1
|
Coventry BS, Luu CP, Bartlett EL. Focal Infrared Neural Stimulation Propagates Dynamical Transformations in Auditory Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642906. [PMID: 40161605 PMCID: PMC11952546 DOI: 10.1101/2025.03.12.642906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Significance Infrared neural stimulation (INS) has emerged as a potent neuromodulation technology, offering safe and focal stimulation with superior spatial recruitment profiles compared to conventional electrical methods. However, the neural dynamics induced by INS stimulation remain poorly understood. Elucidating these dynamics will help develop new INS stimulation paradigms and advance its clinical application. Aim In this study, we assessed the local network dynamics of INS entrainment in the auditory thalamocortical circuit using the chronically implanted rat model; our approach focused on measuring INS energy-based local field potential (LFP) recruitment induced by focal thalamocortical stimulation. We further characterized linear and nonlinear oscillatory LFP activity in response to single-pulse and periodic INS and performed spectral decomposition to uncover specific LFP band entrainment to INS. Finally, we examined spike-field transformations across the thalamocortical synapse using spike-LFP coherence coupling. Results We found that INS significantly increases LFP amplitude as a log-linear function of INS energy per pulse, primarily entraining to LFP β and γ bands with synchrony extending to 200 Hz in some cases. A subset of neurons demonstrated nonlinear, chaotic oscillations linked to information transfer across cortical circuits. Finally, we utilized spike-field coherences to correlate spike coupling to LFP frequency band activity and suggest an energy-dependent model of network activation resulting from INS stimulation. Conclusions We show that INS reliably drives robust network activity and can potently modulate cortical field potentials across a wide range of frequencies in a stimulus parameter-dependent manner. Based on these results, we propose design principles for developing full coverage, all-optical thalamocortical auditory neuroprostheses.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
| | - Cuong P Luu
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53907 USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
2
|
Ying R, Stolzberg DJ, Caras ML. Neural Correlates of Perceptual Plasticity in the Auditory Midbrain and Thalamus. J Neurosci 2025; 45:e0691242024. [PMID: 39753303 PMCID: PMC11884394 DOI: 10.1523/jneurosci.0691-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 03/08/2025] Open
Abstract
Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood. Here, we recorded single- and multiunit activity from the central nucleus of the inferior colliculus (ICC) and the ventral subdivision of the medial geniculate nucleus (MGV) of male and female Mongolian gerbils under two different behavioral contexts: as animals performed an amplitude modulation (AM) detection task and as they were passively exposed to AM sounds. Using a signal detection framework to estimate neurometric sensitivity, we found that neural thresholds in both regions improve during task performance, and this improvement is largely driven by changes in the firing rate rather than phase locking. We also found that ICC and MGV neurometric thresholds improve as animals learn to detect small AM depths during a multiday perceptual training paradigm. Finally, we revealed that in the MGV, but not the ICC, context-dependent enhancements in AM sensitivity grow stronger during perceptual training, mirroring prior observations in the ACX. Together, our results suggest that the auditory midbrain and thalamus contribute to changes in sound processing and perception over rapid and slow timescales.
Collapse
Affiliation(s)
- Rose Ying
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland 20742
| | - Daniel J Stolzberg
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Melissa L Caras
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland 20742
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
3
|
Shi K, Quass GL, Rogalla MM, Ford AN, Czarny JE, Apostolides PF. Population coding of time-varying sounds in the nonlemniscal inferior colliculus. J Neurophysiol 2024; 131:842-864. [PMID: 38505907 PMCID: PMC11381119 DOI: 10.1152/jn.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's nonlemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and nonprimary auditory cortices, forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here, we use two-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset was highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ∼0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.NEW & NOTEWORTHY The IC's shell layers originate a "nonlemniscal" pathway important for perceiving vocalization sounds. However, prior studies suggest that individual shell IC neurons are broadly tuned and have high response thresholds, implying a limited reliability of efferent signals. Using Ca2+ imaging, we show that amplitude modulation is accurately represented in the population activity of shell IC neurons. Thus, downstream targets can read out sounds' temporal envelopes from distributed rate codes transmitted by populations of broadly tuned neurons.
Collapse
Affiliation(s)
- Kaiwen Shi
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jordyn E Czarny
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Ying R, Stolzberg DJ, Caras ML. Neural correlates of flexible sound perception in the auditory midbrain and thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589266. [PMID: 38645241 PMCID: PMC11030403 DOI: 10.1101/2024.04.12.589266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the spectral and temporal sensitivity of auditory cortical neurons support many aspects of flexible listening, the contribution of subcortical auditory regions to this process is less understood. Here, we recorded single- and multi-unit activity from the central nucleus of the inferior colliculus (ICC) and the ventral subdivision of the medial geniculate nucleus (MGV) of Mongolian gerbils under two different behavioral contexts: as animals performed an amplitude modulation (AM) detection task and as they were passively exposed to AM sounds. Using a signal detection framework to estimate neurometric sensitivity, we found that neural thresholds in both regions improved during task performance, and this improvement was driven by changes in firing rate rather than phase locking. We also found that ICC and MGV neurometric thresholds improved and correlated with behavioral performance as animals learn to detect small AM depths during a multi-day perceptual training paradigm. Finally, we reveal that in the MGV, but not the ICC, context-dependent enhancements in AM sensitivity grow stronger during perceptual training, mirroring prior observations in the auditory cortex. Together, our results suggest that the auditory midbrain and thalamus contribute to flexible sound processing and perception over rapid and slow timescales.
Collapse
Affiliation(s)
- Rose Ying
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
| | - Daniel J. Stolzberg
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Melissa L. Caras
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
5
|
Jimoh Z, Marouf A, Zenke J, Leung AWS, Gomaa NA. Functional Brain Regions Linked to Tinnitus Pathology and Compensation During Task Performance: A Systematic Review. Otolaryngol Head Neck Surg 2023; 169:1409-1423. [PMID: 37522290 DOI: 10.1002/ohn.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE To systematically search the literature and organize relevant advancements in the connection between tinnitus and the activity of different functional brain regions using functional magnetic resonance imaging (fMRI). DATA SOURCES MEDLINE (OVID), EMBASE (OVID), CINAHL (EBSCO), Web of Science, ProQuest Dissertations & Theses Global, Cochrane Database of Systematic Reviews, and PROSPERO from inception to April 2022. REVIEW METHODS Studies with adult human subjects who suffer from tinnitus and underwent fMRI to relate specific regions of interest to tinnitus pathology or compensation were included. In addition, fMRI had to be performed with a paradigm of stimuli that would stimulate auditory brain activity. Exclusion criteria included non-English studies, animal studies, and studies that utilized a resting state magnetic resonance imaging or other imaging modalities. RESULTS The auditory cortex may work to dampen the effects of central gain. Results from different studies show variable changes in the Heschl's gyrus (HG), with some showing increased activity and others showing inhibition and volume loss. After controlling for hyperacusis and other confounders, tinnitus does not seem to influence the inferior colliculus (IC) activation. However, there is decreased connectivity between the auditory cortex and IC. The cochlear nucleus (CN) generally shows increased activation in tinnitus patients. fMRI evidence indicates significant inhibition of thalamic gating. Activating the thalamus may be of important therapeutic potential. CONCLUSION Patients with tinnitus have significantly altered neuronal firing patterns, especially within the auditory network, when compared to individuals without tinnitus. Tinnitus and hyperacusis commonly coexist, making differentiation of the effects of these 2 phenomena frequently difficult.
Collapse
Affiliation(s)
- Zaharadeen Jimoh
- Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Azmi Marouf
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Julianna Zenke
- Division of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ada W S Leung
- Department of Occupational Therapy, Neuroscience, and Mental Health Institute, Faculty of Rehabilitation Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nahla A Gomaa
- Division of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Shi K, Quass GL, Rogalla MM, Ford AN, Czarny JE, Apostolides PF. Population coding of time-varying sounds in the non-lemniscal Inferior Colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553263. [PMID: 37645904 PMCID: PMC10461978 DOI: 10.1101/2023.08.14.553263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's non-lemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and non-primary auditory cortices; forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here we use 2-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset were highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ~0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.
Collapse
Affiliation(s)
- Kaiwen Shi
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Gunnar L. Quass
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Meike M. Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Alexander N. Ford
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Jordyn E. Czarny
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Pierre F. Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109
| |
Collapse
|
7
|
Koehler CC, Almassri LS, Tokar N, Mafi AM, O’Hara MJ, Young JW, Mellott JG. Age-related Changes of GAD1 mRNA Expression in the Central Inferior Colliculus. TRANSLATIONAL MEDICINE OF AGING 2023; 7:20-32. [PMID: 38111912 PMCID: PMC10727507 DOI: 10.1016/j.tma.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Encoding sounds with a high degree of temporal precision is an essential task for the inferior colliculus (IC) to perform and maintain the accurate processing of sounds and speech. However, the age-related reduction of GABAergic neurotransmission in the IC interrupts temporal precision and likely contributes to presbycusis. As presbycusis often manifests at high or low frequencies specifically, we sought to determine if the expression of mRNA for glutamic decarboxylase 1 (GAD1) is downregulated non-uniformly across the tonotopic axis or cell size range in the aging IC. Using single molecule in situ fluorescent hybridization across young, middle age and old Fisher Brown Norway rats (an aging model that acquires low frequency presbycusis) we quantified individual GAD1 mRNA in small, medium and large GABAergic cells. Our results demonstrate that small GABAergic cells in low frequency regions had ~58% less GAD1 in middle age and continued to decline into old age. In contrast, the amount of GAD1 mRNA in large cells in low frequency regions significantly increased with age. As several studies have shown that downregulation of GAD1 decreases the release of GABA, we interpret our results in two ways. First, the onset of presbycusis may be driven by small GABAergic cells downregulating GAD1. Second, as previous studies demonstrate that GAD67 expression is broadly downregulated in the old IC, perhaps the translation of GAD1 to GAD67 is interrupted in large GABAergic IC cells during aging. These results point to a potential genetic mechanism explaining reduced temporal precision in the aging IC, and in turn, presbycusis.
Collapse
Affiliation(s)
- Christina C. Koehler
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Laila S. Almassri
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Nick Tokar
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Amir M. Mafi
- The Ohio State College of Medicine The Ohio State Columbus, OH USA
| | - Mitchell J. O’Hara
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown, OH USA
| |
Collapse
|
8
|
Tomioka R, Takemoto M, Song WJ. Neurochemical properties for defining subdivisions of the mouse medial geniculate body. Hear Res 2023; 431:108724. [PMID: 36871497 DOI: 10.1016/j.heares.2023.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
The medial geniculate body (MGB) exhibits anatomical and physiological properties that underlie its role in the auditory system. Anatomical properties, including myelo- and cyto-architecture, are used to identify MGB subdivisions. Recently, neurochemical properties, including calcium-binding proteins, have also been employed to define the MGB subdivisions. Because these properties do not show clear boundaries in the MGB and do not involve anatomical connectivity, whether the MGB subdivisions can be defined based on anatomical and neurochemical properties remains unclear. In this study, 11 different neurochemical markers were employed for defining the MGB subdivisions. In terms of anatomical connectivity, immunoreactivities for vesicular transporter demonstrated glutamatergic, GABAergic and glycinergic afferents and provided clues about the boundaries of the MGB subdivisions. On the other hand, the distribution of novel neurochemical markers of the MGB demonstrated distinct boundaries of the MGB subdivisions and resulted in the discovery of a putative homolog of the rabbit internal division of the MGB. Additionally, corticotropin-releasing factor was expressed in the larger neurons in the medial division of the MGB (MGm), particularly in the caudal MGm. Lastly, the analysis of anatomical details by measuring the size and density of vesicular transporters revealed heterogeneity among the MGB subdivisions. Our results demonstrate that the MGB is composed of five subdivisions based on their anatomical and neurochemical properties.
Collapse
Affiliation(s)
- Ryohei Tomioka
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Makoto Takemoto
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
9
|
Lohse M, Zimmer-Harwood P, Dahmen JC, King AJ. Integration of somatosensory and motor-related information in the auditory system. Front Neurosci 2022; 16:1010211. [PMID: 36330342 PMCID: PMC9622781 DOI: 10.3389/fnins.2022.1010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
An ability to integrate information provided by different sensory modalities is a fundamental feature of neurons in many brain areas. Because visual and auditory inputs often originate from the same external object, which may be located some distance away from the observer, the synthesis of these cues can improve localization accuracy and speed up behavioral responses. By contrast, multisensory interactions occurring close to the body typically involve a combination of tactile stimuli with other sensory modalities. Moreover, most activities involving active touch generate sound, indicating that stimuli in these modalities are frequently experienced together. In this review, we examine the basis for determining sound-source distance and the contribution of auditory inputs to the neural encoding of space around the body. We then consider the perceptual consequences of combining auditory and tactile inputs in humans and discuss recent evidence from animal studies demonstrating how cortical and subcortical areas work together to mediate communication between these senses. This research has shown that somatosensory inputs interface with and modulate sound processing at multiple levels of the auditory pathway, from the cochlear nucleus in the brainstem to the cortex. Circuits involving inputs from the primary somatosensory cortex to the auditory midbrain have been identified that mediate suppressive effects of whisker stimulation on auditory thalamocortical processing, providing a possible basis for prioritizing the processing of tactile cues from nearby objects. Close links also exist between audition and movement, and auditory responses are typically suppressed by locomotion and other actions. These movement-related signals are thought to cancel out self-generated sounds, but they may also affect auditory responses via the associated somatosensory stimulation or as a result of changes in brain state. Together, these studies highlight the importance of considering both multisensory context and movement-related activity in order to understand how the auditory cortex operates during natural behaviors, paving the way for future work to investigate auditory-somatosensory interactions in more ecological situations.
Collapse
|
10
|
Roy DS, Zhang Y, Halassa MM, Feng G. Thalamic subnetworks as units of function. Nat Neurosci 2022; 25:140-153. [PMID: 35102334 PMCID: PMC9400132 DOI: 10.1038/s41593-021-00996-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/07/2021] [Indexed: 01/15/2023]
Abstract
The thalamus engages in various functions including sensory processing, attention, decision making and memory. Classically, this diversity of function has been attributed to the nuclear organization of the thalamus, with each nucleus performing a well-defined function. Here, we highlight recent studies that used state-of-the-art expression profiling, which have revealed gene expression gradients at the single-cell level within and across thalamic nuclei. These gradients, combined with anatomical tracing and physiological analyses, point to previously unappreciated heterogeneity and redefine thalamic units of function on the basis of unique input-output connectivity patterns and gene expression. We propose that thalamic subnetworks, defined by the intersection of genetics, connectivity and computation, provide a more appropriate level of functional description; this notion is supported by behavioral phenotypes resulting from appropriately tailored perturbations. We provide several examples of thalamic subnetworks and suggest how this new perspective may both propel progress in basic neuroscience and reveal unique targets with therapeutic potential.
Collapse
Affiliation(s)
- Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ying Zhang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
| |
Collapse
|
11
|
Fujimoto H, Notsu E, Yamamoto R, Ono M, Hioki H, Takahashi M, Ito T. Kv4.2-Positive Domains on Dendrites in the Mouse Medial Geniculate Body Receive Ascending Excitatory and Inhibitory Inputs Preferentially From the Inferior Colliculus. Front Neurosci 2021; 15:740378. [PMID: 34658777 PMCID: PMC8511456 DOI: 10.3389/fnins.2021.740378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The medial geniculate body (MGB) is the thalamic center of the auditory lemniscal pathway. The ventral division of MGB (MGV) receives excitatory and inhibitory inputs from the inferior colliculus (IC). MGV is involved in auditory attention by processing descending excitatory and inhibitory inputs from the auditory cortex (AC) and reticular thalamic nucleus (RTN), respectively. However, detailed mechanisms of the integration of different inputs in a single MGV neuron remain unclear. Kv4.2 is one of the isoforms of the Shal-related subfamily of potassium voltage-gated channels that are expressed in MGB. Since potassium channel is important for shaping synaptic current and spike waveforms, subcellular distribution of Kv4.2 is likely important for integration of various inputs. Here, we aimed to examine the detailed distribution of Kv4.2, in MGV neurons to understand its specific role in auditory attention. We found that Kv4.2 mRNA was expressed in most MGV neurons. At the protein level, Kv4.2-immunopositive patches were sparsely distributed in both the dendrites and the soma of neurons. The postsynaptic distribution of Kv4.2 protein was confirmed using electron microscopy (EM). The frequency of contact with Kv4.2-immunopositive puncta was higher in vesicular glutamate transporter 2 (VGluT2)-positive excitatory axon terminals, which are supposed to be extending from the IC, than in VGluT1-immunopositive terminals, which are expected to be originating from the AC. VGluT2-immunopositive terminals were significantly larger than VGluT1-immunopositive terminals. Furthermore, EM showed that the terminals forming asymmetric synapses with Kv4.2-immunopositive MGV dendritic domains were significantly larger than those forming synapses with Kv4.2-negative MGV dendritic domains. In inhibitory axons either from the IC or from the RTN, the frequency of terminals that were in contact with Kv4.2-positive puncta was higher in IC than in RTN. In summary, our study demonstrated that the Kv4.2-immunopositive domains of the MGV dendrites received excitatory and inhibitory ascending auditory inputs preferentially from the IC, and not from the RTN or cortex. Our findings imply that time course of synaptic current and spike waveforms elicited by IC inputs is modified in the Kv4.2 domains.
Collapse
Affiliation(s)
- Hisataka Fujimoto
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan.,Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Japan
| | - Eiji Notsu
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Uchinada, Japan
| | - Munenori Ono
- Department of Physiology, Kanazawa Medical University, Uchinada, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Megumu Takahashi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsufumi Ito
- Research and Education Program for Life Science, University of Fukui, Fukui, Japan.,Department of Anatomy, Kanazawa Medical University, Uchinada, Japan.,Department of Systems Function and Morphology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| |
Collapse
|
12
|
Mafi AM, Russ MG, Hofer LN, Pham VQ, Young JW, Mellott JG. Inferior collicular cells that project to the auditory thalamus are increasingly surrounded by perineuronal nets with age. Neurobiol Aging 2021; 105:1-15. [PMID: 34004491 PMCID: PMC8338758 DOI: 10.1016/j.neurobiolaging.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
The age-related loss of GABA in the inferior colliculus (IC) likely plays a role in the development of age-related hearing loss. Perineuronal nets (PNs), specialized aggregates of extracellular matrix, increase with age in the IC. PNs, associated with GABAergic neurotransmission, can stabilize synapses and inhibit structural plasticity. We sought to determine whether PN expression increased on GABAergic and non-GABAergic IC cells that project to the medial geniculate body (MG). We used retrograde tract-tracing in combination with immunohistochemistry for glutamic acid decarboxylase and Wisteria floribunda agglutinin across three age groups of Fischer Brown Norway rats. Results demonstrate that PNs increase with age on lemniscal and non-lemniscal IC-MG cells, however two key differences exist. First, PNs increased on non-lemniscal IC-MG cells during middle-age, but not until old age on lemniscal IC-MG cells. Second, increases of PNs on lemniscal IC-MG cells occurred on non-GABAergic cells rather than on GABAergic cells. These results suggest that synaptic stabilization and reduced plasticity likely occur at different ages on a subset of the IC-MG pathway.
Collapse
Affiliation(s)
- Amir M Mafi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Lindsay N Hofer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Vincent Q Pham
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH USA.
| |
Collapse
|
13
|
Homma NY, Bajo VM. Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Front Neurosci 2021; 15:723893. [PMID: 34489635 PMCID: PMC8417129 DOI: 10.3389/fnins.2021.723893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.
Collapse
Affiliation(s)
- Natsumi Y. Homma
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Coleman Memorial Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Excitatory cholecystokinin neurons of the midbrain integrate diverse temporal responses and drive auditory thalamic subdomains. Proc Natl Acad Sci U S A 2021; 118:2007724118. [PMID: 33658359 PMCID: PMC7958253 DOI: 10.1073/pnas.2007724118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our ability to identify sounds and understand communication signals depends upon our brains’ capacity to combine information about diverse sound features, including temporal patterns. The central nucleus of the inferior colliculus (ICC) performs an initial stage of this integration, but a circuit-based understanding of these processes has been hampered by difficulties in separating clearly defined functional cell types. Here we identify and characterize a major excitatory projection neuron of the ICC. These neurons show uniform intrinsic firing patterns and tuning to frequency, but strikingly diverse temporal responses to sound. Our results suggest that diversity in temporal coding is represented even within a single cell class and is likely primarily driven by differences in circuit connectivity. The central nucleus of the inferior colliculus (ICC) integrates information about different features of sound and then distributes this information to thalamocortical circuits. However, the lack of clear definitions of circuit elements in the ICC has limited our understanding of the nature of these circuit transformations. Here, we combine virus-based genetic access with electrophysiological and optogenetic approaches to identify a large family of excitatory, cholecystokinin-expressing thalamic projection neurons in the ICC of the Mongolian gerbil. We show that these neurons form a distinct cell type, displaying uniform morphology and intrinsic firing features, and provide powerful, spatially restricted excitation exclusively to the ventral auditory thalamus. In vivo, these neurons consistently exhibit V-shaped receptive field properties but strikingly diverse temporal responses to sound. Our results indicate that temporal response diversity is maintained within this population of otherwise uniform cells in the ICC and then relayed to cortex through spatially restricted thalamic subdomains.
Collapse
|
15
|
Brinkmann P, Kotz SA, Smit JV, Janssen MLF, Schwartze M. Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis. Brain Struct Funct 2021; 226:1659-1676. [PMID: 33934235 PMCID: PMC8203542 DOI: 10.1007/s00429-021-02284-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/21/2021] [Indexed: 01/12/2023]
Abstract
Tinnitus is the perception of a 'ringing' sound without an acoustic source. It is generally accepted that tinnitus develops after peripheral hearing loss and is associated with altered auditory processing. The thalamus is a crucial relay in the underlying pathways that actively shapes processing of auditory signals before the respective information reaches the cerebral cortex. Here, we review animal and human evidence to define thalamic function in tinnitus. Overall increased spontaneous firing patterns and altered coherence between the thalamic medial geniculate body (MGB) and auditory cortices is observed in animal models of tinnitus. It is likely that the functional connectivity between the MGB and primary and secondary auditory cortices is reduced in humans. Conversely, there are indications for increased connectivity between the MGB and several areas in the cingulate cortex and posterior cerebellar regions, as well as variability in connectivity between the MGB and frontal areas regarding laterality and orientation in the inferior, medial and superior frontal gyrus. We suggest that these changes affect adaptive sensory gating of temporal and spectral sound features along the auditory pathway, reflecting dysfunction in an extensive thalamo-cortical network implicated in predictive temporal adaptation to the auditory environment. Modulation of temporal characteristics of input signals might hence factor into a thalamo-cortical dysrhythmia profile of tinnitus, but could ultimately also establish new directions for treatment options for persons with tinnitus.
Collapse
Affiliation(s)
- Pia Brinkmann
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands.
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jasper V Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Zuyderland Medical Center, Sittard/Heerlen, the Netherlands
| | - Marcus L F Janssen
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel 40, 6229, Maastricht, The Netherlands
| |
Collapse
|
16
|
Lohse M, Dahmen JC, Bajo VM, King AJ. Subcortical circuits mediate communication between primary sensory cortical areas in mice. Nat Commun 2021; 12:3916. [PMID: 34168153 PMCID: PMC8225818 DOI: 10.1038/s41467-021-24200-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Integration of information across the senses is critical for perception and is a common property of neurons in the cerebral cortex, where it is thought to arise primarily from corticocortical connections. Much less is known about the role of subcortical circuits in shaping the multisensory properties of cortical neurons. We show that stimulation of the whiskers causes widespread suppression of sound-evoked activity in mouse primary auditory cortex (A1). This suppression depends on the primary somatosensory cortex (S1), and is implemented through a descending circuit that links S1, via the auditory midbrain, with thalamic neurons that project to A1. Furthermore, a direct pathway from S1 has a facilitatory effect on auditory responses in higher-order thalamic nuclei that project to other brain areas. Crossmodal corticofugal projections to the auditory midbrain and thalamus therefore play a pivotal role in integrating multisensory signals and in enabling communication between different sensory cortical areas.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Sainsbury Wellcome Centre, London, UK.
| | - Johannes C Dahmen
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Andrew J King
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Harpaz M, Jankowski MM, Khouri L, Nelken I. Emergence of abstract sound representations in the ascending auditory system. Prog Neurobiol 2021; 202:102049. [PMID: 33845166 DOI: 10.1016/j.pneurobio.2021.102049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/27/2022]
Abstract
Auditory processing begins by decomposing sounds into their frequency components, raising the question of where the representation of sounds as wholes emerges in the auditory system. To address this question, we used stimulus-specific adaptation (SSA), the reduction in the responses of a neuron to a common sound (standard) which does not generalize to another, rare sound (deviant). SSA to tone frequency has been demonstrated in multiple stations of the auditory pathway, including the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex. We designed wideband stimuli (tone clouds) that have identical frequency components but are nevertheless distinct. Tone clouds evoked early and substantial SSA in primary auditory cortex (A1) but only late and minor SSA in IC and MGB. These results imply that while in IC and MGB sounds are largely represented in terms of their frequency components, in A1 they are represented as abstract entities.
Collapse
Affiliation(s)
- Mor Harpaz
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maciej M Jankowski
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Leila Khouri
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
18
|
O'Reilly C, Iavarone E, Yi J, Hill SL. Rodent somatosensory thalamocortical circuitry: Neurons, synapses, and connectivity. Neurosci Biobehav Rev 2021; 126:213-235. [PMID: 33766672 DOI: 10.1016/j.neubiorev.2021.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.
Collapse
Affiliation(s)
- Christian O'Reilly
- Azrieli Centre for Autism Research, Montreal Neurological Institute, McGill University, Montreal, Canada; Ronin Institute, Montclair, NJ, USA; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Elisabetta Iavarone
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jane Yi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
19
|
O'Reilly C, Larson E, Richards JE, Elsabbagh M. Structural templates for imaging EEG cortical sources in infants. Neuroimage 2021; 227:117682. [PMID: 33359339 PMCID: PMC7901726 DOI: 10.1016/j.neuroimage.2020.117682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Electroencephalographic (EEG) source reconstruction is a powerful approach that allows anatomical localization of electrophysiological brain activity. Algorithms used to estimate cortical sources require an anatomical model of the head and the brain, generally reconstructed using magnetic resonance imaging (MRI). When such scans are unavailable, a population average can be used for adults, but no average surface template is available for cortical source imaging in infants. To address this issue, we introduce a new series of 13 anatomical models for subjects between zero and 24 months of age. These templates are built from MRI averages and boundary element method (BEM) segmentation of head tissues available as part of the Neurodevelopmental MRI Database. Surfaces separating the pia mater, the gray matter, and the white matter were estimated using the Infant FreeSurfer pipeline. The surface of the skin as well as the outer and inner skull surfaces were extracted using a cube marching algorithm followed by Laplacian smoothing and mesh decimation. We post-processed these meshes to correct topological errors and ensure watertight meshes. Source reconstruction with these templates is demonstrated and validated using 100 high-density EEG recordings from 7-month-old infants. Hopefully, these templates will support future studies on EEG-based neuroimaging and functional connectivity in healthy infants as well as in clinical pediatric populations.
Collapse
Affiliation(s)
- Christian O'Reilly
- Montreal Neurological Institute, Azrieli Centre for Autism Research, McGill University, 3775 Rue University, Room C18, Duff Medical Building, Montreal, Québec H3A 2B4, Canada.
| | - Eric Larson
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA
| | - John E Richards
- Department of Psychology, University of South Carolina, USA; Institute for Mind and Brain, University of South Carolina, USA
| | - Mayada Elsabbagh
- Montreal Neurological Institute, Azrieli Centre for Autism Research, McGill University, 3775 Rue University, Room C18, Duff Medical Building, Montreal, Québec H3A 2B4, Canada
| |
Collapse
|
20
|
Richardson BD, Sottile SY, Caspary DM. Mechanisms of GABAergic and cholinergic neurotransmission in auditory thalamus: Impact of aging. Hear Res 2020; 402:108003. [PMID: 32703637 DOI: 10.1016/j.heares.2020.108003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022]
Abstract
Age-related hearing loss is a complex disorder affecting a majority of the elderly population. As people age, speech understanding becomes a challenge especially in complex acoustic settings and negatively impacts the ability to accurately analyze the auditory scene. This is in part due to an inability to focus auditory attention on a particular stimulus source while simultaneously filtering out other sound stimuli. The present review examines the impact of aging on two neurotransmitter systems involved in accurate temporal processing and auditory gating in auditory thalamus (medial geniculate body; MGB), a critical brain region involved in the coding and filtering of auditory information. The inhibitory neurotransmitter GABA and its synaptic receptors (GABAARs) are key to maintaining accurate temporal coding of complex sounds, such as speech, throughout the central auditory system. In the MGB, synaptic and extrasynaptic GABAARs mediate fast phasic and slow tonic inhibition respectively, which in turn regulate MGB neuron excitability, firing modes, and engage thalamocortical oscillations that shape coding and gating of acoustic content. Acoustic coding properties of MGB neurons are further modulated through activation of tegmental cholinergic afferents that project to MGB to potentially modulate attention and help to disambiguate difficult to understand or novel sounds. Acetylcholine is released onto MGB neurons and presynaptic terminals in MGB activating neuronal nicotinic and muscarinic acetylcholine receptors (nAChRs, mAChRs) at a subset of MGB afferents to optimize top-down and bottom-up information flow. Both GABAergic and cholinergic neurotransmission is significantly altered with aging and this review will detail how age-related changes in these circuits within the MGB may impact coding of acoustic stimuli.
Collapse
Affiliation(s)
- B D Richardson
- WWAMI Medical Education, University of Idaho, Moscow, ID, 83844, USA; Biological Engineering, University of Idaho, Moscow, ID, 83844, USA
| | - S Y Sottile
- Center for Clinical Research Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - D M Caspary
- Department of Pharmacology Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
21
|
Smith PH, Uhlrich DJ, Manning KA. Evaluation of medial division of the medial geniculate (MGM) and posterior intralaminar nucleus (PIN) inputs to the rat auditory cortex, amygdala, and striatum. J Comp Neurol 2019; 527:1478-1494. [PMID: 30689207 DOI: 10.1002/cne.24644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
Abstract
The medial division of the medial geniculate (MGM) and the posterior intralaminar nucleus (PIN) are association nuclei of the auditory thalamus. We made tracer injections in these nuclei to evaluate/compare their presynaptic terminal and postsynaptic target features in auditory cortex, amygdala and striatum, at the light and electron microscopic levels. Cortical labeling was concentrated in Layer 1 but in other layers distribution was location-dependent. In cortical areas designated dorsal, primary and ventral (AuD, Au1, AuV) terminals deep to Layer 1 were concentrated in infragranular layers and sparser in the supragranular and middle layers. In ectorhinal cortex (Ect), distributions below Layer 1 changed with concentrations in supragranular and middle layers. In temporal association cortex (TeA) terminal distributions below Layer 1 was intermediate between AuV/1/D and Ect. In amygdala and striatum, terminal concentrations were higher in striatum but not as dense as in cortical Layer 1. Ultrastructurally, presynaptic terminal size was similar in amygdala, striatum or cortex and in all cortical layers. Postsynaptically MGM/PIN terminals everywhere synapsed on spines or small distal dendrites but as a population the postsynaptic structures in cortex were larger than those in the striatum. In addition, primary cortical targets of terminals were larger in primary cortex than in area Ect. Thus, although postsynaptic size may play some role in changes in synaptic influence between areas it appears that terminal size is not a variable used for that purpose. In auditory cortex, cortical subdivision-dependent changes in the terminal distribution between cortical layers may also play a role.
Collapse
Affiliation(s)
- Philip H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Karen A Manning
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
22
|
Mellott JG, Beebe NL, Schofield BR. Bilateral projections to the thalamus from individual neurons in the inferior colliculus. J Comp Neurol 2018; 527:1118-1126. [PMID: 30536721 DOI: 10.1002/cne.24600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 12/28/2022]
Abstract
The medial geniculate body (MG) receives a large input from the ipsilateral inferior colliculus (IC) and a smaller but substantial input from the contralateral IC. Both crossed and uncrossed inputs comprise a large percentage of glutamatergic cells and a smaller percentage of GABAergic cells. We used double labeling with fluorescent retrograde tracers to identify individual IC cells that project bilaterally to the MGs in adult guinea pigs. We also used immunohistochemistry for glutamic acid decarboxylase to distinguish GABAergic from glutamatergic cells that project bilaterally to the MG. We found cells in the IC that contained both retrograde tracers, indicating that they project bilaterally. Across cases, the bilaterally projecting cells constituted up to 37% of the cells that project to the ipsilateral MG and up to 73% of the cells that project to the contralateral MG. GABAergic cells averaged 20% of the bilaterally-projecting population. We conclude that a population of IC cells sends branching axonal projections to innervate the MG bilaterally. Most of the neurons in this population are glutamatergic, with a minority that are GABAergic. A mixed projection, with glutamatergic cells outnumbering GABAergic cells, originates from each of the major IC subdivisions (central nucleus, dorsal cortex, and lateral cortex). The bilaterally projecting cells are likely to serve functions different from the larger unilateral projections, perhaps synchronizing activity on the two sides of the auditory brain.
Collapse
Affiliation(s)
- Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
23
|
Inhibitory Projections from the Inferior Colliculus to the Medial Geniculate body Originate from Four Subtypes of GABAergic Cells. eNeuro 2018; 5:eN-NWR-0406-18. [PMID: 30456294 PMCID: PMC6240760 DOI: 10.1523/eneuro.0406-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022] Open
Abstract
GABAergic cells constitute 20-40% of the cells that project from the inferior colliculus [(IC) a midbrain auditory hub] to the medial geniculate body [(MG) the main auditory nucleus of the thalamus]. Four subtypes of GABAergic IC cells have been identified based on their association with perineuronal nets (PNs) and dense rings of axosomatic terminals expressing vesicular glutamate transporter 2 (VGLUT2 rings). These subtypes differ in their soma size and distribution within the IC. Based on previous work emphasizing large GABAergic cells as the origin of GABAergic IC-MG projections, we hypothesized that GABAergic IC cells surrounded by PNs and VGLUT2 rings, which tend to have larger somas, were more likely to project to the MG than smaller cells lacking these extracellular markers. Here, we injected retrograde tract tracers into the MG of guinea pigs of either sex and analyzed retrogradely labeled GABAergic cells in the ipsilateral IC for soma size and association with PNs and/or VGLUT2 rings. We found a range of GABAergic soma sizes present within the IC-MG pathway, which were reflective of the full range of GABAergic soma sizes present within the IC. Further, we found that all four subtypes of GABAergic IC cells participate in the IC-MG pathway, and that GABAergic cells lacking PNs and VGLUT2 rings were more prevalent within the pathway than would be expected based on their overall prevalence in the IC. These results may provide an anatomical substrate for the multiple roles of inhibition in the IC-MG pathway, which have emerged in electrophysiological studies.
Collapse
|
24
|
Frequency-Dependent Stimulus-Specific Adaptation and Regularity Sensitivity in the Rat Auditory Thalamus. Neuroscience 2018; 392:13-24. [DOI: 10.1016/j.neuroscience.2018.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/25/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
|
25
|
Kopp-Scheinpflug C, Sinclair JL, Linden JF. When Sound Stops: Offset Responses in the Auditory System. Trends Neurosci 2018; 41:712-728. [DOI: 10.1016/j.tins.2018.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/17/2022]
|
26
|
Clarke BA, Lee CC. Inhibitory Projections in the Mouse Auditory Tectothalamic System. Brain Sci 2018; 8:E103. [PMID: 29890716 PMCID: PMC6025108 DOI: 10.3390/brainsci8060103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The medial geniculate body (MGB) is the target of excitatory and inhibitory inputs from several neural sources. Among these, the inferior colliculus (IC) is an important nucleus in the midbrain that acts as a nexus for auditory projections, ascending and descending, throughout the rest of the central auditory system and provides both excitatory and inhibitory inputs to the MGB. In our study, we assessed the relative contribution from presumed excitatory and inhibitory IC neurons to the MGB in mice. Using retrograde tract tracing with cholera toxin beta subunit (CTβ)-Alexa Fluor 594 injected into the MGB of transgenic, vesicular GABA transporter (VGAT)-Venus mice, we quantitatively analyzed the projections from both the ipsilateral and contralateral IC to the MGB. Our results demonstrate inhibitory projections from both ICs to the MGB that likely play a significant role in shaping auditory processing. These results complement prior studies in other species, which suggest that the inhibitory tectothalamic pathway is important in the regulation of neuronal activity in the auditory forebrain.
Collapse
Affiliation(s)
- Blaise A Clarke
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| |
Collapse
|
27
|
Pre- and postsynaptic ionotropic glutamate receptors in the auditory system of mammals. Hear Res 2018; 362:1-13. [DOI: 10.1016/j.heares.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
|
28
|
Specialization of the auditory system for the processing of bio-sonar information in the frequency domain: Mustached bats. Hear Res 2018; 361:1-22. [DOI: 10.1016/j.heares.2018.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/20/2022]
|
29
|
Tonelli LC, Wöhr M, Schwarting R, Melo-Thomas L. Paradoxical kinesia induced by appetitive 50-kHz ultrasonic vocalizations in rats depends on glutamatergic mechanisms in the inferior colliculus. Neuropharmacology 2018; 135:172-179. [PMID: 29550392 DOI: 10.1016/j.neuropharm.2018.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Paradoxical kinesia is a sudden transient ability of akinetic patients to perform motor tasks they are otherwise unable to perform. This phenomenon is known to depend on the patient's emotional state and external stimuli. Paradoxical kinesia can be induced by appetitive 50-kHz ultrasonic vocalizations (USV) in rats displaying catalepsy following systemic haloperidol. We investigated the role of the inferior colliculus (IC) in paradoxical kinesia induced by 50-kHz USV, since the IC modulates haloperidol-induced catalepsy. We focused on glutamatergic and GABAergic neurotransmission, with male rats receiving intracollicular NMDA or the GABA receptor agonist diazepam 10 min before systemic haloperidol. Catalepsy time was assessed by means of the bar test, during which rats were exposed to playback of 50-kHz USV, white noise, and background noise. Our results show that playback of 50-kHz USV induced paradoxical kinesia by reducing haloperidol-induced catalepsy in rats which had received saline intracollicular microinjection. This paradoxical kinesia effect of 50-kHz USV playback on haloperidol-induced catalepsy was prevented by intracollicular NMDA administration. Although intracollicular diazepam microinjection potentiated haloperidol-induced catalepsy, it did not affect the response to 50-kHz USV playback. Together, NMDA receptor agonist suppressed the effectiveness of 50-kHz USV playback, whereas diazepam did not. These findings suggest that the IC is a key structure involved in paradoxical kinesia, with relevant processes being glutamatergic rather than GABAergic. Our approach thus appears useful for uncovering neural mechanisms of paradoxical kinesia and it might help identifying novel therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Luan Castro Tonelli
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
| | - Markus Wöhr
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Rainer Schwarting
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Liana Melo-Thomas
- Experimental and Biological Psychology, Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany; Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany; Behavioral Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil.
| |
Collapse
|
30
|
Siveke I, Ammer JJ, Gleiss SA, Grothe B, Leibold C, Felmy F. Electrogenic N-methyl-D-aspartate receptor signaling enhances binaural responses in the adult brainstem. Eur J Neurosci 2018; 47:858-865. [PMID: 29405453 DOI: 10.1111/ejn.13859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 01/29/2023]
Abstract
In sensory systems, the neuronal representation of external stimuli is enhanced along the sensory pathway. In the auditory system, strong enhancement of binaural information takes place between the brainstem and the midbrain; however, the underlying cellular mechanisms are unknown. Here we investigated the transformation of binaural information in the dorsal nucleus of the lateral lemniscus (DNLL), a nucleus that connects the binaural nuclei in the brainstem and the inferior colliculus in the midbrain. We used in vitro and in vivo electrophysiology in adult Mongolian gerbils to show that N-methyl-D-aspartate receptor (NMDARs) play a critical role in neuronal encoding of stimulus properties in the DNLL. While NMDARs increase firing rates, the timing and the accuracy of the neuronal responses remain unchanged. NMDAR-mediated excitation increases the information about the acoustic stimulus. Taken together, our results show that NMDARs in the DNLL enhance the auditory information content in adult mammal brainstem.
Collapse
Affiliation(s)
- Ida Siveke
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Institute of Zoology and Neurobiology, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Julian J Ammer
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah A Gleiss
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Graduate School for Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Graduate School for Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christian Leibold
- Computational Neuroscience, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Institute of Zoology, University of Veterinary Medicine Hannover, 30599, Hannover, Germany
| |
Collapse
|
31
|
Kimura A, Imbe H. Robust Subthreshold Cross-modal Modulation of Auditory Response by Cutaneous Electrical Stimulation in First- and Higher-order Auditory Thalamic Nuclei. Neuroscience 2018; 372:161-180. [PMID: 29309880 DOI: 10.1016/j.neuroscience.2017.12.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
Conventional extracellular recording has revealed cross-modal alterations of auditory cell activities by cutaneous electrical stimulation of the hindpaw in first- and higher-order auditory thalamic nuclei (Donishi et al., 2011). Juxta-cellular recording and labeling techniques were used in the present study to examine the cross-modal alterations in detail, focusing on possible nucleus and/or cell type-related distinctions in modulation. Recordings were obtained from 80 cells of anesthetized rats. Cutaneous electrical stimulation, which did not elicit unit discharges, i.e., subthreshold effects, modulated early (onset) and/or late auditory responses of first- (64%) and higher-order nucleus cells (77%) with regard to response magnitude, latency and/or burst spiking. Attenuation predominated in the modulation of response magnitude and burst spiking, and delay predominated in the modulation of response time. Striking alterations of burst spiking took place in higher-order nucleus cells, which had the potential to exhibit higher propensities for burst spiking as compared to first-order nucleus cells. A subpopulation of first-order nucleus cells showing modulation in early response magnitude in the caudal domain of the nucleus had larger cell bodies and higher propensities for burst spiking as compared to cells showing no modulation. These findings suggest that somatosensory influence is incorporated into parallel channels in auditory thalamic nuclei to impose distinct impacts on cortical and subcortical sensory processing. Further, cutaneous electrical stimulation given after early auditory responses modulated late responses. Somatosensory influence is likely to affect ongoing auditory processing at any time without being coincident with sound onset in a narrow temporal window.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-8509, Japan.
| | - Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-8509, Japan
| |
Collapse
|
32
|
Neurons, Connections, and Microcircuits of the Inferior Colliculus. THE MAMMALIAN AUDITORY PATHWAYS 2018. [DOI: 10.1007/978-3-319-71798-2_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging. J Neurosci 2017; 37:11377-11389. [PMID: 29061702 DOI: 10.1523/jneurosci.1795-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/05/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal.SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population.
Collapse
|
34
|
Sottile SY, Ling L, Cox BC, Caspary DM. Impact of ageing on postsynaptic neuronal nicotinic neurotransmission in auditory thalamus. J Physiol 2017; 595:5375-5385. [PMID: 28585699 PMCID: PMC5538226 DOI: 10.1113/jp274467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/24/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neuronal nicotinic acetylcholine receptors (nAChRs) play a fundamental role in the attentional circuitry throughout the mammalian CNS. In the present study, we report a novel finding that ageing negatively impacts nAChR efficacy in auditory thalamus, and this is probably the result of a loss of nAChR density (Bmax ) and changes in the subunit composition of nAChRs. Our data support the hypothesis that age-related maladaptive changes involving nAChRs within thalamocortical circuits partially underpin the difficulty that elderly adults experience with respect to attending to speech and other salient acoustic signals. ABSTRACT The flow of auditory information through the medial geniculate body (MGB) is regulated, in part, by cholinergic projections from the pontomesencephalic tegmentum. The functional significance of these projections is not fully established, although they have been strongly implicated in the allocation of auditory attention. Using in vitro slice recordings, we have analysed postsynaptic function and pharmacology of neuronal nicotinic ACh receptors (nAChRs) in young adult and the aged rat MGB. We find that ACh produces significant excitatory postsynaptic actions on young MGB neurons, probably mediated by β2-containing heteromeric nAChRs. Radioligand binding studies show a significant age-related loss of heteromeric nAChR receptor number, which supports patch clamp data showing an age-related loss in ACh efficacy in evoking postsynaptic responses. Use of the β2-selective nAChR antagonist, dihydro-β-erythroidine, suggests that loss of cholinergic efficacy may also be the result of an age-related subunit switch from high affinity β2-containing nAChRs to low affinity β4-containing nAChRs, in addition to the loss of total nAChR number. This age-related nAChR dysfunction may partially underpin the attentional deficits that contribute to the loss of speech understanding in the elderly.
Collapse
Affiliation(s)
| | | | - Brandon C. Cox
- Department of Pharmacology
- Department of Surgery, Division of OtolaryngologySouthern Illinois University School of MedicineSpringfieldILUSA
| | - Donald M. Caspary
- Department of Pharmacology
- Department of Surgery, Division of OtolaryngologySouthern Illinois University School of MedicineSpringfieldILUSA
| |
Collapse
|
35
|
Chambers AR, Salazar JJ, Polley DB. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation. Front Neural Circuits 2016; 10:72. [PMID: 27630546 PMCID: PMC5005347 DOI: 10.3389/fncir.2016.00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.
Collapse
Affiliation(s)
- Anna R Chambers
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary Boston, MA, USA
| | - Juan J Salazar
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBoston, MA, USA; Department of Biology, École Normale Supérieure, PSL Research UniversityParis, France
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear InfirmaryBoston, MA, USA; Department of Otolaryngology, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
36
|
Ito T, Atoji Y. Tectothalamic inhibitory projection neurons in the avian torus semicircularis. J Comp Neurol 2016; 524:2604-22. [DOI: 10.1002/cne.23979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy; Faculty of Medical Sciences, University of Fukui; Eiheiji Fukui 910-1193 Japan
- Research and Education Program for Life Science, University of Fukui; Fukui Fukui 910-8507 Japan
| | - Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University; Yanagido Gifu 501-1193 Japan
| |
Collapse
|
37
|
Characterization of Rebound Depolarization in Neurons of the Rat Medial Geniculate Body In Vitro. Neurosci Bull 2016; 32:16-26. [PMID: 26781877 DOI: 10.1007/s12264-015-0006-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/11/2015] [Indexed: 10/22/2022] Open
Abstract
Rebound depolarization (RD) is a response to the offset from hyperpolarization of the neuronal membrane potential and is an important mechanism for the synaptic processing of inhibitory signals. In the present study, we characterized RD in neurons of the rat medial geniculate body (MGB), a nucleus of the auditory thalamus, using whole-cell patch-clamp and brain slices. RD was proportional in strength to the duration and magnitude of the hyperpolarization; was effectively blocked by Ni(2+) or Mibefradil; and was depressed when the resting membrane potential was hyperpolarized by blocking hyperpolarization-activated cyclic nucleotide-gated (HCN) channels with ZD7288 or by activating G-protein-gated inwardly-rectifying K(+) (GIRK) channels with baclofen. Our results demonstrated that RD in MGB neurons, which is carried by T-type Ca(2+) channels, is critically regulated by HCN channels and likely by GIRK channels.
Collapse
|
38
|
Synaptic mechanisms shaping delay-tuned combination-sensitivity in the auditory thalamus of mustached bats. Hear Res 2016; 331:69-82. [DOI: 10.1016/j.heares.2015.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/24/2015] [Accepted: 10/20/2015] [Indexed: 11/21/2022]
|
39
|
Butt S, Ashraf F, Porter LA, Zhang H. Sodium salicylate reduces the level of GABAB receptors in the rat's inferior colliculus. Neuroscience 2015; 316:41-52. [PMID: 26705739 DOI: 10.1016/j.neuroscience.2015.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Previous studies have indicated that sodium salicylate (SS) can cause hearing abnormalities through affecting the central auditory system. In order to understand central effects of the drug, we examined how a single intraperitoneal injection of the drug changed the level of subunits of the type-B γ-aminobutyric acid receptor (GABAB receptor) in the rat's inferior colliculus (IC). Immunohistochemical and western blotting experiments were conducted three hours following a drug injection, as previous studies indicated that a tinnitus-like behavior could be reliably induced in rats within this time period. Results revealed that both subunits of the receptor, GABABR1 and GABABR2, reduced their level over the entire area of the IC. Such a reduction was observed in both cell body and neuropil regions. In contrast, no changes were observed in other brain structures such as the cerebellum. Thus, a coincidence existed between a structure-specific reduction in the level of GABAB receptor subunits in the IC and the presence of a tinnitus-like behavior. This coincidence likely suggests that a reduction in the level of GABAB receptor subunits was involved in the generation of a tinnitus-like behavior and/or used by the nervous system to restore normal hearing following application of SS.
Collapse
Affiliation(s)
- S Butt
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - F Ashraf
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - L A Porter
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - H Zhang
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
40
|
Kim HR, Hong SZ, Fiorillo CD. T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input. Front Cell Neurosci 2015; 9:428. [PMID: 26582654 PMCID: PMC4631812 DOI: 10.3389/fncel.2015.00428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022] Open
Abstract
Although neurons within intact nervous systems can be classified as ‘sensory’ or ‘motor,’ it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of ‘predictive homeostasis’ to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced (‘H-type’) depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.
Collapse
Affiliation(s)
- Haram R Kim
- Department of Bio and Brain Engineering, KAIST Daejeon, South Korea
| | - Su Z Hong
- Department of Bio and Brain Engineering, KAIST Daejeon, South Korea
| | | |
Collapse
|
41
|
Lee CC. Exploring functions for the non-lemniscal auditory thalamus. Front Neural Circuits 2015; 9:69. [PMID: 26582978 PMCID: PMC4631820 DOI: 10.3389/fncir.2015.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023] Open
Abstract
The functions of the medial geniculate body (MGB) in normal hearing still remain somewhat enigmatic, in part due to the relatively unexplored properties of the non-lemniscal MGB nuclei. Indeed, the canonical view of the thalamus as a simple relay for transmitting ascending information to the cortex belies a role in higher-order forebrain processes. However, recent anatomical and physiological findings now suggest important information and affective processing roles for the non-primary auditory thalamic nuclei. The non-lemniscal nuclei send and receive feedforward and feedback projections among a wide constellation of midbrain, cortical, and limbic-related sites, which support potential conduits for auditory information flow to higher auditory cortical areas, mediators for transitioning among arousal states, and synchronizers of activity across expansive cortical territories. Considered here is a perspective on the putative and unresolved functional roles of the non-lemniscal nuclei of the MGB.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine Baton Rouge, LA, USA
| |
Collapse
|
42
|
Ito T, Bishop DC, Oliver DL. Functional organization of the local circuit in the inferior colliculus. Anat Sci Int 2015; 91:22-34. [PMID: 26497006 DOI: 10.1007/s12565-015-0308-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/05/2015] [Indexed: 01/12/2023]
Abstract
The inferior colliculus (IC) is the first integration center of the auditory system. After the transformation of sound to neural signals in the cochlea, the signals are analyzed by brainstem auditory nuclei that, in turn, transmit this information to the IC. However, the neural circuitry that underlies this integration is unclear. This review consists of two parts: one is about the cell type which is likely to integrate sound information, and the other is about a technique which is useful for studying local circuitry. Large GABAergic (LG) neurons receive dense excitatory axosomatic terminals that originate from the lower brainstem auditory nuclei as well as local IC neurons. Dozens of axons coming from both local and lower brainstem neurons converge on a single LG soma. Excitatory neurons in IC can innervate many nearby LG somata in the same fibrodendritic lamina. The combination of local and ascending inputs is well suited for auditory integration. LG neurons are one of the main sources of inhibition in the medial geniculate body (MGB). LG neurons and the tectothalamic inhibitory system are present in a wide variety of mammalian species. This suggests that the circuitry of excitatory and inhibitory tectothalamic projections may have evolved earlier than GABAergic interneurons in the MGB, which are found in fewer species. Cellular-level functional imaging provides both morphological and functional information about local circuitry. In the last part of this review, we describe an in vivo calcium imaging study that sheds light on the functional organization of the IC.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan. .,Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, 910-8507, Japan.
| | - Deborah C Bishop
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| |
Collapse
|
43
|
Enhanced GABAA-Mediated Tonic Inhibition in Auditory Thalamus of Rats with Behavioral Evidence of Tinnitus. J Neurosci 2015; 35:9369-80. [PMID: 26109660 DOI: 10.1523/jneurosci.5054-14.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence suggests a role for inhibitory neurotransmitter dysfunction in the pathology of tinnitus. Opposing hypotheses proposed either a pathologic decrease or increase of GABAergic inhibition in medial geniculate body (MGB). In thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) and persistent tonic inhibition via high-affinity extrasynaptic GABAARs. Given that extrasynaptic GABAARs control the firing mode of thalamocortical neurons, we examined tonic GABAAR currents in MGB neurons in vitro, using the following three groups of adult rats: unexposed control (Ctrl); sound exposed with behavioral evidence of tinnitus (Tin); and sound exposed with no behavioral evidence of tinnitus (Non-T). Tonic GABAAR currents were evoked using the selective agonist gaboxadol. Months after a tinnitus-inducing sound exposure, gaboxadol-evoked tonic GABAAR currents showed significant tinnitus-related increases contralateral to the sound exposure. In situ hybridization studies found increased mRNA levels for GABAAR δ-subunits contralateral to the sound exposure. Tin rats showed significant increases in the number of spikes per burst evoked using suprathreshold-injected current steps. In summary, we found little evidence of tinnitus-related decreases in GABAergic neurotransmission. Tinnitus and chronic pain may reflect thalamocortical dysrhythmia, which results from abnormal theta-range resonant interactions between thalamus and cortex, due to neuronal hyperpolarization and the initiation of low-threshold calcium spike bursts (Walton and Llinás, 2010). In agreement with this hypothesis, we found tinnitus-related increases in tonic extrasynaptic GABAAR currents, in action potentials/evoked bursts, and in GABAAR δ-subunit gene expression. These tinnitus-related changes in GABAergic function may be markers for tinnitus pathology in the MGB.
Collapse
|
44
|
Cai R, Caspary DM. GABAergic inhibition shapes SAM responses in rat auditory thalamus. Neuroscience 2015; 299:146-55. [PMID: 25943479 PMCID: PMC4457678 DOI: 10.1016/j.neuroscience.2015.04.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023]
Abstract
Auditory thalamus (medial geniculate body [MGB]) receives ascending inhibitory GABAergic inputs from inferior colliculus (IC) and descending GABAergic projections from the thalamic reticular nucleus (TRN) with both inputs postulated to play a role in shaping temporal responses. Previous studies suggested that enhanced processing of temporally rich stimuli occurs at the level of MGB, with our recent study demonstrating enhanced GABA sensitivity in MGB compared to IC. The present study used sinusoidal amplitude-modulated (SAM) stimuli to generate modulation transfer functions (MTFs), to examine the role of GABAergic inhibition in shaping the response properties of MGB single units in anesthetized rats. Rate MTFs (rMTFs) were parsed into "bandpass (BP)", "mixed (Mixed)", "highpass (HP)" or "atypical" response types, with most units showing the Mixed response type. GABAA receptor blockade with iontophoretic application of the GABAA receptor (GABAAR) antagonist gabazine (GBZ) selectively altered the response properties of most MGB neurons examined. Mixed and HP units showed significant GABAAR-mediated SAM-evoked rate response changes at higher modulation frequencies (fms), which were also altered by N-methyl-d-aspartic acid (NMDA) receptor blockade (2R)-amino-5-phosphonopentanoate (AP5). BP units, and the lower arm of Mixed units responded to GABAAR blockade with increased responses to SAM stimuli at or near the rate best modulation frequency (rBMF). The ability of GABA circuits to shape responses at higher modulation frequencies is an emergent property of MGB units, not observed at lower levels of the auditory pathway and may reflect activation of MGB NMDA receptors (Rabang and Bartlett, 2011; Rabang et al., 2012). Together, GABAARs exert selective rate control over selected fms, generally without changing the units' response type. These results showed that coding of modulated stimuli at the level of auditory thalamus is at least, in part, strongly controlled by GABA neurotransmission, in delicate balance with glutamatergic neurotransmission.
Collapse
Affiliation(s)
- R Cai
- Southern Illinois University School of Medicine, Department of Pharmacology, Springfield, IL, United States
| | - D M Caspary
- Southern Illinois University School of Medicine, Department of Pharmacology, Springfield, IL, United States.
| |
Collapse
|
45
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Ito T, Hioki H, Sohn J, Okamoto S, Kaneko T, Iino S, Oliver DL. Convergence of Lemniscal and Local Excitatory Inputs on Large GABAergic Tectothalamic Neurons. J Comp Neurol 2015; 523:2277-96. [PMID: 25879870 DOI: 10.1002/cne.23789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
Abstract
Large GABAergic (LG) neurons form a distinct cell type in the inferior colliculus (IC), identified by the presence of dense VGLUT2-containing axosomatic terminals. Although some of the axosomatic terminals originate from local and commissural IC neurons, it has been unclear whether LG neurons also receive axosomatic inputs from the lower auditory brainstem nuclei, i.e., cochlear nuclei (CN), superior olivary complex (SOC), and nuclei of the lateral lemniscus (NLL). In this study we injected recombinant viral tracers that force infected cells to express GFP in a Golgi-like manner into the lower auditory brainstem nuclei to determine whether these nuclei directly innervate LG cell somata. Labeled axons from CN, SOC, and NLL terminated as excitatory axosomatic endings, identified by colabeling of GFP and VGLUT2, on single LG neurons in the IC. Each excitatory axon made only a few axosomatic contacts on each LG neuron. Inputs to a single LG cell are unlikely to be from a single brainstem nucleus, since lesions of individual nuclei failed to eliminate most VGLUT2-positive terminals on the LG neurons. The estimated number of inputs on a single LG cell body was almost proportional to the surface area of the cell body. Double injections of different viruses into IC and a brainstem nucleus showed that LG neurons received inputs from both. These results demonstrated that both ascending and intrinsic sources converge on the LG somata to control inhibitory tectothalamic projections.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, 910-8507, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jaerin Sohn
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), 5-3-1 Koujimachi, Tokyo, 102-8472, Japan
| | - Shinichiro Okamoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoshi Iino
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, 910-8507, Japan
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, 06030-3401, USA
| |
Collapse
|
47
|
Kimura A, Imbe H. Anatomically structured burst spiking of thalamic reticular nucleus cells: implications for distinct modulations of sensory processing in lemniscal and non-lemniscal thalamocortical loop circuitries. Eur J Neurosci 2015; 41:1276-93. [DOI: 10.1111/ejn.12874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Akihisa Kimura
- Department of Physiology; Wakayama Medical University; Wakayama Kimiidera 811-1 641-8509 Wakayama Japan
| | - Hiroki Imbe
- Department of Physiology; Wakayama Medical University; Wakayama Kimiidera 811-1 641-8509 Wakayama Japan
| |
Collapse
|
48
|
Deviance detection in auditory subcortical structures: what can we learn from neurochemistry and neural connectivity? Cell Tissue Res 2015; 361:215-32. [DOI: 10.1007/s00441-015-2134-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 12/18/2022]
|
49
|
Gray DT, Engle JR, Rudolph ML, Recanzone GH. Regional and age-related differences in GAD67 expression of parvalbumin- and calbindin-expressing neurons in the rhesus macaque auditory midbrain and brainstem. J Comp Neurol 2014; 522:4074-84. [PMID: 25091320 PMCID: PMC4263274 DOI: 10.1002/cne.23659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 11/08/2022]
Abstract
Neurons expressing the calcium binding proteins (CaBPs) parvalbumin (PV) and calbindin (CB) have shown age-related density changes throughout the ascending auditory system of both rodents and macaque monkeys. In the cerebral cortex, neurons expressing these CaBPs express markers of γ-aminobutyric acidergic neurotransmission, such as GAD67, and have well-understood physiological response properties. Recent evidence suggests that, in the rodent auditory brainstem, CaBP-containing cells do not express GAD67. It is unknown whether PV- and CB-containing cells in subcortical auditory structures of macaques similarly do not express GAD67, and a better understanding of the neurotransmission of neurons expressing these proteins is necessary for understanding the age-related changes in their density throughout the macaque auditory system. This was investigated with immunofluorescent double-labeling techniques to coregister PV- and CB-expressing neurons with GAD67 in the superior olivary complex and the inferior colliculus of young and aged rhesus macaques. The proportions of GAD67-expressing PV- and CB-positive neurons were computed with unbiased sampling techniques. Our results indicate that between 42% and 62% of PV- and CB-positive neurons in the auditory brainstem and midbrain express GAD67, which is significantly less than in the cerebrum. In general, fewer PV(+) neurons and more CB(+) neurons expressed GAD67 as a function of age. These results demonstrate that the inhibitory molecular profile of PV- and CB-expressing neurons can change with age in subcortical auditory structures and that these neurons are distinct from the well-described inhibitory interneurons that express these proteins in the cerebral cortex.
Collapse
Affiliation(s)
- D T Gray
- Center for Neuroscience, University of California at Davis, Davis, California, 95616; Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona, 85721
| | | | | | | |
Collapse
|
50
|
Ouda L, Burianová J, Balogová Z, Lu HP, Syka J. Structural changes in the adult rat auditory system induced by brief postnatal noise exposure. Brain Struct Funct 2014; 221:617-29. [PMID: 25408549 DOI: 10.1007/s00429-014-0929-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
In previous studies (Grécová et al., Eur J Neurosci 29:1921-1930, 2009; Bures et al., Eur J Neurosci 32:155-164, 2010), we demonstrated that after an early postnatal short noise exposure (8 min 125 dB, day 14) changes in the frequency tuning curves as well as changes in the coding of sound intensity are present in the inferior colliculus (IC) of adult rats. In this study, we analyze on the basis of the Golgi-Cox method the morphology of neurons in the IC, the medial geniculate body (MGB) and the auditory cortex (AC) of 3-month-old Long-Evans rats exposed to identical noise at postnatal day 14 and compare the results to littermate controls. In rats exposed to noise as pups, the mean total length of the neuronal tree was found to be larger in the external cortex and the central nucleus of the IC and in the ventral division of the MGB. In addition, the numerical density of dendritic spines was decreased on the branches of neurons in the ventral division of the MGB in noise-exposed animals. In the AC, the mean total length of the apical dendritic segments of pyramidal neurons was significantly shorter in noise-exposed rats, however, only slight differences with respect to controls were observed in the length of basal dendrites of pyramidal cells as well as in the neuronal trees of AC non-pyramidal neurons. The numerical density of dendritic spines on the branches of pyramidal AC neurons was lower in exposed rats than in controls. These findings demonstrate that early postnatal short noise exposure can induce permanent changes in the development of neurons in the central auditory system, which apparently represent morphological correlates of functional plasticity.
Collapse
Affiliation(s)
- Ladislav Ouda
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Jana Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Zuzana Balogová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Hui Pin Lu
- Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|