1
|
Fernàndez-Castillo N, Cabana-Domínguez J, Soriano J, Sànchez-Mora C, Roncero C, Grau-López L, Ros-Cucurull E, Daigre C, van Donkelaar MMJ, Franke B, Casas M, Ribasés M, Cormand B. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence. Transl Psychiatry 2015; 5:e667. [PMID: 26506053 PMCID: PMC4930134 DOI: 10.1038/tp.2015.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/19/2015] [Indexed: 11/29/2022] Open
Abstract
Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a 5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle, adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide polymorphisms (SNPs) in a case-control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3'-untranslated region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5 gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence.
Collapse
Affiliation(s)
- N Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - J Cabana-Domínguez
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J Soriano
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - C Sànchez-Mora
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
| | - C Roncero
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Grau-López
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E Ros-Cucurull
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Daigre
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M M J van Donkelaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Psychiatric Service, Hospital Universitari Vall d'Hebron, Agència de Salut Pública, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Ribasés
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
| | - B Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Spatial wavelet analysis of calcium oscillations in developing neurons. PLoS One 2013; 8:e75986. [PMID: 24155880 PMCID: PMC3796547 DOI: 10.1371/journal.pone.0075986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/19/2013] [Indexed: 01/17/2023] Open
Abstract
Calcium signals play a major role in the control of all key stages of neuronal development, and in particular in the growth and orientation of neuritic processes. These signals are characterized by high spatial compartmentalization, a property which has a strong relevance in the different roles of specific neuronal regions in information coding. In this context it is therefore important to understand the structural and functional basis of this spatial compartmentalization, and in particular whether the behavior at each compartment is merely a consequence of its specific geometry or the result of the spatial segregation of specific calcium influx/efflux mechanisms. Here we have developed a novel approach to separate geometrical from functional differences, regardless on the assumptions on the actual mechanisms involved in the generation of calcium signals. First, spatial indices are derived with a wavelet-theoretic approach which define a measure of the oscillations of cytosolic calcium concentration in specific regions of interests (ROIs) along a cell, in our case developing chick ciliary ganglion neurons. The resulting spatial profile demonstrates clearly that different ROIs along the neuron are characterized by specific patterns of calcium oscillations. Next we have investigated whether this inhomogeneity is due just to geometrical factors, namely the surface to volume ratio in the different subcompartments (e.g. soma vs. growth cone) or it depends on their specific biophysical properties. To this aim correlation functions are computed between the activity indices and the surface/volume ratio along the cell: the data thus obtained are validated by a statistical analysis on a dataset of different cells. This analysis shows that whereas in the soma calcium dynamics is highly correlated to the surface/volume ratio, correlations drop in the growth cone-neurite region, suggesting that in this latter case the key factor is the expression of specific mechanisms controlling calcium influx/efflux.
Collapse
|
3
|
Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 2012; 32:11820-34. [PMID: 22915123 DOI: 10.1523/jneurosci.0875-12.2012] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Alzheimer disease (AD), the perturbation of the endoplasmic reticulum (ER) calcium (Ca²⁺) homeostasis has been linked to presenilins, the catalytic core in γ-secretase complexes cleaving the amyloid precursor protein (APP), thereby generating amyloid-β (Aβ) peptides. Here we investigate whether APP contributes to ER Ca²⁺ homeostasis and whether ER Ca²⁺ could in turn influence Aβ production. We show that overexpression of wild-type human APP (APP(695)), or APP harboring the Swedish double mutation (APP(swe)) triggers increased ryanodine receptor (RyR) expression and enhances RyR-mediated ER Ca²⁺ release in SH-SY5Y neuroblastoma cells and in APP(swe)-expressing (Tg2576) mice. Interestingly, dantrolene-induced lowering of RyR-mediated Ca²⁺ release leads to the reduction of both intracellular and extracellular Aβ load in neuroblastoma cells as well as in primary cultured neurons derived from Tg2576 mice. This Aβ reduction can be accounted for by decreased Thr-668-dependent APP phosphorylation and β- and γ-secretases activities. Importantly, dantrolene diminishes Aβ load, reduces Aβ-related histological lesions, and slows down learning and memory deficits in Tg2576 mice. Overall, our data document a key role of RyR in Aβ production and learning and memory performances, and delineate RyR-mediated control of Ca²⁺ homeostasis as a physiological paradigm that could be targeted for innovative therapeutic approaches.
Collapse
|
4
|
Aromolaran AS, Zima AV, Blatter LA. Role of glycolytically generated ATP for CaMKII-mediated regulation of intracellular Ca2+ signaling in bovine vascular endothelial cells. Am J Physiol Cell Physiol 2007; 293:C106-18. [PMID: 17344311 DOI: 10.1152/ajpcell.00543.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The role of glycolytically generated ATP in Ca(2+)/calmodulin-dependent kinase II (CaMKII)-mediated regulation of intracellular Ca(2+) signaling was examined in cultured calf pulmonary artery endothelial (CPAE) cells. Exposure of cells (extracellular Ca(2+) concentration = 2 mM) to glycolytic inhibitors 2-deoxy-D-glucose (2-DG), pyruvate (pyr) + beta-hydroxybutyrate (beta-HB), or iodoacetic acid (IAA) caused an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). CaMKII inhibitors (KN-93, W-7) triggered a similar increase of [Ca(2+)](i). The rise of [Ca(2+)](i) was characterized by a transient spike followed by a small sustained plateau of elevated [Ca(2+)](i). In the absence of extracellular Ca(2+) 2-DG caused an increase in [Ca(2+)](i), suggesting that inhibition of glycolysis directly triggered release of Ca(2+) from intracellular endoplasmic reticulum (ER) Ca(2+) stores. The inositol-1,4,5-trisphosphate receptor (IP(3)R) inhibitor 2-aminoethoxydiphenyl borate abolished the KN-93- and 2-DG-induced Ca(2+) response. Ca(2+) release was initiated in peripheral cytoplasmic processes from which activation propagated as a [Ca(2+)](i) wave toward the central region of the cell. Focal application of 2-DG resulted in spatially confined elevations of [Ca(2+)](i). Propagating [Ca(2+)](i) waves were preceded by [Ca(2+)](i) oscillations and small, highly localized elevations of [Ca(2+)](i) (Ca(2+) puffs). Inhibition of glycolysis with 2-DG reduced the KN-93-induced Ca(2+) response, and vice versa during inhibition of CaMKII 2-DG-induced Ca(2+) release was attenuated. Similar results were obtained with pyr + beta-HB and W-7. Furthermore, 2-DG and IAA caused a rapid increase of intracellular Mg(2+) concentration, indicating a concomitant drop of cellular ATP levels. In conclusion, CaMKII exerts a profound inhibition of ER Ca(2+) release in CPAE cells, which is mediated by glycolytically generated ATP, possibly through ATP-dependent phosphorylation of the IP(3)R.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Dept. of Physiology, Loyola University Chicago, 2160 S. First Ave., Maywood, IL 60153, USA
| | | | | |
Collapse
|
5
|
Riddoch FC, Rowbotham SE, Brown AM, Redfern CPF, Cheek TR. Release and sequestration of Ca2+ by a caffeine- and ryanodine-sensitive store in a sub-population of human SH-SY5Y neuroblastoma cells. Cell Calcium 2005; 38:111-20. [PMID: 16095688 DOI: 10.1016/j.ceca.2005.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Revised: 05/17/2005] [Accepted: 06/02/2005] [Indexed: 11/26/2022]
Abstract
We have used single cell fluorescence imaging techniques to examine the role that ryanodine receptors play in the stimulus-induced Ca(2+) responses of SH-SY5Y cells. The muscarinic agonist methacholine (1mM) resulted in a Ca(2+) signal in 95% of all cells. Caffeine (30 mM) however stimulated a Ca(2+) signal in only 1-7% of N-type (neuroblastic) cells within any given field. The caffeine response was independent of extracellular Ca(2+), regenerative in nature, and abolished in a use-dependent fashion by ryanodine. In caffeine-responsive cells, the magnitude of the methacholine-induced Ca(2+) signal was inhibited by 75.07 +/- 5.51% by pretreatment with caffeine and ryanodine, suggesting that the caffeine-sensitive store may act as a Ca(2+) source after muscarinic stimulation. When these data were combined with equivalent data from non-caffeine-responsive cells, the degree of apparent inhibition was significantly reduced. In contrast, after store depletion by caffeine, the Ca(2+) signal induced by 55 mM K(+) was potentiated 2.5-fold in the presence of ryanodine, suggesting that the store may act a Ca(2+) sink after depolarisation. We conclude that a caffeine- and ryanodine-sensitive store can act as a Ca(2+) source and sink in SH-SY5Y cells, and that effects of the store can become obscured if data from caffeine-insensitive cells are not excluded.
Collapse
Affiliation(s)
- Fiona C Riddoch
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle-upon-Tyne, UK
| | | | | | | | | |
Collapse
|
6
|
Akerman KEO, Shariatmadari R, Krjukova J, Larsson KP, Courtney MJ, Kukkonen JP. Ca2+-dependent potentiation of muscarinic receptor-mediated Ca2+ elevation. Cell Calcium 2005; 36:397-408. [PMID: 15451623 DOI: 10.1016/j.ceca.2004.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 02/18/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Muscarinic receptor-mediated increases in Ca(2+) in SH-SY5Y neuroblastoma cells consist of an initial fast and transient phase followed by a sustained phase. Activation of voltage-gated Ca(2+) channels prior to muscarinic stimulation resulted in a several-fold potentiation of the fast phase. Unlike the muscarinic response under control conditions, this potentiated elevation of intracellular Ca(2+) was to a large extent dependent on extracellular Ca(2+). In potentiated cells, muscarinic stimulation also activated a rapid Mn(2+) entry. By using known organic and inorganic blockers of cation channels, this influx pathway was easily separated from the known Ca(2+) influx pathways, the store-operated pathway and the voltage-gated Ca(2+) channels. In addition to the Ca(2+) influx, both IP(3) production and Ca(2+) release were also enhanced during the potentiated response. The results suggest that a small increase in intracellular Ca(2+) amplifies the muscarinic Ca(2+) response at several stages, most notably by unravelling an apparently novel receptor-activated influx pathway.
Collapse
Affiliation(s)
- Karl E O Akerman
- Department of Neuroscience, Physiology, Uppsala University, BMC, P.O. Box 572, SE-75123 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Samways DSK, Li WH, Conway SJ, Holmes AB, Bootman MD, Henderson G. Co-incident signalling between mu-opioid and M3 muscarinic receptors at the level of Ca2+ release from intracellular stores: lack of evidence for Ins(1,4,5)P3 receptor sensitization. Biochem J 2003; 375:713-20. [PMID: 12880387 PMCID: PMC1223709 DOI: 10.1042/bj20030508] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 07/24/2003] [Accepted: 07/25/2003] [Indexed: 11/17/2022]
Abstract
Activation of G(i)/G(o)-coupled opioid receptors increases [Ca2+]i (intracellular free-Ca2+ concentration), but only if there is concomitant G(q)-coupled receptor activation. This G(i)/G(o)-coupled receptor-mediated [Ca2+]i increase does not appear to result from further production of Ins P3 [Ins(1,4,5) P3] in SH-SY5Y cells. In the present study, fast-scanning confocal microscopy revealed that activation of mu-opioid receptors alone by 1 muM DAMGO ([L-Ala, NMe-Phe, Gly-ol]-enkephalin) did not stimulate the Ins P3-dependent elementary Ca2+-signalling events (Ca2+ puffs), whereas DAMGO did evoke Ca2+ puffs when applied during concomitant activation of M3 muscarinic receptors with 1 muM carbachol. We next determined whether mu-opioid receptor activation might increase [Ca2+]i by sensitizing the Ins P3 receptor to Ins P3. DAMGO did not potentiate the amplitude of the [Ca2+]i increase evoked by flash photolysis of the caged Ins P3 receptor agonist, caged 2,3-isopropylidene-Ins P3, whereas the Ins P3 receptor sensitizing agent, thimerosal (10 muM), did potentiate this response. DAMGO also did not prolong the rate of decay of the increase in [Ca2+]i evoked by flash photolysis of caged 2,3-isopropylidene-Ins P3. Furthermore, DAMGO did not increase [Ca2+]i in the presence of the cell-membrane-permeable Ins P3 receptor agonist, Ins P3 hexakis(butyryloxymethyl) ester. Therefore it appears that mu-opioid receptors do not increase [Ca2+]i through either Ins P3 receptor sensitization, enhancing the releasable pool of Ca2+ or inhibition of Ca2+ removal from the cytoplasm.
Collapse
MESH Headings
- Caffeine/pharmacology
- Calcium/metabolism
- Calcium Channels/physiology
- Carbachol/pharmacology
- Cell Line, Tumor
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- Cytoplasm/radiation effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Humans
- Inositol 1,4,5-Trisphosphate Receptors
- Receptor, Muscarinic M3/physiology
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
- Signal Transduction
- Thimerosal/pharmacology
- Ultraviolet Rays
Collapse
Affiliation(s)
- Damien S K Samways
- Department of Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
8
|
Vermassen E, Van Acker K, Annaert WG, Himpens B, Callewaert G, Missiaen L, De Smedt H, Parys JB. Microtubule-dependent redistribution of the type-1 inositol 1,4,5-trisphosphate receptor in A7r5 smooth muscle cells. J Cell Sci 2003; 116:1269-77. [PMID: 12615969 DOI: 10.1242/jcs.00354] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In A7r5 vascular smooth muscle cells, the two expressed inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms were differentially localized. IP(3)R1 was predominantly localized in the perinuclear region, whereas IP(3)R3 was homogeneously distributed over the cytoplasm. Prolonged stimulation (1-5 hours) of cells with 3 microM arginine-vasopressin induced a redistribution of IP(3)R1 from the perinuclear region to the entire cytoplasm, whereas the localization of IP(3)R3 appeared to be unaffected. The redistribution process occurred independently of IP(3)R downregulation. No structural changes of the endoplasmic reticulum were observed, but SERCA-type Ca(2+) pumps redistributed similarly to IP(3)R1. The change in IP(3)R1 localization induced by arginine-vasopressin could be blocked by the simultaneous addition of nocodazole or taxol and depended on Ca(2+) release from intracellular stores since Ca(2+)-mobilizing agents such as thapsigargin and cyclopiazonic acid could induce the redistribution. Furthermore, various protein kinase C inhibitors could inhibit the redistribution of IP(3)R1, whereas the protein kinase C activator 1-oleoyl-2-acetyl-sn-glycerol induced the redistribution. Activation of protein kinase C also induced an outgrowth of the microtubules from the perinuclear region into the cytoplasm, similar to what was seen for the redistribution of IP(3)R1. Finally, blocking vesicular transport at the level of the intermediate compartment inhibited the redistribution. Taken together, these findings suggest a role for protein kinase C and microtubuli in the redistribution of IP(3)R1, which probably occurs via a mechanism of vesicular trafficking.
Collapse
MESH Headings
- Animals
- Arginine Vasopressin/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Calcium-Transporting ATPases/drug effects
- Calcium-Transporting ATPases/metabolism
- Cell Compartmentation/drug effects
- Cell Compartmentation/physiology
- Cell Line
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Enzyme Inhibitors/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Microtubules/drug effects
- Microtubules/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Transport/drug effects
- Protein Transport/physiology
- Rats
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Transport Vesicles/drug effects
- Transport Vesicles/metabolism
Collapse
Affiliation(s)
- Elke Vermassen
- Laboratory of Physiology, CME/VIB04, K.U. Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Van Acker K, Nadif Kasri N, De Smet P, Parys JB, De Smedt H, Missiaen L, Callewaert G. IP(3)-mediated Ca(2+) signals in human neuroblastoma SH-SY5Y cells with exogenous overexpression of type 3 IP(3) receptor. Cell Calcium 2002; 32:71-81. [PMID: 12161107 DOI: 10.1016/s0143-4160(02)00092-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human neuroblastoma SH-SY5Y cells, predominantly expressing type 1 inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), were stably transfected with IP(3)R type 3 (IP(3)R3) cDNA. Immunocytochemistry experiments showed a homogeneous cytoplasmic distribution of type 3 IP(3)Rs in transfected and selected high expression cloned cells. Using confocal Ca(2+) imaging, carbachol (CCh)-induced Ca(2+) release signals were studied. Low CCh concentrations (< or = 750 nM) evoked baseline Ca(2+) oscillations. Transfected cells displayed a higher CCh responsiveness than control or cloned cells. Ca(2+) responses varied between fast, large Ca(2+) spikes and slow, small Ca(2+) humps, while in the clone only Ca(2+) humps were observed. Ca(2+) humps in the transfected cells were associated with a high expression level of IP(3)R3. At high CCh concentrations (10 microM) Ca(2+) transients in transfected and cloned cells were similar to those in control cells. In the clone exogenous IP(3)R3 lacked the C-terminal channel domain but IP(3)-binding capacity was preserved. Transfected cells mainly expressed intact type 3 IP(3)Rs but some protein degradation was also observed. We conclude that in transfected cells expression of functional type 3 IP(3)Rs causes an apparent higher affinity for IP(3). In the clone, the presence of degraded receptors leads to an efficient cellular IP(3) buffer and attenuated IP(3)-evoked Ca(2+) release.
Collapse
Affiliation(s)
- K Van Acker
- Laboratory of Physiology, Katholieke Universiteit Leuven, B-3000, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Intracellular calcium signals have distinct temporal and spatial patterns in neurons in which signal initiation and repetitive spiking occurs predominantly in the neurite. We investigated the functional implications of the coexpression of different isoforms of ryanodine receptors (RyR) and inositol 1,4,5-trisphosphate receptors (InsP3Rs) using immunocytochemistry, Western blotting, and calcium imaging in neuronally differentiated PC12 cells. InsP3R type III, an isoform that has been shown to be upregulated in neuronal apoptosis, is exclusively expressed in the soma, serving as a gatekeeper for high-magnitude calcium surges. InsP3R type I is expressed throughout the cell and can be related to signal initiation and repetitive spiking in the neurite. RyR types 2 and 3 are distributed throughout the cell. In the soma, they serve as amplifying molecular switches, facilitating recruitment of the InsP3R type III-dependent pool. In the neurite, they decrease the probability of repetitive spiking. Use of a cell-permeant analog of InsP3 suggested that regional specificity in InsP3 production and surface-to-volume effects play minor roles in determining temporal and spatial calcium signaling patterns in neurons. Our findings suggest that additional modulatory processes acting on the intracellular channels are necessary to generate spatially specific calcium signaling.
Collapse
|
11
|
Liu R, Bell PD, Peti-Peterdi J, Kovacs G, Johansson A, Persson AEG. Purinergic receptor signaling at the basolateral membrane of macula densa cells. J Am Soc Nephrol 2002; 13:1145-51. [PMID: 11961001 DOI: 10.1097/01.asn.0000014827.71910.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purinergic receptors are important in the regulation of renal hemodynamics; therefore, this study sought to determine if such receptors influence macula densa cell function. Isolated glomeruli containing macula densa cells, with and without the cortical thick ascending limb, were loaded with the Ca(2+) sensitive indicators, Fura Red (confocal microscopy) or fura 2 (conventional video image analysis). Studies were performed on an inverted microscope in a chamber with a flow-through perfusion system. Changes in cytosolic calcium concentration ([Ca(2+)](i)) from exposed macula densa plaques were assessed upon addition of adenosine, ATP, UTP, ADP, or 2-methylthio-ATP (2- MeS-ATP) for 2 min added to the bathing solution. There was no change in [Ca(2+)](i) with addition of adenosine (10(-7) to 10(-3) M). UTP and ATP (10(-4) M) caused [Ca(2+)](i) to increase by 268 +/- 40 nM (n = 21) and 295 +/- 53 nM (n = 21), respectively, whereas in response to 2MesATP and ADP, [Ca(2+)](i) increased by only 67 +/- 13 nM (n = 8) and 93 +/- 36 nM (n = 14), respectively. Dose response curve for ATP (10(-7) to 10(-3) M) added in bath showed an EC(50) of 15 microM. No effect on macula densa [Ca(2+)](i) was seen when ATP was added from the lumen. ATP caused similar increases in macula densa [Ca(2+)](i) in the presence or absence of bath Ca(2+) and addition of 5 mM ethyleneglycotetraacetic acid (EGTA). Suramin (an antagonist of P2X and P2Y receptors) completely inhibited ATP-induced [Ca(2+)](i) dynamics. Also, ATP-Ca(2+) responsiveness was prevented by the phospholipase C inhibitor, U-73122, but not by its inactive analog, U-73343. These results suggest that macula densa cells possess P2Y(2) purinergic receptors on basolateral but not apical membranes and that activation of these receptors results in the mobilization of Ca(2+).
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Physiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Tovey SC, de Smet P, Lipp P, Thomas D, Young KW, Missiaen L, De Smedt H, Parys JB, Berridge MJ, Thuring J, Holmes A, Bootman MD. Calcium puffs are generic InsP3-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci 2001; 114:3979-89. [PMID: 11739630 DOI: 10.1242/jcs.114.22.3979] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elementary Ca2+ signals, such as ‘Ca2+ puffs’, which arise from the activation of inositol 1,4,5-trisphosphate receptors, are building blocks for local and global Ca2+ signalling. We characterized Ca2+ puffs in six cell types that expressed differing ratios of the three inositol 1,4,5-trisphosphate receptor isoforms. The amplitudes, spatial spreads and kinetics of the events were similar in each of the cell types. The resemblance of Ca2+ puffs in these cell types suggests that they are a generic elementary Ca2+ signal and, furthermore, that the different inositol 1,4,5-trisphosphate isoforms are functionally redundant at the level of subcellular Ca2+ signalling. Hormonal stimulation of SH-SY5Y neuroblastoma cells and HeLa cells for several hours downregulated inositol 1,4,5-trisphosphate expression and concomitantly altered the properties of the Ca2+ puffs. The amplitude and duration of Ca2+ puffs were substantially reduced. In addition, the number of Ca2+ puff sites active during the onset of a Ca2+ wave declined. The consequence of the changes in Ca2+ puff properties was that cells displayed a lower propensity to trigger regenerative Ca2+ waves. Therefore, Ca2+ puffs underlie inositol 1,4,5-trisphosphate signalling in diverse cell types and are focal points for regulation of cellular responses.
Collapse
Affiliation(s)
- S C Tovey
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|