Brain Res 1984; 304:47-58. [PMID: 6331584 DOI: 10.1016/0006-8993(84)90860-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The epileptogenic drug, pentylenetetrazol (PTZ) produces paroxysmal depolarization shifts in molluscan neurons that are similar to PDSs seen at a mammalian epileptic focus. Most research on molluscan neurons indicates that PTZ acts by altering ionic somatic conductances. This study was carried out to investigate the effect of PTZ on inward currents in isolated neurons of the pond snail, Lymnaea stagnalis, and to investigate how these altered currents might lead to the production of PDSs. In concentrations from 10 to 60 mM, PTZ decreased maximum inward current conductance and shifted the inactivation and activation curves to the left with the former shift being consistently greater. There was no change in reversal potential or time constants for activation and inactivation of inward currents. The effects of the PTZ-induced alterations in the inward currents were studied by incorporating them along with alterations of outward currents seen in this and other studies in a computer model for molluscan neuronal firing. The composite model reproduced in large part the intermediate changes in electrical activity seen before the development of the PDS as well as the PDS.
Collapse
|
22
|
Posttetanic Potentiation, Presynaptic Inhibition, and the Modulation of the Free Ca2+ Level in the Presynaptic Terminals. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/978-3-642-69931-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Mat Jais AM, Kerkut GA, Walker RJ. The ionic mechanisms associated with the excitatory response of kainate, L-glutamate, quisqualate, ibotenate, AMPA and methyltetrahydrofolate on leech Retzius cells. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1984; 77:115-26. [PMID: 6141864 DOI: 10.1016/0742-8413(84)90139-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intracellular recordings were made from Retzius cells from segmental ganglia of the leech, Hirudo medicinalis. The ionic mechanisms of the following compounds were examined: L-glutamate, ibotenate, quisqualate, AMPA, kainate, methyltetrahydrofolate and carbachol. All these compounds depolarise and excite Retzius cells. In sodium-free Ringer, the responses to L-glutamate, kainate, ibotenate and AMPA were greatly reduced, the response to quisqualate was reduced, the response to methyltetrahydrofolate was normal while the response to carbachol was abolished. In sodium-free high calcium Ringer the responses to L-glutamate, ibotenate and carbachol were absent, the responses to quisqualate and AMPA greatly reduced, the responses to methyltetrahydrofolate and kainate were normal. The methyltetrahydrofolate and kainate responses in sodium-free high calcium Ringer were greatly reduced on addition of cobalt. All the responses are associated with an increase in conductance, the increase being the largest in the case of kainate. It is concluded that the response to L-glutamate, ibotenate and carbachol are dependent on sodium, the responses to quisqualate and AMPA are mainly sodium dependent, possibly with a small calcium component. The kainate response in normal Ringer is largely sodium dependent but in sodium-free Ringer calcium can completely substitute for sodium. The methyltetrahydrofolate response appears to be sodium independent but at least partly calcium dependent. These studies provide further evidence that L-glutamate and ibotenate act on a common receptor on leech Retzius cells while kainate acts on a separate receptor which can activate a calcium ionophore. It is probable that methyltetrahydrofolate acts on a different ionophore system to kainate. N-Methyl-D-aspartate has no agonist activity on any of these receptors.
Collapse
|
24
|
Walters ET, Byrne JH. Slow depolarization produced by associative conditioning of Aplysia sensory neurons may enhance Ca2+ entry. Brain Res 1983; 280:165-8. [PMID: 6652475 DOI: 10.1016/0006-8993(83)91186-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sensory neurons activated by intracellular stimulation immediately before sensitizing tail shock displayed a slow depolarization after the shock. By contrast, sensory neurons exposed to the effects of tail shock alone or unpaired activation and tail shock showed a slow hyperpolarizing response to the shock. A voltage-sensitive Ca2+ conductance that is activated near the resting potential may be modulated by these opposite effects of associative and non-associative training.
Collapse
|
25
|
Neary JT, Alkon DL. Protein phosphorylation/dephosphorylation and the transient, voltage-dependent potassium conductance in Hermissenda crassicornis. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32153-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Kretz R, Shapiro E, Kandel ER. Post-tetanic potentiation at an identified synapse in Aplysia is correlated with a Ca2+-activated K+ current in the presynaptic neuron: evidence for Ca2+ accumulation. Proc Natl Acad Sci U S A 1982; 79:5430-4. [PMID: 6291044 PMCID: PMC346911 DOI: 10.1073/pnas.79.17.5430] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have examined the presynaptic changes underlying post-tetanic potentiation (PTP) in Aplysia by using voltage-clamp techniques combined with specific pharmacological blocking agents. The amplitude and time course of PTP parallel a slow outward clamp current that we have identified as a Ca2+-activated K+ current. Because this current is proportional to intracellular Ca2+ concentration our findings provide evidence for the "residual Ca2+ hypothesis," according to which PTP is caused by the accumulation of intracellular Ca2+ after tetanus. To obtain further evidence for this mechanism we injected EGTA intracellularly and found that it decreased the duration of both PTP and the Ca2+ -activated K+ current.
Collapse
|
27
|
Belardetti F, Biondi C, Colombaioni L, Brunelli M, Trevisani A. Role of serotonin and cyclic AMP on facilitation of the fast conducting system activity in the leech Hirudo medicinalis. Brain Res 1982; 246:89-103. [PMID: 6289976 DOI: 10.1016/0006-8993(82)90145-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the nervous system of the leech Hirudo medicinalis it has been possible to study short-term plastic changes. Depression and facilitation have been demonstrated in the fast conducting system (FCS) activity; this pathway consists of a chain of electrically linked neurons present in each ganglion. In semi-intact animals or in preparation of nerve cord and segments of body wall, both electrical stimulation of peripheral roots and tactile stimulation of the skin induced, after repetitive stimulation (0.1/s) a prolonged decrement of FCS response. Strong nociceptive stimulation applied onto the head or the body wall produced a sustained facilitation of the waned response. The same potentiation has been observed by perfusing the isolated ganglion with serotonin (5 x 10(-5) M). Such a potentiation is abolished by preincubation with methysergide, an antagonist of serotonin, and with imidazole, a cAMP-phosphodiesterase activator. Such an effect is mimicked by an analog of cAMP, db-cAMP. Simultaneous recordings of both T neurons (intracellularly) and FCS firing discharge showed that, during FCS response decrement, the T cell activity remained unchanged and no modification of conductance occurred, excluding therefore a detectable involvement of sensory neurons in the depression. These results suggest that short-term plastic changes of the FCS of the leech are due to a prolonged potentiation of synaptic transmission as a result of serotonin-mediated increase in cAMP.
Collapse
|
28
|
Okada Y, Tsuchiya W, Yada T. Calcium channel and calcium pump involved in oscillatory hyperpolarizing responses of L-strain mouse fibroblasts. J Physiol 1982; 327:449-61. [PMID: 6288929 PMCID: PMC1225119 DOI: 10.1113/jphysiol.1982.sp014242] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1. In fibroblastic L cells, spontaneously repeated hyperpolarizing responses (oscillation of membrane potential) and hyperpolarizing responses evoked by electrical stimuli were suppressed by the external application of a K(+) channel blocker, nonyltriethylammonium (C(9)). This hydrophobic TEA-analogue also inhibited the hyperpolarization induced by intracellular Ca(2+) injection.2. Quinine or quinidine, known inhibitors of the Ca(2+)-activated K(+) channel of red cells, instantaneously inhibited these hyperpolarizations. Thus, these hyperpolarizations are likely to be caused by the operation of Ca(2+)-sensitive K(+) channels.3. Azide, which is known to inhibit the mitochondrial Ca(2+) uptake in fibroblasts, and caffeine, dantrolene Na and oxalate, which affect the microsomal Ca(2+) transport, did not exert any effects upon the electrical potential profiles.4. On the other hand, Ca(2+) channel blockers (nifedipine, D 600 and Co(2+)) suppressed the hyperpolarizing responses, but not the hyperpolarizations produced by intracellular Ca(2+) injection, suggesting that the calcium ions responsible for the hyperpolarizing responses are mainly derived from outside the cell through Ca(2+) channels.5. Flavones of plant origin, which are known to inhibit Ca(2+)-ATPase, prolonged the duration of the hyperpolarizing phase of the oscillation or produced a sustained hyperpolarization.6. It is concluded that the Ca(2+) channel and the Ca(2+) pump play essential roles in the generation of the hyperpolarizing response and of the membrane potential oscillation in L cells, and that these hyperpolarizations are brought about by a transient elevation of cytosolic Ca(2+) level which, in turn, activates Ca(2+)-dependent K(+) channels.
Collapse
|
29
|
Byrne JH. Simulation of the neural activity underlying a short-term modification of inking behavior in aplysia. Brain Res 1981; 204:200-3. [PMID: 7248747 DOI: 10.1016/0006-8993(81)90664-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Carew and Kandel (1977) found that weak stimuli to the head or siphon fail to elicit the release of ink. When paired with each other, however, the second of the two leads to the release of ink. The present paper quantifies and simulates the neural events which underlie this short-term modification of the behavior. Noxious stimuli to the intact animal were mimicked by delivering trains of electrical stimuli to the connectives (conditioning input) and siphon nerve (test input) which drive the ink gland motor neurons located within the abdominal ganglion. Estimates of the synaptic conductance and equilibrium potential during the conditioning and test inputs were made and used to drive a previously developed Hodgkin-Huxley model of the ink motor neurons. The experimental and simulated results are in good agreement. Activation of one stimulus pathway augments or facilitates the ability of the other pathway to fire the ink motor neurons. The behavioral modification is causally related to a sustained synaptic current activated by the conditioning stimulus.
Collapse
|
30
|
Salkoff L, Wyman R. Facilitation of membrane electrical excitability in Drosophila. Proc Natl Acad Sci U S A 1980; 77:6216-20. [PMID: 6255482 PMCID: PMC350246 DOI: 10.1073/pnas.77.10.6216] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Prior electrical activity in the indirect flight muscles of Drosophila facilitates membrane excitability. The mechanism of facilitation involves the inactivation of an early, fast, transient outward current by prior membrane depolarizaton. In the facilitated state the calcium-dependent spike-like response has a decreased current and voltage threshold. The facilitated state persists for 1.5 sec after a membrane active response. A single nerve-driven spike is sufficient to facilitate membrane excitability.
Collapse
|
31
|
Shapiro E, Castellucci VF, Kandel ER. Presynaptic membrane potential affects transmitter release in an identified neuron in Aplysia by modulating the Ca2+ and K+ currents. Proc Natl Acad Sci U S A 1980; 77:629-33. [PMID: 6244571 PMCID: PMC348328 DOI: 10.1073/pnas.77.1.629] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have examined the relationships between the modulation of transmitter release and of specific ionic currents by membrane potential in the cholinergic interneuron L10 of the abdominal ganglion of Aplysia californica. The presynaptic cell body was voltage-clamped under various pharmacological conditions and transmitter release from the terminals was assayed simultaneously by recording the synaptic potentials in the postsynaptic cell. When cell L10 was voltage-clamped from a holding potential of -60 mV in the presence of tetrodotoxin, graded transmitter release was evoked by depolarizing command pulses in the membrane voltage range (-35 mV to + 10 mV) in which the Ca(2+) current was also increasing. Depolarizing the holding potential of L10 results in increased transmitter output. Two ionic mechanisms contribute to this form of plasticity. First, depolarization inactivates some K(+) channels so that depolarizing command pulses recruit a smaller K(+) current. In unclamped cells the decreased K(+) conductance causes spike-broadening and increased influx of Ca(2+) during each spike. Second, small depolarizations around resting potential (-55 mV to -35 mV) activate a steady-state Ca(2+) current that also contributes to the modulation of transmitter release, because, even with most presynaptic K(+) currents blocked pharmacologically, depolarizing the holding potential still increases transmitter release. In contrast to the steady-state Ca(2+) current, the transient inward Ca(2+) current evoked by depolarizing clamp steps is relatively unchanged from various holding potentials.
Collapse
|