1
|
Ren Z, Wang X, Angelov M, De Zeeuw CI, Gao Z. Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing. Nat Commun 2025; 16:612. [PMID: 39800729 PMCID: PMC11725584 DOI: 10.1038/s41467-025-55884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC). When mice were trained for either DEC or TEC and subsequently subjected to a new paradigm, their conditioned responses (CRs) adapted virtually instantaneously. Changes in the activity of the IpN neurons related to CR timing were prominent during DEC-to-TEC adaptation, but less so during TEC-to-DEC adaptation. In contrast, mPFC neurons could rapidly alter their modulation patterns during both adaptation paradigms. Accordingly, silencing the mPFC completely blocked the adaptation of CR timing. These results illustrate how cerebral and cerebellar mechanisms may play different roles during adaptive control of associative motor timing.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Milen Angelov
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
- Department of Neurosurgery, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Parras GG, Delgado-García JM, López-Ramos JC, Gruart A, Leal-Campanario R. Cerebellar interpositus nucleus exhibits time-dependent errors and predictive responses. NPJ SCIENCE OF LEARNING 2024; 9:12. [PMID: 38409163 PMCID: PMC10897197 DOI: 10.1038/s41539-024-00224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Learning is a functional state of the brain that should be understood as a continuous process, rather than being restricted to the very moment of its acquisition, storage, or retrieval. The cerebellum operates by comparing predicted states with actual states, learning from errors, and updating its internal representation to minimize errors. In this regard, we studied cerebellar interpositus nucleus (IPn) functional capabilities by recording its unitary activity in behaving rabbits during an associative learning task: the classical conditioning of eyelid responses. We recorded IPn neurons in rabbits during classical eyeblink conditioning using a delay paradigm. We found that IPn neurons reduce error signals across conditioning sessions, simultaneously increasing and transmitting spikes before the onset of the unconditioned stimulus. Thus, IPn neurons generate predictions that optimize in time and shape the conditioned eyeblink response. Our results are consistent with the idea that the cerebellum works under Bayesian rules updating the weights using the previous history.
Collapse
Grants
- DOC-00309 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- BIO-122 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- PID2021-122446NB-100 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
Collapse
Affiliation(s)
- Gloria G Parras
- Division of Neurosciences, Universidad Pablo de Olavide, Seville, Spain.
| | | | | | - Agnès Gruart
- Division of Neurosciences, Universidad Pablo de Olavide, Seville, Spain
| | | |
Collapse
|
3
|
Vieites V, Ralph Y, Reeb-Sutherland B, Dick AS, Mattfeld AT, Pruden SM. Neurite density of the hippocampus is associated with trace eyeblink conditioning latency in 4- to 6-year-olds. Eur J Neurosci 2024; 59:358-369. [PMID: 38092417 PMCID: PMC10872972 DOI: 10.1111/ejn.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 02/06/2024]
Abstract
Limited options exist to evaluate the development of hippocampal function in young children. Research has established that trace eyeblink conditioning (EBC) relies on a functional hippocampus. Hence, we set out to investigate whether trace EBC is linked to hippocampal structure, potentially serving as a valuable indicator of hippocampal development. Our study explored potential associations between individual differences in hippocampal volume and neurite density with trace EBC performance in young children. We used onset latency of conditioned responses (CR) and percentage of conditioned responses (% CR) as measures of hippocampal-dependent associative learning. Using a sample of typically developing children aged 4 to 6 years (N = 30; 14 girls; M = 5.70 years), participants underwent T1- and diffusion-weighted MRI scans and completed a 15-min trace eyeblink conditioning task conducted outside the MRI. % CR and CR onset latency were calculated based on all trials involving tone-puff presentations and tone-alone trials. Findings revealed a connection between greater left hippocampal neurite density and delayed CR onset latency. Children with higher neurite density in the left hippocampus tended to blink closer to the onset of the unconditioned stimulus, indicating that structural variations in the hippocampus were associated with more precise timing of conditioned responses. No other relationships were observed between hippocampal volume, cerebellum volume or neurite density, hippocampal white matter connectivity and any EBC measures. Preliminary results suggest that trace EBC may serve as a straightforward yet innovative approach for studying hippocampal development in young children and populations with atypical development.
Collapse
Affiliation(s)
- Vanessa Vieites
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yvonne Ralph
- Department of Psychology, University of Texas at Tyler, Tyler, Texas, USA
| | | | - Anthony Steven Dick
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Aaron T Mattfeld
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Shannon M Pruden
- Department of Psychology, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Parras GG, Leal-Campanario R, López-Ramos JC, Gruart A, Delgado-García JM. Functional properties of eyelid conditioned responses and involved brain centers. Front Behav Neurosci 2022; 16:1057251. [PMID: 36570703 PMCID: PMC9780278 DOI: 10.3389/fnbeh.2022.1057251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
For almost a century the classical conditioning of nictitating membrane/eyelid responses has been used as an excellent and feasible experimental model to study how the brain organizes the acquisition, storage, and retrieval of new motor abilities in alert behaving mammals, including humans. Lesional, pharmacological, and electrophysiological approaches, and more recently, genetically manipulated animals have shown the involvement of numerous brain areas in this apparently simple example of associative learning. In this regard, the cerebellum (both cortex and nuclei) has received particular attention as a putative site for the acquisition and storage of eyelid conditioned responses, a proposal not fully accepted by all researchers. Indeed, the acquisition of this type of learning implies the activation of many neural processes dealing with the sensorimotor integration and the kinematics of the acquired ability, as well as with the attentional and cognitive aspects also involved in this process. Here, we address specifically the functional roles of three brain structures (red nucleus, cerebellar interpositus nucleus, and motor cortex) mainly involved in the acquisition and performance of eyelid conditioned responses and three other brain structures (hippocampus, medial prefrontal cortex, and claustrum) related to non-motor aspects of the acquisition process. The main conclusion is that the acquisition of this motor ability results from the contribution of many cortical and subcortical brain structures each one involved in specific (motor and cognitive) aspects of the learning process.
Collapse
|
5
|
Lu X, Inoue KI, Ohmae S, Uchida Y. New Cerebello-Cortical Pathway Involved in Higher-Order Oculomotor Control. THE CEREBELLUM 2021; 19:401-408. [PMID: 32076936 DOI: 10.1007/s12311-020-01108-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cerebellum and the basal ganglia play an important role in the control of voluntary eye movement associated with complex behavior, but little is known about how cerebellar projections project to cortical eye movement areas. Here we used retrograde transneuronal transport of rabies virus to identify neurons in the cerebellar nuclei that project via the thalamus to supplementary eye field (SEF) of the frontal cortex of macaques. After rabies injections into the SEF, many neurons in the restricted region, the ventral aspects of the dentate nucleus (DN), the caudal pole of the DN, and the posterior interpositus nucleus (PIN) were labeled disynaptically via the thalamus, whereas no neuron labeling was found in the anterior interpositus nucleus (AIN). The distribution of the labeled neurons was dorsoventrally different from that of DN and PIN neurons labeled from the motor cortex. In the basal ganglia, a large number of labeled neurons were confined to the dorsomedial portion of the internal segment of the globus pallidus (GPi) as more neurons were labeled in the inner portion of the GPi (GPii) than in the outer portion of the GPi (GPio). This is the first evidence of a projection between cerebellum/basal ganglia and the SEF that could enable the cerebellum to modulate the cognitive control of voluntary eye movement.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55414, USA.
- Brain Science Center, Veterans Administration Medical Center, One Veterans Drive, Bldg 49, Rm 240, Minneapolis, MN, 55417-2399, USA.
- Department of Neurophysiology, School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Shogo Ohmae
- Department of Neurophysiology, School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yusuke Uchida
- Department of Neurophysiology, School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Department of Science and Technology, Meijo University 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| |
Collapse
|
6
|
Long-term effects of cerebellar anodal transcranial direct current stimulation (tDCS) on the acquisition and extinction of conditioned eyeblink responses. Sci Rep 2020; 10:22434. [PMID: 33384434 PMCID: PMC7775427 DOI: 10.1038/s41598-020-80023-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
Cerebellar transcranial direct current stimulation (tDCS) has been reported to enhance the acquisition of conditioned eyeblink responses (CR), a form of associative motor learning. The aim of the present study was to determine possible long-term effects of cerebellar tDCS on the acquisition and extinction of CRs. Delay eyeblink conditioning was performed in 40 young and healthy human participants. On day 1, 100 paired CS (conditioned stimulus)–US (unconditioned stimulus) trials were applied. During the first 50 paired CS–US trials, 20 participants received anodal cerebellar tDCS, and 20 participants received sham stimulation. On days 2, 8 and 29, 50 paired CS–US trials were applied, followed by 30 CS-only extinction trials on day 29. CR acquisition was not significantly different between anodal and sham groups. During extinction, CR incidences were significantly reduced in the anodal group compared to sham, indicating reduced retention. In the anodal group, learning related increase of CR magnitude tended to be reduced, and timing of CRs tended to be delayed. The present data do not confirm previous findings of enhanced acquisition of CRs induced by anodal cerebellar tDCS. Rather, the present findings suggest a detrimental effect of anodal cerebellar tDCS on CR retention and possibly CR performance.
Collapse
|
7
|
Reevaluating the ability of cerebellum in associative motor learning. Sci Rep 2019; 9:6029. [PMID: 30988338 PMCID: PMC6465343 DOI: 10.1038/s41598-019-42413-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/29/2019] [Indexed: 11/08/2022] Open
Abstract
It has been well established that the cerebellum and its associated circuitry constitute the essential neuronal system for both delay and trace classical eyeblink conditioning (DEC and TEC). However, whether the cerebellum is sufficient to independently modulate the DEC, and TEC with a shorter trace interval remained controversial. Here, we used direct optogenetic stimulation of mossy fibers in the middle cerebellar peduncle (MCP) as a conditioned stimulus (CS) replacement for the peripheral CS (eg, a tone CS or a light CS) paired with a periorbital shock unconditioned stimulus (US) to examine the ability of the cerebellum to learn the DEC and the TEC with various trace intervals. Moreover, neural inputs to the pontine nucleus (PN) were pharmacological blocked to limit the associative motor learning inside the cerebellum. We show that all rats quickly acquired the DEC, indicating that direct optogenetic stimulation of mossy fibers in the left MCP is a very effective and sufficient CS to establish DEC and to limit the motor learning process inside the cerebellum. However, only five out of seven rats acquired the TEC with a 150-ms trace interval, three out of nine rats acquired the TEC with a 350-ms trace interval, and none of the rats acquired the TEC with a 500-ms trace interval. Moreover, pharmacological blocking glutamatergic and GABAergic inputs to the PN from the extra-cerebellar and cerebellar regions has no significant effect on the DEC and TEC learning with the optogenetic CS. These results indicate that the cerebellum has the ability to independently support both the simple DEC, and the TEC with a trace interval of 150 or 350 ms, but not the TEC with a trace interval of 500 ms. The present results are of great importance in our understanding of the mechanisms and ability of the cerebellum in associative motor learning and memory.
Collapse
|
8
|
Moscato L, Montagna I, De Propris L, Tritto S, Mapelli L, D'Angelo E. Long-Lasting Response Changes in Deep Cerebellar Nuclei in vivo Correlate With Low-Frequency Oscillations. Front Cell Neurosci 2019; 13:84. [PMID: 30894802 PMCID: PMC6414422 DOI: 10.3389/fncel.2019.00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/19/2019] [Indexed: 01/21/2023] Open
Abstract
The deep cerebellar nuclei (DCN) have been suggested to play a critical role in sensorimotor learning and some forms of long-term synaptic plasticity observed in vitro have been proposed as a possible substrate. However, till now it was not clear whether and how DCN neuron responses manifest long-lasting changes in vivo. Here, we have characterized DCN unit responses to tactile stimulation of the facial area in anesthetized mice and evaluated the changes induced by theta-sensory stimulation (TSS), a 4 Hz stimulation pattern that is known to induce plasticity in the cerebellar cortex in vivo. DCN units responded to tactile stimulation generating bursts and pauses, which reflected combinations of excitatory inputs most likely relayed by mossy fiber collaterals, inhibitory inputs relayed by Purkinje cells, and intrinsic rebound firing. Interestingly, initial bursts and pauses were often followed by stimulus-induced oscillations in the peri-stimulus time histograms (PSTH). TSS induced long-lasting changes in DCN unit responses. Spike-related potentiation and suppression (SR-P and SR-S), either in units initiating the response with bursts or pauses, were correlated with stimulus-induced oscillations. Fitting with resonant functions suggested the existence of peaks in the theta-band (burst SR-P at 9 Hz, pause SR-S at 5 Hz). Optogenetic stimulation of the cerebellar cortex altered stimulus-induced oscillations suggesting that Purkinje cells play a critical role in the circuits controlling DCN oscillations and plasticity. This observation complements those reported before on the granular and molecular layers supporting the generation of multiple distributed plasticities in the cerebellum following naturally patterned sensory entrainment. The unique dependency of DCN plasticity on circuit oscillations discloses a potential relationship between cerebellar learning and activity patterns generated in the cerebellar network.
Collapse
Affiliation(s)
- Letizia Moscato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Ileana Montagna
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Licia De Propris
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Simona Tritto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
9
|
A method for combining multiple-units readout of optogenetic control with natural stimulation-evoked eyeblink conditioning in freely-moving mice. Sci Rep 2019; 9:1857. [PMID: 30755637 PMCID: PMC6372581 DOI: 10.1038/s41598-018-37885-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023] Open
Abstract
A growing pool of transgenic mice expressing Cre-recombinases, together with Cre-dependent opsin viruses, provide good tools to manipulate specific neural circuits related to eyeblink conditioning (EBC). However, currently available methods do not enable to get fast and precise readout of optogenetic control when the freely-moving mice are receiving EBC training. In the current study, we describe a laser diode (LD)-optical fiber (OF)-Tetrode assembly that allows for simultaneous multiple units recording and optical stimulation. Since the numbers of various cables that require to be connected are minimized, the LD-OF-Tetrode assembly can be combined with CS-US delivery apparatus for revealing the effects of optical stimulation on EBC in freely- moving mice. Moreover, this combination of techniques can be utilized to optogenetically intervene in hippocampal neuronal activities during the post-conditioning sleep in a closed-loop manner. This novel device thus enhances our ability to explore how specific neuronal assembly contributes to associative motor memory in vivo.
Collapse
|
10
|
Long Trace Eyeblink Conditioning Is Largely Preserved in Essential Tremor. THE CEREBELLUM 2019; 18:67-75. [PMID: 29916048 DOI: 10.1007/s12311-018-0956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
López-Ramos JC, Houdek Z, Cendelín J, Vožeh F, Delgado-García JM. Timing correlations between cerebellar interpositus neuronal firing and classically conditioned eyelid responses in wild-type and Lurcher mice. Sci Rep 2018; 8:10697. [PMID: 30013234 PMCID: PMC6048028 DOI: 10.1038/s41598-018-29000-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 11/25/2022] Open
Abstract
Classical eyeblink conditioning is an experimental model widely used for the study of the neuronal mechanisms underlying the acquisition of new motor and cognitive skills. There are two principal interpretations of the role of the cerebellum in the learning of eyelid conditioned responses (CRs). One considers that the cerebellum is the place where this learning is acquired and stored, while the second suggests that the cerebellum is mostly involved in the proper performance of acquired CRs, implying that there must be other brain areas involved in the learning process. We checked the timing of cerebellar interpositus nucleus (IPN) neurons’ firing rate with eyelid CRs in both wild-type (WT) and Lurcher (a model of cerebellar cortex degeneration) mice. We used delay and trace conditioning paradigms. WT mice presented a better execution for delay vs. trace conditioning and also for these two paradigms than did Lurcher mice. IPN neurons were activated during CRs following the activation of the orbicularis oculi muscle. Firing patterns of IPN neurons were altered in Lurcher mice. In conclusion, the cerebellum seems to be mostly related with the performance of conditioned responses, rather than with their acquisition.
Collapse
Affiliation(s)
| | - Zbynek Houdek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Cendelín
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Frantisek Vožeh
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | |
Collapse
|
12
|
Ten Brinke MM, Boele HJ, De Zeeuw CI. Conditioned climbing fiber responses in cerebellar cortex and nuclei. Neurosci Lett 2018; 688:26-36. [PMID: 29689340 DOI: 10.1016/j.neulet.2018.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022]
Abstract
The eyeblink conditioning paradigm captures an elementary form of associative learning in a neural circuitry that is understood to an extraordinary degree. Cerebellar cortical Purkinje cell simple spike suppression is widely regarded as the main process underlying conditioned responses (CRs), leading to disinhibition of neurons in the cerebellar nuclei that innervate eyelid muscles downstream. However, recent work highlights the addition of a conditioned Purkinje cell complex spike response, which at the level of the interposed nucleus seems to translate to a transient spike suppression that can be followed by a rapid spike facilitation. Here, we review the characteristics of these responses at the cerebellar cortical and nuclear level, and discuss possible origins and functions.
Collapse
Affiliation(s)
- M M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands.
| | - H J Boele
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Ten Brinke MM, Heiney SA, Wang X, Proietti-Onori M, Boele HJ, Bakermans J, Medina JF, Gao Z, De Zeeuw CI. Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. eLife 2017; 6:28132. [PMID: 29243588 PMCID: PMC5760204 DOI: 10.7554/elife.28132] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
While research on the cerebellar cortex is crystallizing our understanding of its function in learning behavior, many questions surrounding its downstream targets remain. Here, we evaluate the dynamics of cerebellar interpositus nucleus (IpN) neurons over the course of Pavlovian eyeblink conditioning. A diverse range of learning-induced neuronal responses was observed, including increases and decreases in activity during the generation of conditioned blinks. Trial-by-trial correlational analysis and optogenetic manipulation demonstrate that facilitation in the IpN drives the eyelid movements. Adaptive facilitatory responses are often preceded by acquired transient inhibition of IpN activity that, based on latency and effect, appear to be driven by complex spikes in cerebellar cortical Purkinje cells. Likewise, during reflexive blinks to periocular stimulation, IpN cells show excitation-suppression patterns that suggest a contribution of climbing fibers and their collaterals. These findings highlight the integrative properties of subcortical neurons at the cerebellar output stage mediating conditioned behavior.
Collapse
Affiliation(s)
| | - Shane A Heiney
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Henk-Jan Boele
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jacob Bakermans
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
14
|
The Motor Cortex Is Involved in the Generation of Classically Conditioned Eyelid Responses in Behaving Rabbits. J Neurosci 2017; 36:6988-7001. [PMID: 27358456 DOI: 10.1523/jneurosci.4190-15.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Classical blink conditioning is a well known model for studying neural generation of acquired motor responses. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. We recorded in rabbits the activity of MC neurons during blink conditioning using a delay paradigm. Neurons were identified by their antidromic activation from facial nucleus (FN) or red nucleus (RN). For conditioning, we used a tone as a conditioned stimulus (CS) followed by an air puff as an unconditioned stimulus (US) that coterminated with it. Conditioned responses (CRs) were determined from the electromyographic activity of the orbicularis oculi muscle and/or from eyelid position recorded with the search coil technique. Type A neurons increased their discharge rates across conditioning sessions and reached peak firing during the CS-US interval, while type B cells presented a second peak during US presentation. Both of them project to the FN. Type C cells increased their firing across the CS-US interval, reaching peak values at the time of US presentation, and were activated from the RN. These three types of neurons fired well in advance of the beginning of CRs and changed with them. Reversible inactivation of the MC during conditioning evoked a decrease in learning curves and in the amplitude of CRs, while train stimulation of the MC simulated the profile and kinematics of conditioned blinks. In conclusion, MC neurons are involved in the acquisition and expression of CRs. SIGNIFICANCE STATEMENT Classical blink conditioning is a popular experimental model for studying neural mechanisms underlying the acquisition of motor skills. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. Here, we report that the firing activities of MC neurons, recorded in behaving rabbits, are related to and preceded the initiation of conditioned blinks. MC neurons were identified as projecting to the red or facial nuclei and encoded the kinematics of conditioned eyelid responses. The timed stimulation of recording sites simulated the profile of conditioned blinks. MC neurons play a role in the acquisition and expression of these acquired motor responses.
Collapse
|
15
|
Beyer L, Batsikadze G, Timmann D, Gerwig M. Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols. Front Hum Neurosci 2017; 11:23. [PMID: 28203151 PMCID: PMC5285376 DOI: 10.3389/fnhum.2017.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
There is good evidence that the human cerebellum is involved in the acquisition and timing of classically conditioned eyeblink responses (CRs). Animal studies suggest that the cerebellum is also important in CR extinction and savings. Cerebellar transcranial direct current stimulation (tDCS) was reported to modulate CR acquisition and timing in a polarity dependent manner. To extent previous findings three experiments were conducted using standard delay eyeblink conditioning. In a between-group design, effects of tDCS were assessed with stimulation over the right cerebellar hemisphere ipsilaterally to the unconditioned stimulus (US). An extracephalic reference electrode was used in Experiment 1 and a cephalic reference in Experiment 2. In both parts the influence on unconditioned eyeblink responses (UR) was investigated by starting stimulation in the second half of the pseudoconditioning phase lasting throughout the first half of paired trials. In a third experiment, effects of cerebellar tDCS during 40 extinction trials were assessed on extinction and reacquisition on the next day. In each experiment, 30 subjects received anodal, cathodal or sham stimulation in a double-blinded fashion. Using the extracephalic reference electrode, no significant effects on CR incidences comparing stimulation groups were observed. Using the cephalic reference anodal as well as cathodal cerebellar tDCS increased CR acquisition compared to sham only on a trend level. Analysis of timing parameters did not reveal significant effects on CR onset and peaktime latencies nor on UR timing. In the third experiment, cerebellar tDCS during extinction trials had no significant effect on extinction and savings on the next day. The present study did not reveal clear polarity dependent effects of cerebellar tDCS on CR acquisition and timing as previously described. Weaker effects may be explained by start of tDCS before the learning phase i.e., offline, individual thresholds and current flow based on individual anatomy may also play role. Likewise cerebellar tDCS during extinction did not modulate extinction or reacquisition. Further studies are needed in larger subject populations to determine parameters of stimulation and learning paradigms yielding robust cerebellar tDCS effects.
Collapse
Affiliation(s)
- Linda Beyer
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | | | - Dagmar Timmann
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| |
Collapse
|
16
|
Delgado-García JM, Gruart A. Learning as a Functional State of the Brain: Studies in Wild-Type and Transgenic Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:75-93. [PMID: 29080022 DOI: 10.1007/978-3-319-62817-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Contemporary neuroscientists are paying increasing attention to subcellular, molecular, and electrophysiological mechanisms underlying learning and memory processes. Recent studies have examined the development of transgenic mice affected at different stages of the learning process, or have emulated in animals various human pathological conditions involving cognition and motor learning. However, a parallel effort is needed to develop stimulating and recording techniques suitable for use in behaving mice in order to understand activity-dependent synaptic changes taking place during the very moment of the learning process. The in vivo models should incorporate information collected from different molecular and in vitro approaches. Long-term potentiation (LTP) has been proposed as the neural mechanism underlying synaptic plasticity, and NMDA receptors have been proposed as the molecular substrate of LTP. It now seems necessary to study the relationship of both LTP and NMDA receptors to functional changes in synaptic efficiency taking place during actual learning in selected cerebral cortical structures. Here, we review data collected in our laboratory during the past 10 years on the involvement of different hippocampal synapses in the acquisition of the classically conditioned eyelid responses in behaving mice. Overall the results indicate a specific contribution of each cortical synapse to the acquisition and storage of new motor and cognitive abilities. Available data show that LTP, evoked by high-frequency stimulation of Schaffer collaterals, disturbs both the acquisition of conditioned eyelid responses and the physiological changes that occur at hippocampal synapses during learning. Moreover, the administration of NMDA-receptor antagonists is able not only to prevent LTP induction in vivo, but also to hinder both the formation of conditioned eyelid responses and functional changes in the strength of the CA3-CA1 synapse. Nevertheless, many other neurotransmitter receptors, intracellular mediators, and transcription factors are also involved in learning and memory processes. In summary, it can be proposed that learning and memory in behaving mammals are the result of the activation of complex and distributed functional states involving many different cerebral cortical synapses, with the participation also of various neurotransmitter systems.
Collapse
Affiliation(s)
- José M Delgado-García
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, Km. 1, Seville, 41013, Spain.
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, Km. 1, Seville, 41013, Spain
| |
Collapse
|
17
|
Chen H, Yang L, Xu Y, Wu GY, Yao J, Zhang J, Zhu ZR, Hu ZA, Sui JF, Hu B. Prefrontal control of cerebellum-dependent associative motor learning. THE CEREBELLUM 2014; 13:64-78. [PMID: 24013852 DOI: 10.1007/s12311-013-0517-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Perciavalle V, Apps R, Bracha V, Delgado-García JM, Gibson AR, Leggio M, Carrel AJ, Cerminara N, Coco M, Gruart A, Sánchez-Campusano R. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. THE CEREBELLUM 2014; 12:738-57. [PMID: 23564049 DOI: 10.1007/s12311-013-0464-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present paper, we examine the role of the cerebellar interpositus nucleus (IN) in motor and non-motor domains. Recent findings are considered, and we share the following conclusions: IN as part of the olivo-cortico-nuclear microcircuit is involved in providing powerful timing signals important in coordinating limb movements; IN could participate in the timing and performance of ongoing conditioned responses rather than the generation and/or initiation of such responses; IN is involved in the control of reflexive and voluntary movements in a task- and effector system-dependent fashion, including hand movements and associated upper limb adjustments, for quick effective actions; IN develops internal models for dynamic interactions of the motor system with the external environment for anticipatory control of movement; and IN plays a significant role in the modulation of autonomic and emotional functions.
Collapse
Affiliation(s)
- Vincenzo Perciavalle
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zuchowski ML, Timmann D, Gerwig M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul 2014; 7:525-31. [PMID: 24776785 DOI: 10.1016/j.brs.2014.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/02/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Classical conditioning of the eyeblink reflex is a simple form of motor learning which depends on the integrity of the cerebellum. Acquisition of conditioned eyeblink responses is markedly reduced in patients with cerebellar disorders. Noninvasive transcranial direct current stimulation (tDCS) has been reported to modify the excitability of the cerebellar cortex. OBJECTIVE The aim of the study was to assess whether acquisition of conditioned eyeblink responses (CR) is altered by cerebellar tDCS. METHODS A standard delay conditioning paradigm with a 540 ms tone as conditioned stimulus (CS) coterminating with a 100 ms air puff as unconditioned stimulus (US) was used in a total of 30 healthy subjects (18 female, 12 male, mean age 23.4 ± 1.9 years). One hundred paired CS-US trials and 30 extinction CS alone trials were given. tDCS (2 mA intensity, ramp like onset) was applied over the right cerebellar hemisphere ipsilaterally to the US during the acquisition phase. Subjects were randomly assigned to three groups (n = 10) using anodal, cathodal or sham stimulation. The investigator as well as the participants was blinded to the stimulation modality. RESULTS CR acquisition was significantly enhanced by anodal tDCS (mean total CR incidence 73.4 ± 25.2%) and significantly reduced by cathodal stimulation (12.6 ± 17.2%) compared to sham stimulation (43.8 ± 24.1%). During anodal tDCS CR onset occurred significantly earlier, that is mean onset of responses was shifted closer to CS onset. CONCLUSION Acquisition and timing of conditioned eyeblink responses is modified by cerebellar tDCS in a polarity dependent manner.
Collapse
Affiliation(s)
| | - Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Germany.
| |
Collapse
|
20
|
Cheron G, Dan B, Márquez-Ruiz J. Translational approach to behavioral learning: lessons from cerebellar plasticity. Neural Plast 2013; 2013:853654. [PMID: 24319600 PMCID: PMC3844268 DOI: 10.1155/2013/853654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/18/2013] [Indexed: 11/17/2022] Open
Abstract
The role of cerebellar plasticity has been increasingly recognized in learning. The privileged relationship between the cerebellum and the inferior olive offers an ideal circuit for attempting to integrate the numerous evidences of neuronal plasticity into a translational perspective. The high learning capacity of the Purkinje cells specifically controlled by the climbing fiber represents a major element within the feed-forward and feedback loops of the cerebellar cortex. Reciprocally connected with the basal ganglia and multimodal cerebral domains, this cerebellar network may realize fundamental functions in a wide range of behaviors. This review will outline the current understanding of three main experimental paradigms largely used for revealing cerebellar functions in behavioral learning: (1) the vestibuloocular reflex and smooth pursuit control, (2) the eyeblink conditioning, and (3) the sensory envelope plasticity. For each of these experimental conditions, we have critically revisited the chain of causalities linking together neural circuits, neural signals, and plasticity mechanisms, giving preference to behaving or alert animal physiology. Namely, recent experimental approaches mixing neural units and local field potentials recordings have demonstrated a spike timing dependent plasticity by which the cerebellum remains at a strategic crossroad for deciphering fundamental and translational mechanisms from cellular to network levels.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Javier Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
21
|
Functional inactivation of orexin 1 receptors in the cerebellum disrupts trace eyeblink conditioning and local theta oscillations in guinea pigs. Behav Brain Res 2013; 250:114-22. [PMID: 23680162 DOI: 10.1016/j.bbr.2013.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
Abstract
The cerebellum plays an essential role in motor learning. Recently, orexins, the newfound lateral hypothalamic neuropeptides, have been found to excite Purkinje cells in the cerebellar cortex and neurons in the deep cerebellar nuclei (DCN). However, little is known about their roles in cerebellum-dependent motor learning. Therefore, the present study was designed to investigate the functional significance of hypothalamic orexinergic system during trace eyeblink conditioning, a tractable behavioral model system of cerebellum-dependent motor learning. It was revealed that the orexin 1 receptors (OXR1) were specifically localized on the soma of Purkinje cells and large DCN neurons. Furthermore, interfering with the endogenous orexins' effects on the cerebellum via the selective OXR1 antagonist SB-334867 disrupted the timing rather than the acquisition of trace conditioned eyeblink responses. In addition to the behavioral effects, the SB-334867 prevented the increase in peak amplitude of cerebellar theta oscillations with learning. These results suggest that the endogenous orexins may modulate motor learning via the activation of cerebellar OXR1.
Collapse
|
22
|
Porras-García ME, Ruiz R, Pérez-Villegas EM, Armengol JÁ. Motor learning of mice lacking cerebellar Purkinje cells. Front Neuroanat 2013; 7:4. [PMID: 23630472 PMCID: PMC3632800 DOI: 10.3389/fnana.2013.00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 03/29/2013] [Indexed: 12/31/2022] Open
Abstract
The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input–output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum.
Collapse
Affiliation(s)
- M Elena Porras-García
- División de Neurociencias, Departamento de Fisiología, Anatomía y Biología Celular, Área de Anatomía y Embriología Humana y Fisiología, Universidad Pablo de Olavide Seville, Spain
| | | | | | | |
Collapse
|
23
|
Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions. Proc Natl Acad Sci U S A 2012; 109:18980-4. [PMID: 23112179 DOI: 10.1073/pnas.1211168109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the cerebellar interpositus nuclei are known to be involved in cognitive functions, such as associative motor learning, no anatomical evidence has been available for this issue. Here we used retrograde transneuronal transport of rabies virus to identify neurons in the cerebellar nuclei that project via the thalamus to area 46 of the prefrontal cortex of macaques in comparison with the projections to the primary motor cortex (M1). After rabies injections into area 46, many neurons in the restricted region of the posterior interpositus nucleus (PIN) were labeled disynaptically via the thalamus, whereas no neuron labeling was found in the anterior interpositus nucleus (AIN). The distribution of the labeled neurons was dorsoventrally different from that of PIN neurons labeled from the M1. This defines an anatomical substrate for the contribution of medial cerebellar output to cognitive functions. Like the dentate nucleus, the PIN has dual motor and cognitive channels, whereas the AIN has a motor channel only.
Collapse
|
24
|
Dynamic changes in the cerebellar-interpositus/red-nucleus-motoneuron pathway during motor learning. THE CEREBELLUM 2012; 10:702-10. [PMID: 21181461 DOI: 10.1007/s12311-010-0242-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Understanding the role played by the cerebellum in the genesis and control of learned motor responses requires a precise knowledge of interdependent relationships between kinetic neural commands and the performance (kinematics) of the acquired movements. The eyelid motor system is a useful model for studying how simple motor responses are generated and performed. Here, we recorded the activity of interpositus, red nucleus, and/or facial motor neurons during classical eyeblink conditioning, using a delay paradigm. Experiments were carried out in behaving cats, and in conscious wild-type and (Purkinje cell devoid) Lurcher mice. Kinetic variables were determined by recording the firing activities of identified neurons at the mentioned nuclei, whilst kinematic variables were selected from the electromyographic activity of the orbicularis oculi muscle and/or from eyelid position recorded during the conditioned-stimulus/unconditioned-stimulus interval. Whereas motoneurons encoded eyelid kinematics for acquired eyelid responses, interpositus, and red nucleus neurons did not directly encode eyelid performance, and the dynamic association between their neuronal activities was barely significant (from moderate to weak correlation, nonlinear coupling with high asymmetry, and neural firing activities that always lagged the beginning of the conditioned response). Nevertheless, interpositus and red nucleus neurons seem to play a modulating role in the dynamic control of this type of learned motor response, and present interesting adaptive properties in Lurcher mice. The analytical procedures proposed here could be very helpful in defining the functional state corresponding to each stage across the acquisition of new motor and cognitive abilities.
Collapse
|
25
|
Jaeger D. Mini-review: synaptic integration in the cerebellar nuclei--perspectives from dynamic clamp and computer simulation studies. THE CEREBELLUM 2012; 10:659-66. [PMID: 21259124 DOI: 10.1007/s12311-011-0248-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cerebellar nuclei (CN) process inhibition from Purkinje cells (PC) and excitation from mossy and climbing fiber collaterals. CN neurons in slices show intrinsic pacemaking activity, which is easily modulated by synaptic inputs. Our work using dynamic clamping and computer modeling shows that synchronicity between PC inputs is an important factor in determining spike rate and spike timing of CN neurons and that brief pauses in PC inputs provide a potent stimulus to trigger CN spikes. Excitatory input can equally control spike rate, but, due to a large slow, NMDA component also amplifies responses to inhibitory inputs. Intrinsic properties of CN neurons are well suited to provide prolonged responses to strong input transients and could be involved in motor pattern generation. One such specific mechanism is given by fast and slow rebound bursting. Nevertheless, we are just beginning to unravel synaptic integration in the CN, and the outcome of the work to date is best characterized by the generation of new specific questions that lend themselves to a combined experimental and computer modeling approach in future studies.
Collapse
Affiliation(s)
- Dieter Jaeger
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. CEREBELLUM (LONDON, ENGLAND) 2012; 11:457-87. [PMID: 22161499 PMCID: PMC4347949 DOI: 10.1007/s12311-011-0331-9] [Citation(s) in RCA: 621] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.
Collapse
Affiliation(s)
- Mario Manto
- Unité d'Etude du Mouvement, FNRS, ULB Erasme, 808 Route de Lennik, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sánchez-Campusano R, Gruart A, Fernández-Mas R, Delgado-García JM. An agonist-antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning. Front Neuroanat 2012; 6:8. [PMID: 22435053 PMCID: PMC3303085 DOI: 10.3389/fnana.2012.00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/24/2012] [Indexed: 01/01/2023] Open
Abstract
The presence of two antagonistic groups of deep cerebellar nuclei neurons has been reported as necessary for a proper dynamic control of learned motor responses. Most models of cerebellar function seem to ignore the biomechanical need for a double activation–deactivation system controlling eyelid kinematics, since most of them accept that, for closing the eyelid, only the activation of the orbicularis oculi (OO) muscle (via the red nucleus to the facial motor nucleus) is necessary, without a simultaneous deactivation of levator palpebrae motoneurons (via unknown pathways projecting to the perioculomotor area). We have analyzed the kinetic neural commands of two antagonistic types of cerebellar posterior interpositus neuron (IPn) (types A and B), the electromyographic (EMG) activity of the OO muscle, and eyelid kinematic variables in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. We addressed the hypothesis that the interpositus nucleus can be considered an agonist–antagonist system controlling eyelid kinematics during motor learning. To carry out a comparative study of the kinetic–kinematic relationships, we applied timing and dispersion pattern analyses. We concluded that, in accordance with a dominant role of cerebellar circuits for the facilitation of flexor responses, type A neurons fire during active eyelid downward displacements—i.e., during the active contraction of the OO muscle. In contrast, type B neurons present a high tonic rate when the eyelids are wide open, and stop firing during any active downward displacement of the upper eyelid. From a functional point of view, it could be suggested that type B neurons play a facilitative role for the antagonistic action of the levator palpebrae muscle. From an anatomical point of view, the possibility that cerebellar nuclear type B neurons project to the perioculomotor area—i.e., more or less directly onto levator palpebrae motoneurons—is highly appealing.
Collapse
|
28
|
Bellebaum C, Daum I, Suchan B. Mechanisms of cerebellar contributions to cognition in humans. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2012; 3:171-184. [DOI: 10.1002/wcs.1161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Bellebaum
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr‐University of Bochum, Bochum, Germany
| | - Irene Daum
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr‐University of Bochum, Bochum, Germany
| | - Boris Suchan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr‐University of Bochum, Bochum, Germany
| |
Collapse
|
29
|
Transsynaptic tracing of conditioned eyeblink circuits in the mouse cerebellum. Neuroscience 2011; 203:122-34. [PMID: 22198021 DOI: 10.1016/j.neuroscience.2011.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 11/20/2022]
Abstract
The eyeblink has long served as a model for motor learning and modulation. However, cerebellar pathways underlying conditioned blinks remain poorly studied in the mouse, and the location of blink-related neurons has never been transsynaptically mapped in the cerebellar cortex. This study aims to rectify this gap in our knowledge. By injecting GFP-expressing Pseudorabies virus (PRV-152) into the mouse orbicularis oculi muscle, neurons in the mouse eyeblink motor control circuit are transsynaptically labeled. In the facial nucleus, labeling was strictly ipsilateral to the injection site and restricted to the dorsolateral rim, consistent with previous studies. The red nucleus is bilaterally labeled at the lateral rim with clear contralateral preference. Previously unreported labeling was found in the ventrolateral red nucleus. Single-step tracing confirmed this area receives projections from eyeblink-related portions of the anterior interpositus and sends projections to eyelid-controlling portions of the facial nucleus. In the deep cerebellar nuclei, blink-related neurons were labeled both in areas associated with blink conditioning and in areas associated with other blink modulation. Finally, novel maps of the cerebellar cortex revealed a characteristic spatiotemporal pattern of labeling. Posterior vermal Purkinje cells were labeled first, followed by anterior vermal cells, then by hemispheric cells.
Collapse
|
30
|
Changes of synaptic ultrastructure in the guinea pig interpositus nuclei associate with response magnitude and timing after trace eyeblink conditioning. Behav Brain Res 2011; 226:529-37. [PMID: 22019363 DOI: 10.1016/j.bbr.2011.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/07/2011] [Indexed: 01/05/2023]
Abstract
Learning-induced changes of synaptic ultrastructure have long been proposed as a mechanism that may contribute to support memory formation. Although recent studies have demonstrated that the interpositus nuclei (IN) play critical role in acquisition and retention of trace conditioned eyeblink responses (CRs), there is now limited evidence associating trace eyeblink conditioning with changes of synaptic ultrastructure in the IN. Here, we investigated this issue using a transmission electron microscope. Adult guinea pigs were randomly allocated to either a trace-paired, delay-paired, unpaired or exposure-only condition. The IN tissue was taken for morphological analysis 1h after the completion of the tenth training session. Serial section analysis of synaptic ultrastructure revealed that trace eyeblink conditioning induced increases in the thickness of excitatory PSD. Classification of the synapses into shape subtypes indicated that the increased thickness of excitatory PSD was mainly attributable to increase in the concave- and convex-shaped synapses. On the contrary, trace eyeblink conditioning resulted in decreases in the thickness of inhibitory PSD. Specifically, these significant changes of PSD thickness were limited to occur in the animals with good behavioral performance. Further analysis of correlations between the trace CR performance and synaptic ultrastructural modifications showed that the thickness of excitatory PSD within the IN correlated with the peak amplitude of trace CRs, whereas the thickness of inhibitory PSD correlated with the onset latency. The present findings suggest that trace eyeblink conditioning induces structural plasticity in the IN, which may play a crucial role in acquiring and executing adaptive eyeblink movements.
Collapse
|
31
|
Sánchez-Campusano R, Gruart A, Delgado-García JM. Timing and causality in the generation of learned eyelid responses. Front Integr Neurosci 2011; 5:39. [PMID: 21941469 PMCID: PMC3171062 DOI: 10.3389/fnint.2011.00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/01/2011] [Indexed: 12/31/2022] Open
Abstract
The cerebellum-red nucleus-facial motoneuron (Mn) pathway has been reported as being involved in the proper timing of classically conditioned eyelid responses. This special type of associative learning serves as a model of event timing for studying the role of the cerebellum in dynamic motor control. Here, we have re-analyzed the firing activities of cerebellar posterior interpositus (IP) neurons and orbicularis oculi (OO) Mns in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. The aim was to revisit the hypothesis that the IP neurons (IPns) can be considered a neuronal phase-modulating device supporting OO Mns firing with an emergent timing mechanism and an explicit correlation code during learned eyelid movements. Optimized experimental and computational tools allowed us to determine the different causal relationships (temporal order and correlation code) during and between trials. These intra- and inter-trial timing strategies expanding from sub-second range (millisecond timing) to longer-lasting ranges (interval timing) expanded the functional domain of cerebellar timing beyond motor control. Interestingly, the results supported the above-mentioned hypothesis. The causal inferences were influenced by the precise motor and pre-motor spike timing in the cause-effect interval, and, in addition, the timing of the learned responses depended on cerebellar–Mn network causality. Furthermore, the timing of CRs depended upon the probability of simulated causal conditions in the cause-effect interval and not the mere duration of the inter-stimulus interval. In this work, the close relation between timing and causality was verified. It could thus be concluded that the firing activities of IPns may be related more to the proper performance of ongoing CRs (i.e., the proper timing as a consequence of the pertinent causality) than to their generation and/or initiation.
Collapse
|
32
|
Porras-García E, Sánchez-Campusano R, Martínez-Vargas D, Domínguez-del-Toro E, Cendelín J, Vozeh F, Delgado-García JM. Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol 2010; 104:346-65. [PMID: 20410355 DOI: 10.1152/jn.00180.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Young adult heterozygous Lurcher mice constitute an excellent model for studying the role of the cerebellar cortex in motor performance-including the acquisition of new motor abilities-because of the early postnatal degeneration of almost all of their Purkinje and granular cells. Wild-type and Lurcher mice were classically conditioned for eyelid responses using a delay paradigm with or without an electrolytic lesion in the interpositus nucleus. Although the late component of electrically evoked blink reflexes was smaller in amplitude and had a longer latency in Lurcher mice than that in controls, the two groups of animals presented similar acquisition curves for eyeblink conditioning. The lesion of the interpositus nucleus affected both groups of animals equally for the generation of reflex and conditioned eyelid responses. Furthermore, we recorded the multiunitary activity at the red and interpositus nuclei during the same type of associative learning. In both nuclei, the neural firing activity lagged the beginning of the conditioned response (determined by orbicularis oculi muscle response). Although red nucleus neurons and muscle activities presented a clear functional coupling (strong correlation and low asymmetry) across conditioning, the coupling between interpositus neurons and either red nucleus neurons or muscle activities was slightly significant (weak correlation and high asymmetry). Lurcher mice presented a nonlinear coupling (high asymmetry) between red nucleus neurons and muscle activities, with an evident compensatory adjustment in the correlation of firing between interpositus and red nuclei neurons (a coupling with low asymmetry), aimed probably at compensating the absence of cerebellar cortical neurons.
Collapse
Affiliation(s)
- Elena Porras-García
- Division of Anatomy and Human Embryology, Pablo de Olavide University, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Hu B, Chen H, Feng H, Zeng Y, Yang L, Fan ZL, Wu YM, Sui JF. Disrupted topography of the acquired trace-conditioned eyeblink responses in guinea pigs after suppression of cerebellar cortical inhibition to the interpositus nucleus. Brain Res 2010; 1337:41-55. [PMID: 20381463 DOI: 10.1016/j.brainres.2010.03.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/15/2010] [Accepted: 03/27/2010] [Indexed: 10/19/2022]
Abstract
Trace conditioning of the eyeblink reflex, a form of associative motor learning in which presentations of the conditioned stimulus (CS) and the unconditioned stimulus (US) are separated in time by a silent trace interval, requires intact forebrain structures such as the hippocampus and medial prefrontal cortex. Recently, increased learning-related activities have also been observed in specific cerebellar cortical area such as the lobule of HVI during this conditioning task. To date, however, it remains controversial how the cerebellar cortex contributes to trace eyeblink conditioning. In the present study, we addressed this issue by reversibly suppressing the cerebellar cortical inhibition via microinjections of the GABA(A) receptor antagonist bicuculline methiodide (BICM) into the interpositus nucleus of guinea pigs. We showed that, in the well-trained guinea pigs, the BICM administrations failed to abolish the acquired trace-conditioned eyeblink responses (CRs). Although the acquired trace CRs were mostly retained, their peak latencies were shortened and their peak amplitudes diminished as evidenced by only half of the spared trace CRs preserving the topography of adaptive peak latencies or middle-/high-peak amplitudes. In the same animals, the acquired trace CRs were abolished by microinjections of the GABA(A) receptor agonist muscimol and were unaffected by microinjections of the artificial cerebrospinal fluid. Furthermore, we demonstrated that with concurrent BICM-induced suppression of the cerebellar cortical inhibition and presentations of the tone CSs in the guinea pigs receiving unpaired conditioning training, CR-like eyeblink responses were not generated. Altogether, these results support the hypothesis that GABAergic neurotransmission from cerebellar cortex to the interpositus nucleus may participate in regulating the expression of acquired trace CRs.
Collapse
Affiliation(s)
- Bo Hu
- Department of Physiology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Boele HJ, Koekkoek SKE, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front Cell Neurosci 2010; 3:19. [PMID: 20126519 PMCID: PMC2805432 DOI: 10.3389/neuro.03.019.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/29/2009] [Indexed: 11/20/2022] Open
Abstract
Over the past decade the advent of mouse transgenics has generated new perspectives on the study of cerebellar molecular mechanisms that are essential for eyeblink conditioning. However, it also appears that results from eyeblink conditioning experiments done in mice differ in some aspects from results previously obtained in other mammals. In this review article we will, based on studies using (cell-specific) mouse mutants and region-specific lesions, re-examine the general eyeblink behavior in mice and the neuro-anatomical circuits that might contribute to the different peaks in the conditioned eyeblink trace. We conclude that the learning process in mice has at least two stages: An early stage, which includes short-latency responses that are at least partly controlled by extracerebellar structures such as the amygdala, and a later stage, which is represented by well-timed conditioned responses that are mainly controlled by the pontocerebellar and olivocerebellar systems. We refer to this overall concept as the Amygdala-Cerebellum-Dynamic-Conditioning Model (ACDC model).
Collapse
Affiliation(s)
- Henk-Jan Boele
- Department of Neuroscience, Erasmus Medical Center, RotterdamThe Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, RotterdamThe Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, AmsterdamThe Netherlands
| |
Collapse
|
35
|
Galvez R, Cua S, Disterhoft JF. Age-related deficits in a forebrain-dependent task, trace-eyeblink conditioning. Neurobiol Aging 2009; 32:1915-22. [PMID: 20018411 DOI: 10.1016/j.neurobiolaging.2009.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/10/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
Abstract
Trace-eyeblink conditioning is a forebrain-dependent learning paradigm that has assisted in our understanding of age-related hippocampal neuronal plasticity; however, the hippocampus is not believed to be the permanent site for most long-term-memory storage. Studies in adult subjects have suggested the neocortex as one such site. Whisker plucking studies have further suggested that the ability for plasticity in the neocortex declines with age. Mice were trained in trace- and delay-eyeblink conditioning with whisker or auditory stimulation as the conditioned stimulus to examine possible age-related behavioral and neocortical abnormalities. Whisker stimulation was determined to be a more effective stimulus for examining age-related behavioral abnormalities in C57 mice. Additionally, neocortical barrel expansion, observed in trace conditioned adult mice and rabbits, does not occur in mice conditioned on a delay paradigm or in old mice unable to learn the whisker trace association. Abnormalities in neocortical memory storage in the elderly could contribute to normal age-dependent declines in associative learning abilities.
Collapse
Affiliation(s)
- Roberto Galvez
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
36
|
Abstract
We assessed here true causal directionalities in cerebellar-motoneuron (MN) network associations during the classical conditioning of eyelid responses. For this, the firing activities of identified facial MNs and cerebellar interpositus (IP) nucleus neurons were recorded during the acquisition of this type of associative learning in alert behaving cats. Simultaneously, the eyelid conditioned response (CR) and the EMG activity of the orbicularis oculi (OO) muscle were recorded. Nonlinear association analysis and time-dependent causality method allowed us to determine the asymmetry, time delays, direction in coupling, and functional interdependences between neuronal recordings and learned motor responses. We concluded that the functional nonlinear association between the IP neurons and OO muscle activities was bidirectional and asymmetric, and the time delays in the two directions of coupling always lagged the start of the CR. Additionally, the strength of coupling depended inversely on the level of expression of eyeblink CRs, whereas causal inferences were significantly dependent on the phase information status. In contrast, the functional association between OO MNs and OO muscle activities was unidirectional and quasisymmetric, and the time delays in coupling were always of opposed signs. Moreover, information transfer in cerebellar-MN network associations during the learning process required a "driving common source" that induced the mere "modulating coupling" of the IP nucleus with the final common pathway for the eyelid motor system. Thus, it can be proposed that the cerebellum is always looking back and reevaluating its own function, using the information acquired in the process, to play a modulating-reinforcing role in motor learning.
Collapse
|
37
|
Thompson R, Steinmetz J. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 2009; 162:732-55. [DOI: 10.1016/j.neuroscience.2009.01.041] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/18/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
38
|
Delgado-García JM, Gruart A. An experimental model for the study of cognitive disorders: Hippocampus and associative learning in Mice. Neurotox Res 2008; 14:359-66. [DOI: 10.1007/bf03033860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Gerwig M, Esser AC, Guberina H, Frings M, Kolb FP, Forsting M, Aurich V, Beck A, Timmann D. Trace eyeblink conditioning in patients with cerebellar degeneration: comparison of short and long trace intervals. Exp Brain Res 2008; 187:85-96. [PMID: 18253726 DOI: 10.1007/s00221-008-1283-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
To elucidate whether the cerebellar cortex may contribute to trace eyeblink conditioning in humans, eight patients with degenerative cerebellar disorders (four with sporadic adult onset ataxia, three with autosomal dominant cerebellar ataxia type III and one with spinocerebellar ataxia type 6) and eight age- and sex-matched healthy control subjects were investigated. Individual high resolution three-dimensional MRI data sets were acquired. As revealed by volumetric measurements of the cerebellum using ECCET software, patients showed cerebellar atrophy to various degrees. No abnormalities were observed in the control subjects. Eyeblink conditioning was performed twice using a tone of 40 ms as conditioned stimulus, followed by a short (400 ms) and a long (1,000 ms) trace interval and an air-puff of 100 ms as unconditioned stimulus. Using the short trace interval, eyeblink conditioning was significantly impaired in cerebellar patients compared to controls, even in those who fulfilled criteria of awareness. Using the long trace interval no significant group differences could be observed. The present findings of impaired trace eyeblink acquisition in patients with cortical cerebellar degeneration suggest that the cerebellar cortex in humans, in addition to the interposed nucleus, is involved in trace eyeblink conditioning, if the trace interval is relatively short. Using a long trace interval, the cerebellum appears to be less important.
Collapse
Affiliation(s)
- M Gerwig
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gruart A, Delgado-García JM. Activity-dependent changes of the hippocampal CA3-CA1 synapse during the acquisition of associative learning in conscious mice. GENES BRAIN AND BEHAVIOR 2007; 6 Suppl 1:24-31. [PMID: 17543036 DOI: 10.1111/j.1601-183x.2007.00319.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Contemporary neuroscientists are paying increasing attention to subcellular, molecular and electrophysiological mechanisms underlying learning and memory processes. Recent efforts have addressed the development of transgenic mice affected at different stages of the learning process, or emulating pathological conditions involving cognition and motor-learning capabilities. However, a parallel effort is needed to develop stimulating and recording techniques suitable for use in behaving mice, in order to grasp activity-dependent neural changes taking place during the very moment of the process. These in vivo models should integrate the fragmentary information collected by different molecular and in vitro approaches. In this regard, long-term potentiation (LTP) has been proposed as the neural mechanism underlying synaptic plasticity. Moreover, N-methyl-d-aspartate (NMDA) receptors are accepted as the molecular substrate of LTP. It now seems necessary to study the relationship of both LTP and NMDA receptors with the plastic changes taking place, in selected neural structures, during actual learning. Here, we review data on the involvement of the hippocampal CA3-CA1 synapse in the acquisition of classically conditioned eyelid conditioned responses (CRs) in behaving mice. Available data show that LTP, evoked by high-frequency stimulation of Schaffer collaterals, disturbs both the acquisition of CRs and the physiological changes that occur at the CA3-CA1 synapse during learning. Moreover, the administration of NMDA-receptor antagonists is able not only to prevent LTP induction in vivo, but also to hinder the formation of both CRs and functional changes in strength of the CA3-CA1 synapse. Thus, there is experimental evidence relating activity-dependent synaptic changes taking place during actual learning with LTP mechanisms and with the role of NMDA receptors in both processes.
Collapse
Affiliation(s)
- A Gruart
- División de Neurociencias, Universidad Pablo de Olavide, Sevilla, Spain.
| | | |
Collapse
|
41
|
Sánchez-Campusano R, Gruart A, Delgado-García JM. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci 2007; 27:6620-32. [PMID: 17581949 PMCID: PMC6672710 DOI: 10.1523/jneurosci.0488-07.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 04/25/2007] [Accepted: 04/26/2007] [Indexed: 11/21/2022] Open
Abstract
The role played by the cerebellum in movement control requires knowledge of interdependent relationships between kinetic neural commands and the performance (kinematics) of learned motor responses. The eyelid motor system is an excellent model for studying how simple motor responses are elaborated and performed. Kinetic variables (n = 24) were determined here by recording the firing activities of orbicularis oculi motoneurons and cerebellar interpositus neurons in alert cats during classical conditioning, using a delay paradigm. Kinematic variables (n = 36) were selected from eyelid position, velocity, and acceleration traces recorded during the conditioned stimulus-unconditioned stimulus interval. Optimized experimental and analytical tools allowed us to determine the evolution of kinetic and kinematic variables, the dynamic correlation functions relating motoneuron and interpositus neuron firing to eyelid conditioning responses, the falling correlation property of the interpositus nucleus across the successive training sessions, the time and significance of the linear relationships between these variables, and finally, the phase-inversion property of interpositus neurons with respect to acquired conditioned responses. Whereas motoneurons encoded eyelid kinematics at every instant of the dynamic correlation range and generated the natural oscillatory properties of the neuromuscular elements involved in eyeblinks, interpositus neurons did not directly encode eyelid performance: namely, their contribution was only slightly significant in the dynamic correlation range, and this regularity caused the integrated neuronal activity to oscillate by progressively inverting phase information. Therefore, interpositus neurons seem to play a modulating role in the dynamic control of learned motor responses, i.e., they could be considered a neuronal phase-modulating device.
Collapse
Affiliation(s)
- Raudel Sánchez-Campusano
- División de Neurociencias, Universidad Pablo de Olavide, Sevilla 41013, Spain, and
- Centro de Biofísica Médica, Universidad de Oriente, Santiago de Cuba 90500, Cuba
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, Sevilla 41013, Spain, and
| | | |
Collapse
|
42
|
Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. THE CEREBELLUM 2007; 6:38-57. [PMID: 17366265 DOI: 10.1080/14734220701225904] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Besides its known importance for motor coordination, the cerebellum plays a major role in associative learning. The form of cerebellum-dependent associative learning, which has been examined in greatest detail, is classical conditioning of eyeblink responses. The much advanced knowledge of anatomical correlates, as well as cellular and molecular mechanisms involved in eyeblink conditioning in animal models are of particular importance because there is general acceptance that findings in humans parallel the animal data. The aim of the present review is to give an update of findings in humans. Emphasis is put on human lesion studies, which take advantage of the advances of high-resolution structural magnetic resonance imaging (MRI). In addition, findings of functional brain imaging in healthy human subjects are reviewed. The former helped to localize areas involved in eyeblink conditioning within the cerebellum, the latter was in particular helpful in delineating extracerebellar neural substrates, which may contribute to eyeblink conditioning. Human lesion studies support the importance of cortical areas of the ipsilateral superior cerebellum both in the acquisition and timing of conditioned eyeblink responses (CR). Furthermore, the ipsilateral cerebellar cortex seems to be also important in extinction of CRs. Cortical areas, which are important for CR acquisition, overlap with areas related to the control of the unconditioned eyeblink response. Likewise, cortical lesions are followed by increased amplitudes of unconditioned eyeblinks. These findings are in good accordance with the animal literature. Knowledge about contributions of the cerebellar nuclei in humans, however, is sparse. Due to methodological limitations both of human lesion and functional MRI studies, at present no clear conclusions can be drawn on the relative contributions of the cerebellar cortex and nuclei.
Collapse
Affiliation(s)
- M Gerwig
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45138 Essen, Germany
| | | | | |
Collapse
|
43
|
Uusisaari M, Obata K, Knöpfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 2006; 97:901-11. [PMID: 17093116 DOI: 10.1152/jn.00974.2006] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The deep cerebellar nuclei (DCN) integrate inputs from the brain stem, the inferior olive, and the spinal cord with Purkinje cell output from cerebellar cortex and provide the major output of the cerebellum. Despite their crucial function in motor control and learning, the various populations of neurons in the DCN are poorly defined and characterized. Importantly, differences in electrophysiological properties between glutamatergic and GABAergic cells of the DCN have been largely elusive. Here, we used glutamate decarboxylase (GAD) 67-green fluorescent protein (GFP) knock-in mice to unambiguously identify GABAergic (GAD-positive) and non-GABAergic (GAD-negative, most likely glutamatergic) neurons of the DCN. Morphological analysis of DCN neurons patch-clamped with biocytin-containing electrodes revealed a significant overlap in the distributions of the soma sizes of GAD-positive and GAD-negative cells. Compared with GAD-negative DCN neurons, GAD-positive DCN neurons fire broader action potentials, display stronger frequency accommodation, and do not reach as high firing frequencies during depolarizing current injections. Furthermore, GAD-positive cells display slower spontaneous firing rates and have a more shallow frequency-to-current relationship than the GAD-negative cells but exhibit a longer-lasting rebound depolarization and associated spiking after a transient hyperpolarization. In contrast to the rather homogeneous population of GAD-positive cells, the GAD-negative cells were found to consist of two distinct populations as defined by cell size and electrophysiological features. We conclude that GABAergic DCN neurons are specialized to convey phasic spike rate information, whereas tonic spike rate is more faithfully relayed by the large non-GABAergic cells.
Collapse
Affiliation(s)
- Marylka Uusisaari
- Laboratory for Neuronal Circuit Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
44
|
Green JT, Arenos JD. Hippocampal and cerebellar single-unit activity during delay and trace eyeblink conditioning in the rat. Neurobiol Learn Mem 2006; 87:269-84. [PMID: 17046292 PMCID: PMC1907365 DOI: 10.1016/j.nlm.2006.08.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/24/2006] [Accepted: 08/31/2006] [Indexed: 10/23/2022]
Abstract
In delay eyeblink conditioning, the CS overlaps with the US and only a brainstem-cerebellar circuit is necessary for learning. In trace eyeblink conditioning, the CS ends before the US is delivered and several forebrain structures, including the hippocampus, are required for learning, in addition to a brainstem-cerebellar circuit. The interstimulus interval (ISI) between CS onset and US onset is perhaps the most important factor in classical conditioning, but studies comparing delay and trace conditioning have typically not matched these procedures in this crucial factor, so it is often difficult to determine whether results are due to differences between delay and trace or to differences in ISI. In the current study, we employed a 580-ms CS-US interval for both delay and trace conditioning and compared hippocampal CA1 activity and cerebellar interpositus nucleus activity in order to determine whether a unique signature of trace conditioning exists in patterns of single-unit activity in either structure. Long-Evans rats were chronically implanted in either CA1 or interpositus with microwire electrodes and underwent either delay eyeblink conditioning, or trace eyeblink conditioning with a 300-ms trace period between CS offset and US onset. On trials with a CR in delay conditioning, CA1 pyramidal cells showed increases in activation (relative to a pre-CS baseline) during the CS-US period in sessions 1-4 that was attenuated by sessions 5-6. In contrast, on trials with a CR in trace conditioning, CA1 pyramidal cells did not show increases in activation during the CS-US period until sessions 5-6. In sessions 5-6, increases in activation were present only to the CS and not during the trace period. For rats with interpositus electrodes, activation of interpositus neurons on CR trials was present in all sessions in both delay and trace conditioning. However, activation was greater in trace compared to delay conditioning in the first half of the CS-US interval (during the trace CS) during early sessions of conditioning and, in later sessions of conditioning, activation was greater in the second half of the CS-US interval (during the trace interval). These results suggest that the pattern of hippocampal activation that differentiates trace from delay eyeblink conditioning is a slow buildup of activation to the CS, possibly representing encoding of CS duration or discrimination of the CS from the background context. Interpositus nucleus neurons show strong modeling of the eyeblink CR regardless of paradigm but show a changing pattern across conditioning that may be due to the necessary contributions of forebrain processing to trace conditioning.
Collapse
Affiliation(s)
- John T Green
- Department of Psychology, University of Vermont, Burlington VT 05405-0134, USA.
| | | |
Collapse
|
45
|
Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci 2006; 29:330-8. [PMID: 16713636 DOI: 10.1016/j.tins.2006.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/14/2006] [Accepted: 05/02/2006] [Indexed: 11/27/2022]
Abstract
Neural processes underlying memory and learning should be studied under the best possible physiological conditions - namely, in alert behaving animals. The classical conditioning of the nictitating membrane and eyelid response is a widely used experimental model for studying the neural bases of motor learning in mammals. Nevertheless, information is still needed on the functional aspects, taking place simultaneously in different cerebral structures, that underlie acquisition, extinction and recall of new motor and cognitive abilities. Here, we review recent data on the neural activity generated in selected brain sites (facial motor nuclei, deep cerebellar nuclei and the hippocampus) in simultaneity with the process of learning. The use of modern technologies for the proper recording of eyelid movements, for the identification of the recorded units, and for the activation of selective synaptic processes during the learning situation enables a precise redefinition of the role played by these neural structures in such associative learning. This review is part of the TINS special issue on The Neural Substrates of Cognition.
Collapse
Affiliation(s)
- José M Delgado-García
- División de Neurociencias, Universidad Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013-Seville, Spain.
| | | |
Collapse
|
46
|
Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Thilmann AF, Gizewski ER, Timmann D. Trace eyeblink conditioning in human subjects with cerebellar lesions. Exp Brain Res 2005; 170:7-21. [PMID: 16328300 DOI: 10.1007/s00221-005-0171-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Trace eyeblink conditioning was investigated in 31 patients with focal cerebellar lesions and 19 age-matched controls. Twelve patients presented with lesions including the territory of the superior cerebellar artery (SCA). In 19 patients lesions were restricted to the territory of the posterior inferior cerebellar artery (PICA). A 3D magnetic resonance imaging was used to determine the extent of the cortical lesion and possible involvement of cerebellar nuclei. Eyeblink conditioning was performed using a 40 ms tone as conditioned stimulus (CS) followed by a stimulus free trace-interval of 400 ms and a 100 ms air-puff as unconditioned stimulus (US). In SCA patients with lesions including parts of the cerebellar interposed nucleus trace eyeblink conditioning was significantly impaired. Pure cortical lesions of the superior cerebellum were not sufficient to reduce acquisition of trace conditioned eyeblink responses. PICA patients were not impaired in trace eyeblink conditioning. Consistent with animal studies the findings of the present human lesion study suggest that, in addition to forebrain areas, the interposed nucleus is of importance in trace eyeblink conditioning. Although cortical cerebellar areas appear less important in trace compared with delay eyeblink conditioning, the present data strengthen the view that cerebellar structures contribute to different forms of eyeblink conditioning paradigms.
Collapse
Affiliation(s)
- M Gerwig
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rowland NC, Jaeger D. Coding of tactile response properties in the rat deep cerebellar nuclei. J Neurophysiol 2005; 94:1236-51. [PMID: 16061491 DOI: 10.1152/jn.00285.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the lateral hemispheres of the cerebellar cortex, somatosensory responses are represented in a finely grained fractured somatotopy. It is unclear, however, how these responses contribute to the ultimate output of the cerebellum from the deep cerebellar nuclei (DCN). Robust responses of DCN neurons to somatosensory stimuli have been described, but a detailed examination of their somatotopic arrangement and stimulus coding properties is lacking. To address these questions, we recorded extracellular, single-unit activity in the DCN of ketamine-anesthetized rats in response to air-puff stimuli aimed at six different orofacial and forelimb locations. In additional experiments, the duration and intensity of air-puff stimuli to the ipsilateral upper lip were systematically varied. Overall, we found that DCN neuron responses to air puff stimuli showed combinations of three distinct response components: a short-latency spike response, a pronounced inhibition, and a long-latency increase in firing. Individual neurons responsive to air-puff stimulation exhibited any combination of just one, two, or all three of these response components. The inhibitory response was most common and frequently consisted of a complete cessation of spiking despite a high spontaneous rate of baseline firing. In contrast to published findings from cerebellar cortical recordings, the receptive fields of all responsive neurons in the DCN were large. In fact, the receptive field of most neurons covered the ipsi- and contralateral face as well as forepaws. Response properties of individual neurons did not reliably indicate stimulus intensity or duration, although as a population DCN neurons showed significantly increasing response amplitudes as air-puff intensity or duration increased. Overall, the responses were characterized by a distinct temporal profile in each neuron, which remained unchanged with changes in stimulus condition. We conclude that the responses in the DCN of rats to air-puff stimuli differ substantially from cerebellar cortical responses in their receptive field properties and do not provide a robust code of tactile stimulus properties. Rather, the characteristic temporal response profile of each neuron may be tuned to control the timing of a specific task to which its output is linked.
Collapse
|
48
|
Delgado-García JM, Gruart A. Firing activities of identified posterior interpositus nucleus neurons during associative learning in behaving cats. ACTA ACUST UNITED AC 2005; 49:367-76. [PMID: 16111563 DOI: 10.1016/j.brainresrev.2004.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 10/08/2004] [Accepted: 10/16/2004] [Indexed: 11/16/2022]
Abstract
On the basis of stimulation and permanent or transient lesions of putatively involved structures, and using transgenic mice with defective functional circuits, it has been proposed that cerebellar cortex and/or nuclei could be the sites where classically conditioned nictitating membrane/eyelid responses are acquired and stored. Here, we review recent information regarding the electrical activities of deep cerebellar nuclei neurons recorded during the performance of reflex and acquired eyeblinks. In particular, the rostral pole of the dorsolateral region of the posterior interpositus nucleus contains neurons significantly related to reflexively evoked and classically conditioned eyelid responses. Thus, type A interpositus neurons increase their discharge rate during eyelid movements, modulating it depending upon eyelid motorics. In contrast, type B neurons decrease their firing, even to a stop, during the same eyelid responses. However, as these changes in firing start after the onset of eyelid conditioned responses (CRs), and because they do not seem to encode eyelid position and velocity during the CR, the interpositus nucleus cannot be conclusively considered the site where eyelid learned responses are generated and stored. Additional microstimulation and pharmacological blockage of the recorded sites support the suggestion that posterior interpositus neurons contribute to the enhancement of CRs. Moreover, interpositus neurons probably contribute to the proper damping of newly acquired eyelid responses. The contributing role of other neuronal centers and circuits related to the eyelid motor system are also discussed.
Collapse
Affiliation(s)
- José M Delgado-García
- División de Neurociencias, Universidad Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013-Sevilla, Spain.
| | | |
Collapse
|
49
|
Jiménez-Díaz L, Navarro-López JDD, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci 2004; 24:9138-45. [PMID: 15483132 PMCID: PMC6730068 DOI: 10.1523/jneurosci.2025-04.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/26/2004] [Accepted: 08/20/2004] [Indexed: 11/21/2022] Open
Abstract
The role of cerebellar circuits in the acquisition of new motor abilities is still a matter of intensive debate. To establish the contribution of posterior interpositus nucleus (PIN) to the performance and/or acquisition of reflex and classically conditioned responses (CRs) of the eyelid, the effects of microstimulation and/or pharmacological inhibition by muscimol of the nucleus were investigated in conscious cats. Microstimulation of the PIN in naive animals evoked ramp-like eyelid responses with a wavy appearance, without producing any noticeable plastic functional change in the cerebellar and brainstem circuits involved. Muscimol microinjections decreased the amplitude of reflex eyeblinks evoked by air puffs, both when presented alone or when paired with a tone as conditioned stimulus (CS). In half-conditioned animals, muscimol injections also decreased the amplitude and damped the typical wavy profile of CRs, whereas microstimulation of the same sites increased both parameters. However, neither muscimol injections nor microstimulation modified the expected percentage of CRs, suggesting a major role of the PIN in the performance of eyelid responses rather than in the learning process. Moreover, the simultaneous presentation of CS and microstimulation in well trained animals evoked CRs similar in amplitude to the added value of those evoked by the two stimuli presented separately. In contrast, muscimol-injected animals developed CRs to paired CS and microstimulation presentations, larger than those evoked by the two stimuli when presented alone. It is concluded that the PIN contributes to the enhancement of both reflex and conditioned eyelid responses and to the damping of resonant properties of neuromuscular elements controlling eyelid kinematics.
Collapse
Affiliation(s)
- Lydia Jiménez-Díaz
- División de Neurociencias, Universidad Pablo de Olavide, Sevilla-41013, Spain
| | | | | | | |
Collapse
|
50
|
Rodríguez-Moreno A, Domínguez Del Toro E, Porras-García E, Delgado-García JM. The use of alert behaving mice in the study of learning and memory processes. Neurotox Res 2004; 6:225-32. [PMID: 15325961 DOI: 10.1007/bf03033224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The availability of transgenic mice that mimic human neurodegenerative processes has made it necessary to develop new recording and stimulating techniques capable of being applied in this species. We have studied here the motor learning and memory capabilities of wild-type and transgenic mice with deficits in cognitive functions, using classical conditioning procedures. We have developed an electrical shock/SHOCK paradigm corresponding to a trace classical conditioning; that is, a learning task involving the cerebral cortex, including the hippocampus. The conditioning procedure is a modification of the air-puff/AIR-PUFF conditioning (Gruart et al., J. Neurophysiol. 74:226, 1995). Animals were implanted with stimulating electrodes in the supraorbitary branch of the trigeminal nerve and with recording electrodes in the orbicularis oculi muscle. Computer programs were developed to quantify the appearance and evolution of eyelid conditioned responses. According to the present results, the classical conditioning of eyelid responses appears to be a suitable (associative) learning procedure to study learning capabilities in genetically-modified mice.
Collapse
Affiliation(s)
- Antonio Rodríguez-Moreno
- División de Neurociencias, Universidad Pablo de Olavide, Ctra. de Utrera, Km. 141013-Sevilla, Spain
| | | | | | | |
Collapse
|