1
|
Bell NA, Chen X, Giovannucci DR, Anantharam A. Cellular mechanisms underlying pituitary adenylate cyclase activating polypeptide-stimulated secretion in the adrenal medulla. Biochem Soc Trans 2024; 52:2373-2383. [PMID: 39656194 PMCID: PMC11668280 DOI: 10.1042/bst20231326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The adrenal medulla is a key effector of the sympathetic nervous system in the periphery. Its primary function is to translate variations in sympathetic activity into hormone outputs that modify end organ function throughout the body. These hormones include epinephrine, norepinephrine, and a variety of vasoactive peptides. Hormone secretion occurs when neurotransmitters, delivered by sympathetic nerves, bind to, and activate receptors on adrenomedullary chromaffin cells. In this context, two neurotransmitters of particular importance are acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). PACAP, discovered initially as a secretagogue in the hypothalamus, is now appreciated to provoke a strong secretory response from chromaffin cells in vitro and in situ. However, the cellular mechanisms underlying PACAP-stimulated secretion are still poorly understood. In the sections below, we will summarize what is known about the actions of PACAP in the adrenal medulla, discuss recent advances that pertain to the PACAP signaling pathway, and highlight areas for future investigation.
Collapse
Affiliation(s)
- Nicole A. Bell
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, U.S.A
| | - Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, U.S.A
| | | | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, U.S.A
| |
Collapse
|
2
|
Geisler SM, Ottaviani MM, Jacobo-Piqueras N, Theiner T, Mastrolia V, Guarina L, Ebner K, Obermair GJ, Carbone E, Tuluc P. Deletion of the α 2δ-1 calcium channel subunit increases excitability of mouse chromaffin cells. J Physiol 2024; 602:3793-3814. [PMID: 39004870 DOI: 10.1113/jp285681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
High voltage-gated Ca2+ channels (HVCCs) shape the electrical activity and control hormone release in most endocrine cells. HVCCs are multi-subunit protein complexes formed by the pore-forming α1 and the auxiliary β, α2δ and γ subunits. Four genes code for the α2δ isoforms. At the mRNA level, mouse chromaffin cells (MCCs) express predominantly the CACNA2D1 gene coding for the α2δ-1 isoform. Here we show that α2δ-1 deletion led to ∼60% reduced HVCC Ca2+ influx with slower inactivation kinetics. Pharmacological dissection showed that HVCC composition remained similar in α2δ-1-/- MCCs compared to wild-type (WT), demonstrating that α2δ-1 exerts similar functional effects on all HVCC isoforms. Consistent with reduced HVCC Ca2+ influx, α2δ-1-/- MCCs showed reduced spontaneous electrical activity with action potentials (APs) having a shorter half-maximal duration caused by faster rising and decay slopes. However, the induced electrical activity showed opposite effects with α2δ-1-/- MCCs displaying significantly higher AP frequency in the tonic firing mode as well as an increase in the number of cells firing AP bursts compared to WT. This gain-of-function phenotype was caused by reduced functional activation of Ca2+-dependent K+ currents. Additionally, despite the reduced HVCC Ca2+ influx, the intracellular Ca2+ transients and vesicle exocytosis or endocytosis were unaltered in α2δ-1-/- MCCs compared to WT during sustained stimulation. In conclusion, our study shows that α2δ-1 genetic deletion reduces Ca2+ influx in cultured MCCs but leads to a paradoxical increase in catecholamine secretion due to increased excitability. KEY POINTS: Deletion of the α2δ-1 high voltage-gated Ca2+ channel (HVCC) subunit reduces mouse chromaffin cell (MCC) Ca2+ influx by ∼60% but causes a paradoxical increase in induced excitability. MCC intracellular Ca2+ transients are unaffected by the reduced HVCC Ca2+ influx. Deletion of α2δ-1 reduces the immediately releasable pool vesicle exocytosis but has no effect on catecholamine (CA) release in response to sustained stimuli. The increased electrical activity and CA release from MCCs might contribute to the previously reported cardiovascular phenotype of patients carrying α2δ-1 loss-of-function mutations.
Collapse
Affiliation(s)
- Stefanie M Geisler
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Matteo M Ottaviani
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Noelia Jacobo-Piqueras
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Tamara Theiner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Vincenzo Mastrolia
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Laura Guarina
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Carretero VJ, Liccardi N, Tejedor MA, de Pascual R, Campano JH, Hernández-Guijo JM. Lead exerts a depression of neurotransmitter release through a blockade of voltage dependent calcium channels in chromaffin cells. Toxicology 2024; 505:153809. [PMID: 38648961 DOI: 10.1016/j.tox.2024.153809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The present work, using chromaffin cells of bovine adrenal medullae (BCCs), aims to describe what type of ionic current alterations induced by lead (Pb2+) underlies its effects reported on synaptic transmission. We observed that the acute application of Pb2+ lead to a drastic depression of neurotransmitters release in a concentration-dependent manner when the cells were stimulated with both K+ or acetylcholine, with an IC50 of 119,57 μM and of 5,19 μM, respectively. This effect was fully recovered after washout. Pb2+ also blocked calcium channels of BCCs in a time- and concentration-dependent manner with an IC50 of 6,87 μM. This blockade was partially reversed upon washout. This compound inhibited the calcium current at all test potentials and shows a shift of the I-V curve to more negative values of about 8 mV. The sodium current was not blocked by acute application of high Pb2+ concentrations. Voltage-dependent potassium current was also shortly affected by high Pb2+. Nevertheless, the calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 24,49 μM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to Ca2+-activated K+-channels (BK) instead a direct linking to these channels. Under current-clamp conditions, BCCs exhibit a resting potential of -52.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of K+ channels. In spite of the effect on ionic channels exerted by Pb2+, we found that Pb2+ didn't alter cellular excitability, no modification of the membrane potential, and no effect on action potential firing. Taken together, these results point to a neurotoxic action evoked by Pb2+ that is associated with changes in neurotransmitter release by blocking the ionic currents responsible for the calcium influx.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ninfa Liccardi
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Maria Arribas Tejedor
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ricardo de Pascual
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Jorge Hernández Campano
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, Madrid 28029, Spain; Ramón y Cajal Institute for Health Research, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, Madrid 28029, Spain.
| |
Collapse
|
4
|
Sun X, Yazejian B, Peskoff A, Grinnell AD. Experimentally monitored calcium dynamics at synaptic active zones during neurotransmitter release in neuron-muscle cell cultures. Eur J Neurosci 2024; 59:2293-2319. [PMID: 38483240 DOI: 10.1111/ejn.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 05/08/2024]
Abstract
Ca2+-dependent K+ (BK) channels at varicosities in Xenopus nerve-muscle cell cultures were used to quantify experimentally the instantaneous active zone [Ca2+]AZ resulting from different rates and durations of Ca2+ entry in the absence of extrinsic buffers and correlate this with neurotransmitter release. Ca2+ tail currents produce mean peak [Ca2+]AZ ~ 30 μM; with continued influx, [Ca2+]AZ reaches ~45-60 μM at different rates depending on Ca2+ driving force and duration of influx. Both IBK and release are dependent on Ca2+ microdomains composed of both N- and L-type Ca channels. Domains collapse with a time constant of ~0.6 ms. We have constructed an active zone (AZ) model that approximately fits this data, and depends on incorporation of the high-capacity, low-affinity fixed buffer represented by phospholipid charges in the plasma membrane. Our observations suggest that in this preparation, (1) some BK channels, but few if any of the Ca2+ sensors that trigger release, are located within Ca2+ nanodomains while a large fraction of both are located far enough from Ca channels to be blockable by EGTA, (2) the IBK is more sensitive than the excitatory postsynaptic current (EPSC) to [Ca2+]AZ (K1/2-26 μM vs. ~36 μM [Ca2+]AZ); (3) with increasing [Ca2+]AZ, the IBK grows with a Hill coefficient of 2.5, the EPSC with a coefficient of 3.9; (4) release is dependent on the highest [Ca2+] achieved, independent of the time to reach it; (5) the varicosity synapses differ from mature frog nmjs in significant ways; and (6) BK channels are useful reporters of local [Ca2+]AZ.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Bruce Yazejian
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Arthur Peskoff
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alan D Grinnell
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
Abstract
Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.
Collapse
Affiliation(s)
- Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
6
|
Fletcher PA, Thompson B, Liu C, Bertram R, Satin LS, Sherman AS. Ca 2+ release or Ca 2+ entry, that is the question: what governs Ca 2+ oscillations in pancreatic β cells? Am J Physiol Endocrinol Metab 2023; 324:E477-E487. [PMID: 37074988 PMCID: PMC10228667 DOI: 10.1152/ajpendo.00030.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
The standard model for Ca2+ oscillations in insulin-secreting pancreatic β cells centers on Ca2+ entry through voltage-activated Ca2+ channels. These work in combination with ATP-dependent K+ channels, which are the bridge between the metabolic state of the cells and plasma membrane potential. This partnership underlies the ability of the β cells to secrete insulin appropriately on a minute-to-minute time scale to control whole body plasma glucose. Though this model, developed over more than 40 years through many cycles of experimentation and mathematical modeling, has been very successful, it has been challenged by a hypothesis that calcium-induced calcium release from the endoplasmic reticulum through ryanodine or inositol trisphosphate (IP3) receptors is instead the key driver of islet oscillations. We show here that the alternative model is in fact incompatible with a large body of established experimental data and that the new observations offered in support of it can be better explained by the standard model.
Collapse
Affiliation(s)
- Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland, United States
| | - Ben Thompson
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Chanté Liu
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
7
|
Yeung PSW, Yamashita M, Prakriya M. A pathogenic human Orai1 mutation unmasks STIM1-independent rapid inactivation of Orai1 channels. eLife 2023; 12:82281. [PMID: 36806330 PMCID: PMC9991058 DOI: 10.7554/elife.82281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Ca2+ release-activated Ca2+ (CRAC) channels are activated by direct physical interactions between Orai1, the channel protein, and STIM1, the endoplasmic reticulum Ca2+ sensor. A hallmark of CRAC channels is fast Ca2+-dependent inactivation (CDI) which provides negative feedback to limit Ca2+ entry through CRAC channels. Although STIM1 is thought to be essential for CDI, its molecular mechanism remains largely unknown. Here, we examined a poorly understood gain-of-function (GOF) human Orai1 disease mutation, L138F, that causes tubular aggregate myopathy. Through pairwise mutational analysis, we determine that large amino acid substitutions at either L138 or the neighboring T92 locus located on the pore helix evoke highly Ca2+-selective currents in the absence of STIM1. We find that the GOF phenotype of the L138 pathogenic mutation arises due to steric clash between L138 and T92. Surprisingly, strongly activating L138 and T92 mutations showed CDI in the absence of STIM1, contradicting prevailing views that STIM1 is required for CDI. CDI of constitutively open T92W and L138F mutants showed enhanced intracellular Ca2+ sensitivity, which was normalized by re-adding STIM1 to the cells. Truncation of the Orai1 C-terminus reduced T92W CDI, indicating a key role for the Orai1 C-terminus for CDI. Overall, these results identify the molecular basis of a disease phenotype with broad implications for activation and inactivation of Orai1 channels.
Collapse
Affiliation(s)
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| | - Murali Prakriya
- Department of Pharmacology, Northwestern UniversityChicagoUnited States
| |
Collapse
|
8
|
Baraibar AM, de Pascual R, Carretero VJ, Liccardi N, Juárez NH, Hernández-Guijo JM. Aluminum alters excitability by inhibiting calcium, sodium, and potassium currents in bovine chromaffin cells. J Neurochem 2023; 165:162-176. [PMID: 36800503 DOI: 10.1111/jnc.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023]
Abstract
Aluminum (Al3+ ) has long been related to neurotoxicity and neurological diseases. This study aims to describe the specific actions of this metal on cellular excitability and neurotransmitter release in primary culture of bovine chromaffin cells. Using voltage-clamp and current-clamp recordings with the whole-cell configuration of the patch clamp technique, online measurement of catecholamine release, and measurements of [Ca2+ ]c with Fluo-4-AM, we have observed that Al3+ reduced intracellular calcium concentrations around 25% and decreased catecholamine secretion in a dose-dependent manner, with an IC50 of 89.1 μM. Al3+ blocked calcium currents in a time- and concentration-dependent manner with an IC50 of 560 μM. This blockade was irreversible since it did not recover after washout. Moreover, Al3+ produced a bigger blockade on N-, P-, and Q-type calcium channels subtypes (69.5%) than on L-type channels subtypes (50.5%). Sodium currents were also inhibited by Al3+ in a time- and concentration-dependent manner, 24.3% blockade at the closest concentration to the IC50 (399 μM). This inhibition was reversible. Voltage-dependent potassium currents were low affected by Al3+ . Nonetheless, calcium/voltage-dependent potassium currents were inhibited in a concentration-dependent manner, with an IC50 of 447 μM. This inhibition was related to the depression of calcium influx through voltage-dependent calcium channels subtypes coupled to BK channels. In summary, the blockade of these ionic conductance altered cellular excitability that reduced the action potentials firing and so, the neurotransmitter release and the synaptic transmission. These findings prove that aluminum has neurotoxic properties because it alters neuronal excitability by inhibiting the sodium currents responsible for the generation and propagation of impulse nerve, the potassium current responsible for the termination of action potentials, and the calcium current responsible for the neurotransmitters release.
Collapse
Affiliation(s)
- Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Baracaldo, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | - Ninfa Liccardi
- Department of Pharmacology and Therapeutic, Madrid, Spain
| | | | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, Univ. Autónoma de Madrid, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
9
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
10
|
Yin H, Cheng H, Li P, Yang Z. TRPC6 interacted with K Ca1.1 channels to regulate the proliferation and apoptosis of glioma cells. Arch Biochem Biophys 2022; 725:109268. [PMID: 35489424 DOI: 10.1016/j.abb.2022.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
Malignant glioma is the most aggressive and deadliest brain malignancy. TRPC6 and KCa1.1, two ion channels, have been considered as potential therapeutic targets for malignant glioma treatment. TRPC6, a Ca2+-permeable channel, plays a vital role in promoting tumorigenesis and the progression of glioma. KCa1.1, a large-conductance Ca2+-activated channel, is also involved in growth and migration of glioma. However, the underlying mechanism by which these two ion channels promote glioma progression was unclear. In our study, we found that TRPC6 upregulated the expression of KCa1.1, while the immunoprecipitation analysis also showed that TRPC6 interacts with KCa1.1 channels in glioma cells. The currents of KCa1.1 recorded by the whole-cell patch clamp technique were increased by TRPC6 in glioma cells, suggesting that TRPC6 can provide a Ca2+ source for the activation of KCa1.1 channels. It was also suggested that TRPC6 regulates the proliferation and apoptosis of glioma cells through KCa1.1 channels in vitro. Therefore, C6-bearing glioma rats were established to validate the results in vitro. After the administration of paxilline (a specific inhibitor of KCa1.1 channels), TRPC6-dependent growth of glioma was inhibited in vivo. We also found that TRPC6 enhanced co-expression with KCa1.1 in glioma. These all suggested that TRPC6/KCa1.1 signal plays a role in promoting the growth of glioma. Our results provided new evidence for TRPC6 and KCa1.1 as potential targets for glioma treatment.
Collapse
Affiliation(s)
- Hongqiang Yin
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Haofeng Cheng
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Peiqi Li
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Shah KR, Guan X, Yan J. Structural and Functional Coupling of Calcium-Activated BK Channels and Calcium-Permeable Channels Within Nanodomain Signaling Complexes. Front Physiol 2022; 12:796540. [PMID: 35095560 PMCID: PMC8795833 DOI: 10.3389/fphys.2021.796540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Biochemical and functional studies of ion channels have shown that many of these integral membrane proteins form macromolecular signaling complexes by physically associating with many other proteins. These macromolecular signaling complexes ensure specificity and proper rates of signal transduction. The large-conductance, Ca2+-activated K+ (BK) channel is dually activated by membrane depolarization and increases in intracellular free Ca2+ ([Ca2+]i). The activation of BK channels results in a large K+ efflux and, consequently, rapid membrane repolarization and closing of the voltage-dependent Ca2+-permeable channels to limit further increases in [Ca2+]i. Therefore, BK channel-mediated K+ signaling is a negative feedback regulator of both membrane potential and [Ca2+]i and plays important roles in many physiological processes and diseases. However, the BK channel formed by the pore-forming and voltage- and Ca2+-sensing α subunit alone requires high [Ca2+]i levels for channel activation under physiological voltage conditions. Thus, most native BK channels are believed to co-localize with Ca2+-permeable channels within nanodomains (a few tens of nanometers in distance) to detect high levels of [Ca2+]i around the open pores of Ca2+-permeable channels. Over the last two decades, advancement in research on the BK channel’s coupling with Ca2+-permeable channels including recent reports involving NMDA receptors demonstrate exemplary models of nanodomain structural and functional coupling among ion channels for efficient signal transduction and negative feedback regulation. We hereby review our current understanding regarding the structural and functional coupling of BK channels with different Ca2+-permeable channels.
Collapse
Affiliation(s)
- Kunal R. Shah
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xin Guan
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiusheng Yan
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Neuroscience Program, Graduate School of Biomedical Sciences, UT Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Biochemistry and Cell Biology Program, Graduate School of Biomedical Sciences, UT Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jiusheng Yan,
| |
Collapse
|
12
|
Duncan PJ, Fazli M, Romanò N, Le Tissier P, Bertram R, Shipston MJ. Chronic stress facilitates bursting electrical activity in pituitary corticotrophs. J Physiol 2021; 600:313-332. [PMID: 34855218 DOI: 10.1113/jp282367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Coordination of an appropriate stress response is dependent upon anterior pituitary corticotroph excitability in response to hypothalamic secretagogues and glucocorticoid negative feedback. A key determinant of corticotroph excitability is large conductance calcium- and voltage-activated (BK) potassium channels that are critical for promoting corticotrophin-releasing hormone (CRH)-induced bursting that enhances adrenocorticotrophic hormone secretion. Previous studies revealed hypothalamic-pituitary-adrenal axis hyperexcitability following chronic stress (CS) is partly a function of increased corticotroph output. Thus, we hypothesise that chronic stress promotes corticotroph excitability through a BK-dependent mechanism. Corticotrophs from CS mice displayed significant increase in spontaneous bursting, which was suppressed by the BK blocker paxilline. Mathematical modelling reveals that the time constant of BK channel activation, plus properties and proportion of BK channels functionally coupled to L-type Ca2+ channels determines bursting activity. Surprisingly, CS corticotrophs (but not unstressed) display CRH-induced bursting even when the majority of BK channels are inhibited by paxilline, which modelling suggests is a consequence of the stochastic behaviour of a small number of BK channels coupled to L-type Ca2+ channels. Our data reveal that changes in the stochastic behaviour of a small number of BK channels can finely tune corticotroph excitability through stress-induced changes in BK channel properties. Importantly, regulation of BK channel function is highly context dependent allowing dynamic control of corticotroph excitability over a large range of time domains and physiological challenges in health and disease. This is likely to occur in other BK-expressing endocrine cells, with important implications for the physiological processes they regulate and the potential for therapy. KEY POINTS: Chronic stress (CS) is predicted to modify the electrical excitability of anterior pituitary corticotrophs. Electrophysiological recordings from isolated corticotrophs from CS male mice display spontaneous electrical bursting behaviour compared to the tonic spiking behaviour of unstressed corticotrophs. The increased spontaneous bursting from CS corticotrophs is BK-dependent and mathematical modelling reveals that the time constant of activation, properties and proportion of BK channels functionally coupled to L-type calcium channels determines the promotion of bursting activity. CS (but not unstressed) corticotrophs display corticotrophin-releasing hormone-induced bursting even when the majority of BK channels are pharmacologically inhibited, which can be explained by the stochastic behaviour of a small number of BK channels with distinct properties. Corticotroph excitability can be finely tuned by the stochastic behaviour of a small number of BK channels dependent on their properties and functional co-localisation with L-type calcium channels to control corticotroph excitability over diverse time domains and physiological challenges.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Mehran Fazli
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | - Nicola Romanò
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul Le Tissier
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, FL, USA.,Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Michael J Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Baraibar AM, de Pascual R, Rodriguez Angulo HO, Mijares A, Hernández-Guijo JM. Pro-arrhythmogenic effects of Trypanosoma cruzi conditioned medium proteins in a model of bovine chromaffin cells. Parasitology 2021; 148:1612-1623. [PMID: 34384512 PMCID: PMC11010060 DOI: 10.1017/s003118202100130x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022]
Abstract
Asymptomatic sudden death is the principal cause of mortality in Chagas disease. There is little information about molecular mechanisms involved in the pathophysiology of malignant arrhythmias in Chagasic patients. Previous studies have involved Trypanosoma cruzi secretion proteins in the genesis of arrhythmias ex vivo, but the molecular mechanisms involved are still unresolved. Thus, the aim was to determine the effect of these secreted proteins on the cellular excitability throughout to test its effects on catecholamine secretion, sodium-, calcium-, and potassium-conductance and action potential (AP) firing. Conditioned medium was obtained from the co-culture of T. cruzi and Vero cells (African green monkey kidney cells) and ultra-filtered for concentrating immunogenic high molecular weight parasite proteins. Chromaffin cells were assessed with the parasite and Vero cells control medium. Parasite-secreted proteins induce catecholamine secretion in a dose-dependent manner. Additionally, T. cruzi conditioned medium induced depression of both calcium conductance and calcium and voltage-dependent potassium current. Interestingly, this fact was related to the abolishment of the hyperpolarization phase of the AP produced by the parasite medium. Taken together, these results suggest that T. cruzi proteins may be involved in the genesis of pro-arrhythmic conditions that could influence the appearance of malignant arrhythmias in Chagasic patients.
Collapse
Affiliation(s)
- A. M. Baraibar
- Department of Neuroscience, University of Minnesota, 4-158 Jackson Hall, 321 Church St s.e., Minneapolis, MN55455, USA
| | - R. de Pascual
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
- Institute ‘Teófilo Hernando’, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
| | - H. O. Rodriguez Angulo
- Laboratorio de Fisiología de Parásitos, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - A. Mijares
- Laboratorio de Fisiología de Parásitos, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - J. M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
- Institute ‘Teófilo Hernando’, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
- IRYCIS, School of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029Madrid, Spain
| |
Collapse
|
14
|
NMDA receptor-BK channel coupling regulates synaptic plasticity in the barrel cortex. Proc Natl Acad Sci U S A 2021; 118:2107026118. [PMID: 34453004 PMCID: PMC8536339 DOI: 10.1073/pnas.2107026118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are critical triggers for neuronal plasticity. We show that large-conductance Ca2+- and voltage-gated K+ (BK) channels serve as feedback regulators of NMDA receptor–mediated calcium influx to shape NMDA receptor–mediated synaptic potentials and consequently elevate the threshold for triggering plasticity at a subset of synapses. Postsynaptic N-methyl-D-aspartate receptors (NMDARs) are crucial mediators of synaptic plasticity due to their ability to act as coincidence detectors of presynaptic and postsynaptic neuronal activity. However, NMDARs exist within the molecular context of a variety of postsynaptic signaling proteins, which can fine-tune their function. Here, we describe a form of NMDAR suppression by large-conductance Ca2+- and voltage-gated K+ (BK) channels in the basal dendrites of a subset of barrel cortex layer 5 pyramidal neurons. We show that NMDAR activation increases intracellular Ca2+ in the vicinity of BK channels, thus activating K+ efflux and strong negative feedback inhibition. We further show that neurons exhibiting such NMDAR–BK coupling serve as high-pass filters for incoming synaptic inputs, precluding the induction of spike timing–dependent plasticity. Together, these data suggest that NMDAR-localized BK channels regulate synaptic integration and provide input-specific synaptic diversity to a thalamocortical circuit.
Collapse
|
15
|
Plante AE, Whitt JP, Meredith AL. BK channel activation by L-type Ca 2+ channels Ca V1.2 and Ca V1.3 during the subthreshold phase of an action potential. J Neurophysiol 2021; 126:427-439. [PMID: 34191630 DOI: 10.1152/jn.00089.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian circadian (24 h) rhythms are timed by the pattern of spontaneous action potential firing in the suprachiasmatic nucleus (SCN). This oscillation in firing is produced through circadian regulation of several membrane currents, including large-conductance Ca2+- and voltage-activated K+ (BK) and L-type Ca2+ channel (LTCC) currents. During the day steady-state BK currents depend mostly on LTCCs for activation, whereas at night they depend predominantly on ryanodine receptors (RyRs). However, the contribution of these Ca2+ channels to BK channel activation during action potential firing has not been thoroughly investigated. In this study, we used a pharmacological approach to determine that both LTCCs and RyRs contribute to the baseline membrane potential of SCN action potential waveforms, as well as action potential-evoked BK current, during the day and night, respectively. Since the baseline membrane potential is a major determinant of circadian firing rate, we focused on the LTCCs contributing to low voltage activation of BK channels during the subthreshold phase. For these experiments, two LTCC subtypes found in SCN (CaV1.2 and CaV1.3) were coexpressed with BK channels in heterologous cells, where their differential contributions could be separately measured. CaV1.3 channels produced currents that were shifted to more hyperpolarized potentials compared with CaV1.2, resulting in increased subthreshold Ca2+ and BK currents during an action potential command. These results show that although multiple Ca2+ sources in SCN can contribute to the activation of BK current during an action potential, specific BK-CaV1.3 partnerships may optimize the subthreshold BK current activation that is critical for firing rate regulation.NEW & NOTEWORTHY BK K+ channels are important regulators of firing. Although Ca2+ channels are required for their activation in excitable cells, it is not well understood how BK channels activate using these Ca2+ sources during an action potential. This study demonstrates the differences in BK current activated by CaV1.2 and CaV1.3 channels in clock neurons and heterologous cells. The results define how specific ion channel partnerships can be engaged during distinct phases of the action potential.
Collapse
Affiliation(s)
- Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joshua P Whitt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
BK Channel Regulation of Afterpotentials and Burst Firing in Cerebellar Purkinje Neurons. J Neurosci 2021; 41:2854-2869. [PMID: 33593855 DOI: 10.1523/jneurosci.0192-20.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
BK calcium-activated potassium channels have complex kinetics because they are activated by both voltage and cytoplasmic calcium. The timing of BK activation and deactivation during action potentials determines their functional role in regulating firing patterns but is difficult to predict a priori. We used action potential clamp to characterize the kinetics of voltage-dependent calcium current and BK current during action potentials in Purkinje neurons from mice of both sexes, using acutely dissociated neurons that enabled rapid voltage clamp at 37°C. With both depolarizing voltage steps and action potential waveforms, BK current was entirely dependent on calcium entry through voltage-dependent calcium channels. With voltage steps, BK current greatly outweighed the triggering calcium current, with only a brief, small net inward calcium current before Ca-activated BK current dominated the total Ca-dependent current. During action potential waveforms, although BK current activated with only a short (∼100 μs) delay after calcium current, the two currents were largely separated, with calcium current flowing during the falling phase of the action potential and most BK current flowing over several milliseconds after repolarization. Step depolarizations activated both an iberiotoxin-sensitive BK component with rapid activation and deactivation kinetics and a slower-gating iberiotoxin-resistant component. During action potential firing, however, almost all BK current came from the faster-gating iberiotoxin-sensitive channels, even during bursts of action potentials. Inhibiting BK current had little effect on action potential width or a fast afterhyperpolarization but converted a medium afterhyperpolarization to an afterdepolarization and could convert tonic firing of single action potentials to burst firing.SIGNIFICANCE STATEMENT BK calcium-activated potassium channels are widely expressed in central neurons. Altered function of BK channels is associated with epilepsy and other neuronal disorders, including cerebellar ataxia. The functional role of BK in regulating neuronal firing patterns is highly dependent on the context of other channels and varies widely among different types of neurons. Most commonly, BK channels are activated during action potentials and help produce a fast afterhyperpolarization. We find that in Purkinje neurons BK current flows primarily after the fast afterhyperpolarization and helps to prevent a later afterdepolarization from producing rapid burst firing, enabling typical regular tonic firing.
Collapse
|
17
|
Baraibar AM, Hernández-Guijo JM. Micromolar concentrations of Zn 2+ depress cellular excitability through a blockade of calcium current in rat adrenal slices. Toxicology 2020; 444:152543. [PMID: 32858065 DOI: 10.1016/j.tox.2020.152543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 11/30/2022]
Abstract
The present work, using chromaffin cells in rat adrenal slices (RCCs), aims to describe what type of ionic current alterations induced by zinc underlies their effects reported on synaptic transmission. Thus, Zn2+ blocked calcium channels of RCCs in a time- and concentration-dependent manner with an IC50 of 391 μM. This blockade was partially reversed upon washout and was greater at more depolarizing holding potentials (i.e. 32 ± 5% at -110 mV, and 43 ± 6% at -50 mV, after 5 min perfusion). In ω-toxins-sensitive calcium channels (N-, P- and Q-types), Zn2+caused a lower blockade of ICa, 33.3%, than in ω-toxins-resistant ones (L-type, 55.3%; and R-type, 90%). This compound inhibited calcium current at all test potentials and shows a shift of the I-V curve to more depolarized values of about 10 mV. The sodium current was not blocked by acute application of high Zn2+concentrations. Voltage-dependent potassium current was marginally affected by high Zn2+ concentrations showing no concentration-dependence. Nevertheless, calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 453 μM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to BK channels. Under current-clamp conditions, RCCs exhibit a resting potential of -50.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of voltage and Ca2+-activated K+-channels (BK). We found that the blockade of these ionic currents by Zn2+ led to a drastic alteration of cellular excitability with a depolarization of the membrane potential, the slowdown and broadening of the APs and the severe reduction of the after hyperpolarization (AHP) which led to a decrease in the APs firing frequency. Taken together, these results point to a neurotoxic action evoked by zinc that is associated with changes to cellular excitability by blocking the ionic currents responsible for both the neurotransmitter release and the action potentials firing.
Collapse
Affiliation(s)
- Andrés M Baraibar
- Department of Neuroscience, University of Minnesota, 4-260 Wallin Medical Biosciences Building, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Teófilo Hernando, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, 28029, Madrid, Spain.
| |
Collapse
|
18
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
19
|
Toth AB, Hori K, Novakovic MM, Bernstein NG, Lambot L, Prakriya M. CRAC channels regulate astrocyte Ca 2+ signaling and gliotransmitter release to modulate hippocampal GABAergic transmission. Sci Signal 2019; 12:12/582/eaaw5450. [PMID: 31113852 DOI: 10.1126/scisignal.aaw5450] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Astrocytes are the major glial subtype in the brain and mediate numerous functions ranging from metabolic support to gliotransmitter release through signaling mechanisms controlled by Ca2+ Despite intense interest, the Ca2+ influx pathways in astrocytes remain obscure, hindering mechanistic insights into how Ca2+ signaling is coupled to downstream astrocyte-mediated effector functions. Here, we identified store-operated Ca2+ release-activated Ca2+ (CRAC) channels encoded by Orai1 and STIM1 as a major route of Ca2+ entry for driving sustained and oscillatory Ca2+ signals in astrocytes after stimulation of metabotropic purinergic and protease-activated receptors. Using synaptopHluorin as an optical reporter, we showed that the opening of astrocyte CRAC channels stimulated vesicular exocytosis to mediate the release of gliotransmitters, including ATP. Furthermore, slice electrophysiological recordings showed that activation of astrocytes by protease-activated receptors stimulated interneurons in the CA1 hippocampus to increase inhibitory postsynaptic currents on CA1 pyramidal cells. These results reveal a central role for CRAC channels as regulators of astrocyte Ca2+ signaling, gliotransmitter release, and astrocyte-mediated tonic inhibition of CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Anna B Toth
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Hori
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michaela M Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Natalie G Bernstein
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Laurie Lambot
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Abstract
The large-conductance calcium- and voltage-activated K+ (BK) channel has a requirement of high intracellular free Ca2+ concentrations for its activation in neurons under physiological conditions. The Ca2+ sources for BK channel activation are not well understood. In this study, we showed by coimmunopurification and colocalization analyses that BK channels form complexes with NMDA receptors (NMDARs) in both rodent brains and a heterologous expression system. The BK-NMDAR complexes are broadly present in different brain regions. The complex formation occurs between the obligatory BKα and GluN1 subunits likely via a direct physical interaction of the former's intracellular S0-S1 loop with the latter's cytosolic regions. By patch-clamp recording on mouse brain slices, we observed BK channel activation by NMDAR-mediated Ca2+ influx in dentate gyrus granule cells. BK channels modulate excitatory synaptic transmission via functional coupling with NMDARs at postsynaptic sites of medial perforant path-dentate gyrus granule cell synapses. A synthesized peptide of the BKα S0-S1 loop region, when loaded intracellularly via recording pipette, abolished the NMDAR-mediated BK channel activation and effect on synaptic transmission. These findings reveal the broad expression of the BK-NMDAR complexes in brain, the potential mechanism underlying the complex formation, and the NMDAR-mediated activation and function of postsynaptic BK channels in neurons.
Collapse
|
21
|
Vivas O, Moreno CM, Santana LF, Hille B. Proximal clustering between BK and Ca V1.3 channels promotes functional coupling and BK channel activation at low voltage. eLife 2017; 6. [PMID: 28665272 PMCID: PMC5503510 DOI: 10.7554/elife.28029] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023] Open
Abstract
CaV-channel dependent activation of BK channels is critical for feedback control of both calcium influx and cell excitability. Here we addressed the functional and spatial interaction between BK and CaV1.3 channels, unique CaV1 channels that activate at low voltages. We found that when BK and CaV1.3 channels were co-expressed in the same cell, BK channels started activating near −50 mV, ~30 mV more negative than for activation of co-expressed BK and high-voltage activated CaV2.2 channels. In addition, single-molecule localization microscopy revealed striking clusters of CaV1.3 channels surrounding clusters of BK channels and forming a multi-channel complex both in a heterologous system and in rat hippocampal and sympathetic neurons. We propose that this spatial arrangement allows tight tracking between local BK channel activation and the gating of CaV1.3 channels at quite negative membrane potentials, facilitating the regulation of neuronal excitability at voltages close to the threshold to fire action potentials. DOI:http://dx.doi.org/10.7554/eLife.28029.001
Collapse
Affiliation(s)
- Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Claudia M Moreno
- Department of Physiology and Biophysics, University of Washington, Seattle, United States.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Luis F Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
22
|
Toth AB, Shum AK, Prakriya M. Regulation of neurogenesis by calcium signaling. Cell Calcium 2016; 59:124-34. [PMID: 27020657 DOI: 10.1016/j.ceca.2016.02.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Abstract
Calcium (Ca(2+)) signaling has essential roles in the development of the nervous system from neural induction to the proliferation, migration, and differentiation of neural cells. Ca(2+) signaling pathways are shaped by interactions among metabotropic signaling cascades, intracellular Ca(2+) stores, ion channels, and a multitude of downstream effector proteins that activate specific genetic programs. The temporal and spatial dynamics of Ca(2+) signals are widely presumed to control the highly diverse yet specific genetic programs that establish the complex structures of the adult nervous system. Progress in the last two decades has led to significant advances in our understanding of the functional architecture of Ca(2+) signaling networks involved in neurogenesis. In this review, we assess the literature on the molecular and functional organization of Ca(2+) signaling networks in the developing nervous system and its impact on neural induction, gene expression, proliferation, migration, and differentiation. Particular emphasis is placed on the growing evidence for the involvement of store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels in these processes.
Collapse
Affiliation(s)
- Anna B Toth
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Andrew K Shum
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
23
|
Félix-Martínez GJ, Godínez-Fernández JR. Modeling Ca(2+) currents and buffered diffusion of Ca(2+) in human β-cells during voltage clamp experiments. Math Biosci 2015; 270:66-80. [PMID: 26476144 DOI: 10.1016/j.mbs.2015.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 09/03/2015] [Accepted: 09/28/2015] [Indexed: 11/27/2022]
Abstract
Macroscopic Ca(2+) currents of the human β-cells were characterized using the Hodgkin-Huxley formalism. Expressions describing the Ca(2+)-dependent inactivation process of the L-type Ca(2+) channels in terms of the concentration of Ca(2+) were obtained. By coupling the modeled Ca(2+) currents to a three-dimensional model of buffered diffusion of Ca(2+), we simulated the Ca(2+) transients formed in the immediate vicinity of the cell membrane during voltage clamp experiments performed in high buffering conditions. Our modeling approach allowed us to consider the distribution of the Ca(2+) sources over the cell membrane. The effect of exogenous (EGTA) and endogenous Ca(2+) buffers on the temporal course of the Ca(2+) transients was evaluated. We show that despite the high Ca(2+) buffering capacity, nanodomains are formed in the submembrane space, where a peak Ca(2+) concentration between ∼76 and 143 µM was estimated from our simulations. In addition, the contribution of each Ca(2+) current to the formation of the Ca(2+) nanodomains was also addressed. Here we provide a general framework to incorporate the spatial aspects to the models of the pancreatic β-cell, such as a more detailed and realistic description of Ca(2+) dynamics in response to electrical activity in physiological conditions can be provided by future models.
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., Mexico .
| | - J Rafael Godínez-Fernández
- Department of Electrical Engineering, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., Mexico
| |
Collapse
|
24
|
Martinez-Espinosa PL, Yang C, Gonzalez-Perez V, Xia XM, Lingle CJ. Knockout of the BK β2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity. ACTA ACUST UNITED AC 2015; 144:275-95. [PMID: 25267913 PMCID: PMC4178941 DOI: 10.1085/jgp.201411253] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromaffin cells from mice lacking the BK β2 subunit show decreased action potential firing during current injection but an increase in spontaneous burst firing. Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing.
Collapse
Affiliation(s)
- Pedro L Martinez-Espinosa
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Chengtao Yang
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
25
|
Albiñana E, Segura-Chama P, Baraibar AM, Hernández-Cruz A, Hernández-Guijo JM. Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices. J Neurochem 2015; 133:511-21. [DOI: 10.1111/jnc.13055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/22/2014] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Elisa Albiñana
- Departament of Pharmacology and Therapeutics; University Autónoma de Madrid; Madrid Spain
- Instituto Teófilo Hernando; University Autónoma de Madrid; Madrid Spain
- Facultad de Medicina; University Autónoma de Madrid; Madrid Spain
| | - Pedro Segura-Chama
- Unidad de Investigación de Medicina Experimental; Facultad de Medicina; Universidad Nacional Autónoma de México; Ciudad Universitaria; México City México
| | - Andres M. Baraibar
- Departament of Pharmacology and Therapeutics; University Autónoma de Madrid; Madrid Spain
- Instituto Teófilo Hernando; University Autónoma de Madrid; Madrid Spain
- Facultad de Medicina; University Autónoma de Madrid; Madrid Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Ciudad Universitaria; México City México
| | - Jesus M. Hernández-Guijo
- Departament of Pharmacology and Therapeutics; University Autónoma de Madrid; Madrid Spain
- Instituto Teófilo Hernando; University Autónoma de Madrid; Madrid Spain
- Facultad de Medicina; University Autónoma de Madrid; Madrid Spain
| |
Collapse
|
26
|
Store-operated CRAC channels regulate gene expression and proliferation in neural progenitor cells. J Neurosci 2014; 34:9107-23. [PMID: 24990931 DOI: 10.1523/jneurosci.0263-14.2014] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Calcium signals regulate many critical processes during vertebrate brain development including neurogenesis, neurotransmitter specification, and axonal outgrowth. However, the identity of the ion channels mediating Ca(2+) signaling in the developing nervous system is not well defined. Here, we report that embryonic and adult mouse neural stem/progenitor cells (NSCs/NPCs) exhibit store-operated Ca(2+) entry (SOCE) mediated by Ca(2+) release-activated Ca(2+) (CRAC) channels. SOCE in NPCs was blocked by the CRAC channel inhibitors La(3+), BTP2, and 2-APB and Western blots revealed the presence of the canonical CRAC channel proteins STIM1 and Orai1. Knock down of STIM1 or Orai1 significantly diminished SOCE in NPCs, and SOCE was lost in NPCs from transgenic mice lacking Orai1 or STIM1 and in knock-in mice expressing the loss-of-function Orai1 mutant, R93W. Therefore, STIM1 and Orai1 make essential contributions to SOCE in NPCs. SOCE in NPCs was activated by epidermal growth factor and acetylcholine, the latter occurring through muscarinic receptors. Activation of SOCE stimulated gene transcription through calcineurin/NFAT (nuclear factor of activated T cells) signaling through a mechanism consistent with local Ca(2+) signaling by Ca(2+) microdomains near CRAC channels. Importantly, suppression or deletion of STIM1 and Orai1 expression significantly attenuated proliferation of embryonic and adult NPCs cultured as neurospheres and, in vivo, in the subventricular zone of adult mice. These findings show that CRAC channels serve as a major route of Ca(2+) entry in NPCs and regulate key effector functions including gene expression and proliferation, indicating that CRAC channels are important regulators of mammalian neurogenesis.
Collapse
|
27
|
Brenker C, Zhou Y, Müller A, Echeverry FA, Trötschel C, Poetsch A, Xia XM, Bönigk W, Lingle CJ, Kaupp UB, Strünker T. The Ca2+-activated K+ current of human sperm is mediated by Slo3. eLife 2014; 3:e01438. [PMID: 24670955 PMCID: PMC3966514 DOI: 10.7554/elife.01438] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sperm are equipped with a unique set of ion channels that orchestrate fertilization. In mouse sperm, the principal K+ current (IKSper) is carried by the Slo3 channel, which sets the membrane potential (Vm) in a strongly pHi-dependent manner. Here, we show that IKSper in human sperm is activated weakly by pHi and more strongly by Ca2+. Correspondingly, Vm is strongly regulated by Ca2+ and less so by pHi. We find that inhibitors of Slo3 suppress human IKSper, and we identify the Slo3 protein in the flagellum of human sperm. Moreover, heterologously expressed human Slo3, but not mouse Slo3, is activated by Ca2+ rather than by alkaline pHi; current–voltage relations of human Slo3 and human IKSper are similar. We conclude that Slo3 represents the principal K+ channel in human sperm that carries the Ca2+-activated IKSper current. We propose that, in human sperm, the progesterone-evoked Ca2+ influx carried by voltage-gated CatSper channels is limited by Ca2+-controlled hyperpolarization via Slo3. DOI:http://dx.doi.org/10.7554/eLife.01438.001 A sperm that has been ejaculated into the female reproductive tract must complete a number of tasks to pass on its genes to the next generation. First it must travel along a meandering route to encounter an egg, before pushing through a jelly-like coating that surrounds the egg and then, finally, fusing with the egg’s surface membrane. In order to complete these steps and fertilise the egg, a sperm must undergo a process called ‘capacitation’. This process, and a variety of other sperm functions, involves the controlled flux of positive ions into and out of the sperm via specific ion channels that are located in the cell membrane. The properties of the ion channels that allow protons and calcium ions to move into and out of human sperm are well understood, but less is known about the channels that control the movement of potassium ions. In mice, a channel called Slo3 allows potassium ions to flow out of the sperm and makes the membrane voltage of these cells more negative. Also, in mice, this channel is essential for the sperm to function correctly, and for fertilization. However, in humans, it is unclear if the Slo3 channel is present in sperm and if it performs the same role. Now, Brenker et al. have shown that the flow of potassium ions out of human sperm occurs via the Slo3 channel, and that human Slo3 is responsible for setting the membrane voltage of these cells. However, whereas the mouse Slo3 channel is opened in response to a decrease in the concentration of protons within the sperm (i.e., an increase of the pH inside the cell), human Slo3 is largely controlled by changes in the levels of calcium ions. An increase in the calcium concentration within the cell opens the human Slo3 channel, more than a decrease in the proton concentration does. Altogether, Brenker et al. identify Slo3 as the principal potassium channel in human sperm and reveal more fundamental differences between human sperm and mouse sperm. Thereby, this work further stresses the need to be cautious about using mice as a model of male fertility in humans. DOI:http://dx.doi.org/10.7554/eLife.01438.002
Collapse
Affiliation(s)
- Christoph Brenker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
TRPV1 channels are functionally coupled with BK(mSlo1) channels in rat dorsal root ganglion (DRG) neurons. PLoS One 2013; 8:e78203. [PMID: 24147119 PMCID: PMC3797745 DOI: 10.1371/journal.pone.0078203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca2+). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca2+ influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the “pain” signal transduction pathway in the peripheral nervous system.
Collapse
|
29
|
Fhaner MJ, Galligan JJ, Swain GM. Increased catecholamine secretion from single adrenal chromaffin cells in DOCA-salt hypertension is associated with potassium channel dysfunction. ACS Chem Neurosci 2013; 4:1404-13. [PMID: 23937098 DOI: 10.1021/cn400115v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mechanism of catecholamine release from single adrenal chromaffin cells isolated from normotensive and DOCA-salt hypertensive rats was investigated. These cells were used as a model for sympathetic nerves to better understand how exocytotic release of catecholamines is altered in this model of hypertension. Catecholamine secretion was evoked by local application of acetylcholine (1 mM) or high K+ (70 mM), and continuous amperometry was used to monitor catecholamine secretion as an oxidative current. The total number of catecholamine molecules secreted from a vesicle, the total number of vesicles fusing and secreting, and the duration of secretion in response to a stimulus were all significantly greater for chromaffin cells from hypertensive rats as compared to normotensive controls. The greater catecholamine secretion from DOCA-salt cells results, at least in part, from functionally impaired large conductance, Ca2+-activated (BK) and ATP-sensitive K+ channels. This work reveals that there is altered vesicular release of catecholamines from these cells (and possibly from perivascular sympathetic nerves) and this may contribute to increased vasomotor tone in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Matthew J. Fhaner
- Department of Chemistry, ‡Department of Pharmacology and Toxicology, and §The Neuroscience
Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - James J. Galligan
- Department of Chemistry, ‡Department of Pharmacology and Toxicology, and §The Neuroscience
Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Greg M. Swain
- Department of Chemistry, ‡Department of Pharmacology and Toxicology, and §The Neuroscience
Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Fuentes-Antrás J, Osorio-Martínez E, Ramírez-Torres M, Colmena I, Fernández-Morales JC, Hernández-Guijo JM. Methylmercury decreases cellular excitability by a direct blockade of sodium and calcium channels in bovine chromaffin cells: an integrative study. Pflugers Arch 2013; 465:1727-40. [PMID: 23821297 DOI: 10.1007/s00424-013-1311-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/02/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
Methylmercury, a potent environmental pollutant responsible for fatal food poisoning, blocked calcium channels of bovine chromaffin cells in a time- and concentration-dependent manner with an IC50 of 0.93 μM. This blockade was not reversed upon wash-out and was greater at more depolarising holding potentials (i.e. 21 % at -110 mV and 60 % at -50 mV, after 3 min perfusion with methylmercury). In ω-toxins-sensitive calcium channels, methylmercury caused a higher blockade of I Ba than in ω-toxins-resistant ones, in which a lower blockade was detected. The sodium current was also blocked by acute application of methylmercury in a time- and concentration-dependent manner with an IC50 of 1.05 μM. The blockade was not reversed upon wash-out of the drug. The drug inhibited sodium current at all test potentials and shows a shift of the I-V curve to the left of about 10 mV. Intracellular dialysis with methylmercury caused no blockade of calcium or sodium channels. Voltage-dependent potassium current was not affected by methylmercury. Calcium- and voltage-dependent potassium current was also drastically depressed. This blockade was related to the prevention of Ca(2+) influx through voltage-dependent calcium channels coupled to BK channels. Under current-clamp conditions, the blockade of ionic current present during the generation and termination of action potentials led to a drastic alteration of cellular excitability. The application of methylmercury greatly reduced the shape and the number of electrically evoked action potentials. Taken together, these results point out that the neurotoxic action evoked by methylmercury may be associated to alteration of cellular excitability by blocking ionic currents responsible for the generation and termination of action potentials.
Collapse
Affiliation(s)
- J Fuentes-Antrás
- Department of Pharmacology and Therapeutic, School of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Large conductance Ca(2+)- and voltage-activated potassium channels (BKCa) shape neuronal excitability and signal transduction. This reflects the integrated influences of transmembrane voltage and intracellular calcium concentration ([Ca(2+)]i) that gate the channels. This dual gating has been mainly studied as voltage-triggered gating modulated by defined steady-state [Ca(2+)]i, a paradigm that does not approximate native conditions. Here we use submillisecond changes of [Ca(2+)]i to investigate the time course of the Ca(2+)-triggered gating of BKCa channels expressed in Chinese hamster ovary cells at distinct membrane potentials in the physiological range. The results show that Ca(2+) can effectively gate BKCa channels and that Ca(2+) gating is largely different from voltage-driven gating. Most prominently, Ca(2+) gating displays a pronounced delay in the millisecond range between Ca(2+) application and channel opening (pre-onset delay) and exhibits slower kinetics across the entire [Ca(2+)]i-voltage plane. Both characteristics are selectively altered by co-assembled BKβ4 or an epilepsy-causing mutation that either slows deactivation or speeds activation and reduces the pre-onset delay, respectively. Similarly, co-assembly of the BKCa channels with voltage-activated Ca(2+) (Cav) channels, mirroring the native configuration, decreased the pre-onset delay to submillisecond values. In BKCa-Cav complexes, the time course of the hyperpolarizing K(+)-current response is dictated by the Ca(2+) gating of the BKCa channels. Consistent with Cav-mediated Ca(2+) influx, gating was fastest at hyperpolarized potentials, but decreased with depolarization of the membrane potential. Our results demonstrate that under experimental paradigms meant to approximate the physiological conditions BKCa channels primarily operate as ligand-activated channels gated by intracellular Ca(2+) and that Ca(2+) gating is tuned for fast responses in neuronal BKCa-Cav complexes.
Collapse
|
32
|
Rehak R, Bartoletti TM, Engbers JDT, Berecki G, Turner RW, Zamponi GW. Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 2013; 8:e61844. [PMID: 23626738 PMCID: PMC3633930 DOI: 10.1371/journal.pone.0061844] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/14/2013] [Indexed: 02/03/2023] Open
Abstract
Calcium-activated potassium channels of the KCa1.1 class are known to regulate repolarization of action potential discharge through a molecular association with high voltage-activated calcium channels. The current study examined the potential for low voltage-activated Cav3 (T-type) calcium channels to interact with KCa1.1 when expressed in tsA-201 cells and in rat medial vestibular neurons (MVN) in vitro. Expression of the channel α-subunits alone in tsA-201 cells was sufficient to enable Cav3 activation of KCa1.1 current. Cav3 calcium influx induced a 50 mV negative shift in KCa1.1 voltage for activation, an interaction that was blocked by Cav3 or KCa1.1 channel blockers, or high internal EGTA. Cav3 and KCa1.1 channels coimmunoprecipitated from lysates of either tsA-201 cells or rat brain, with Cav3 channels associating with the transmembrane S0 segment of the KCa1.1 N-terminus. KCa1.1 channel activation was closely aligned with Cav3 calcium conductance in that KCa1.1 current shared the same low voltage dependence of Cav3 activation, and was blocked by voltage-dependent inactivation of Cav3 channels or by coexpressing a non calcium-conducting Cav3 channel pore mutant. The Cav3-KCa1.1 interaction was found to function highly effectively in a subset of MVN neurons by activating near –50 mV to contribute to spike repolarization and gain of firing. Modelling data indicate that multiple neighboring Cav3-KCa1.1 complexes must act cooperatively to raise calcium to sufficiently high levels to permit KCa1.1 activation. Together the results identify a novel Cav3-KCa1.1 signaling complex where Cav3-mediated calcium entry enables KCa1.1 activation over a wide range of membrane potentials according to the unique voltage profile of Cav3 calcium channels, greatly extending the roles for KCa1.1 potassium channels in controlling membrane excitability.
Collapse
Affiliation(s)
- Renata Rehak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Theodore M. Bartoletti
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jordan D. T. Engbers
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Geza Berecki
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Ray W. Turner
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
33
|
Ca(V)1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells. J Neurosci 2013; 32:16345-59. [PMID: 23152617 DOI: 10.1523/jneurosci.3715-12.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mouse chromaffin cells (MCCs) fire spontaneous action potentials (APs) at rest. Ca(v)1.3 L-type calcium channels sustain the pacemaker current, and their loss results in depolarized resting potentials (V(rest)), spike broadening, and remarkable switches into depolarization block after BayK 8644 application. A functional coupling between Ca(v)1.3 and BK channels has been reported but cannot fully account for the aforementioned observations. Here, using Ca(v)1.3(-/-) mice, we investigated the role of Ca(v)1.3 on SK channel activation and how this functional coupling affects the firing patterns induced by sustained current injections. MCCs express SK1-3 channels whose tonic currents are responsible for the slow irregular firing observed at rest. Percentage of frequency increase induced by apamin was found inversely correlated to basal firing frequency. Upon stimulation, MCCs build-up Ca(v)1.3-dependent SK currents during the interspike intervals that lead to a notable degree of spike frequency adaptation (SFA). The major contribution of Ca(v)1.3 to the subthreshold Ca(2+) charge during an AP-train rather than a specific molecular coupling to SK channels accounts for the reduced SFA of Ca(v)1.3(-/-) MCCs. Low adaptation ratios due to reduced SK activation associated with Ca(v)1.3 deficiency prevent the efficient recovery of Na(V) channels from inactivation. This promotes a rapid decline of AP amplitudes and facilitates early onset of depolarization block following prolonged stimulation. Thus, besides serving as pacemaker, Ca(v)1.3 slows down MCC firing by activating SK channels that maintain Na(V) channel availability high enough to preserve stable AP waveforms, even upon high-frequency stimulation of chromaffin cells during stress responses.
Collapse
|
34
|
Saftenku EÈ. Effects of calretinin on Ca2+ signals in cerebellar granule cells: implications of cooperative Ca2+ binding. THE CEREBELLUM 2012; 11:102-20. [PMID: 21394464 DOI: 10.1007/s12311-011-0263-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Calretinin is thought to be the main endogenous calcium buffer in cerebellar granule cells (GrCs). However, little is known about the impact of cooperative Ca(2+) binding to calretinin on highly localized and more global (regional) Ca(2+) signals in these cells. Using numerical simulations, we show that an essential property of calretinin is a delayed equilibration with Ca(2+). Therefore, the amount of Ca(2+), which calretinin can accumulate with respect to equilibrium levels, depends on stimulus conditions. Based on our simulations of buffered Ca(2+) diffusion near a single Ca(2+) channel or a large cluster of Ca(2+) channels and previous experimental findings that 150 μM 1,2-bis(o-aminophenoxy) ethane-N, N, N', N'-tetraacetic acid (BAPTA) and endogenous calretinin have similar effects on GrC excitability, we estimated the concentration of mobile calretinin in GrCs in the range of 0.7-1.2 mM. Our results suggest that this estimate can provide a starting point for further analysis. We find that calretinin prominently reduces the action potential associated increase in cytosolic free Ca(2+) concentration ([Ca(2+)]( i )) even at a distance of 30 nm from a single Ca(2+) channel. In spite of a buildup of residual Ca(2+), it maintains almost constant maximal [Ca(2+)]( i ) levels during repetitive channel openings with a frequency less than 80 Hz. This occurs because of accelerated Ca(2+) binding as calretinin binds more Ca(2+). Unlike the buffering of high Ca(2+) levels within Ca(2+) nano/microdomains sensed by large conductance Ca(2+)-activated K(+) channels, the buffering of regional Ca(2+) signals by calretinin can never be mimicked by certain concentration of BAPTA under all different experimental conditions.
Collapse
Affiliation(s)
- Elena È Saftenku
- Department of General Physiology of Nervous System, A. A. Bogomoletz Institute of Physiology, Bogomoletz St., 4, Kyiv 01024, Ukraine.
| |
Collapse
|
35
|
Fast-activating voltage- and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: a dynamic clamp study. J Neurosci 2012; 31:16855-63. [PMID: 22090511 DOI: 10.1523/jneurosci.3235-11.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electrical activity pattern of endocrine pituitary cells regulates their basal secretion level. Rat somatotrophs and lactotrophs exhibit spontaneous bursting and have high basal levels of hormone secretion, while gonadotrophs exhibit spontaneous spiking and have low basal hormone secretion. It has been proposed that the difference in electrical activity between bursting somatotrophs and spiking gonadotrophs is due to the presence of large conductance potassium (BK) channels on somatotrophs but not on gonadotrophs. This is one example where the role of an ion channel type may be clearly established. We demonstrate here that BK channels indeed promote bursting activity in pituitary cells. Blocking BK channels in bursting lacto-somatotroph GH4C1 cells changes their firing activity to spiking, while further adding an artificial BK conductance via dynamic clamp restores bursting. Importantly, this burst-promoting effect requires a relatively fast BK activation/deactivation, as predicted by computational models. We also show that adding a fast-activating BK conductance to spiking gonadotrophs converts the activity of these cells to bursting. Together, our results suggest that differences in BK channel expression may underlie the differences in electrical activity and basal hormone secretion levels among pituitary cell types and that the rapid rate of BK channel activation is key to its role in burst promotion.
Collapse
|
36
|
Maroto M, de Diego AM, Albiñana E, Fernandez-Morales JC, Caricati-Neto A, Jurkiewicz A, Yáñez M, Rodriguez-Franco MI, Conde S, Arce MP, Hernández-Guijo JM, García AG. Multi-target novel neuroprotective compound ITH33/IQM9.21 inhibits calcium entry, calcium signals and exocytosis. Cell Calcium 2011; 50:359-69. [DOI: 10.1016/j.ceca.2011.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/07/2011] [Accepted: 06/16/2011] [Indexed: 12/27/2022]
|
37
|
Calcium-dependent inhibition of T-type calcium channels by TRPV1 activation in rat sensory neurons. Pflugers Arch 2011; 462:709-22. [PMID: 21904821 DOI: 10.1007/s00424-011-1023-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
We studied the inhibitory effects of transient receptor potential vanilloid-1 (TRPV1) activation by capsaicin on low-voltage-activated (LVA, T-type) Ca(2+) channel and high-voltage-activated (HVA; L, N, P/Q, R) currents in rat DRG sensory neurons, as a potential mechanism underlying capsaicin-induced analgesia. T-type and HVA currents were elicited in whole-cell clamped DRG neurons using ramp commands applied before and after 30-s exposures to 1 μM capsaicin. T-type currents were estimated at the first peak of the I-V characteristics and HVA at the second peak, occurring at more positive potentials. Small and medium-sized DRG neurons responded to capsaicin producing transient inward currents of variable amplitudes, mainly carried by Ca(2+). In those cells responding to capsaicin with a large Ca(2+) influx (59% of the total), a marked inhibition of both T-type and HVA Ca(2+) currents was observed. The percentage of T-type and HVA channel inhibition was prevented by replacing Ca(2+) with Ba(2+) during capsaicin application or applying high doses of intracellular BAPTA (20 mM), suggesting that TRPV1-mediated inhibition of T-type and HVA channels is Ca(2+)-dependent and likely confined to membrane nano-microdomains. Our data are consistent with the idea that TRPV1-induced analgesia may derive from indirect inhibition of both T-type and HVA channels which, in turn, would reduce the threshold of nociceptive signals generation (T-type channel inhibition) and nociceptive synaptic transmission (HVA-channels inhibition).
Collapse
|
38
|
Petrik D, Wang B, Brenner R. Modulation by the BK accessory β4 subunit of phosphorylation-dependent changes in excitability of dentate gyrus granule neurons. Eur J Neurosci 2011; 34:695-704. [PMID: 21848922 DOI: 10.1111/j.1460-9568.2011.07799.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Large-conductance voltage- and calcium-activated potassium (BK) channels are large-conductance calcium- and voltage-activated potassium channels critical for neuronal excitability. Some neurons express so called fast-gated, type I BK channels. Other neurons express BK channels assembled with the accessory β4 subunit conferring slow gating of type II BK channels. However, it is not clear how protein phosphorylation modulates these two distinct BK channel types. Using β4-knockout mice, we compared fast- or slow-gated BK channels in response to changes in phosphorylation status of hippocampus dentate gyrus granule neurons. We utilized the selective PP2A/PP4 phosphatase inhibitor Fostriecin to study changes in action potential shape and firing properties of the neurons. In β4-knockout neurons, Fostriecin increases BK current, speeds up BK channel activation and reduces action potential amplitudes. Fostriecin increases spiking during early components of an action potential train. In contrast, inhibition of BK channels through β4 in wild-type neurons or by the BK channel inhibitor Paxilline opposes Fostriecin effects. Voltage clamp recordings of neurons reveal that Fostriecin increases both calcium and BK currents. However, Fostriecin does not activate BK α channels in transfected HEK293 cells lacking calcium channels. In summary, these results suggest that fast-gating, type I BK channels lacking β4 can increase neuronal excitability in response to reduced phosphatase activity and activation of calcium channels. By opposing BK channel activation, the β4 subunit plays an important role in moderating firing frequency regardless of changes in phosphorylation status.
Collapse
Affiliation(s)
- David Petrik
- Department of Physiology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
39
|
Scott RS, Bustillo D, Olivos-Oré LA, Cuchillo-Ibañez I, Barahona MV, Carbone E, Artalejo AR. Contribution of BK channels to action potential repolarisation at minimal cytosolic Ca2+ concentration in chromaffin cells. Pflugers Arch 2011; 462:545-57. [DOI: 10.1007/s00424-011-0991-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 01/11/2023]
|
40
|
Role of a Tetraethylammonium-Sensitive Component of Potassium Currents in High-Frequency Tonic Impulsation Generated by Rat Retinal Ganglion Cells. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9190-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Mahapatra S, Marcantoni A, Vandael DH, Striessnig J, Carbone E. Are Ca(v)1.3 pacemaker channels in chromaffin cells? Possible bias from resting cell conditions and DHP blockers usage. Channels (Austin) 2011; 5:219-24. [PMID: 21406973 DOI: 10.4161/chan.5.3.15271] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mouse and rat chromaffin cells (MCCs, RCCs) fire spontaneously at rest and their activity is mainly supported by the two L-type Ca(2+) channels expressed in these cells (Ca(v)1.2 and Ca(v)1.3). Using Ca(v)1.3(-/-) KO MCCs we have shown that Ca(v)1.3 possess all the prerequisites for carrying subthreshold currents that sustain low frequency cell firing near resting (0.5 to 2 Hz at -50 mV): low-threshold and steep voltage dependence of activation, slow and incomplete inactivation during pulses of several hundreds of milliseconds. Ca(v)1.2 contributes also to pacemaking MCCs and possibly even Na(+) channels may participate in the firing of a small percentage of cells. We now show that at potentials near resting (-50 mV), Ca(v)1.3 carries equal amounts of Ca(2+) current to Ca(v)1.2 but activates at 9 mV more negative potentials. MCCs express only TTX-sensitive Na(v)1 channels that activate at 24 mV more positive potentials than Ca(v)1.3 and are fully inactivating. Their blockade prevents the firing only in a small percentage of cells (13%). This suggests that the order of importance with regard to pacemaking MCCs is: Ca(v)1.3, Ca(v)1.2 and Na(v)1. The above conclusions, however, rely on the proper use of DHPs, whose blocking potency is strongly holding potential dependent. We also show that small increases of KCl concentration steadily depolarize the MCCs causing abnormally increased firing frequencies, lowered and broadened AP waveforms and an increased facility of switching "non-firing" into "firing" cells that may lead to erroneous conclusions about the role of Ca(v)1.3 and Ca(v)1.2 as pacemaker channels in MCCs.
Collapse
Affiliation(s)
- Satyajit Mahapatra
- Department of Neuroscience, NIS Center, CNISM Research Unit, Torino, Italy
| | | | | | | | | |
Collapse
|
42
|
Vandael DH, Marcantoni A, Mahapatra S, Caro A, Ruth P, Zuccotti A, Knipper M, Carbone E. Ca(v)1.3 and BK channels for timing and regulating cell firing. Mol Neurobiol 2010; 42:185-98. [PMID: 21088933 DOI: 10.1007/s12035-010-8151-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/09/2010] [Indexed: 12/20/2022]
Abstract
L-type Ca(2+) channels (LTCCs, Ca(v)1) open readily during membrane depolarization and allow Ca(2+) to enter the cell. In this way, LTCCs regulate cell excitability and trigger a variety of Ca(2+)-dependent physiological processes such as: excitation-contraction coupling in muscle cells, gene expression, synaptic plasticity, neuronal differentiation, hormone secretion, and pacemaker activity in heart, neurons, and endocrine cells. Among the two major isoforms of LTCCs expressed in excitable tissues (Ca(v)1.2 and Ca(v)1.3), Ca(v)1.3 appears suitable for supporting a pacemaker current in spontaneously firing cells. It has steep voltage dependence and low threshold of activation and inactivates slowly. Using Ca(v)1.3(-/-) KO mice and membrane current recording techniques such as the dynamic and the action potential clamp, it has been possible to resolve the time course of Ca(v)1.3 pacemaker currents that regulate the spontaneous firing of dopaminergic neurons and adrenal chromaffin cells. In several cell types, Ca(v)1.3 is selectively coupled to BK channels within membrane nanodomains and controls both the firing frequency and the action potential repolarization phase. Here we review the most critical aspects of Ca(v)1.3 channel gating and its coupling to large conductance BK channels recently discovered in spontaneously firing neurons and neuroendocrine cells with the aim of furnishing a converging view of the role that these two channel types play in the regulation of cell excitability.
Collapse
Affiliation(s)
- David Henry Vandael
- Department of Neuroscience, NIS Centre, CNISM, Corso Raffaello 30, 10125 Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Berkefeld H, Fakler B, Schulte U. Ca2+-activated K+ channels: from protein complexes to function. Physiol Rev 2010; 90:1437-59. [PMID: 20959620 DOI: 10.1152/physrev.00049.2009] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Molecular research on ion channels has demonstrated that many of these integral membrane proteins associate with partner proteins, often versatile in their function, or even assemble into stable macromolecular complexes that ensure specificity and proper rate of the channel-mediated signal transduction. Calcium-activated potassium (K(Ca)) channels that link excitability and intracellular calcium concentration are responsible for a wide variety of cellular processes ranging from regulation of smooth muscle tone to modulation of neurotransmission and control of neuronal firing pattern. Most of these functions are brought about by interaction of the channels' pore-forming subunits with distinct partner proteins. In this review we summarize recent insights into protein complexes associated with K(Ca) channels as revealed by proteomic research and discuss the results available on structure and function of these complexes and on the underlying protein-protein interactions. Finally, the results are related to their significance for the function of K(Ca) channels under cellular conditions.
Collapse
Affiliation(s)
- Henrike Berkefeld
- Institute of Physiology II, University of Freiburg, and Centre for Biological Signalling Studies (Bioss),Freiburg, Germany.
| | | | | |
Collapse
|
44
|
Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. J Neurosci 2010; 30:491-504. [PMID: 20071512 DOI: 10.1523/jneurosci.4961-09.2010] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied wild-type (WT) and Cav1.3(-/-) mouse chromaffin cells (MCCs) with the aim to determine the isoform of L-type Ca(2+) channel (LTCC) and BK channels that underlie the pacemaker current controlling spontaneous firing. Most WT-MCCs (80%) were spontaneously active (1.5 Hz) and highly sensitive to nifedipine and BayK-8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid, methyl ester). Nifedipine blocked the firing, whereas BayK-8644 increased threefold the firing rate. The two dihydropyridines and the BK channel blocker paxilline altered the shape of action potentials (APs), suggesting close coupling of LTCCs to BK channels. WT-MCCs expressed equal fractions of functionally active Cav1.2 and Cav1.3 channels. Cav1.3 channel deficiency decreased the number of normally firing MCCs (30%; 2.0 Hz), suggesting a critical role of these channels on firing, which derived from their slow inactivation rate, sizeable activation at subthreshold potentials, and close coupling to fast inactivating BK channels as determined by using EGTA and BAPTA Ca(2+) buffering. By means of the action potential clamp, in TTX-treated WT-MCCs, we found that the interpulse pacemaker current was always net inward and dominated by LTCCs. Fast inactivating and non-inactivating BK currents sustained mainly the afterhyperpolarization of the short APs (2-3 ms) and only partially the pacemaker current during the long interspike (300-500 ms). Deletion of Cav1.3 channels reduced drastically the inward Ca(2+) current and the corresponding Ca(2+)-activated BK current during spikes. Our data highlight the role of Cav1.3, and to a minor degree of Cav1.2, as subthreshold pacemaker channels in MCCs and open new interesting features about their role in the control of firing and catecholamine secretion at rest and during sustained stimulations matching acute stress.
Collapse
|
45
|
Sun L, Xiong Y, Zeng X, Wu Y, Pan N, Lingle CJ, Qu A, Ding J. Differential regulation of action potentials by inactivating and noninactivating BK channels in rat adrenal chromaffin cells. Biophys J 2009; 97:1832-42. [PMID: 19804713 DOI: 10.1016/j.bpj.2009.06.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 01/04/2023] Open
Abstract
Large-conductance Ca(2+)-activated K(+) (BK) channels can regulate cellular excitability in complex ways because they are able to respond independently to two distinct cellular signals, cytosolic Ca(2+) and membrane potential. In rat chromaffin cells (RCC), inactivating BK(i) and noninactivating (BK(s)) channels differentially contribute to RCC action potential (AP) firing behavior. However, the basis for these differential effects has not been fully established. Here, we have simulated RCC action potential behavior, using Markovian models of BK(i) and BK(s) current and other RCC currents. The analysis shows that BK current influences both fast hyperpolarization and afterhyperpolarization of single APs and that, consistent with experimental observations, BK(i) current facilitates repetitive firing of APs, whereas BK(s) current does not. However, the key functional difference between BK(i) and BK(s) current that accounts for the differential firing is not inactivation but the more negatively shifted activation range for BK(i) current at a given [Ca(2+)].
Collapse
Affiliation(s)
- Liang Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sy T, Grinnell AD, Peskoff A, Yazejian B. Monitoring transient Ca2+ dynamics with large-conductance Ca2+-dependent K+ channels at active zones in frog saccular hair cells. Neuroscience 2009; 165:715-22. [PMID: 19897018 DOI: 10.1016/j.neuroscience.2009.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Neurotransmitter release from the basolateral surface of auditory and vestibular hair cells is mediated by Ca(2+) influx through voltage-gated Ca(2+) channels. Co-localization of large-conductance Ca(2+)-activated K(+) (BK) channels at the active zones of these cells affords them with an optimal location to act as reporters of the Ca(2+) concentration changes at active zones of transmitter release. In this report we use BK channels in frog (Rana pipiens) hair cells to monitor dynamic changes in intracellular Ca(2+) concentration during transient influxes of Ca(2+), showing that BK current magnitude and delay to onset are correlated with the rate and duration of Ca(2+) entry through Ca(2+) channels. We also show that BK channels exhibit a much higher Ca(2+) binding affinity in the open state than in the closed state.
Collapse
Affiliation(s)
- T Sy
- Department of Biology, Mount St Mary's College, Los Angeles, CA 90049, USA
| | | | | | | |
Collapse
|
47
|
The contribution of voltage‐gated Ca
2+
currents to K
+
channel activation during ovine adrenal chromaffin cell development. Int J Dev Neurosci 2009; 27:357-63. [DOI: 10.1016/j.ijdevneu.2009.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/17/2022] Open
|
48
|
Kim EY, Alvarez-Baron CP, Dryer SE. Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+-activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes. Mol Pharmacol 2009; 75:466-77. [PMID: 19052171 PMCID: PMC2645922 DOI: 10.1124/mol.108.051912] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/03/2008] [Indexed: 01/07/2023] Open
Abstract
Large-conductance (BK(Ca) type) Ca(2+)-activated K(+) channels encoded by the Slo1 gene and various canonical transient receptor potential channels (TRPCs) are coexpressed in many cell types, including podocytes (visceral epithelial cells) of the renal glomerulus. In this study, we show by coimmunoprecipitation and GST pull-down assays that BK(Ca) channels can associate with endogenous TRPC3 and TRPC6 channels in differentiated cells of a podocyte cell line. Both types of TRPC channels colocalize with Slo1 in podocytes and in human embryonic kidney (HEK) 293T cells transiently coexpressing the TRPC channels with Slo1. In HEK293T cells, coexpression of TRPC6 increased surface expression of a Slo1 subunit splice variant (Slo1(VEDEC)) that is typically retained in intracellular compartments, as assessed by cell-surface biotinylation assays and confocal microscopy. Corresponding currents through BK(Ca) channels were also increased with TRPC6 coexpression, as assessed by whole-cell and excised inside-out patch recordings. By contrast, coexpression of TRPC3 had no effect on the surface expression of BK(Ca) channels in HEK293T cells or on the amplitudes of currents in whole cells or excised patches. In podocytes, small interfering RNA knockdown of endogenous TRPC6 reduced steady-state surface expression of endogenous Slo1 channels, but knockdown of TRPC3 had no effect. TRPC6, but not TRPC3 knockdown also reduced voltage-evoked outward current through podocyte BK(Ca) channels. These data indicate that TRPC6 and TRPC3 channels can bind to Slo1, and this colocalization may allow them to serve as a source of Ca(2+) for the activation of BK(Ca) channels. TRPC6 channels also play a role in the regulation of surface expression of a subset of podocyte BK(Ca) channels.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
49
|
Wang B, Rothberg BS, Brenner R. Mechanism of increased BK channel activation from a channel mutation that causes epilepsy. ACTA ACUST UNITED AC 2009; 133:283-94. [PMID: 19204188 PMCID: PMC2654085 DOI: 10.1085/jgp.200810141] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Concerted depolarization and Ca2+ rise during neuronal action potentials activate large-conductance Ca2+- and voltage-dependent K+ (BK) channels, whose robust K+ currents increase the rate of action potential repolarization. Gain-of-function BK channels in mouse knockout of the inhibitory β4 subunit and in a human mutation (αD434G) have been linked to epilepsy. Here, we investigate mechanisms underlying the gain-of-function effects of the equivalent mouse mutation (αD369G), its modulation by the β4 subunit, and potential consequences of the mutation on BK currents during action potentials. Kinetic analysis in the context of the Horrigan-Aldrich allosteric gating model revealed that changes in intrinsic and Ca2+-dependent gating largely account for the gain-of-function effects. D369G causes a greater than twofold increase in the closed-to-open equilibrium constant (6.6e−7→1.65e−6) and an approximate twofold decrease in Ca2+-dissociation constants (closed channel: 11.3→5.2 µM; open channel: 0.92→0.54 µM). The β4 subunit inhibits mutant channels through a slowing of activation kinetics. In physiological recording solutions, we established the Ca2+ dependence of current recruitment during action potential–shaped stimuli. D369G and β4 have opposing effects on BK current recruitment, where D369G reduces and β4 increases K1/2 (K1/2 μM: αWT 13.7, αD369G 6.3, αWT/β4 24.8, and αD369G/β4 15.0). Collectively, our results suggest that the D369G enhancement of intrinsic gating and Ca2+ binding underlies greater contributions of BK current in the sharpening of action potentials for both α and α/β4 channels.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
50
|
Fakler B, Adelman JP. Control of K(Ca) channels by calcium nano/microdomains. Neuron 2008; 59:873-81. [PMID: 18817728 DOI: 10.1016/j.neuron.2008.09.001] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
Abstract
Transient elevations in cytoplasmic Ca(2+) trigger a multitude of Ca(2+)-dependent processes in CNS neurons and many other cell types. The specificity, speed, and reliability of these processes is achieved and ensured by tightly restricting Ca(2+) signals to very local spatiotemporal domains, "Ca(2+) nano- and microdomains," that are centered around Ca(2+)-permeable channels. This arrangement requires that the Ca(2+)-dependent effectors reside within these spatial boundaries where the properties of the Ca(2+) domain and the Ca(2+) sensor of the effector determine the channel-effector activity. We use Ca(2+)-activated K(+) channels (K(Ca)) with either micromolar (BK(Ca) channels) or submicromolar (SK(Ca) channels) affinity for Ca(2+) ions to provide distance constraints for Ca(2+)-effector coupling in local Ca(2+) domains and review their significance for the cell physiology of K(Ca) channels in the CNS. The results may serve as a model for other processes operated by local Ca(2+) domains.
Collapse
Affiliation(s)
- Bernd Fakler
- Institute of Physiology, Engesser Str. 4, 79108 Freiburg, Germany.
| | | |
Collapse
|