1
|
Susnoschi Luca I, Vuckovic A. Spinal and corticospinal excitability changes with voluntary modulation of motor cortex oscillations. Neuroimage 2025; 311:121156. [PMID: 40188522 DOI: 10.1016/j.neuroimage.2025.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/08/2025] Open
Abstract
AIM The aim of this study was to investigate the effects of EEG neurofeedback (NF)-induced modulation of sensorimotor alpha (i.e., mu) rhythm on spinal and corticospinal tract (CST) excitability. METHODS Forty-three healthy volunteers participated in 3 sessions of EEG-NF for upregulation (N=24) or downregulation (N=19) of individual alpha oscillations at central location Cz. Spinal excitability was studied before and during NF using H-reflex of the soleus muscle, and CST excitability was tested before and after NF, through Motor-Evoked Potential (MEP) of the tibialis anterior muscle. Mu rhythm was extracted using current source density. Differences in MEP and H-reflex before and during/after NF were analysed using repeated measures analysis. The relationship with motor cortexcortical excitability was estimated through linear regression between change in MEP/H-reflex, and change in power of mu rhythm and the upper portion of mu rhythm, muh. RESULTS CST excitability changes were significantly correlated to change in muh (p-value < 0.044, |r|>0.42), while spinal excitability changes were correlated to broad mu power modulation (p-value < 0.04, |r|> 0.43). While no distinct effect of NF on spinal versus CST excitability was found, the correlations indicate an inverted U-shape relationship between cortical and subcortical excitability. The trends of the correlations between spinal/CST excitability change and EEG power change were preserved when participants were grouped by success at NF task, and by mu modulation outcome, indicating that the net effect of power change at Cz weighs more than the task the participants attempted to accomplish. CONCLUSIONS The consistent direction of mu power correlation with both MEP, tested after NF, and H-reflex, tested during NF, indicates that modifications in mu activity are associated with spinal and CST adaptations lasting beyond the NF session, evidencing neuroplasticity. Together with the inverted U-shape relationship found between amplitude of mu modulation and spinal/CST excitability change, the results provide support for further research and clinical implementation of NF to induce CNS plasticity, a prerequisite for effective neural rehabilitation.
Collapse
|
2
|
Therkildsen ER, Lorentzen J, Perez MA, Nielsen JB. Evaluation of spasticity: IFCN Handbook Chapter. Clin Neurophysiol 2025; 173:1-23. [PMID: 40068367 DOI: 10.1016/j.clinph.2025.02.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025]
Abstract
There is no generally accepted definition of spasticity, but hyperexcitable stretch reflexes, exaggerated tendon jerks, clonus, spasms, cramps, increased resistance to passive joint movement, sustained involuntary muscle activity and aberrant muscle activation, including co-contraction of antagonist muscles are all signs and symptoms which are usually associated clinically to the term spasticity. This review describes how biomechanical and electrophysiological techniques may be used to provide quantitative and objective measures of each of these signs and symptoms. The review further describes how neurophysiological techniques may be used to evaluate pathophysiological changes in spinal motor control mechanisms. It is emphasized that understanding the pathophysiology and distinguishing the specific signs and symptoms associated with spasticity, using objective, valid, and reproducible measurements, is essential for providing optimal therapy.
Collapse
Affiliation(s)
- Eva Rudjord Therkildsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; Department of Pediatrics, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 10, Dk-2100 Copenhagen Ø, Denmark
| | - Monica A Perez
- Shirley Ryan Ability Lab, Chicago, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA; Edward Jr. Hines VA Hospital, Chicago, USA
| | - Jens Bo Nielsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; The Elsass Foundation, Holmegårdsvej 28, Charlottenlund, 2920, Denmark.
| |
Collapse
|
3
|
Meyer BL, Beermann F, Langmann J, Stieglitz T, Pasluosta C, Mrachacz-Kersting N. Interlimb reflexes of the lower limb elicited by femoral nerve stimulation in able-bodied persons. J Neurophysiol 2025; 133:1538-1550. [PMID: 39996601 DOI: 10.1152/jn.00249.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
Sensory feedback arising from muscles in the lower limb makes an important contribution to the activation of muscles on the opposite side. To date little is known about this interlimb communication for muscles of the upper leg. Here, we quantify interlimb reflexes of the quadriceps muscles elicited by femoral nerve stimulation. The reflex response of 10 able-bodied participants was analyzed at eight stimulation intensities [0.7× motor threshold (MT)-100% maximal M-wave (M-max)], during standing and sitting. Electromyographic (EMG) signals of the contralateral vastus lateralis (cVL), rectus femoris (cRF), biceps femoris (cBF), and soleus (cSOL) muscle were analyzed. Significant inhibitory long-latency responses were observed at stimulation intensities higher than 0.7 × MT, for the cVL and cRF. Onset latencies ranged from 67 ± 12 ms to 70 ± 13 ms during standing and from 61 ± 14 ms to 67 ± 15 ms during sitting. The strongest depression (-32.39% compared with baseline EMG activity) was observed for the cRF during standing at 50% M-max. The cBF showed excitatory long-latency responses during standing (strongest at 100% M-max with +52.36%) and inhibitory once during sitting, and small excitatory short-latency responses during standing. The cSOL showed inhibitory long-latency responses (-18.15% at 25% M-max) during standing. In conclusion, the results show that femoral nerve stimulation elicits consistent contralateral reflex responses in the quadriceps muscles. The occurrence at all intensities suggests that group Ia, Ib, and II afferents are involved in the pathways.NEW & NOTEWORTHY This study introduced a method to consistently elicit contralateral reflex responses in the quadriceps muscles through femoral nerve stimulation. Responses of the contralateral vastus lateralis (cVL), contralateral rectus femoris (cRF), and contralateral soleus (cSOL) occurred only in the long-latency range, whereas the contralateral biceps femoris (cBF) showed small short-latency and long-latency activity.
Collapse
Affiliation(s)
- Britta L Meyer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Finja Beermann
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Jakob Langmann
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Cristian Pasluosta
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Natalie Mrachacz-Kersting
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Therkildsen ER, Nielsen JB, Lorentzen J. The calcium channel blocker nimodipine inhibits spinal reflex pathways in humans. J Neurophysiol 2025; 133:428-439. [PMID: 39718533 DOI: 10.1152/jn.00585.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Voltage-sensitive calcium channels contribute to depolarization of both motor neurons and interneurons in animal studies, but less is known of their contribution to human motor control and whether blocking them has potential in future antispasmodic treatment in humans. Therefore, this study investigated the acute effect of nimodipine on the transmission of human spinal reflex pathways involved in spasticity. In a double-blinded, crossover study, we measured soleus muscle stretch reflexes and H reflexes and tibialis anterior cutaneous reflexes in 19 healthy subjects before and after nimodipine (tablet 60 mg) or baclofen (tablet 25 mg). Baclofen was used as a control to compare nimodipine's effects with known antispastic treatment. Changes in the size of the maximum H reflex (Hmax)/maximum direct motor response in muscle (Mmax) ratio and stretch and cutaneous reflexes following intervention with nimodipine and baclofen, respectively, were analyzed with a one-way repeated-measures (RM) ANOVA. Nimodipine significantly reduced the Hmax/Mmax ratio [F(2.5,42) = 15; P < 0.0001] and the normalized soleus stretch reflex [F(2.6,47) = 4.8; P = 0.0073] after administration. A similar tendency was seen after baclofen [Hmax/Mmax ratio: F(2.1,39) = 4.0, P = 0.024; normalized stretch reflex: F(2.8,50) = 2.4; P = 0.083]. The Mmax response was unaffected by either intervention. Interestingly, during voluntary soleus activation, the stretch reflex remained unchanged with either treatment. For the cutaneous reflexes, there was a trend toward reduced early inhibition [F(1.6,9.3) = 4.5; P = 0.050] and subsequent facilitation [F(1.3,8.0) = 4.3; P = 0.065] after nimodipine. No severe adverse effects were reported after nimodipine. These findings suggest that nimodipine acutely reduced electrophysiological measures related to spasticity in healthy individuals. The effect seemed located at the spinal level, and voluntary contraction counterbalanced the reduction of the stretch reflex, highlighting its relevance for future studies on antispastic therapies.NEW & NOTEWORTHY The calcium channel antagonist nimodipine significantly reduces the size of the soleus H reflex and stretch reflex in healthy individuals without affecting maximum direct motor response (Mmax) or the stretch reflex during voluntary activation. This underscores the importance of exploring nimodipine as a potential antispastic medication in the future.
Collapse
Affiliation(s)
| | - Jens Bo Nielsen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- The Elsass FoundationCharlottenlundDenmark
| | - Jakob Lorentzen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Department of PaediatricsRigshospitaletCopenhagenDenmark
| |
Collapse
|
5
|
Cuadra C, De Boef A, Luong S, Wolf SL, Nichols TR, Lyle MA. Reduced inhibition from quadriceps onto soleus after acute quadriceps fatigue suggests Golgi tendon organ contribution to heteronymous inhibition. Eur J Neurosci 2024; 60:4317-4331. [PMID: 38853295 PMCID: PMC11304518 DOI: 10.1111/ejn.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Heteronymous inhibition between lower limb muscles is primarily attributed to recurrent inhibitory circuits in humans but could also arise from Golgi tendon organs (GTOs). Distinguishing between recurrent inhibition and mechanical activation of GTOs is challenging because their heteronymous effects are both elicited by stimulation of nerves or a muscle above motor threshold. Here, the unique influence of mechanically activated GTOs was examined by comparing the magnitude of heteronymous inhibition from quadriceps (Q) muscle stimulation onto ongoing soleus electromyographic at five Q stimulation intensities (1.5-2.5× motor threshold) before and after an acute bout of stimulation-induced Q fatigue. Fatigue was used to decrease Q stimulation evoked force (i.e., decreased GTO activation) despite using the same pre-fatigue stimulation currents (i.e., same antidromic recurrent inhibition input). Thus, a decrease in heteronymous inhibition after Q fatigue and a linear relation between stimulation-evoked torque and inhibition both before and after fatigue would support mechanical activation of GTOs as a source of inhibition. A reduction in evoked torque but no change in inhibition would support recurrent inhibition. After fatigue, Q stimulation-evoked knee torque, heteronymous inhibition magnitude and inhibition duration were significantly decreased for all stimulation intensities. In addition, heteronymous inhibition magnitude was linearly related to twitch-evoked knee torque before and after fatigue. These findings support mechanical activation of GTOs as a source of heteronymous inhibition along with recurrent inhibition. The unique patterns of heteronymous inhibition before and after fatigue across participants suggest the relative contribution of GTOs, and recurrent inhibition may vary across persons.
Collapse
Affiliation(s)
- Cristian Cuadra
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Adam De Boef
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sarah Luong
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| | - Steven L Wolf
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, USA
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mark A Lyle
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Tan AQ, Tuthill C, Corsten AN, Barth S, Trumbower RD. A single sequence of intermittent hypoxia does not alter stretch reflex excitability in able-bodied individuals. Exp Physiol 2024; 109:576-587. [PMID: 38356241 PMCID: PMC10988685 DOI: 10.1113/ep091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Spasticity attributable to exaggerated stretch reflex pathways, particularly affecting the ankle plantar flexors, often impairs overground walking in persons with incomplete spinal cord injury. Compelling evidence from rodent models underscores how exposure to acute intermittent hypoxia (AIH) can provide a unique medium to induce spinal plasticity in key inhibitory pathways mediating stretch reflex excitability and potentially affect spasticity. In this study, we quantify the effects of a single exposure to AIH on the stretch reflex in able-bodied individuals. We hypothesized that a single sequence of AIH will increase the stretch reflex excitability of the soleus muscle during ramp-and-hold angular perturbations applied to the ankle joint while participants perform passive and volitionally matched contractions. Our results revealed that a single AIH exposure did not significantly change the stretch reflex excitability during both passive and active matching conditions. Furthermore, we found that able-bodied individuals increased their stretch reflex response from passive to active matching conditions after both sham and AIH exposures. Together, these findings suggest that a single AIH exposure might not engage inhibitory pathways sufficiently to alter stretch reflex responses in able-bodied persons. However, the generalizability of our present findings requires further examination during repetitive exposures to AIH along with potential reflex modulation during functional movements, such as overground walking.
Collapse
Affiliation(s)
- Andrew Q. Tan
- Department of Integrative PhysiologyUniversity of ColoradoBoulderColoradoUSA
| | - Christopher Tuthill
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Anthony N. Corsten
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Stella Barth
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Randy D. Trumbower
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| |
Collapse
|
7
|
Theodosiadou A, Henry M, Duchateau J, Baudry S. Revisiting the use of Hoffmann reflex in motor control research on humans. Eur J Appl Physiol 2023; 123:695-710. [PMID: 36571622 DOI: 10.1007/s00421-022-05119-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Abstract
Research in movement science aims at unravelling mechanisms and designing methods for restoring and maximizing human functional capacity, and many techniques provide access to neural adjustments (acute changes) or long-term adaptations (chronic changes) underlying changes in movement capabilities. First described by Paul Hoffmann over a century ago, when an electrical stimulus is applied to a peripheral nerve, this causes action potentials in afferent axons, primarily the Ia afferents of the muscle spindles, which recruit homonymous motor neurons, thereby causing an electromyographic response known as the Hoffmann (H) reflex. This technique is a valuable tool in the study of the neuromuscular function in humans and has provided relevant information in the neural control of movement. The large use of the H reflex in motor control research on humans relies in part to its relative simplicity. However, such simplicity masks subtleties that require rigorous experimental protocols and careful data interpretation. After highlighting basic properties and methodological aspects that should be considered for the correct use of the H-reflex technique, this brief narrative review discusses the purpose of the H reflex and emphasizes its use as a tool to assess the effectiveness of Ia afferents in discharging motor neurones. The review also aims to reconsider the link between H-reflex modulation and Ia presynaptic inhibition, the use of the H-reflex technique in motor control studies, and the effects of ageing. These aspects are summarized as recommendations for the use of the H reflex in motor control research on humans.
Collapse
Affiliation(s)
- Anastasia Theodosiadou
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Mélanie Henry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Jacques Duchateau
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium.
| |
Collapse
|
8
|
Lyle MA, Cuadra C, Wolf SL. Quadriceps muscle stimulation evokes heteronymous inhibition onto soleus with limited Ia activation compared to femoral nerve stimulation. Exp Brain Res 2022; 240:2375-2388. [PMID: 35881156 PMCID: PMC10314715 DOI: 10.1007/s00221-022-06422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Heteronymous excitatory feedback from muscle spindles and inhibitory feedback from Golgi tendon organs and recurrent inhibitory circuits can influence motor coordination. The functional role of inhibitory feedback is difficult to determine, because nerve stimulation, the primary method used in humans, cannot evoke inhibition without first activating the largest diameter muscle spindle axons. Here, we tested the hypothesis that quadriceps muscle stimulation could be used to examine heteronymous inhibition more selectively when compared to femoral nerve stimulation by comparing the effects of nerve and muscle stimulation onto ongoing soleus EMG held at 20% of maximal effort. Motor threshold and two higher femoral nerve and quadriceps stimulus intensities matched by twitch evoked torque magnitudes were examined. We found that significantly fewer participants exhibited excitation during quadriceps muscle stimulation when compared to nerve stimulation (14-29% vs. 64-71% of participants across stimulation intensities) and the magnitude of heteronymous excitation from muscle stimulation, when present, was much reduced compared to nerve stimulation. Muscle and nerve stimulation resulted in heteronymous inhibition that significantly increased with increasing stimulation evoked torque magnitudes. This study provides novel evidence that muscle stimulation may be used to more selectively examine inhibitory heteronymous feedback between muscles in the human lower limb when compared to nerve stimulation.
Collapse
Affiliation(s)
- Mark A Lyle
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Road, N.E. Room 236D, Atlanta, GA, 30322, USA.
| | - Cristian Cuadra
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Road, N.E. Room 236D, Atlanta, GA, 30322, USA
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Steven L Wolf
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Road, N.E. Room 236D, Atlanta, GA, 30322, USA
- Senior Research Scientist, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, GA, USA
| |
Collapse
|
9
|
Conner BC, Spomer AM, Bishe SSPA, Steele KM, Lerner ZF. Soleus H-reflex modulation in cerebral palsy and its relationship with neural control complexity: a pilot study. Exp Brain Res 2022; 240:2073-2084. [PMID: 35752662 PMCID: PMC10072969 DOI: 10.1007/s00221-022-06399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Individuals with cerebral palsy (CP) display motor control patterns that suggest decreased supraspinal input, but it remains unknown if they are able to modulate lower-limb reflexes in response to more complex tasks, or whether global motor control patterns relate to reflex modulation capacity in this population. Eight ambulatory individuals with CP (12-18 years old) were recruited to complete a task complexity protocol, where soleus H-reflex excitability was compared between bilateral (baseline) and unilateral (complex) standing. We also investigated the relationship between each participant's ability to modulate soleus H-reflex excitability and the complexity of their walking neural control pattern determined from muscle synergy analysis. Finally, six of the eight participants completed an exoskeleton walking protocol, where soleus H-reflexes were collected during the stance phase of walking with and without stance-phase plantar flexor resistance. Participants displayed a significant reduction in soleus H-reflex excitability (- 26 ± 25%, p = 0.04) with unilateral standing, and a strong positive relationship was observed between more refined neural control during walking and an increased ability to modulate reflex excitability (R = 0.79, p = 0.04). There was no difference in neuromuscular outcome measures with and without the ankle exoskeleton (p values all > 0.05), with variable reflex responses to walking with ankle exoskeleton resistance. These findings provide evidence that ambulatory individuals with CP retain some capacity to modulate lower-limb reflexes in response to increased task complexity, and that less refined neural control during walking appears to be related to deficits in reflex modulation.
Collapse
Affiliation(s)
- Benjamin C Conner
- College of Medicine, Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Alyssa M Spomer
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Safoura Sadegh Pour Aji Bishe
- Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGRBldg 69, Flagstaff, AZ, 86011, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Zachary F Lerner
- College of Medicine, Phoenix, University of Arizona, Phoenix, AZ, USA. .,Department of Mechanical Engineering, Northern Arizona University, 15600 S McConnell Drive, NAU EGRBldg 69, Flagstaff, AZ, 86011, USA.
| |
Collapse
|
10
|
Lyle MA, McLeod MM, Pouliot BA, Thompson AK. Soleus H-reflex modulation during a double-legged drop landing task. Exp Brain Res 2022; 240:1093-1103. [PMID: 35122483 PMCID: PMC9018516 DOI: 10.1007/s00221-022-06316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/28/2022] [Indexed: 01/16/2023]
Abstract
Muscle spindle afferent feedback is modulated during different phases of locomotor tasks in a way that facilitates task goals. However, only a few studies have studied H-reflex modulation during landing. This study aimed to characterize soleus (SOL) H-reflex modulation during the flight and early landing period of drop landings. Since landing presumably involves a massive increase in spindle afferent firing due to rapid SOL muscle stretching, we hypothesized H-reflex size would decrease near landing reflecting neural modulation to prevent excessive motoneuron excitation. The soleus H-reflex was recorded during drop landings from a 30 cm height in nine healthy adults. Electromyography (SOL, tibialis anterior (TA), medial gastrocnemius, and vastus lateralis), ankle and knee joint motion and ground reaction force were recorded during landings. Tibial nerve stimulation was timed to elicit H-reflexes during the flight and early ground contact period (five 30 ms Bins from 90 ms before to 60 ms after landing). The H-reflexes recorded after landing (0-30 and 30-60 ms) were significantly smaller (21-36% less) than that recorded during the flight periods (90-0 ms before ground contact; P ≤ 0.004). The decrease in H-reflex size not occurring until after ground contact indicates a time-critical modulation of reflex gain during the last 30 ms of flight (i.e., time of tibial nerve stimulation). H-reflex size reduction after ground contact supports a probable neural strategy to prevent excessive reflex-mediated muscle activation and thereby facilitates appropriate musculotendon and joint stiffness.
Collapse
Affiliation(s)
- Mark A Lyle
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Road, N.E. Room 205, Atlanta, GA, 30322, USA.
| | - Michelle M McLeod
- College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Bridgette A Pouliot
- College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Aiko K Thompson
- College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
11
|
Mildren RL, Peters RM, Carpenter MG, Blouin JS, Inglis JT. Soleus responses to Achilles tendon stimuli are suppressed by heel and enhanced by metatarsal cutaneous stimuli during standing. J Physiol 2021; 599:3611-3625. [PMID: 34047370 DOI: 10.1113/jp281744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS We examined the influence of cutaneous feedback from the heel and metatarsal regions of the foot sole on the soleus stretch reflex pathway during standing. We found that heel electrical stimuli suppressed and metatarsal stimuli enhanced the soleus vibration response. Follow-up experiments indicated that the interaction between foot sole cutaneous feedback and the soleus vibration response was likely not mediated by presynaptic inhibition and was contingent upon a modulation at the ⍺-motoneuron pool level. The spatially organized interaction between cutaneous feedback from the foot sole and the soleus vibration response provides information about how somatosensory information is combined to appropriately respond to perturbations during standing. ABSTRACT Cutaneous feedback from the foot sole provides balance-relevant information and has the potential to interact with spinal reflex pathways. In this study, we examined how cutaneous feedback from the foot sole (heel and metatarsals) influenced the soleus response to proprioceptive stimuli during standing. We delivered noisy vibration (10-115 Hz) to the right Achilles tendon while we intermittently applied electrical pulse trains (five 1-ms pulses at 200 Hz, every 0.8-1.0 s) to the skin under either the heel or the metatarsals of the ipsilateral foot sole. We analysed time-dependent (referenced to cutaneous stimuli) coherence and cross-correlations between the vibration acceleration and rectified soleus EMG. Vibration-EMG coherence was observed across a bandwidth of ∼10-80 Hz, and coherence was suppressed by heel but enhanced by metatarsal cutaneous stimuli. Cross-correlations showed soleus EMG was correlated with the vibration (∼40 ms lag) and cross-correlations were also suppressed by heel (from 104-155 ms) but enhanced by metatarsal (from 76-128 ms) stimuli. To examine the neural mechanisms mediating this reflex interaction, we conducted two further experiments to probe potential contributions from (1) presynaptic inhibition, and (2) modulations at the ⍺- and γ-motoneuron pools. Results suggest the cutaneous interactions with the stretch reflex pathway required a modulation at the ⍺-motoneuron pool and were likely not mediated by presynaptic inhibition. These findings demonstrate that foot sole cutaneous information functionally tunes the stretch reflex pathway during the control of upright posture and balance.
Collapse
Affiliation(s)
- Robyn L Mildren
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan M Peters
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Pamukoff DN, Holmes SC, Shumski EJ, Garcia SA, Rubin DA. Plantar Flexor Function in Adults with and without Prader-Willi Syndrome. Med Sci Sports Exerc 2021; 52:2189-2197. [PMID: 32936593 DOI: 10.1249/mss.0000000000002361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Prader-Willi Syndrome (PWS) is a form of congenital obesity characterized by excessive body fat, hypotonia, muscle weakness, and physical/cognitive disability. However, the sources of muscle dysfunction and their contribution to mobility are unclear. The purposes of this study were to 1) compare plantar flexor function between adults with and without PWS; and 2) to examine the relationship between plantar flexor function and gait speed in adults with PWS. METHODS Participants included 10 adults with PWS, 10 adults without PWS and with obesity, and 10 adults without PWS and without obesity (matched on age and sex). Plantar flexor function was assessed using isokinetic dynamometry (peak torque [PT], early/late rate of torque development [RTD]), Hoffman reflex (H/M ratio), ultrasound imaging (cross-sectional area [CSA], echo intensity, pennation angle, and fascicle length), and peak propulsive force and plantar flexor moment during gait. Outcomes were compared between groups using one-way MANOVA. Associations between plantar flexor outcomes and gait speed were assessed using Pearson correlation in the PWS group. RESULTS Adults with PWS had lower absolute and normalized early RTD, and lower H/M ratio than controls with and without obesity; lower absolute PT and late RTD than controls with obesity (all P < 0.05). Cross-sectional area, propulsive force, and plantarflexor moment were lower, and echo intensity was higher, in adults with PWS compared with controls without obesity (all P < 0.05). Greater absolute PT (r = 0.64), absolute early RTD (r = 0.62), absolute late RTD (r = 0.64), gastrocnemii CSA (r = 0.55), and propulsive force (r = 0.58) were associated with faster gait speed (all P < 0.05). CONCLUSIONS Adults with PWS have impaired plantar flexor function likely attributable to reduced neuromuscular function and altered muscle morphology, which are associated with slower gait speeds.
Collapse
Affiliation(s)
- Derek N Pamukoff
- Department of Kinesiology, California State University, Fullerton, CA
| | - Skylar C Holmes
- Department of Kinesiology, University of Massachusetts, Amherst, MA
| | - Eric J Shumski
- Department of Kinesiology, California State University, Fullerton, CA
| | - Steven A Garcia
- School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Daniela A Rubin
- Department of Kinesiology, California State University, Fullerton, CA
| |
Collapse
|
13
|
Muraoka T, Kurtzer I. Spinal Circuits Mediate a Stretch Reflex Between the Upper Limbs in Humans. Neuroscience 2020; 431:115-127. [PMID: 32062020 DOI: 10.1016/j.neuroscience.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 11/15/2022]
Abstract
Inter-limb reflexes play an important role in coordinating behaviors involving different limbs. Previous studies have demonstrated that human elbow muscles express an inter-limb stretch reflex at long-latency (50-100 ms), a timing consistent with a trans-cortical linkage. Here we probe for inter-limb stretch reflexes in the shoulder muscles of human participants. Unexpected torque pulses displaced one or both shoulders while participants adopted a steady posture against background torques. The results demonstrated inter-limb stretch reflexes occurring at short-latency for both shoulder extensors and flexors; the rapid timing (36-50 ms) must involve a spinal linkage for the two arms. Inter-limb stretch reflexes were also observed at long-latency yet they were opposite to the preceding short-latency; when the short-latency stretch reflex was excitatory then the long-latency stretch reflex was inhibitory and vice versa. Comparing the responses to contralateral arm displacement to those during simultaneous displacement of both arms revealed that inhibitory inter-limb stretch reflexes are independent of within-limb stretch reflexes, but that excitatory inter-limb stretch reflexes are suppressed by within-limb stretch reflexes. Our results provide the first demonstration of short-latency inter-limb stretch reflexes in the upper limb of humans and reveal interacting spinal circuits for within-limb and inter-limb stretch reflexes.
Collapse
Affiliation(s)
- Tetsuro Muraoka
- College of Economics, Nihon University, Tokyo, Japan; Department of Biomedical Sciences, New York Institute of Technology - College of Osteopathic Medicine, Old Westbury, New York, USA.
| | - Isaac Kurtzer
- Department of Biomedical Sciences, New York Institute of Technology - College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
14
|
Kim G, Ogawa T, Sekiguchi H, Nakazawa K. Acquisition and maintenance of motor memory through specific motor practice over the long term as revealed by stretch reflex responses in older ballet dancers. Physiol Rep 2020; 8:e14335. [PMID: 31960615 PMCID: PMC6971327 DOI: 10.14814/phy2.14335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The present study addressed whether motor memory acquired earlier in life through specific training can be maintained through later life with further training. To this end, the present study focused on the training effect of a specific ballet practice and investigated the spinally mediated stretch reflex responses of the soleus muscle in ballet dancers of upper-middle to old age (60.6 ± 5.4 years old) with experience levels of 28.4 ± 7.4 years ("older ballet" group). Comparisons were conducted with a group of young ballet dancers ("young ballet" group) and groups of both young and older individuals without weekly participation in physical activities ("young sedentary" and "older sedentary" groups). The results revealed natural age-dependent changes, with reflex responses being larger in older sedentary than in young sedentary individuals. A training-induced effect was also observed, with responses being smaller in ballet dancers than in sedentary groups of the same age. Furthermore, the responses were surprisingly smaller in the older ballet dancers than in the young sedentary group, at an equivalent level to that of the young ballet dancers. The influence of training, therefore, overcame the natural age-dependent changes. On the other hand, the onset latencies of the responses showed a solely age-dependent trend. Taken together, the present is the first to demonstrate that the motor memories in the spinal cord acquired through specific ballet training earlier in life can be maintained and carried forward in later life through further weekly participation in the same training.
Collapse
Affiliation(s)
- GeeHee Kim
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
| | - Tetsuya Ogawa
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
- Research InstituteNational Rehabilitation Center for Persons with DisabilitiesNamikiTokorozawaJapan
| | - Hirofumi Sekiguchi
- Sports Management ProgramFaculty of Business and Information SciencesJobu UniversityIsesakiGunmaJapan
| | - Kimitaka Nakazawa
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
- Research InstituteNational Rehabilitation Center for Persons with DisabilitiesNamikiTokorozawaJapan
| |
Collapse
|
15
|
Modulation of soleus stretch reflexes during walking in people with chronic incomplete spinal cord injury. Exp Brain Res 2019; 237:2461-2479. [PMID: 31309252 PMCID: PMC6751142 DOI: 10.1007/s00221-019-05603-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
Abstract
In people with spasticity due to chronic incomplete spinal cord injury (SCI), it has been presumed that the abnormal stretch reflex activity impairs gait. However, locomotor stretch reflexes across all phases of walking have not been investigated in people with SCI. Thus, to understand modulation of stretch reflex excitability during spastic gait, we investigated soleus stretch reflexes across the entire gait cycle in nine neurologically normal participants and nine participants with spasticity due to chronic incomplete SCI (2.5–11 year post-injury). While the participant walked on the treadmill at his/her preferred speed, unexpected ankle dorsiflexion perturbations (6° at 250°/s) were imposed every 4–6 steps. The soleus H-reflex was also examined. In participants without SCI, spinal short-latency “M1”, spinal medium latency “M2”, and long-latency “M3” were clearly modulated throughout the step cycle; the responses were largest in the mid-stance and almost completely suppressed during the stance-swing transition and swing phases. In participants with SCI, M1 and M2 were abnormally large in the mid–late-swing phase, while M3 modulation was similar to that in participants without SCI. The H-reflex was also large in the mid–late-swing phase. Elicitation of H-reflex and stretch reflexes in the late swing often triggered clonus and affected the soleus activity in the following stance. In individuals without SCI, moderate positive correlation was found between H-reflex and stretch reflex sizes across the step cycle, whereas in participants with SCI, such correlation was weak to non-existing, suggesting that H-reflex investigation would not substitute for stretch reflex investigation in individuals after SCI.
Collapse
|
16
|
Mrachacz-Kersting N, Kersting UG, de Brito Silva P, Makihara Y, Arendt-Nielsen L, Sinkjær T, Thompson AK. Acquisition of a simple motor skill: task-dependent adaptation and long-term changes in the human soleus stretch reflex. J Neurophysiol 2019; 122:435-446. [PMID: 31166816 DOI: 10.1152/jn.00211.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Changing the H reflex through operant conditioning leads to CNS multisite plasticity and can affect previously learned skills. To further understand the mechanisms of this plasticity, we operantly conditioned the initial component (M1) of the soleus stretch reflex. Unlike the H reflex, the stretch reflex is affected by fusimotor control, comprises several bursts of activity resulting from temporally dispersed afferent inputs, and may activate spinal motoneurons via several different spinal and supraspinal pathways. Neurologically normal participants completed 6 baseline sessions and 24 operant conditioning sessions in which they were encouraged to increase (M1up) or decrease (M1down) M1 size. Five of eight M1up participants significantly increased M1; the final M1 size of those five participants was 143 ± 15% (mean ± SE) of the baseline value. All eight M1down participants significantly decreased M1; their final M1 size was 62 ± 6% of baseline. Similar to the previous H-reflex conditioning studies, conditioned reflex change consisted of within-session task-dependent adaptation and across-session long-term change. Task-dependent adaptation was evident in conditioning session 1 with M1up and by session 4 with M1down. Long-term change was evident by session 10 with M1up and by session 16 with M1down. Task-dependent adaptation was greater with M1up than with the previous H-reflex upconditioning. This may reflect adaptive changes in muscle spindle sensitivity, which affects the stretch reflex but not the H reflex. Because the stretch reflex is related to motor function more directly than the H reflex, M1 conditioning may provide a valuable tool for exploring the functional impact of reflex conditioning and its potential therapeutic applications. NEW & NOTEWORTHY Since the activity of stretch reflex pathways contributes to locomotion, changing it through training may improve locomotor rehabilitation in people with CNS disorders. Here we show for the first time that people can change the size of the soleus spinal stretch reflex through operant conditioning. Conditioned stretch reflex change is the sum of task-dependent adaptation and long-term change, consistent with H-reflex conditioning yet different from it in the composition and amount of the two components.
Collapse
Affiliation(s)
- N Mrachacz-Kersting
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - U G Kersting
- Institute for Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany
| | - P de Brito Silva
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - Y Makihara
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - T Sinkjær
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - A K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
17
|
Modulation of tendon tap reflex activation of soleus motor neurons with reduced stability tandem stance. Hum Mov Sci 2019; 64:274-282. [DOI: 10.1016/j.humov.2019.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 11/22/2022]
|
18
|
Wang R, Gäverth J, Herman PA. Changes in the Neural and Non-neural Related Properties of the Spastic Wrist Flexors After Treatment With Botulinum Toxin A in Post-stroke Subjects: An Optimization Study. Front Bioeng Biotechnol 2018; 6:73. [PMID: 29963551 PMCID: PMC6013585 DOI: 10.3389/fbioe.2018.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
Quantifying neural and non-neural contributions to the joint resistance in spasticity is essential for a better evaluation of different intervention strategies such as botulinum toxin A (BoTN-A). However, direct measurement of muscle mechanical properties and spasticity-related parameters in humans is extremely challenging. The aim of this study was to use a previously developed musculoskeletal model and optimization scheme to evaluate the changes of neural and non-neural related properties of the spastic wrist flexors during passive wrist extension after BoTN-A injection. Data of joint angle and resistant torque were collected from 21 chronic stroke patients before, and 4 and 12 weeks post BoTN-A injection using NeuroFlexor, which is a motorized force measurement device to passively stretch wrist flexors. The model was optimized by tuning the passive and stretch-related parameters to fit the measured torque in each participant. It was found that stroke survivors exhibited decreased neural components at 4 weeks post BoNT-A injection, which returned to baseline levels after 12 weeks. The decreased neural component was mainly due to the increased motoneuron pool threshold, which is interpreted as a net excitatory and inhibitory inputs to the motoneuron pool. Though the linear stiffness and viscosity properties of wrist flexors were similar before and after treatment, increased exponential stiffness was observed over time which may indicate a decreased range of motion of the wrist joint. Using a combination of modeling and experimental measurement, valuable insights into the treatment responses, i.e., transmission of motoneurons, are provided by investigating potential parameter changes along the stretch reflex pathway in persons with chronic stroke.
Collapse
Affiliation(s)
- Ruoli Wang
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden.,KTH Biomex Center, Royal Institute of Technology, Stockholm, Sweden
| | - Johan Gäverth
- Functional Area Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Pawel A Herman
- Department of Computational Science and Technology, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
19
|
Convergent Spinal Circuits Facilitating Human Wrist Flexors. J Neurosci 2018; 38:3929-3938. [PMID: 29563182 PMCID: PMC5907055 DOI: 10.1523/jneurosci.1870-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 11/21/2022] Open
Abstract
Noninvasive assessment of spinal circuitry in humans is limited, especially for Ib pathways in the upper limb. We developed a protocol in which we evoke the H-reflex in flexor carpi radialis (FCR) by median nerve stimulation and condition it with electrical stimulation above motor threshold over the extensor carpi radialis (ECR) muscle belly. Eighteen healthy adults (8 male, 10 female) took part in the study. There was a clear reflex facilitation at a 30 ms interstimulus interval (ISI) and suppression at a 70 ms ISI, which was highly consistent across subjects. We investigated the following two hypotheses of the possible source of the facilitation: (1) ECR Ib afferents from Golgi tendon organs, activated by the twitch following ECR stimulation; and (2) FCR afferents, from spindles and/or Golgi tendon organs, activated by the wrist extension movement that follows ECR stimulation. Several human and monkey experiments indicated a role for both of these sets of afferents. Our results provide evidence for a spinal circuit in which flexor motoneurons receive convergent excitatory input from flexor afferents as well as from extensor Ib afferents; this circuit can be straightforwardly assessed noninvasively in humans.SIGNIFICANCE STATEMENT Here we described a novel spinal circuit, which is easy to assess noninvasively in humans. Understanding this circuit in more detail could be beneficial for the design of clinical tests in neurological conditions.
Collapse
|
20
|
Posture modulates the sensitivity of the H-reflex. Exp Brain Res 2018; 236:829-835. [DOI: 10.1007/s00221-018-5182-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
|
21
|
Budini F, Gallasch E, Christova M, Rafolt D, Rauscher AB, Tilp M. One minute static stretch of plantar flexors transiently increases H reflex excitability and exerts no effect on corticospinal pathways. Exp Physiol 2017; 102:901-910. [PMID: 28585766 DOI: 10.1113/ep086374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/24/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What mediates neural responses following static stretching, and how long do these influences last? What is the main finding and its importance? This study shows that 1 min of static stretching inhibits the tendon tap reflex and facilitates the H reflex without influencing motor-evoked potentials. The results indicate that at least two different mechanisms mediate neural responses after static stretching. The purpose of this study was to determine whether the neural responses observed after static stretching are mediated by sensitivity of muscle spindles, spinal excitability or cortical excitability and how long these influences last. Nineteen volunteers (25.7 ± 5.6 years old) were tested for the tendon tap reflex (T-reflex), H reflex and motor-evoked potentials on ankle flexors and extensors immediately, 5 and 10 min after 1 min static stretching applied at individual maximal ankle dorsiflexion, as well as immediately, 5 and 10 min after a control period of the same duration. Comparison of measurements collected immediately after stretching or control conditions revealed that the T-reflex was weaker after stretching than after control (-59.2% P = 0.000). The T-reflex showed a slow recovery rate within the first 150 s after stretching, but 5 min after the inhibition had disappeared. The H reflex increased immediately after stretching (+18.3%, P = 0.036), showed a quick tendency to recover and returned to control values within 5 min from stretching. Motor-evoked potentials were not affected by the procedure. These results suggest that 1 min of static stretching primarily decreases muscle spindle sensitivity and facilitates the H reflex, whereas effects on the motor cortex can be excluded.
Collapse
Affiliation(s)
| | - Eugen Gallasch
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Monica Christova
- Institute of Physiology, Medical University of Graz, Graz, Austria.,Institute of Physiotherapy, Institute of Applied Sciences FH-Joanneum, Graz, Austria
| | - Dietmar Rafolt
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Markus Tilp
- Institute for Sport Science, Graz University, Graz, Austria
| |
Collapse
|
22
|
Pamukoff DN, Pietrosimone B, Lewek MD, Ryan ED, Weinhold PS, Lee DR, Blackburn JT. Immediate effect of vibratory stimuli on quadriceps function in healthy adults. Muscle Nerve 2017; 54:469-78. [PMID: 26872828 DOI: 10.1002/mus.25081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/02/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The purpose of this study was to compare the effect of whole body vibration (WBV) and local muscle vibration (LMV) on quadriceps function. METHODS Sixty adults were randomized to WBV, LMV, or control groups. Quadriceps function [Hoffmann (H)-reflex, active motor threshold (AMT), motor evoked potential (MEP) and electromyographic amplitude, peak torque (PT), rate of torque development (RTD), and central activation ratio (CAR)] was assessed before and immediately after and 10 and 20 minutes after interventions. RESULTS WBV improved PT, CAR, AMT, EMG, and MEP amplitude, and EMG amplitude and CAR were greater than control after application. LMV improved EMG amplitude and AMT, and EMG amplitude was greater than control after application. AMT remained lower 10 and 20 minutes after WBV and LMV. No differences were noted between LMV and WBV. Vibration did not influence H-reflex or RTD. CONCLUSIONS WBV and LMV increased quadriceps function and may be used to enhance the efficacy of strengthening protocols. Muscle Nerve 54: 469-478, 2016.
Collapse
Affiliation(s)
- Derek N Pamukoff
- Department of Kinesiology, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California, 92831, USA.,Department of Exercise and Sport Science, California State University, Fullerton, Fullerton, California, USA.,Curriculum in Human Movement Science, California State University, Fullerton, Fullerton, California, USA
| | - Brian Pietrosimone
- Department of Exercise and Sport Science, California State University, Fullerton, Fullerton, California, USA.,Curriculum in Human Movement Science, California State University, Fullerton, Fullerton, California, USA
| | - Michael D Lewek
- Department of Exercise and Sport Science, California State University, Fullerton, Fullerton, California, USA.,Curriculum in Human Movement Science, California State University, Fullerton, Fullerton, California, USA.,Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric D Ryan
- Department of Exercise and Sport Science, California State University, Fullerton, Fullerton, California, USA.,Curriculum in Human Movement Science, California State University, Fullerton, Fullerton, California, USA
| | - Paul S Weinhold
- Curriculum in Human Movement Science, California State University, Fullerton, Fullerton, California, USA.,Department of Orthopedics, California State University, Fullerton, Fullerton, California, USA.,Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Dustin R Lee
- Department of Exercise and Sport Science, California State University, Fullerton, Fullerton, California, USA
| | - J Troy Blackburn
- Department of Exercise and Sport Science, California State University, Fullerton, Fullerton, California, USA.,Curriculum in Human Movement Science, California State University, Fullerton, Fullerton, California, USA.,Department of Orthopedics, California State University, Fullerton, Fullerton, California, USA
| |
Collapse
|
23
|
Piazza S, Serrano-Muñoz D, Gómez-Soriano J, Torricelli D, Segura-Fragosa A, Pons JL, Taylor J. Afferent electrical stimulation during cycling improves spinal processing of sensorimotor function after incomplete spinal cord injury. NeuroRehabilitation 2017; 40:429-437. [DOI: 10.3233/nre-161430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Stefano Piazza
- Neural Rehabilitation Group, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Diego Serrano-Muñoz
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Julio Gómez-Soriano
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo, Spain
- Toledo Physiotherapy Research Group, Nursing and Physiotherapy School, Castilla La Mancha University, Toledo, Spain
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - José Luis Pons
- Neural Rehabilitation Group, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Tecnológico de Monterrey, Mexico
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo, Spain
- Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Aylesbury, UK
- Harris Manchester College, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Mrachacz-Kersting N, Stevenson AJT. Paired Associative Stimulation Targeting the Tibialis Anterior Muscle using either Mono or Biphasic Transcranial Magnetic Stimulation. Front Hum Neurosci 2017; 11:197. [PMID: 28473764 PMCID: PMC5397406 DOI: 10.3389/fnhum.2017.00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/04/2017] [Indexed: 12/02/2022] Open
Abstract
Paired associative stimulation (PAS) protocols induce plastic changes within the motor cortex. The objectives of this study were to investigate PAS effects targeting the tibialis anterior (TA) muscle using a biphasic transcranial magnetic stimulation (TMS) pulse form and, to determine whether a reduced intensity of this pulse would lead to significant changes as has been reported for hand muscles using a monophasic TMS pulse. Three interventions were investigated: (1) suprathreshold PAbi-PAS (n = 11); (2) suprathreshold PAmono-PAS (n = 11) where PAS was applied using a biphasic or monophasic pulse form at 120% resting motor threshold (RMT); (3) subthreshold PAbi-PAS (n = 10) where PAS was applied as for (1) at 95% active motor threshold (AMT). The peak-to-peak motor evoked potentials (MEPs) were quantified prior to, immediately following, and 30 min after the cessation of the intervention. TA MEP size increased significantly for all interventions immediately post (61% for suprathreshold PAbi-PAS, 83% for suprathreshold PAmono-PAS, 55% for subthreshold PAbi-PAS) and 30 min after the cessation of the intervention (123% for suprathreshold PAbi-PAS, 105% for suprathreshold PAmono-PAS, 80% for subthreshold PAbi-PAS. PAS using a biphasic pulse form at subthreshold intensities induces similar effects to conventional PAS.
Collapse
Affiliation(s)
- Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg UniversityAalborg, Denmark
| | - Andrew J T Stevenson
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
25
|
Klarner T, Barss TS, Sun Y, Kaupp C, Loadman PM, Zehr EP. Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke. Brain Sci 2016; 6:brainsci6040054. [PMID: 27827888 PMCID: PMC5187568 DOI: 10.3390/brainsci6040054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
- Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
26
|
Piazza S, Gómez-Soriano J, Bravo-Esteban E, Torricelli D, Avila-Martin G, Galan-Arriero I, Pons JL, Taylor J. Maintenance of cutaneomuscular neuronal excitability after leg-cycling predicts lower limb muscle strength after incomplete spinal cord injury. Clin Neurophysiol 2016; 127:2402-9. [PMID: 27178859 DOI: 10.1016/j.clinph.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/15/2016] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Controlled leg-cycling modulates H-reflex activity after spinal cord injury (SCI). Preserved cutaneomuscular reflex activity is also essential for recovery of residual motor function after SCI. Here the effect of a single leg-cycling session was assessed on cutaneomuscular-conditioned H-reflex excitability in relation to residual lower limb muscle function after incomplete SCI (iSCI). METHODS Modulation of Soleus H-reflex activity was evaluated following ipsilateral plantar electrical stimulation applied at 25-100ms inter-stimulus intervals (ISI's), before and after leg-cycling in ten healthy individuals and nine subjects with iSCI. RESULTS Leg-cycling in healthy subjects increased cutaneomuscular-conditioned H-reflex excitability between 25 and 75ms ISI (p<0.001), compared to a small loss of excitability at 75ms ISI after iSCI (p<0.05). In addition, change in cutaneomuscular-conditioned H-reflex excitability at 50ms and 75ms ISI in subjects with iSCI after leg-cycling predicted lower ankle joint hypertonia and higher Triceps Surae muscle strength, respectively. CONCLUSION Leg-cycling modulates cutaneomuscular-conditioned spinal neuronal excitability in healthy subjects and individuals with iSCI, and is related to residual lower limb muscle function. SIGNIFICANCE Cutaneomuscular-conditioned H reflex modulation could be used as a surrogate biomarker of both central neuroplasticity and lower limb muscle function, and could benchmark lower-limb rehabilitation programs in subjects with iSCI.
Collapse
Affiliation(s)
- Stefano Piazza
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid 28002, Spain.
| | - Julio Gómez-Soriano
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain; Toledo Physiotherapy Research Group (GIFTO), Nursing and Physiotherapy School, Castilla La Mancha University, Toledo 45072, Spain.
| | - Elisabeth Bravo-Esteban
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid 28002, Spain; Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain; iPhysio Research Group, San Jorge University Zaragoza, Spain.
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid 28002, Spain.
| | - Gerardo Avila-Martin
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain.
| | - Iriana Galan-Arriero
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain.
| | - José Luis Pons
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid 28002, Spain.
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo 45072, Spain; Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Aylesbury HP218AL, UK; Harris Manchester College, University of Oxford, Oxford OX1 3TD, UK.
| |
Collapse
|
27
|
Magalhães FH, Elias LA, da Silva CR, de Lima FF, de Toledo DR, Kohn AF. D1 and D2 Inhibitions of the Soleus H-Reflex Are Differentially Modulated during Plantarflexion Force and Position Tasks. PLoS One 2015; 10:e0143862. [PMID: 26599909 PMCID: PMC4658029 DOI: 10.1371/journal.pone.0143862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023] Open
Abstract
Presynaptic inhibition (PSI) has been shown to modulate several neuronal pathways of functional relevance by selectively gating the connections between sensory inputs and spinal motoneurons, thereby regulating the contribution of the stretch reflex circuitry to the ongoing motor activity. In this study, we investigated whether a differential regulation of Ia afferent inflow by PSI may be associated with the performance of two types of plantarflexion sensoriomotor tasks. The subjects (in a seated position) controlled either: 1) the force level exerted by the foot against a rigid restraint (force task, FT); or 2) the angular position of the ankle when sustaining inertial loads (position task, PT) that required the same level of muscle activation observed in FT. Subjects were instructed to maintain their force/position at target levels set at ~10% of maximum isometric voluntary contraction for FT and 90° for PT, while visual feedback of the corresponding force/position signals were provided. Unconditioned H-reflexes (i.e. control reflexes) and H-reflexes conditioned by electrical pulses applied to the common peroneal nerve with conditioning-to-test intervals of 21 ms and 100 ms (corresponding to D1 and D2 inhibitions, respectively) were evoked in a random fashion. A significant main effect for the type of the motor task (FT vs PT) (p = 0.005, η2p = 0.603) indicated that PTs were undertaken with lower levels of Ia PSI converging onto the soleus motoneuron pool. Additionally, a significant interaction between the type of inhibition (D1 vs D2) and the type of motor task (FT vs PT) (p = 0.038, η2p = 0.395) indicated that D1 inhibition was associated with a significant reduction in PSI levels from TF to TP (p = 0.001, η2p = 0.731), whereas no significant difference between the tasks was observed for D2 inhibition (p = 0.078, η2p = 0.305). These results suggest that D1 and D2 inhibitions of the soleus H-reflex are differentially modulated during the performance of plantarflexion FT and PT. The reduced level of ongoing PSI during PT suggests that, in comparison to FT, there is a larger reliance on inputs from muscle spindles primary afferents when the neuromuscular system is required to maintain position-controlled plantarflexion contractions.
Collapse
Affiliation(s)
- Fernando Henrique Magalhães
- School of Arts, Sciences and Humanities, Universidade de São Paulo, EACH-USP, São Paulo, SP, Brazil.,Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil.,Neuroscience Program, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leonardo Abdala Elias
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil.,Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil
| | - Cristiano Rocha da Silva
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil.,Neuroscience Program, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Felipe Fava de Lima
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil
| | - Diana Rezende de Toledo
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil
| | - André Fabio Kohn
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil.,Neuroscience Program, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Gervasio S, Kersting UG, Farina D, Mrachacz-Kersting N. The effect of crossed reflex responses on dynamic stability during locomotion. J Neurophysiol 2015; 114:1034-40. [PMID: 26063775 DOI: 10.1152/jn.00178.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/29/2015] [Indexed: 11/22/2022] Open
Abstract
In recent studies, we demonstrated that a neural pathway within the human spinal cord allows direct communication between muscles located in the opposing limb. Short-latency crossed responses (SLCRs) are elicited in the contralateral triceps surae at an onset of 40-69 ms following electrical stimulation of the ipsilateral tibial nerve (iTN). The SLCRs are significantly affected by lesions of the central nervous system where the patients are unable to attain normal walking symmetry. The aim of this study was to elucidate the functionality of SLCRs by investigating their effects on the center of pressure (CoP) and pressure distribution. SLCRs were elicited by iTN stimulation at the end of the ipsilateral swing phase while the participants (n = 8) walked on a treadmill. CoP location and pressure distribution on the sole of the contralateral foot were recorded using instrumented insoles inserted bilaterally in the participant's shoes. The SLCR induced a significant displacement of the CoP toward the medial and anterior direction, associated with a significant increase in pressure at the level of the first metatarsal head. The SLCR contributed to dynamic stability, accelerating the propulsion phase of the contralateral leg and thus preparing for a faster step in the event that the ipsilateral leg is not able to support body weight. The results presented here provide new insight into the functionality of SLCRs, introducing the perspective that training these reflexes, as shown successfully for other reflex pathways, would increase dynamic stability in patients with impaired locomotion.
Collapse
Affiliation(s)
- Sabata Gervasio
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; and
| | - Uwe G Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; and
| | - Dario Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; and
| |
Collapse
|
29
|
Mezzarane RA, Magalhães FH, Chaud VM, Elias LA, Kohn AF. Enhanced D1 and D2 inhibitions induced by low-frequency trains of conditioning stimuli: differential effects on H- and T-reflexes and possible mechanisms. PLoS One 2015; 10:e0121496. [PMID: 25807195 PMCID: PMC4373906 DOI: 10.1371/journal.pone.0121496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/01/2015] [Indexed: 11/26/2022] Open
Abstract
Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for T-reflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role.
Collapse
Affiliation(s)
- Rinaldo André Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, Universidade de Brasília—UnB, Brasília, Brazil
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| | - Fernando Henrique Magalhães
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- School of Arts, Sciences and Humanities—EACH, Universidade de São Paulo, São Paulo, Brazil
| | - Vitor Martins Chaud
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- Department of Electrical Engineering, Universidade Federal do Triângulo Mineiro—UFTM, Uberaba, Brazil
| | - Leonardo Abdala Elias
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas—UNICAMP, Campinas, Brazil
| | - André Fabio Kohn
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Thompson AK, Wolpaw JR. The simplest motor skill: mechanisms and applications of reflex operant conditioning. Exerc Sport Sci Rev 2014; 42:82-90. [PMID: 24508738 DOI: 10.1249/jes.0000000000000010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Operant conditioning protocols can change spinal reflexes gradually, which are the simplest behaviors. This article summarizes the evidence supporting two propositions: that these protocols provide excellent models for defining the substrates of learning and that they can induce and guide plasticity to help restore skills, such as locomotion, that have been impaired by spinal cord injury or other disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- 1Helen Hayes Hospital, NYS Department of Health, West Haverstraw; 2Wadsworth Center, NYS Department of Health, Albany; 3Department of Neurology, Neurological Institute, Columbia University, New York; and 4Department of Biomedical Sciences, State University of New York, Albany, NY
| | | |
Collapse
|
31
|
Nakano H, Miyasaka T, Ogino T, Naito A. Facilitation between extensor carpi radialis and pronator teres in humans: a study using a post-stimulus time histogram method. Somatosens Mot Res 2014; 31:214-20. [PMID: 25026240 DOI: 10.3109/08990220.2014.928615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Group I muscle afferents modulate the excitability of motor neurons through excitatory and inhibitory spinal reflexes. Spinal reflex relationships between various muscle pairs are well described in experimental animals but not in the human upper limb, which exhibits a fine control of movement. In the present study, spinal reflexes between the extensor carpi radialis (ECR) and pronator teres (PT) muscles were examined in healthy human subjects using a post-stimulus time histogram method. Electrical stimulation of low-threshold afferents of ECR nerves increased the motor neuron excitability in 31 of 76 PT motor units (MUs) in all eight subjects tested, while stimulation of low-threshold afferents of PT nerves increased the motor neuron excitability in 36 of 102 ECR MUs in all 10 subjects. The estimated central synaptic delay was almost equivalent to that of homonymous facilitation. Mechanical stimulation (MS) of ECR facilitated 16 of 30 PT MUs in all five subjects tested, while MS of PT facilitated 17 of 30 ECR MUs in all six subjects. These results suggest excitatory reflex (facilitation) between PT and ECR. Group I afferents should mediate the facilitation through a monosynaptic path.
Collapse
Affiliation(s)
- Haruki Nakano
- Department of Rehabilitation Medicine, Osaka Medical College , Takatsuki , Japan
| | | | | | | |
Collapse
|
32
|
Baudry S, Lanfranco F, Merletti R, Duchateau J, Minetto MA. Effects of Short-Term Dexamethasone Administration on Corticospinal Excitability. Med Sci Sports Exerc 2014; 46:695-701. [DOI: 10.1249/mss.0000000000000162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Mezzarane RA, Nakajima T, Zehr EP. After stroke bidirectional modulation of soleus stretch reflex amplitude emerges during rhythmic arm cycling. Front Hum Neurosci 2014; 8:136. [PMID: 24701201 PMCID: PMC3965852 DOI: 10.3389/fnhum.2014.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/23/2014] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES after stroke a typical presentation is exaggerated stretch reflexes (SRs) on the more affected (MA) side. The present study evaluated the contribution of presynaptic inhibition (PSI) induced by arm cycling and homosynaptic depression (HD) to the modulation of hyperreflexia at the ankle after stroke. Possible asymmetry of these effects between the MA and less affected (LA) legs was also assessed. METHODS soleus SR was conditioned by: arm cycling at 1 Hz (to increase Ia PSI); or, a preceding conditioning tendon tap applied 1 s before the test stimulus (to induce HD). The extent of conditioning effects was compared between the MA and the LA legs. RESULTS for both MA and LA legs, rhythmic arm movement induced a bidirectional effect in different participants, either increasing or decreasing SR amplitude (p < 0.05). HD had a significant effect in both legs (p < 0.05), however, the effect of both a previous muscle stretch and arm cycling was not different between the MA and the LA legs. CONCLUSION our data reveal a bidirectional reflex modulation induced by arm cycling that produced facilitation in some and suppression in other participants after stroke. Relative SR amplitude modulation did not differ between the LA and MA legs. We speculate that alterations in SR amplitude modulation after stroke may reflect specific changes in both presynaptic afferent transmission mechanisms and fusimotor control. SIGNIFICANCE the present findings open new perspectives on the characterization of pathophysiology of stroke during the performance of functionally relevant motor tasks.
Collapse
Affiliation(s)
- Rinaldo A. Mezzarane
- Laboratory of Signal Processing and Motor Control, University of Brasïlia, College of Physical EducationBrasïlia, Brazil
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, Physical, and Health Education, University of VictoriaVictoria, BC, Canada
| | - Tsuyoshi Nakajima
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, Physical, and Health Education, University of VictoriaVictoria, BC, Canada
- Department of Integrative Physiology, Kyorin University School of MedicineMitaka, Tokyo, Japan
| | - E. P. Zehr
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, Physical, and Health Education, University of VictoriaVictoria, BC, Canada
- Human Discovery Science, International Collaboration on Repair DiscoveriesVancouver, BC, Canada
- Centre for Biomedical Research, University of VictoriaVictoria, BC, Canada
- Division of Medical Sciences, University of VictoriaBC, Canada
| |
Collapse
|
34
|
Shenoy S, Balachander H, Sandhu JS. Effect of Prior Instructions on Preprogrammed Reactions of Trunk Muscles in Individuals with and without Chronic Low Back Pain. NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Willerslev-Olsen M, Andersen JB, Sinkjaer T, Nielsen JB. Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol 2013; 111:746-54. [PMID: 24225545 DOI: 10.1152/jn.00372.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is still widely believed that exaggerated stretch reflexes and increased muscle tone in ankle plantar flexors contribute to reduced ankle joint movement during gait in children with cerebral palsy (CP). However, no study has directly measured stretch reflex activity during gait in these children. We investigated sensory feedback mechanisms during walking in 20 CP children and 41 control children. Stretch responses in plantar flexor muscles evoked in stance showed an age-related decline in control but not CP children. In swing the responses were abolished in control children, but significant responses were observed in 14 CP children. This was related to reduced activation of dorsiflexors in swing. Removal of sensory feedback in stance produced a drop in soleus activity of a similar size in control and CP children. Soleus activity was observed in swing to the same extent in control and CP children. Removal of sensory feedback in swing caused a larger drop in soleus activity in control children than in CP children. The lack of age-related decline in stretch reflexes and the inability to suppress reflexes in swing is likely related to lack of maturation of corticospinal control in CP children. Since soleus activity was not seen more frequently than in control children in swing and since sensory feedback did not contribute more to their soleus activity, spasticity is unlikely to contribute to foot drop and toe walking. We propose that altered central drive to the ankle muscles and increased passive muscle stiffness are the main causes of foot drop and toe walking.
Collapse
Affiliation(s)
- Maria Willerslev-Olsen
- Department of Nutrition, Exercise and Sport Science and Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
36
|
Thompson AK, Chen XY, Wolpaw JR. Soleus H-reflex operant conditioning changes the H-reflex recruitment curve. Muscle Nerve 2012; 47:539-44. [PMID: 23281107 DOI: 10.1002/mus.23620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2012] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Operant conditioning can gradually change the human soleus H-reflex. The protocol conditions the reflex near M-wave threshold. In this study we examine its impact on the reflexes at other stimulus strengths. METHODS H-reflex recruitment curves were obtained before and after a 24-session exposure to an up-conditioning (HRup) or a down-conditioning (HRdown) protocol and were compared. RESULTS In both HRup and HRdown subjects, conditioning affected the entire H-reflex recruitment curve. In 5 of 6 HRup and 3 of 6 HRdown subjects, conditioning elevated (HRup) or depressed (HRdown), respectively, the entire curve. In the other HRup subject or the other 3 HRdown subjects, the curve was shifted to the left or to the right, respectively. CONCLUSIONS H-reflex conditioning does not simply change the H-reflex to a stimulus of particular strength; it also changes the H-reflexes to stimuli of different strengths. Thus, it is likely to affect many actions in which this pathway participates.
Collapse
Affiliation(s)
- Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health, Route 9W, West Haverstraw, New York 10993, USA.
| | | | | |
Collapse
|
37
|
Hundza SR, de Ruiter GC, Klimstra M, Zehr EP. Effect of afferent feedback and central motor commands on soleus H-reflex suppression during arm cycling. J Neurophysiol 2012; 108:3049-58. [PMID: 22956797 DOI: 10.1152/jn.00485.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Suppression of soleus H-reflex amplitude in stationary legs is seen during rhythmic arm cycling. We examined the influence of various arm-cycling parameters on this interlimb reflex modulation to determine the origin of the effect. We previously showed the suppression to be graded with the frequency of arm cycling but not largely influenced by changes in peripheral input associated with crank length. Here, we more explicitly explored the contribution of afferent feedback related to arm movement on the soleus H-reflex suppression. We explored the influence of load and rate of muscle stretch by manipulating crank-load and arm-muscle vibration during arm cycling. Furthermore, internally driven ("Active") and externally driven ("Passive") arm cycling was compared. Soleus H-reflexes were evoked with tibial nerve stimulation during stationary control and rhythmic arm-cycling conditions, including: 1) six different loads; 2) with and without vibration to arm muscles; and 3) Active and Passive conditions. No significant differences were seen in the level of suppression between the different crank loads or between conditions with and without arm-muscle vibration. Furthermore, in contrast to the clear effect seen during active cycling, passive arm cycling did not significantly suppress the soleus H-reflex amplitude. Current results, in conjunction with previous findings, suggest that the afferent feedback examined in these studies is not the primary source responsible for soleus H-reflex suppression. Instead, it appears that central motor commands (supraspinal or spinal in origin) associated with frequency of arm cycling are relatively more dominant sources.
Collapse
Affiliation(s)
- S R Hundza
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, British Columbia, Canada.
| | | | | | | |
Collapse
|
38
|
Activity-dependent plasticity of spinal circuits in the developing and mature spinal cord. Neural Plast 2012; 2012:964843. [PMID: 22900208 PMCID: PMC3415235 DOI: 10.1155/2012/964843] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/12/2012] [Indexed: 01/29/2023] Open
Abstract
Part of the development and maturation of the central nervous system (CNS) occurs through interactions with the environment. Through physical activities and interactions with the world, an animal receives considerable sensory information from various sources. These sources can be internally (proprioceptive) or externally (such as touch and pressure) generated senses. Ample evidence exists to demonstrate that the sensory information originating from large diameter afferents (Ia fibers) have an important role in inducing essential functional and morphological changes for the maturation of both the brain and the spinal cord. The Ia fibers transmit sensory information generated by muscle activity and movement. Such use or activity-dependent plastic changes occur throughout life and are one reason for the ability to acquire new skills and learn new movements. However, the extent and particularly the mechanisms of activity-dependent changes are markedly different between a developing nervous system and a mature nervous system. Understanding these mechanisms is an important step to develop strategies for regaining motor function after different injuries to the CNS. Plastic changes induced by activity occur both in the brain and spinal cord. This paper reviews the activity-dependent changes in the spinal cord neural circuits during both the developmental stages of the CNS and in adulthood.
Collapse
|
39
|
Robertson CT, Kitano K, Koceja DM, Riley ZA. Temporal depression of the soleus H-reflex during passive stretch. Exp Brain Res 2012; 219:217-25. [PMID: 22466411 DOI: 10.1007/s00221-012-3080-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/15/2012] [Indexed: 12/01/2022]
Abstract
Synaptic efficacy associated with muscle spindle feedback is regulated via depression at the Ia-motoneurone synapse. The inhibitory effects of repetitive Ia afferent discharge on target motoneurones of different sizes were investigated during a passive stretch of ankle extensors in humans. H-reflex recruitment curves were collected from the soleus muscle for two conditions in ten subjects. H-reflexes were elicited during passive stretch at latencies of 50, 100, 300, and 500 ms after a slow (20°/s) dorsiflexion about the right ankle (from 100 to 90°). Control H-reflexes were recorded at corresponding static (without movement) ankle angles of 99, 98, 94, and 90° of flexion. The slope of the H-reflex recruitment curves (Hslp) was then calculated for both conditions. H-reflex values were similar for the static and passive stretch conditions prior to 50-100 ms, not showing the early facilitation typical of increased muscle spindle discharge rates. However, the H-reflex was significantly depressed by 300 ms and persisted through 500 ms. Furthermore, less than 300 ms into the stretch, there was significantly greater H-reflex depression with a lower stimulus intensity (20 % Mmax) versus a higher stimulus intensity (Hmax), though the effects begin to converge at later latencies (>300 ms). This suggests there is a distinct two-stage temporal process in the depression observed in the Ia afferent pathway for all motoneurones during a passive stretch. Additionally, there is not a single mechanism responsible for the depression, but rather both heterosynaptic presynaptic inhibition and homosynaptic post-activation depression are independently influencing the Ia-motoneurone pathway temporally during movement.
Collapse
Affiliation(s)
- Christopher T Robertson
- Department of Sport and Exercise Science, Jacksonville University, Jacksonville, FL 32211, USA
| | | | | | | |
Collapse
|
40
|
Ritzmann R, Kramer A, Gollhofer A, Taube W. The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand J Med Sci Sports 2011; 23:331-9. [DOI: 10.1111/j.1600-0838.2011.01388.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Ritzmann
- Institute of Sport and Sport Science; University of Freiburg; Freiburg; Germany
| | - A. Kramer
- Institute of Sport and Sport Science; University of Freiburg; Freiburg; Germany
| | - A. Gollhofer
- Institute of Sport and Sport Science; University of Freiburg; Freiburg; Germany
| | - W. Taube
- Department of Medicine, Movement and Sport Science; University of Fribourg; Fribourg; Switzerland
| |
Collapse
|
41
|
Rhythmic arm cycling differentially modulates stretch and H-reflex amplitudes in soleus muscle. Exp Brain Res 2011; 214:529-37. [PMID: 21901451 DOI: 10.1007/s00221-011-2851-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
During rhythmic arm cycling, soleus H-reflex amplitudes are reduced by modulation of group Ia presynaptic inhibition. This suppression of reflex amplitude is graded to the frequency of arm cycling with a threshold of 0.8 Hz. Despite the data on modulation of the soleus H-reflex amplitude induced by rhythmic arm cycling, comparatively little is known about the modulation of stretch reflexes due to remote limb movement. Therefore, the present study was intended to explore the effect of arm cycling on stretch and H-reflex amplitudes in the soleus muscle. In so doing, additional information on the mechanism of action during rhythmic arm cycling would be revealed. Although both reflexes share the same afferent pathway, we hypothesized that stretch reflex amplitudes would be less suppressed by arm cycling because they are less inhibited by presynaptic inhibition. Failure to reject this hypothesis would add additional strength to the argument that Ia presynaptic inhibition is the mechanism modulating soleus H-reflex amplitude during rhythmic arm cycling. Participants were seated in a customized chair with feet strapped to footplates. Three motor tasks were performed: static control trials and arm cycling at 1 and 2 Hz. Soleus H-reflexes were evoked using single 1 ms pulses of electrical stimulation delivered to the tibial nerve at the popliteal fossa. A constant M-wave and ~6% MVC activation of soleus were maintained across conditions. Stretch reflexes were evoked using a single sinusoidal pulse at 100 Hz given by a vibratory shaker placed over the triceps surae tendon and controlled by a custom-written LabView program. Results demonstrated that rhythmic arm cycling that was effective for conditioning soleus H-reflexes did not show a suppressive effect on the amplitude of the soleus stretch reflex. We suggest this indicates that stretch reflexes are less sensitive to conditioning by rhythmic arm movement, as compared to H-reflexes, due to the relative insensitivity to Ia presynaptic inhibition.
Collapse
|
42
|
Frigon A, Johnson MD, Heckman CJ. Altered activation patterns by triceps surae stretch reflex pathways in acute and chronic spinal cord injury. J Neurophysiol 2011; 106:1669-78. [PMID: 21734111 DOI: 10.1152/jn.00504.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal reflexes are modified by spinal cord injury (SCI) due the loss of excitatory inputs from supraspinal structures and changes within the spinal cord. The stretch reflex is one of the simplest pathways of the central nervous system and was used presently to evaluate how inputs from primary and secondary muscle spindles interact with spinal circuits before and after spinal transection (i.e., spinalization) in 12 adult decerebrate cats. Seven cats were spinalized and allowed to recover for 1 mo (i.e., chronic spinal state), whereas 5 cats were evaluated before (i.e., intact state) and after acute spinalization (i.e., acute spinal state). Stretch reflexes were evoked by stretching the left triceps surae (TS) muscles. The force evoked by TS muscles was recorded along with the activity of several hindlimb muscles. Stretch reflexes were abolished in the acute spinal state due to an inability to activate TS muscles, such as soleus (Sol) and lateral gastrocnemius (LG). In chronic spinal cats, reflex force had partly recovered but Sol and LG activity remained considerably depressed, despite the fact that injecting clonidine could recruit these muscles during locomotor-like activity. In contrast, other muscles not recruited in the intact state, most notably semitendinosus and sartorius, were strongly activated by stretching TS muscles in chronic spinal cats. Therefore, stretch reflex pathways from TS muscles to multiple hindlimb muscles undergo functional reorganization following spinalization, both acute and chronic. Altered activation patterns by stretch reflex pathways could explain some sensorimotor deficits observed during locomotion and postural corrections after SCI.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | |
Collapse
|
43
|
Laurin J, Dousset E, Decherchi P. Modulation of the spinal excitability by muscle metabosensitive afferent fibers. J Neurosci Res 2011; 88:2755-64. [PMID: 20544822 DOI: 10.1002/jnr.22432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to identify the effect of chemical activation of muscle metabosensitive afferent fibers from groups III and IV on Hoffmann (H-) reflex modulation in the vastus medialis muscle. The experiment was conducted in rats and was divided into two experiments. The first experiment consisted of recording the metabosensitive afferent activity from femoral nerve in rats in response to KCl intraarterial injections in nontreated adults and adults treated neonatally with capsaicin. Thus, the dose-response curve was determined. The second experiment consisted of eliciting the H- and M-waves before and after KCl injection in nontreated adult animals and those treated neonatally with capsaicin. Thus, the H(max)/M(max) ratio was measured. Results indicated that, 1) in nontreated animals, afferent fibers peak discharge was found after 10 mM KCl injection; 2) no significant increase in afferent discharge rate was found in capsaicin-treated animal after KCl injections, confirming that capsaicin is an excitotoxic agent that had destroyed the thin metabosensitive nerve fibers; 3) in nontreated animals, H(max)/M(max) ratio was significantly attenuated after a 10 mM KCl injection activating metabosensitive afferent fibers; and 4) in capsaicin-treated animals, no significant change in H(max)/M(max) ratio was observed after the KCl injection. These results reinforce the hypothesis that the spinal reflex response was influenced by metabosensitive muscle fibers and provide direct evidence that activation of these fibers could partially explain the reported decrease in H-reflex when metabolites are released in muscle.
Collapse
Affiliation(s)
- Jérôme Laurin
- UMR CNRS 6233 Institut des Sciences du Mouvement (ISM): Etienne-Jules MAREY", Equipe Plasticité des Systèmes Nerveux et Musculaires, Université de la Méditerranée (Aix-Marseille II), Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, 13288 Marseille, France
| | | | | |
Collapse
|
44
|
The effect of motor imagery on gain modulation of the spinal reflex. Brain Res 2011; 1372:41-8. [DOI: 10.1016/j.brainres.2010.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/09/2010] [Accepted: 11/08/2010] [Indexed: 11/19/2022]
|
45
|
Garrison MK, Yates CC, Reese NB, Skinner RD, Garcia-Rill E. Wind-up of stretch reflexes as a measure of spasticity in chronic spinalized rats: The effects of passive exercise and modafinil. Exp Neurol 2011; 227:104-9. [PMID: 20932828 PMCID: PMC3019091 DOI: 10.1016/j.expneurol.2010.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/18/2010] [Accepted: 09/23/2010] [Indexed: 01/29/2023]
Abstract
Spasticity is a common disorder following spinal cord injury that can impair function and quality of life. While a number of mechanisms are thought to play a role in spasticity, the role of motoneuron persistent inward currents (PICs) is emerging as pivotal. The presence of PICs can be evidenced by temporal summation or wind-up of reflex responses to brief afferent inputs. In this study, a combined neurophysiological and novel biomechanical approach was used to assess the effects of passive exercise and modafinil administration on hyper-reflexia and spasticity following complete T-10 transection in the rat. Animals were divided into 3 groups (n=8) and provided daily passive cycling exercise, oral modafinil, or no intervention. After 6weeks, animals were tested for wind-up of the stretch reflex (SR) during repeated dorsiflexion stretches of the ankle. H-reflexes were tested in a subset of animals. Both torque and gastrocnemius electromyography showed evidence of SR wind-up in the transection only group that was significantly different from both treatment groups (p<0.05). H-reflex frequency dependent depression was also restored to normal levels in both treatment groups. The results provide support for the use of passive cycling exercise and modafinil in the treatment of spasticity and provide insight into the possible contribution of PICs.
Collapse
Affiliation(s)
- M Kevin Garrison
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72035, USA.
| | | | | | | | | |
Collapse
|
46
|
Yates C, Garrison K, Reese NB, Charlesworth A, Garcia-Rill E. Chapter 11--novel mechanism for hyperreflexia and spasticity. PROGRESS IN BRAIN RESEARCH 2011; 188:167-80. [PMID: 21333809 DOI: 10.1016/b978-0-444-53825-3.00016-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We established that hyperreflexia is delayed after spinal transection in the adult rat and that passive exercise could normalize low frequency-dependent depression of the H-reflex. We were also able to show that such passive exercise will normalize hyperreflexia in patients with spinal cord injury (SCI). Recent results demonstrate that spinal transection results in changes in the neuronal gap junction protein connexin 36 below the level of the lesion. Moreover, a drug known to increase electrical coupling was found to normalize hyperreflexia in the absence of passive exercise, suggesting that changes in electrical coupling may be involved in hyperreflexia. We also present results showing that a measure of spasticity, the stretch reflex, is rendered abnormal by transection and normalized by the same drug. These data suggest that electrical coupling may be dysregulated in SCI, leading to some of the symptoms observed. A novel therapy for hyperreflexia and spasticity may require modulation of electrical coupling.
Collapse
Affiliation(s)
- C Yates
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|
47
|
Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol 2010; 121:1655-68. [DOI: 10.1016/j.clinph.2010.01.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 12/21/2022]
|
48
|
Cronin NJ, af Klint R, Grey MJ, Sinkjaer T. Ultrasonography as a tool to study afferent feedback from the muscle-tendon complex during human walking. J Electromyogr Kinesiol 2010; 21:197-207. [PMID: 20833562 DOI: 10.1016/j.jelekin.2010.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022] Open
Abstract
In humans, one of the most common tasks in everyday life is walking, and sensory afferent feedback from peripheral receptors, particularly the muscle spindles and Golgi tendon organs (GTO), makes an important contribution to the motor control of this task. One factor that can complicate the ability of these receptors to act as length, velocity and force transducers is the complex pattern of interaction between muscle and tendinous tissues, as tendon length is often considerably greater than muscle fibre length in the human lower limb. In essence, changes in muscle-tendon mechanics can influence the firing behaviour of afferent receptors, which may in turn affect the motor control. In this review we first summarise research that has incorporated the use of ultrasound-based techniques to study muscle-tendon interaction, predominantly during walking. We then review recent research that has combined this method with an examination of muscle activation to give a broader insight to neuromuscular interaction during walking. Despite the advances in understanding that these techniques have brought, there is clearly still a need for more direct methods to study both neural and mechanical parameters during human walking in order to unravel the vast complexity of this seemingly simple task.
Collapse
Affiliation(s)
- Neil J Cronin
- School of Physiotherapy and Exercise Science, Griffith University, Queensland, Australia
| | | | | | | |
Collapse
|
49
|
Agostinucci J. Effect of Air-Splint Pressure on the Soleus Stretch Reflex during a Voluntary Ramp Plantar Flexion. NEUROPHYSIOLOGY+ 2010. [DOI: 10.1007/s11062-010-9128-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
af Klint R, Cronin NJ, Ishikawa M, Sinkjaer T, Grey MJ. Afferent Contribution to Locomotor Muscle Activity During Unconstrained Overground Human Walking: An Analysis of Triceps Surae Muscle Fascicles. J Neurophysiol 2010; 103:1262-74. [DOI: 10.1152/jn.00852.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plantar flexor series elasticity can be used to dissociate muscle–fascicle and muscle–tendon behavior and thus afferent feedback during human walking. We used electromyography (EMG) and high-speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behavior in 19 healthy volunteers as they walked across a platform. On random trials, the platform was dropped (8 cm, 0.9 g acceleration) or held at a small inclination (up to ±3° in the parasagittal plane) with respect to level ground. Dropping the platform in the mid and late phases of stance produced a depression in the soleus muscle activity with an onset latency of about 50 ms. The reduction in ground reaction force also unloaded the plantar flexor muscles. The soleus muscle fascicles shortened with a minimum delay of 14 ms. Small variations in platform inclination produced significant changes in triceps surae muscle activity; EMG increased when stepping on an inclined surface and decreased when stepping on a declined surface. This sensory modulation of the locomotor output was concomitant with changes in triceps surae muscle fascicle and gastrocnemius tendon length. Assuming that afferent activity correlates to these mechanical changes, our results indicate that within-step sensory feedback from the plantar flexor muscles automatically adjusts muscle activity to compensate for small ground irregularities. The delayed onset of muscle fascicle movement after dropping the platform indicates that at least the initial part of the soleus depression is more likely mediated by a decrease in force feedback than length-sensitive feedback, indicating that force feedback contributes to the locomotor activity in human walking.
Collapse
Affiliation(s)
- R. af Klint
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg
| | - N. J. Cronin
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
| | - M. Ishikawa
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
- Osaka University of Health and Sport Sciences, Osaka, Japan
| | - T. Sinkjaer
- Center for Sensory–Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg
- Danish National Research Foundation
| | - M. J. Grey
- Department of Exercise and Sport Sciences and Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|