1
|
Li N, Wang L, Hu X, Xu H, Yang B, Zhan L, Cai Y, Gu Y, Chen X, Zheng Y, Liu T, Gao Z, Xiong B. Conformational restriction enables discovering a series of chroman derivatives as potent and selective Na V1.8 inhibitors with improved pharmacokinetic properties. Eur J Med Chem 2025; 293:117697. [PMID: 40347793 DOI: 10.1016/j.ejmech.2025.117697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Voltage-gated sodium channel 1.8 (NaV1.8) is a promising analgesic target due to its unique biophysical characteristics and specific role in nociceptive sensation. VX-150 initially completed proof-of-concept studies in clinical trials, but with high dosages and frequent administration. Herein, based on VX-150, we report the design, synthesis and structure-activity relationship (SAR) study aiming to identify novel, potent and selective NaV1.8 inhibitors with improved pharmacokinetic properties. Conformational restriction strategy and subsequent optimization led to the identification of the chroman derivative (R)-40 as the most promising hNaV1.8 inhibitor showing an IC50 value of 5.9 ± 1.0 nM and good selectivity over other tested NaV channels and hERG channel. More importantly, (R)-40 showed good in vitro metabolic stability in liver microsomes across multiple species and excellent in vivo PK profiles in rats and dogs. Notably, (R)-40 exerted dose-dependent analgesic activities in both rat models with postoperative and inflammatory pain, and a wide safety margin in neurotoxicity evaluation. Overall, these results confirmed conformational restriction as an effective strategy to improve PK profile, and our detailed study provided a valuable foundation for developing novel NaV1.8 inhibitors.
Collapse
Affiliation(s)
- Na Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China
| | - Linlin Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinyuan Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiyan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bowen Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongjie Cai
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yueling Gu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xueqin Chen
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yueming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhaobing Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Jo S, Fujita A, Osorno T, Stewart RG, Vaelli PM, Bean BP. Differential state-dependent Nav1.8 inhibition by suzetrigine, LTGO-33, and A-887826. J Gen Physiol 2025; 157:e202413719. [PMID: 40136042 PMCID: PMC11938940 DOI: 10.1085/jgp.202413719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 03/27/2025] Open
Abstract
Nav1.8 sodium channels are expressed in pain-sensing neurons, and some Nav1.8 inhibitors significantly reduce pain in clinical trials. Several Nav1.8 inhibitors have an unusual state dependence whereby inhibition is relieved by depolarization. We compared the state-dependent action of several Nav1.8 channel inhibitors to test whether inhibition is relieved during action potential (AP) firing under physiological conditions to produce "reverse use dependence." A-887826 inhibition was substantially relieved by AP waveforms applied at 20 Hz at 37°C. In contrast, there was no relief during AP trains with suzetrigine (VX-548) or LTGO-33, even though inhibition could be effectively removed by long, strong depolarizations. These differences were explained by differences in the voltage dependence and kinetics with which the compounds dissociate from depolarized channels and rebind to resting state channels. Suzetrigine required the strongest depolarizations for relief (midpoint +33 mV) and relief was slow (tau >300 ms at +20 mV), so almost no relief occurred during an AP waveform. Relief from A-887826 required weaker depolarizations (midpoint +13 mV) and was much faster, so some relief occurred during each AP waveform and accumulated during 20-Hz trains. LTGO-33 required the weakest depolarizations for relief (midpoint -11 mV) and relief was even faster than for A-887826, but reinhibition between AP waveforms was far faster than for A-887826, so that relief did not accumulate during AP trains at 20 Hz. The results show that, unlike A-887826, there is no use-dependent relief of inhibition by suzetrigine or LTGO-33 with physiological voltage waveforms at physiological temperatures, but each for different reasons.
Collapse
Affiliation(s)
- Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Akie Fujita
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tomás Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Patric M. Vaelli
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bruce P. Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Stewart RG, Osorno T, Fujita A, Jo S, Ferraiuolo A, Carlin K, Bean BP. Modulation of human dorsal root ganglion neuron firing by the Nav1.8 inhibitor suzetrigine. Proc Natl Acad Sci U S A 2025; 122:e2503570122. [PMID: 40424150 DOI: 10.1073/pnas.2503570122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Nav1.8 voltage-gated sodium channels are strongly expressed in human primary pain-sensing neurons (nociceptors) and a selective Nav1.8 inhibitor VX-548 (suzetrigine) has shown efficacy for treating acute pain in clinical trials. Nociceptors also express other sodium channels, notably Nav1.7, raising the question of how effectively excitability of the neurons is reduced by inhibition of Nav1.8 channels alone. We used VX-548 to explore this question, recording from dissociated human dorsal root ganglion neurons at 37 °C. Applying VX-548 at 10 nM (about 25 times the IC50 determined using cloned human Nav1.8 channels at 37 °C) had only small effects on action potential threshold and upstroke velocity but substantially reduced the peak and shoulder. Counterintuitively, VX-548 shortened the refractory period-likely reflecting reduced potassium channel activation by the smaller, narrower action potential-sometimes resulting in faster firing. Generally, repetitive firing during depolarizations was diminished but not eliminated by VX-548. Voltage clamp analysis suggested two reasons that repetitive firing often remains in 10 to 100 nM VX-548. First, many neurons had such large Nav1.8 currents that even 99% inhibition leaves nA-level Nav1.8 current that could help drive repetitive firing. Second, Nav1.7 current dominated during initial spikes and could also contribute to repetitive firing. The ability of human neurons to fire repetitively even with >99% inhibition of Nav1.8 channels may help explain the incomplete analgesia produced by even the largest concentrations of VX-548 in clinical studies.
Collapse
Affiliation(s)
- Robert G Stewart
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Tomás Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Akie Fujita
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | | | | | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Lee PR, Lee K, Park JM, Kim S, Oh SB. Functional and distinct roles of Piezo2-mediated mechanotransduction in dental primary afferent neurons. Int J Oral Sci 2025; 17:45. [PMID: 40461462 PMCID: PMC12134352 DOI: 10.1038/s41368-025-00374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 06/11/2025] Open
Abstract
Piezo2, a mechanosensitive ion channel, serves as a crucial mechanotransducer in dental primary afferent (DPA) neurons and is potentially involved in hypersensitivity to mild mechanical irritations observed in dental patients. Given Piezo2's widespread expression across diverse subpopulations of DPA neurons, this study aimed to characterize the mechanosensory properties of Piezo2-expressing DPA neurons with a focus on distinct features of voltage-gated sodium channels (VGSCs) and neuropeptide profiles. Using whole-cell patch-clamp recordings, we observed mechanically activated action potentials (APs) and classified AP waveforms based on the presence or absence of a hump during the repolarization phase. Single-cell reverse transcription polymerase chain reaction combined with patch-clamp recordings revealed specific associations between AP waveforms and molecular properties, including tetrodotoxin-resistant VGSCs (NaV1.8 and NaV1.9) and TRPV1 expression. Reanalysis of the transcriptomic dataset of DPA neurons identified correlations between neuropeptides-including two CGRP isoforms (α-CGRP and β-CGRP), Substance P, and Galanin-and the expression of NaV1.8 and NaV1.9, which were linked to defined AP subtypes. These molecular associations were further validated in Piezo2+ DPA neurons using fluorescence in situ hybridization. Together, these findings highlight the electrophysiological and neurochemical heterogeneity of Piezo2-expressing DPA neurons and their specialized roles in distinct mechanosensory signal transmission.
Collapse
Affiliation(s)
- Pa Reum Lee
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kihwan Lee
- Tooth-Periodontium Complex Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ji Min Park
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Shinae Kim
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
- Tooth-Periodontium Complex Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- ADA Forsyth Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Park R, Spritz S, Zeng AY, Erukulla R, Zavala D, Merchant T, Gascon A, Jung R, Bigit B, Azar DT, Chang JH, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Corneal Sensory Receptors and Pharmacological Therapies to Modulate Ocular Pain. Int J Mol Sci 2025; 26:4663. [PMID: 40429806 PMCID: PMC12111238 DOI: 10.3390/ijms26104663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Nociceptors respond to noxious stimuli and transmit pain signals to the central nervous system. In the cornea, the nociceptors located in the most external layer provide a myriad of sensation modalities. Damage to these corneal nerve fibers can induce neuropathic pain. In response, corneal nerves become sensitized to previously non-noxious stimuli. Assessing corneal pain origin is a complex ophthalmic challenge due to variations in its causes and manifestations. Current FDA-approved therapies for corneal nociceptive pain, such as acetaminophen and NSAIDs, provide only broad-acting relief with unwanted side effects, highlighting the need for precision medicine for corneal nociceptive pain. A few targeted treatments, including perfluorohexyloctane (F6H8) eye drops and Optive Plus (TRPV1 antagonist), are FDA-approved, while others are in preclinical development. Treatments that target signaling pathways related to neurotrophic factors, such as nerve growth factors and ion channels, such as the transient receptor potential (TRP) family or tropomyosin receptor kinase A, may provide a potential combinatory therapeutic approach. This review describes the roles of nociceptors in corneal pain. In addition, it evaluates molecules within nociceptor signaling pathways for their potential to serve as targets for efficient therapeutic strategies for corneal nociceptive pain aimed at modulating neurotrophic factors and nociceptive channel sensitivity.
Collapse
Affiliation(s)
- Ryan Park
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Samantha Spritz
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Anne Y. Zeng
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Rohith Erukulla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Deneb Zavala
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Tasha Merchant
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Andres Gascon
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Rebecca Jung
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Bianca Bigit
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (R.P.); (S.S.); (D.Z.); (B.B.); (E.J.)
| |
Collapse
|
6
|
Cho EB, Jiang C, Wang Z, Yu Y, Jiang J. Suzetrigine for moderate to severe acute pain. Trends Pharmacol Sci 2025; 46:480-481. [PMID: 40133193 PMCID: PMC12049257 DOI: 10.1016/j.tips.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Suzetrigine (VX-548), 2-pyridinecarboxamide, 4-[[[(2R ,3S ,4S ,5R )-3-(3,4-difluoro-2-methoxyphenyl)tetrahydro-4,5-dimethyl-5-(trifluoromethyl)-2-furanyl]carbonyl]amino]-, or 4-[[(2R ,3S ,4S ,5R )-3-(3,4-difluoro-2-methoxyphenyl)-4,5-dimethyl-5-(trifluoromethyl)oxolane-2-carbonyl]amino]pyridine-2-carboxamide, is a selective voltage-gated sodium channel NaV1.8 blocker that was recently approved by FDA as a non-opioid analgesic to treat moderate to severe acute pain. It has a molecular formula C21H20F5N3O4 and a molecular weight of 473.4 g/mol. The molecule has a chiral tetrahydrofuran core (2R ,3S ,4S ,5R ) that is conjugated to a picolinamide ring via an amide linker at position 2, a 3,4-difluoro-2-methoxyphenyl group at position 3, a methyl group at position 4, and both a trifluoromethyl group and a methyl group at position 5.
Collapse
Affiliation(s)
- Eun Bee Cho
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chenyao Jiang
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zihan Wang
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
7
|
Gomez K, Calderon-Rivera A, Khanna R. Pain's puzzle pieces: MAGI-1, Na V 1.8, degradation, analgesia. Pain 2025; 166:972-974. [PMID: 39514286 DOI: 10.1097/j.pain.0000000000003471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Kimberly Gomez
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aida Calderon-Rivera
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Alsaloum M, Dib-Hajj SD, Page DA, Ruben PC, Krainer AR, Waxman SG. Voltage-gated sodium channels in excitable cells as drug targets. Nat Rev Drug Discov 2025; 24:358-378. [PMID: 39901031 DOI: 10.1038/s41573-024-01108-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/05/2025]
Abstract
Excitable cells - including neurons, muscle cells and cardiac myocytes - are unique in expressing high densities of voltage-gated sodium (NaV) channels. This molecular adaptation enables these cells to produce action potentials, and is essential to their function. With the advent of the molecular revolution, the concept of 'the' sodium channel has been supplanted by understanding that excitable cells in mammals can express any of nine different forms of sodium channels (NaV1.1-NaV1.9). Selective expression in particular types of cells, together with a key role in controlling action potential firing, makes some of these NaV subtypes especially attractive molecular targets for drug development. Although these different channel subtypes display a common overall structure, differences in their amino acid sequences have provided a basis for the development of subtype-specific drugs. This approach has resulted in exciting progress in the development of drugs for epilepsy, cardiac disorders and pain. In this Review, we discuss recent progress in the development of drugs that selectively target each of the sodium channel subtypes.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Dana A Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Alves-Simões M, Teege L, Tomni C, Lürkens M, Schmidt A, Iseppon F, Millet Q, Kühs S, Katona I, Weis J, Heinemann SH, Hübner CA, Wood J, Leipold E, Kurth I, Haag N. Na V 1.8/Na V 1.9 double deletion mildly affects acute pain responses in mice. Pain 2025; 166:773-792. [PMID: 39382328 PMCID: PMC11921451 DOI: 10.1097/j.pain.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The 2 tetrodotoxin-resistant (TTXr) voltage-gated sodium channel subtypes Na V 1.8 and Na V 1.9 are important for peripheral pain signaling. As determinants of sensory neuron excitability, they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and the release of neurotransmitters from sensory neuron terminals. Na V 1.8 and Na V 1.9, which are encoded by SCN10A and SCN11A , respectively, are predominantly expressed in pain-sensitive (nociceptive) neurons localized in the dorsal root ganglia (DRG) along the spinal cord and in the trigeminal ganglia. Mutations in these genes cause various pain disorders in humans. Gain-of-function missense variants in SCN10A result in small fiber neuropathy, while distinct SCN11A mutations cause, i. a., congenital insensitivity to pain, episodic pain, painful neuropathy, and cold-induced pain. To determine the impact of loss-of-function of both channels, we generated Na V 1.8/Na V 1.9 double knockout (DKO) mice using clustered regularly interspaced short palindromic repeats/Cas-mediated gene editing to achieve simultaneous gene disruption. Successful knockout of both channels was verified by whole-cell recordings demonstrating the absence of Na V 1.8- and Na V 1.9-mediated Na + currents in Na V 1.8/Na V 1.9 DKO DRG neurons. Global RNA sequencing identified significant deregulation of C-LTMR marker genes as well as of pain-modulating neuropeptides in Na V 1.8/Na V 1.9 DKO DRG neurons, which fits to the overall only moderately impaired acute pain behavior observed in DKO mice. Besides addressing the function of both sodium channels in pain perception, we further demonstrate that the null-background is a very valuable tool for investigations on the functional properties of individual human disease-causing variants in Na V 1.8 or Na V 1.9 in their native physiological environment.
Collapse
Affiliation(s)
- Marta Alves-Simões
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Laura Teege
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Cecilia Tomni
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martha Lürkens
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Annika Schmidt
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Samuel Kühs
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Istvan Katona
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan H. Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - John Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Enrico Leipold
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Natja Haag
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Chen R, Liu Y, Qian L, Yi M, Yin H, Wang S, Xiang B. Sodium channels as a new target for pain treatment. Front Pharmacol 2025; 16:1573254. [PMID: 40206072 PMCID: PMC11979154 DOI: 10.3389/fphar.2025.1573254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Voltage-gated sodium channels, especially the Nav1.7, Nav1.8, and Nav1.9 subtypes, play a crucial role in the transmission of pain signals. Nav1.7 is considered a threshold channel that regulates the generation of action potentials and is closely associated with various hereditary pain disorders. Nav1.8 primarily participates in inflammatory and neuropathic pain within the peripheral nervous system. Its characteristic of not involving the central nervous system makes it a potential target for non-addictive analgesics. Nav1.9 has shown significant involvement in cold pain sensing and small fiber neuropathy, although its mechanism of action is still under further investigation. Currently, despite promising results from preclinical studies, sodium channel inhibitors have not fully met expectations in clinical trials due to issues such as drug selectivity, dosing, and safety. The development of Nav1.7 and Nav1.8 inhibitors faces challenges such as drug intolerance, insufficient target occupancy, and off-target side effects. Future research may promote the development of non-opioid analgesics through combined inhibition strategies targeting multiple Nav subtypes, as well as improving drug selectivity and bioavailability. Overall, sodium channel inhibitors remain a key area of research in pain management, but their clinical application prospects still require further exploration.
Collapse
Affiliation(s)
- Rui Chen
- Department of Anesthesiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yiran Liu
- Nursing Department, Cujin Community Health Service Center, Chengdu, China
| | - Liu Qian
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mingliang Yi
- Department of Anesthesiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hong Yin
- Department of Anesthesiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Shun Wang
- Department of Anesthesiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bingbing Xiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Köster PA, Leipold E, Tigerholm J, Maxion A, Namer B, Stiehl T, Lampert A. Nociceptor sodium channels shape subthreshold phase, upstroke, and shoulder of action potentials. J Gen Physiol 2025; 157:e202313526. [PMID: 39836077 PMCID: PMC11748974 DOI: 10.1085/jgp.202313526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.8 is thought to support the fast AP upstroke. Nav1.9, as it produces large persistent currents, is attributed a role in determining the resting membrane potential. We characterized the gating of Nav1.1-Nav1.3 and Nav1.5-Nav1.9 in manual patch clamp with a focus on the AP subthreshold depolarization phase. Nav1.9 exhibited the most hyperpolarized activation, while its fast inactivation resembled the depolarized inactivation of Nav1.8. For some VGSCs (e.g., Nav1.1 and Nav1.2), a positive correlation between ramp current and window current was detected. Using a modified Hodgkin-Huxley model that accounts for the time needed for inactivation to occur, we used the acquired data to simulate two nociceptive nerve fiber types (an Aδ- and a mechano-insensitive C-nociceptor) containing VGSC conductances according to published human RNAseq data. Our simulations suggest that Nav1.9 is supporting both the AP upstroke and its shoulder. A reduced threshold for AP generation was induced by enhancing Nav1.7 conductivity or shifting its activation to more hyperpolarized potentials, as observed in Nav1.7-related pain disorders. Here, we provide a comprehensive, comparative functional characterization of VGSCs relevant in nociception and describe their gating with Hodgkin-Huxley-like models, which can serve as a tool to study their specific contributions to AP shape and sodium channel-related diseases.
Collapse
Affiliation(s)
- Phil Alexander Köster
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care and CBBM-Center of Brain, Behavior and Metabolism, University of Luebeck, Lübeck, Germany
| | - Jenny Tigerholm
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Joint Research Center for Computational Biomedicine (JRCC), Uniklinik RWTH Aachen University, Aachen, Germany
| | - Anna Maxion
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, Research Group Neurosciences, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Barbara Namer
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, Research Group Neurosciences, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Thomas Stiehl
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Joint Research Center for Computational Biomedicine (JRCC), Uniklinik RWTH Aachen University, Aachen, Germany
- Institute for Computational Biomedicine and Disease Modelling With Focus on Phase Transitions Between Phenotypes, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Angelika Lampert
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Vardigan JD, Pall PS, McDevitt DS, Huang C, Clements MK, Li Y, Kraus RL, Breslin MJ, Bungard CJ, Nemenov MI, Klukinov M, Burgey CS, Layton ME, Stachel SJ, Lange HS, Savitz AT, Santarelli VP, Henze DA, Uslaner JM. Analgesia and peripheral c-fiber modulation by selective Na v 1.8 inhibition in rhesus. Pain 2025; 166:631-643. [PMID: 39382325 PMCID: PMC11808707 DOI: 10.1097/j.pain.0000000000003404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT Voltage-gated sodium (Na v ) channels present untapped therapeutic value for better and safer pain medications. The Na v 1.8 channel isoform is of particular interest because of its location on peripheral pain fibers and demonstrated role in rodent preclinical pain and neurophysiological assays. To-date, no inhibitors of this channel have been approved as drugs for treating painful conditions in human, possibly because of challenges in developing a sufficiently selective drug-like molecule with necessary potency not only in human but also across preclinical species critical to the preclinical development path of drug discovery. In addition, the relevance of rodent pain assays to the human condition is under increasing scrutiny as a number of mechanisms (or at the very least molecules) that are active in rodents have not translated to humans, and direct impact on pain fibers has not been confirmed in vivo. In this report, we have leveraged numerous physiological end points in nonhuman primates to evaluate the analgesic and pharmacodynamic activity of a novel, potent, and selective Na v 1.8 inhibitor compound, MSD199. These pharmacodynamic biomarkers provide important confirmation of the in vivo impact of Na v 1.8 inhibition on peripheral pain fibers in primates and have high translational potential to the clinical setting. These findings may thus greatly improve success of translational drug discovery efforts toward better and safer pain medications, as well as the understanding of primate biology of Na v 1.8 inhibition broadly.
Collapse
Affiliation(s)
- Joshua D. Vardigan
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Parul S. Pall
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Dillon S. McDevitt
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - ChienJung Huang
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Michelle K. Clements
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Yuxing Li
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Richard L. Kraus
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Michael J. Breslin
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | | | | | | | - Chritopher S. Burgey
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Mark E. Layton
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Shawn J. Stachel
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Henry S. Lange
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Alan T. Savitz
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | | | - Darrell A. Henze
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Jason M. Uslaner
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| |
Collapse
|
13
|
Neumann B, McCarthy S, Gonen S. Structural basis of inhibition of human Na V1.8 by the tarantula venom peptide Protoxin-I. Nat Commun 2025; 16:1459. [PMID: 39920100 PMCID: PMC11805909 DOI: 10.1038/s41467-024-55764-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
Voltage-gated sodium channels (NaVs) selectively permit diffusion of sodium ions across the cell membrane and, in excitable cells, are responsible for propagating action potentials. One of the nine human NaV isoforms, NaV1.8, is a promising target for analgesics, and selective inhibitors are of interest as therapeutics. One such inhibitor, the gating-modifier peptide Protoxin-I derived from tarantula venom, blocks channel opening by shifting the activation voltage threshold to more depolarized potentials, but the structural basis for this inhibition has not previously been determined. Using monolayer graphene grids, we report the cryogenic electron microscopy structures of full-length human apo-NaV1.8 and the Protoxin-I-bound complex at 3.1 Å and 2.8 Å resolution, respectively. The apo structure shows an unexpected movement of the Domain I S4-S5 helix, and VSDI was unresolvable. We find that Protoxin-I binds to and displaces the VSDII S3-S4 linker, hindering translocation of the S4II helix during activation.
Collapse
Affiliation(s)
- Bryan Neumann
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Stephen McCarthy
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Tyagi S, Ghovanloo MR, Alsaloum M, Effraim P, Higerd-Rusli GP, Dib-Hajj F, Zhao P, Liu S, Waxman SG, Dib-Hajj SD. Targeted ubiquitination of Na V 1.8 reduces sensory neuronal excitability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636451. [PMID: 39975312 PMCID: PMC11838569 DOI: 10.1101/2025.02.04.636451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chronic pain and addiction are a significant global health challenge. Voltage-gated sodium channel Na V 1.8, a pivotal driver of pain signaling, is a clinically validated target for the development of novel, non-addictive pain therapeutics. Small molecule inhibitors against Na V 1.8 have shown promise in acute pain indications, but large clinical effect sizes have not yet been demonstrated and efficacy in chronic pain indications are lacking. An alternative strategy to target Na V 1.8 channels for analgesia is to reduce the number of channels that are present on nociceptor membranes. We generated a therapeutic heterobifunctional protein, named UbiquiNa V , that contains a Na V 1.8-selective binding module and the catalytic subunit of the NEDD4 E3 Ubiquitin ligase. We show that UbiquiNav significantly reduces channel expression in the plasma membrane and reduces Na V 1.8 currents in rodent sensory neurons. We demonstrate that UbiquiNa V is selective for Na V 1.8 over other Na V isoforms and other components of the sensory neuronal electrogenisome. We then show that UbiquiNa V normalizes the distribution of Na V 1.8 protein to distal axons, and that UbiquiNa V normalizes the neuronal hyperexcitability in in vitro models of inflammatory and chemotherapy-induced neuropathic pain. Our results serve as a blueprint for the design of therapeutics that leverage the selective ubiquitination of Na V 1.8 channels for analgesia.
Collapse
|
15
|
Dib-Hajj SD, Waxman SG. Species-specific differences and the role of Na v 1.9 in pain pathophysiology. Pain 2025; 166:231-233. [PMID: 39297718 DOI: 10.1097/j.pain.0000000000003395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 01/12/2025]
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
16
|
Ghovanloo MR, Tyagi S, Zhao P, Waxman SG. Nav1.8, an analgesic target for nonpsychotomimetic phytocannabinoids. Proc Natl Acad Sci U S A 2025; 122:e2416886122. [PMID: 39835903 PMCID: PMC11789019 DOI: 10.1073/pnas.2416886122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.7, Nav1.8, and Nav1.9-play crucial roles in pain signaling. Among these, Nav1.8 has shown promise due to its rapid recovery from inactivation and role in repetitive firing, with recent clinical studies providing proof-of-principal that block of Nav1.8 can reduce pain in humans. We report here that three nonpsychotomimetic cannabinoids-cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN)-effectively inhibit Nav1.8, suggesting their potential as analgesic compounds. In particular, CBG shows significant promise due to its ability to effectively inhibit excitability of peripheral sensory neurons. These findings highlight the therapeutic potential of cannabinoids, particularly CBG, as agents that may attenuate pain via block of Nav1.8, warranting further in vivo studies.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale School of Medicine, New Haven, CT06520
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT06516
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Sidharth Tyagi
- Department of Neurology, Yale School of Medicine, New Haven, CT06520
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT06516
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT06520
| | - Peng Zhao
- Department of Neurology, Yale School of Medicine, New Haven, CT06520
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT06516
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Stephen G. Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT06520
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT06516
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| |
Collapse
|
17
|
Wang H, Huang J, Zang J, Jin X, Yan N. Drug discovery targeting Na v1.8: Structural insights and therapeutic potential. Curr Opin Chem Biol 2024; 83:102538. [PMID: 39418835 DOI: 10.1016/j.cbpa.2024.102538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Voltage-gated sodium (Nav) channels are crucial in transmitting action potentials in neurons. The tetrodotoxin-resistant subtype Nav1.8 is predominantly expressed in the peripheral nervous system, offering a unique opportunity to design selective inhibitors for pain relief. A number of compounds have been reported to specifically block Nav1.8. Among these, VX-548 is already in regulatory review for the treatment of moderate-to-severe acute pain and holds the promise to be the first non-opioid pain killer over the past twenty years. Recent structural studies using cryogenic electron microscopy (cryo-EM) and structure-based predictive modeling have provided unprecedented insights into the structural pharmacology of Nav1.8. In this review, we summarize the latest developments in Nav1.8-selective inhibitors, focusing on the druggable sites and mechanisms that confer subtype specificity. These structural insights highlight the potential for Nav1.8 inhibitors to deliver non-addictive pain management, thus illuminating the avenue to next-generation analgesic development.
Collapse
Affiliation(s)
- Huan Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Huang
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Jie Zang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Guangming District, Shenzhen 518132, Guangdong Province, China.
| |
Collapse
|
18
|
Vasylyev DV, Zhao P, Schulman BR, Waxman SG. Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain. J Gen Physiol 2024; 156:e202413596. [PMID: 39378238 PMCID: PMC11465073 DOI: 10.1085/jgp.202413596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
While voltage-gated sodium channels Nav1.7 and Nav1.8 both contribute to electrogenesis in dorsal root ganglion (DRG) neurons, details of their interactions have remained unexplored. Here, we studied the functional contribution of Nav1.8 in DRG neurons using a dynamic clamp to express Nav1.7L848H, a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, and demonstrate a profound functional interaction of Nav1.8 with Nav1.7 close to the threshold for AP generation. At the voltage threshold of -21.9 mV, we observed that Nav1.8 channel open-probability exceeded Nav1.7WT channel open-probability ninefold. Using a kinetic model of Nav1.8, we showed that a reduction of Nav1.8 current by even 25-50% increases rheobase and reduces firing probability in small DRG neurons expressing Nav1.7L848H. Nav1.8 subtraction also reduces the amplitudes of subthreshold membrane potential oscillations in these cells. Our results show that within DRG neurons that express peripheral sodium channel Nav1.7, the Nav1.8 channel amplifies excitability at a broad range of membrane voltages with a predominant effect close to the AP voltage threshold, while Nav1.7 plays a major role at voltages closer to resting membrane potential. Our data show that dynamic-clamp reduction of Nav1.8 conductance by 25-50% can reverse hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes pain in humans and suggests, more generally, that full inhibition of Nav1.8 may not be required for relief of pain due to DRG neuron hyperexcitability.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Betsy R. Schulman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
19
|
Kaye AD, Everett ES, Lehuquet AM, Mason JW, Maitski R, Plessala MJ, Barrie S, Baptiste CJ, Mychaskiw G, Ahmadzadeh S, Shekoohi S, Varrassi G. Frontiers in Acute Pain Management: Emerging Concepts in Pain Pathways and the Role of VX-548 as a Novel NaV1.8 Inhibitor: A Narrative Review. Curr Pain Headache Rep 2024; 28:1135-1143. [PMID: 38963514 DOI: 10.1007/s11916-024-01295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE OF REVIEW Despite ongoing research into alternative postsurgical pain treatments, opioids remain widely used analgesics regardless of associated adverse effects, including dependence and overdose, as demonstrated throughout the current opioid crisis. This is likely related to a failure in proving the efficacy of alternative analgesics in clinical trials, despite strong evidence supporting the potential for effective analgesia through in vitro studies. While NaV1.7 and NaV1.8 channels have shown to be key components of pain perception, studies regarding pharmacological agents utilizing these channels as targets have largely failed to demonstrate the efficacy of these proposed analgesics when compared to current multimodal pain treatment regimens. RECENT FINDINGS However, the novel NaV1.8 channel inhibitor, VX-548 has surpassed previously studied NaV1.8 inhibitors in clinical trials and continues to hold promise of a novel efficacious analgesic to potentially be utilized in multimodal pain treatment on postsurgical patients. Additionally, NaV1.8 is encoded by the SCN10A, which has been shown to be minimally expressed in the brain, suggesting a lower likelihood of adverse effects in the CNS, including dependence and abuse. Novel pharmacologic analgesics that are efficacious without the significant side effects associated with opioids have lacked meaningful development. However, recent clinical trials have shown promising results in the safety and efficacy of the pharmacological agent VX-548. Still, more clinical trials directly comparing the efficacy of VX-548 to standard of care post-surgical drugs, including opioids like morphine and hydromorphone are needed to demonstrate the long-term viability of the agent replacing current opioids with an unfavorable side effect profile.
Collapse
Affiliation(s)
- Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Erin S Everett
- Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Arianna M Lehuquet
- Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Joseph W Mason
- LSU Health Sciences Center New Orleans School of Medicine, 1901 Gravier St, New Orleans, LA, USA
| | - Rebecca Maitski
- LSU Health Sciences Center New Orleans School of Medicine, 1901 Gravier St, New Orleans, LA, USA
| | - Michael J Plessala
- LSU Health Sciences Center New Orleans School of Medicine, 1901 Gravier St, New Orleans, LA, USA
| | - Sonnah Barrie
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Carlo Jean Baptiste
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - George Mychaskiw
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA.
| | | |
Collapse
|
20
|
Joseph DJ, Von Deimling M, Risbud R, McCoy AJ, Marsh ED. Loss of postnatal Arx transcriptional activity in parvalbumin interneurons reveals non-cell autonomous disturbances in CA1 pyramidal cells. Neuroscience 2024; 558:128-150. [PMID: 38788829 PMCID: PMC11381180 DOI: 10.1016/j.neuroscience.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/16/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Maintenance of proper electrophysiological and connectivity profiles in the adult brain may be a perturbation point in neurodevelopmental disorders (NDDs). How these profiles are maintained within mature circuits is unclear. We recently demonstrated that postnatal ablation of the Aristaless (Arx) homeobox gene in parvalbumin interneurons (PVIs) alone led to dysregulation of their transcriptome and alterations in their functional as well as network properties in the hippocampal cornu Ammoni first region (CA1). Here, we characterized CA1 pyramidal cells (PCs) responses in this conditional knockout (CKO) mouse to further understand the circuit mechanisms by which postnatal Arx expression regulates mature CA1 circuits. Field recordings of network excitability showed that CA1 PC ensembles were less excitable in response to unpaired stimulations but exhibited enhanced excitability in response to paired-pulse stimulations. Whole-cell voltage clamp recordings revealed a significant increase in the frequency of spontaneous inhibitory postsynaptic currents onto PCs. In contrast, excitatory drive from evoked synaptic transmission was reduced while that of inhibitory synaptic transmission was increased. Current clamp recordings showed increase excitability in several sub- and threshold membrane properties that correlated with an increase in voltage-gated Na+ current. Our data suggest that, in addition to cell-autonomous disruption in PVIs, loss of Arx postnatal transcriptional activity in PVIs led to complex dysfunctions in PCs in CA1 microcircuits. These non-cell autonomous effects are likely the product of breakdown in feedback and/or feedforward processes and should be considered as fundamental contributors to the circuit mechanisms of NDDs such as Arx-linked early-onset epileptic encephalopathies.
Collapse
Affiliation(s)
- Donald J Joseph
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Markus Von Deimling
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rashmi Risbud
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Almedia J McCoy
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Thio BJ, Titus ND, Pelot NA, Grill WM. Reverse-engineered models reveal differential membrane properties of autonomic and cutaneous unmyelinated fibers. PLoS Comput Biol 2024; 20:e1012475. [PMID: 39374306 PMCID: PMC11486378 DOI: 10.1371/journal.pcbi.1012475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/17/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024] Open
Abstract
Unmyelinated C-fibers constitute the vast majority of axons in peripheral nerves and play key roles in homeostasis and signaling pain. However, little is known about their ion channel expression, which controls their firing properties. Also, because of their small diameters (~ 1 μm), it has not been possible to characterize their membrane properties using voltage clamp. We developed a novel library of isoform-specific ion channel models to serve as the basis functions of our C-fiber models. We then developed a particle swarm optimization (PSO) framework that used the isoform-specific ion channel models to reverse engineer C-fiber membrane properties from measured autonomic and cutaneous C-fiber conduction responses. Our C-fiber models reproduced experimental conduction velocity, chronaxie, action potential duration, intracellular threshold, and paired pulse recovery cycle. The models also matched experimental activity-dependent slowing, a property not included in model optimization. We found that simple conduction responses, characterizing the action potential, were controlled by similar membrane properties in both the autonomic and cutaneous C-fiber models, but complicated conduction response, characterizing the afterpotenials, were controlled by differential membrane properties. The unmyelinated C-fiber models constitute important tools to study autonomic signaling, assess the mechanisms of pain, and design bioelectronic devices. Additionally, the novel reverse engineering approach can be applied to generate models of other neurons where voltage clamp data are not available.
Collapse
Affiliation(s)
- Brandon J. Thio
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Nathan D. Titus
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Nicole A. Pelot
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Warren M. Grill
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States of America
- Duke University School of Medicine, Department of Neurobiology, Durham, North Carolina, United States of America
- Duke University School of Medicine, Department of Neurosurgery, Durham, North Carolina, United States of America
| |
Collapse
|
22
|
Nascimento de Lima AP, Zhang H, Chen L, Effraim PR, Gomis-Perez C, Cheng X, Huang J, Waxman SG, Dib-Hajj SD. Nav1.8 in small dorsal root ganglion neurons contributes to vincristine-induced mechanical allodynia. Brain 2024; 147:3157-3170. [PMID: 38447953 DOI: 10.1093/brain/awae071] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common side effect of vincristine treatment, which is accompanied by pain and can be dose-limiting. The molecular mechanisms that underlie vincristine-induced pain are not well understood. We have established an animal model to investigate pathophysiological mechanisms of vincristine-induced pain. Our previous studies have shown that the tetrodotoxin-sensitive voltage-gated sodium channel Nav1.6 in medium-diameter dorsal root ganglion (DRG) neurons contributes to the maintenance of vincristine-induced allodynia. In this study, we investigated the effects of vincristine administration on excitability in small-diameter DRG neurons and whether the tetrodotoxin-resistant (TTX-R) Nav1.8 channels contribute to mechanical allodynia. Current-clamp recordings demonstrated that small DRG neurons become hyper-excitable following vincristine treatment, with both reduced current threshold and increased firing frequency. Using voltage-clamp recordings in small DRG neurons, we now show an increase in TTX-R current density and a -7.3 mV hyperpolarizing shift in the half-maximal potential (V1/2) of activation of Nav1.8 channels in vincristine-treated animals, which likely contributes to the hyperexcitability that we observed in these neurons. Notably, vincristine treatment did not enhance excitability of small DRG neurons from Nav1.8 knockout mice, and the development of mechanical allodynia was delayed but not abrogated in these mice. Together, our data suggest that sodium channel Nav1.8 in small DRG neurons contributes to the development of vincristine-induced mechanical allodynia.
Collapse
Affiliation(s)
- Ana Paula Nascimento de Lima
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Huiran Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Philip R Effraim
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carolina Gomis-Perez
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
23
|
Hang Kong AY, Tan HS, Habib AS. VX-548 in the treatment of acute pain. Pain Manag 2024; 14:477-486. [PMID: 39552600 PMCID: PMC11721852 DOI: 10.1080/17581869.2024.2421749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Acute pain management requires balancing analgesia with adverse effects risk. The voltage-gated sodium channel NaV1.8 plays an important role in pain physiology, and its inhibition was shown to have analgesic effects. VX-548 is a new oral NaV1.8-specific inhibitor that received United States Food and Drug Administration Fast Track and Breakthrough Therapy designations. Its efficacy was demonstrated in two Phase II trials of patients who underwent abdominoplasty and bunionectomy. These showed that VX-548, when given as an oral loading dose of 100 mg followed by 50 mg 12-hly, significantly decreased pain scores compared with placebo. Similarly, two Phase III trials of patients who underwent abdominoplasty and bunionectomy comparing VX-548 with hydrocodone bitartrate-acetaminophen and placebo reported significantly reduced pain scores compared with placebo, but no improvement compared with hydrocodone bitartrate-acetaminophen. Evidence from Phase II and III trials suggest that VX-548 is well-tolerated, with headache, nausea, constipation and dizziness being the most common adverse effects. However, the safety of prolonged VX-548 administration is uncertain; a Phase II trial of patients with diabetic neuropathy who received high-dose VX-548 over 12 weeks reported decreased creatinine clearance. Data pertaining to VX-548 safety and efficacy within the context of multimodal analgesia and pregnancy are also needed.
Collapse
Affiliation(s)
- Aaron Yik Hang Kong
- Department of Women's Anesthesia, KK Women's & Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Hon Sen Tan
- Department of Women's Anesthesia, KK Women's & Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Ashraf S Habib
- Department of Anesthesiology, Division of Women's Anesthesia, Duke University Medical Center Box 3094, Durham, NC27710, USA
| |
Collapse
|
24
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
25
|
Neumann B, McCarthy S, Gonen S. Structural basis of inhibition of human Na V1.8 by the tarantula venom peptide Protoxin-I. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609828. [PMID: 39253517 PMCID: PMC11383277 DOI: 10.1101/2024.08.27.609828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Voltage-gated sodium channels (NaVs) selectively permit diffusion of sodium ions across the cell membrane and, in excitable cells, are responsible for propagating action potentials. One of the nine human NaV isoforms, NaV1.8, is a promising target for analgesics, and selective inhibitors are of interest as therapeutics. One such inhibitor, the gating-modifier peptide Protoxin-I derived from tarantula venom, blocks channel opening by shifting the activation voltage threshold to more depolarised potentials, but the structural basis for this inhibition has not previously been determined. Using monolayer graphene grids, we report the cryogenic electron microscopy structures of full-length human apo-NaV1.8 and the Protoxin-I-bound complex at 3.1 Å and 2.8 Å resolution, respectively. The apo structure shows an unexpected movement of the Domain I S4-S5 helix, and VSDI was unresolvable. We find that Protoxin-I binds to and displaces the VSDII S3-S4 linker, hindering translocation of the S4II helix during activation.
Collapse
Affiliation(s)
- Bryan Neumann
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA 92617, USA
| | - Stephen McCarthy
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA 92617, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA 92617, USA
| |
Collapse
|
26
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 PMCID: PMC11967275 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Kamei T, Kudo T, Yamane H, Ishibashi F, Takada Y, Honda S, Maezawa Y, Ikeda K, Oyamada Y. Unique electrophysiological property of a novel Nav1.7, Nav1.8, and Nav1.9 sodium channel blocker, ANP-230. Biochem Biophys Res Commun 2024; 721:150126. [PMID: 38776832 DOI: 10.1016/j.bbrc.2024.150126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Voltage-gated sodium channel subtypes, Nav1.7, Nav1.8, and Nav1.9 are predominantly expressed in peripheral sensory neurons. Recent genetic studies have revealed that they are involved in pathological pain processing and that the blockade of Nav1.7, Nav1.8, or Nav1.9 will become a promising pharmacotherapy especially for neuropathic pain. A growing number of drug discovery programs have targeted either of the subtypes to obtain a selective inhibitor which can provide pain relief without affecting the cardiovascular and central nervous systems, though none of them has been approved yet. Here we describe the in vitro characteristics of ANP-230, a novel sodium channel blocker under clinical development. Surprisingly, ANP-230 was shown to block three pain-related subtypes, human Nav1.7, Nav1.8, and Nav1.9 with similar potency, but had only low inhibitory activity to human cardiac Nav1.5 channel and rat central Nav channels. The voltage clamp experiments using different step pulse protocols revealed that ANP-230 had a "tonic block" mode of action without state- and use-dependency. In addition, ANP-230 caused a depolarizing shift of the activation curve and decelerated gating kinetics in human Nav1.7-stably expressing cells. The depolarizing shift of activation curve was commonly observed in human Nav1.8-stably expressing cells as well as rat dorsal root ganglion neurons. These data suggested a quite unique mechanism of Nav channel inhibition by ANP-230. Finally, ANP-230 reduced excitability of rat dorsal root ganglion neurons in a concentration dependent manner. Collectively, these promising results indicate that ANP-230 could be a potent drug for neuropathic pain.
Collapse
Affiliation(s)
- Tatsuya Kamei
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, 650-0047, Japan.
| | - Takehiro Kudo
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Hana Yamane
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, 650-0047, Japan
| | - Fumiaki Ishibashi
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Platform Technology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Yoshinori Takada
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Global Corporate Strategy, Sumitomo Pharma Co., Ltd., Tokyo, 104-8356, Japan
| | - Shigeyuki Honda
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Sumika Chemical Analysis Service, Ltd., Osaka, 554-0022, Japan
| | - Yasuyo Maezawa
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Kazuhito Ikeda
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; Platform Technology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan
| | - Yoshihiro Oyamada
- Pharmacology Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Osaka, 554-0022, Japan; AlphaNavi Pharma Inc., Osaka, 564-0053, Japan
| |
Collapse
|
28
|
Chuinsiri N, Siraboriphantakul N, Kendall L, Yarova P, Nile CJ, Song B, Obara I, Durham J, Telezhkin V. Calcium-sensing receptor regulates Kv7 channels via G i/o protein signalling and modulates excitability of human induced pluripotent stem cell-derived nociceptive-like neurons. Br J Pharmacol 2024; 181:2676-2696. [PMID: 38627101 DOI: 10.1111/bph.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain, a debilitating condition with unmet medical needs, can be characterised as hyperexcitability of nociceptive neurons caused by dysfunction of ion channels. Voltage-gated potassium channels type 7 (Kv7), responsible for maintaining neuronal resting membrane potential and thus excitability, reside under tight control of G protein-coupled receptors (GPCRs). Calcium-sensing receptor (CaSR) is a GPCR that regulates the activity of numerous ion channels, but whether CaSR can control Kv7 channel function has been unexplored until now. EXPERIMENTAL APPROACH Experiments were conducted in recombinant cell models, mouse dorsal root ganglia (DRG) neurons and human induced pluripotent stem cell (hiPSC)-derived nociceptive-like neurons using patch-clamp electrophysiology and molecular biology techniques. KEY RESULTS Our results demonstrate that CaSR is expressed in recombinant cell models, hiPSC-derived nociceptive-like neurons and mouse DRG neurons, and its activation induced depolarisation via Kv7.2/7.3 channel inhibition. The CaSR-Kv7.2/7.3 channel crosslink was mediated via the Gi/o protein-adenylate cyclase-cyclicAMP-protein kinase A signalling cascade. Suppression of CaSR function demonstrated a potential to rescue hiPSC-derived nociceptive-like neurons from algogenic cocktail-induced hyperexcitability. CONCLUSION AND IMPLICATIONS This study demonstrates that the CaSR-Kv7.2/7.3 channel crosslink, via a Gi/o protein signalling pathway, effectively regulates neuronal excitability, providing a feasible pharmacological target for neuronal hyperexcitability management in neuropathic pain.
Collapse
Affiliation(s)
- Nontawat Chuinsiri
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Oral Health Center, Suranaree University of TechnologyHospital, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | - Luke Kendall
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Polina Yarova
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Nile
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Ilona Obara
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Justin Durham
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
29
|
Kimourtzis G, Rangwani N, Jenkins BJ, Jani S, McNaughton PA, Raouf R. Prostaglandin E2 depolarises sensory axons in vitro in an ANO1 and Nav1.8 dependent manner. Sci Rep 2024; 14:17360. [PMID: 39075089 PMCID: PMC11286870 DOI: 10.1038/s41598-024-67793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a major contributor to inflammatory pain hyperalgesia, however, the extent to which it modulates the activity of nociceptive axons is incompletely understood. We developed and characterized a microfluidic cell culture model to investigate sensitisation of the axons of dorsal root ganglia neurons. We show that application of PGE2 to fluidically isolated axons leads to sensitisation of their responses to depolarising stimuli. Interestingly the application of PGE2 to the DRG axons elicited a direct and persistent spiking activity propagated to the soma. Both the persistent activity and the membrane depolarisation in the axons are abolished by the EP4 receptor inhibitor and a blocker of cAMP synthesis. Further investigated into the mechanisms of the spiking activity showed that the PGE2 evoked depolarisation was inhibited by Nav1.8 sodium channel blockers but was refractory to the application of TTX or zatebradine. Interestingly, the depolarisation of axons was blocked by blocking ANO1 channels with T16Ainh-A01. We further show that PGE2-elicited axonal responses are altered by the changes in chloride gradient within the axons following treatment with bumetanide a Na-K-2Cl cotransporter NKCC1 inhibitor, but not by VU01240551 an inhibitor of potassium-chloride transporter KCC2. Our data demonstrate a novel role for PGE2/EP4/cAMP pathway which culminates in a sustained depolarisation of sensory axons mediated by a chloride current through ANO1 channels. Therefore, using a microfluidic culture model, we provide evidence for a potential dual function of PGE2 in inflammatory pain: it sensitises depolarisation-evoked responses in nociceptive axons and directly triggers action potentials by activating ANO1 and Nav1.8 channels.
Collapse
Affiliation(s)
- Georgios Kimourtzis
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Natasha Rangwani
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Bethan J Jenkins
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Siddharth Jani
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Peter A McNaughton
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Ramin Raouf
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
30
|
Zhang S, Chen L, Ladez SR, Seferge A, Liu J, Feng B. Blocking Aδ- and C-fiber neural transmission by sub-kilohertz peripheral nerve stimulation. Front Neurosci 2024; 18:1404903. [PMID: 39077428 PMCID: PMC11284050 DOI: 10.3389/fnins.2024.1404903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction We recently showed that sub-kilohertz electrical stimulation of the afferent somata in the dorsal root ganglia (DRG) reversibly blocks afferent transmission. Here, we further investigated whether similar conduction block can be achieved by stimulating the nerve trunk with electrical peripheral nerve stimulation (ePNS). Methods We explored the mechanisms and parameters of conduction block by ePNS via ex vivo single-fiber recordings from two somatic (sciatic and saphenous) and one autonomic (vagal) nerves harvested from mice. Action potentials were evoked on one end of the nerve and recorded on the other end from teased nerve filaments, i.e., single-fiber recordings. ePNS was delivered in the middle of the nerve trunk using a glass suction electrode at frequencies of 5, 10, 50, 100, 500, and 1000 Hz. Results Suprathreshold ePNS reversibly blocks axonal neural transmission of both thinly myelinated Aδ-fiber axons and unmyelinated C-fiber axons. ePNS leads to a progressive decrease in conduction velocity (CV) until transmission blockage, suggesting activity-dependent conduction slowing. The blocking efficiency is dependent on the axonal conduction velocity, with Aδ-fibers efficiently blocked by 50-1000 Hz stimulation and C-fibers blocked by 10-50 Hz. The corresponding NEURON simulation of action potential transmission indicates that the disrupted transmembrane sodium and potassium concentration gradients underly the transmission block by the ePNS. Discussion The current study provides direct evidence of reversible Aδ- and C-fiber transmission blockage by low-frequency (<100 Hz) electrical stimulation of the nerve trunk, a previously overlooked mechanism that can be harnessed to enhance the therapeutic effect of ePNS in treating neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
31
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
32
|
Ladez SR, Liu J, Chen L, Feng B. Computational Modeling of Dorsal Root Ganglion Stimulation: Understanding Pain Suppression Mechanisms. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039770 DOI: 10.1109/embc53108.2024.10782923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This study aims to advance our mechanistic understanding of electrical stimulation of dorsal root ganglia (DRG) for treating chronic pain. While DRG stimulation has shown moderate clinical success in managing certain types of chronic pain, the underlying neural mechanism remains inconclusive, hindering the further development of the technology to treat a broader range of chronic pain symptoms and benefit a larger patient population. In this study, we conducted computational simulations in the NEURON simulation environment to assess the neuromodulatory effect of DRG stimulation on action potential transmission in Aδ-fiber and C-fiber sensory afferents. Our simulation incorporates Markov-type state models to capture the subtle gating characteristics of voltage-gated sodium channel subtypes, especially NaV1.6, the anatomical distribution of which was revealed by our immunohistological staining on sparsely labeled afferents. Our simulation results indicate that DRG stimulation causes a significant increase in intra-axonal Na+ concentration and a reduction in K+ concentration, collectively disrupting the transaxonal ionic gradients. This disruption resulted in activitydependent conduction slowing, leading to the eventual conduction block in both Aδ- and C-fiber afferents. This research marks a crucial step forward in unraveling the intricate mechanisms underlying DRG stimulation, presenting a framework for the further development of innovative pain modulation strategies that target the DRG.
Collapse
|
33
|
Zhang H, Chen Y, Huang J, Sun W. A simple and sensitive ultra-high performance liquid chromatography tandem mass spectrometry method for the quantitative analysis of VX-548 in monkey plasma: Method validation and application to pharmacokinetic study. Biomed Chromatogr 2024; 38:e5907. [PMID: 38783548 DOI: 10.1002/bmc.5907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
VX-548 is an orally active and highly selective NaV 1.8 inhibitor that is undergoing development for the treatment of acute pain. The aim of this study was to develop a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the measurement of VX-548 in monkey plasma. VX-548 was extracted from the plasma using acetonitrile-mediated protein precipitation. The quantitative analysis was performed on a Thermo Vantage TSQ mass spectrometer with ibrutinib as an internal standard. Chromatography was performed on a Waters ACQUITY UPLC BEH C18 column with 0.1% aqueous formic acid and acetonitrile as mobile phase. The precursor-to-product ion transitions were m/z 474.2 > 165.0 and m/z 441.2 > 138.1 for VX-548 and internal standard, respectively. This developed method was successfully validated in the concentration range of 1-1000 ng/mL. The calibration curve showed excellent linearity with a correlation coefficient of >0.999. The precision expressed as relative standard deviation (RSD) was <8.4%, whereas the accuracy denoted as relative error (RE) ranged from -5.0% to 9.1%. The mean recovery was >84%. VX-548 was stable in monkey plasma after storage under certain conditions. The validated method was successfully applied to the pharmacokinetic study of VX-548 in monkey plasma after single oral (2 mg/kg) and intravenous (1 mg/kg) administrations.
Collapse
Affiliation(s)
- Huiying Zhang
- Department of Pharmacy, Xuzhou Central Hospital, Xuzhou, China
| | - Yonggang Chen
- Department of Pharmacy, Xuzhou Central Hospital, Xuzhou, China
| | - Jing Huang
- Department of Pharmacy, Xuzhou Central Hospital, Xuzhou, China
| | - Wenfei Sun
- Department of Pharmacy, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
34
|
Heinle JW, Dalessio S, Janicki P, Ouyang A, Vrana KE, Ruiz-Velasco V, Coates MD. Insights into the voltage-gated sodium channel, Na V1.8, and its role in visceral pain perception. Front Pharmacol 2024; 15:1398409. [PMID: 38855747 PMCID: PMC11158627 DOI: 10.3389/fphar.2024.1398409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Pain is a major issue in healthcare throughout the world. It remains one of the major clinical issues of our time because it is a common sequela of numerous conditions, has a tremendous impact on individual quality of life, and is one of the top drivers of cost in medicine, due to its influence on healthcare expenditures and lost productivity in those affected by it. Patients and healthcare providers remain desperate to find new, safer and more effective analgesics. Growing evidence indicates that the voltage-gated sodium channel Nav1.8 plays a critical role in transmission of pain-related signals throughout the body. For that reason, this channel appears to have strong potential to help develop novel, more selective, safer, and efficacious analgesics. However, many questions related to the physiology, function, and clinical utility of Nav1.8 remain to be answered. In this article, we discuss the latest studies evaluating the role of Nav1.8 in pain, with a particular focus on visceral pain, as well as the steps taken thus far to evaluate its potential as an analgesic target. We also review the limitations of currently available studies related to this topic, and describe the next scientific steps that have already been undertaken, or that will need to be pursued, to fully unlock the capabilities of this potential therapeutic target.
Collapse
Affiliation(s)
- J. Westley Heinle
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Shannon Dalessio
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Piotr Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Ann Ouyang
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Matthew D. Coates
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
35
|
Xie YF, Yang J, Ratté S, Prescott SA. Similar excitability through different sodium channels and implications for the analgesic efficacy of selective drugs. eLife 2024; 12:RP90960. [PMID: 38687187 PMCID: PMC11060714 DOI: 10.7554/elife.90960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
36
|
Tian J, Bavencoffe AG, Zhu MX, Walters ET. Readiness of nociceptor cell bodies to generate spontaneous activity results from background activity of diverse ion channels and high input resistance. Pain 2024; 165:893-907. [PMID: 37862056 PMCID: PMC10950548 DOI: 10.1097/j.pain.0000000000003091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT Nociceptor cell bodies generate "spontaneous" discharge that can promote ongoing pain in persistent pain conditions. Little is known about the underlying mechanisms. Recordings from nociceptor cell bodies (somata) dissociated from rodent and human dorsal root ganglia have shown that previous pain in vivo is associated with low-frequency discharge controlled by irregular depolarizing spontaneous fluctuations of membrane potential (DSFs), likely produced by transient inward currents across the somal input resistance. Using mouse nociceptors, we show that DSFs are associated with high somal input resistance over a wide range of membrane potentials, including depolarized levels where DSFs approach action potential (AP) threshold. Input resistance and both the amplitude and frequency of DSFs were increased in neurons exhibiting spontaneous activity. Ion substitution experiments indicated that the depolarizing phase of DSFs is generated by spontaneous opening of channels permeable to Na + or Ca 2+ and that Ca 2+ -permeable channels are especially important for larger DSFs. Partial reduction of the amplitude or frequency of DSFs by perfusion of pharmacological inhibitors indicated small but significant contributions from Nav1.7, Nav1.8, TRPV1, TRPA1, TRPM4, and N-type Ca 2+ channels. Less specific blockers suggested a contribution from NALCN channels, and global knockout suggested a role for Nav1.9. The combination of high somal input resistance plus background activity of diverse ion channels permeable to Na + or Ca 2+ produces DSFs that are poised to reach AP threshold if resting membrane potential depolarizes, AP threshold decreases, or DSFs become enhanced-all of which can occur under painful neuropathic and inflammatory conditions.
Collapse
Affiliation(s)
- Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| |
Collapse
|
37
|
Zhang L, Tian J, Lin Z, Dong Z. Efficient Sodium Transmembrane Permeation through Helically Folded Nanopores with Natural Channel-Like Ion Selectivity. J Am Chem Soc 2024; 146:8500-8507. [PMID: 38483183 DOI: 10.1021/jacs.3c14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The selective transmembrane permeation of sodium ions achieved by biomimetic chemistry shows great potential to solve the problem of sodium ion transport blockade in diseases, but its implementation faces enormous difficulties. Herein, we design and synthesize a series of helically folded nanopores by employing a quinoline-oxadiazole structural sequence to finely replicate the pentahydrate structure of sodium ions. Surprisingly, these nanopores are capable of achieving sodium transmembrane permeation with ion selectivity at the level of natural sodium channels, as observed in rationally designed nanopores (M1-M5) with Na+/K+ ion selectivity ratio of up to 20.4. Moreover, slight structural variations in nanopore structures can switch ion transport modes between the channel and carrier. We found that, compared to the carrier mode, the channel mode not only transports ions faster but also has higher ion selectivity during transmembrane conduction, clearly illustrating that the trade-off phenomenon between ion selectivity and transport activity does not occur between the two transport modes of channel and carrier. At the same time, we also found that the spatial position and numbers of coordination sites are crucial for the sodium ion selectivity of the nanopores. Moreover, carrier M1 reported in this work is totally superior to the commercial Na+ carrier ETH2120, especially in terms of Na+/K+ ion selectivity, thus being a potentially practical Na+ carrier. Our study provides a new paradigm on the rational design of sodium-specific synthetic nanopores, which will open up the possibility for the application of artificial sodium-specific transmembrane permeation in biomedicine and disease treatment.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tian
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Lin
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
38
|
Kapur MM, Soliman M, Blanke EN, Herold PB, Janicki PK, Vrana KE, Coates MD, Ruiz-Velasco V. Heterologous expression of the human wild-type and variant Na V 1.8 (A1073V) in rat sensory neurons. Neurogastroenterol Motil 2024; 36:e14748. [PMID: 38263802 PMCID: PMC10922522 DOI: 10.1111/nmo.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Silent inflammatory bowel disease (IBD) is a condition in which individuals with the active disease experience minor to no pain. Voltage-gated Na+ (NaV ) channels expressed in sensory neurons play a major role in pain perception. Previously, we reported that a NaV 1.8 genetic polymorphism (A1073V, rs6795970) was more common in a cohort of silent IBD patients. The expression of this variant (1073V) in rat sympathetic neurons activated at more depolarized potentials when compared to the more common variant (1073A). In this study, we investigated whether expression of either NaV 1.8 variant in rat sensory neurons would exhibit different biophysical characteristics than previously observed in sympathetic neurons. METHODS Endogenous NaV 1.8 channels were first silenced in DRG neurons and then either 1073A or 1073V human NaV 1.8 cDNA constructs were transfected. NaV 1.8 currents were recorded with the whole-cell patch-clamp technique. KEY RESULTS The results indicate that 1073A and 1073V NaV 1.8 channels exhibited similar activation values. However, the slope factor (k) for activation determined for this same group of neurons decreased by 5 mV, suggesting an increase in voltage sensitivity. Comparison of inactivation parameters indicated that 1073V channels were shifted to more depolarized potentials than 1073A-expressing neurons, imparting a proexcitatory characteristic. CONCLUSIONS AND INFERENCES These findings differ from previous observations in other expression models and underscore the challenges with heterologous expression systems. Therefore, the use of human sensory neurons derived from induced pluripotent stem cells may help address these inconsistencies and better determine the effect of the polymorphism present in IBD patients.
Collapse
Affiliation(s)
- Maryam M. Kapur
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Marwa Soliman
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Emily N. Blanke
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Paul B. Herold
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Piotr K. Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew D. Coates
- Department of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, USA
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
39
|
Gilchrist JM, Yang ND, Jiang V, Moyer BD. Pharmacologic Characterization of LTGO-33, a Selective Small Molecule Inhibitor of the Voltage-Gated Sodium Channel Na V1.8 with a Unique Mechanism of Action. Mol Pharmacol 2024; 105:233-249. [PMID: 38195157 DOI: 10.1124/molpharm.123.000789] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space. SIGNIFICANCE STATEMENT: NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.
Collapse
Affiliation(s)
| | - Nien-Du Yang
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| | | | - Bryan D Moyer
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| |
Collapse
|
40
|
Cho JH, Jang IS. Ibuprofen modulates tetrodotoxin-resistant persistent Na + currents at acidic pH in rat trigeminal ganglion neurons. Eur J Pharmacol 2023; 961:176218. [PMID: 37992887 DOI: 10.1016/j.ejphar.2023.176218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve various symptoms such as headache, arthralgia, and dental pain. While the primary mechanism of NSAID-based pain relief is the inhibition of cyclooxygenase-2, several NSAIDs also modulate other molecular targets related to nociceptive transmission such as voltage-gated Na+ channels. In the present study, we examined the effects of NSAIDs on persistent Na+ current (INaP) mediated by tetrodotoxin-resistant (TTX-R) Na+ channels in small-to medium-sized trigeminal ganglion neurons using a whole-cell patch-clamp technique. At clinically relevant concentrations, all propionic acid derivatives tested (ibuprofen, naproxen, fenoprofen, and flurbiprofen) preferentially inhibited the TTX-R INaP. The inhibition was more potent at acidic extracellular pH (pH 6.5) than at normal pH (pH 7.4). Other NSAIDs, such as ketorolac, piroxicam, and aspirin, had a negligible effect on the TTX-R INaP. Ibuprofen both accelerated the onset of inactivation and retarded the recovery from inactivation of TTX-R Na+ channels at acidic extracellular pH. However, all NSAIDs tested in this study had minor effects on voltage-gated K+ currents, as well as hyperpolarization-activated and cyclic nucleotide-gated cation currents, at both acidic and normal extracellular pH. Under current-clamp conditions, ibuprofen decreased the number of action potentials elicited by depolarizing current stimuli at acidic (pH 6.5) extracellular pH. Considering that extracellular pH falls as low as 5.5 in inflamed tissues, TTX-R INaP inhibition could be a mechanism by which ibuprofen and propionic acid derivative NSAIDs modulate inflammatory pain.
Collapse
Affiliation(s)
- Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
41
|
Loose S, Lischka A, Kuehs S, Nau C, Heinemann SH, Kurth I, Leipold E. Peripheral temperature dysregulation associated with functionally altered Na V1.8 channels. Pflugers Arch 2023; 475:1343-1355. [PMID: 37695396 PMCID: PMC10567936 DOI: 10.1007/s00424-023-02856-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
The voltage-gated sodium channel NaV1.8 is prominently expressed in the soma and axons of small-caliber sensory neurons, and pathogenic variants of the corresponding gene SCN10A are associated with peripheral pain and autonomic dysfunction. While most disease-associated SCN10A variants confer gain-of-function properties to NaV1.8, resulting in hyperexcitability of sensory neurons, a few affect afferent excitability through a loss-of-function mechanism. Using whole-exome sequencing, we here identify a rare heterozygous SCN10A missense variant resulting in alteration p.V1287I in NaV1.8 in a patient with a 15-year history of progressively worsening temperature dysregulation in the distal extremities, particularly in the feet. Further symptoms include increasingly intensifying tingling and numbness in the fingers and increased sweating. To assess the impact of p.V1287I on channel function, we performed voltage-clamp recordings demonstrating that the alteration confers loss- and gain-of-function characteristics to NaV1.8 characterized by a right-shifted voltage dependence of channel activation and inactivation. Current-clamp recordings from transfected mouse dorsal root ganglion neurons further revealed that NaV1.8-V1287I channels broaden the action potentials of sensory neurons and increase their firing rates in response to depolarizing current stimulations, indicating a gain-of-function mechanism of the variant at the cellular level in a heterozygous setting. The data support the hypothesis that the properties of NaV1.8 p.V1287I are causative for the patient's symptoms and that nonpainful peripheral paresthesias should be considered part of the clinical spectrum of NaV1.8-associated disorders.
Collapse
Affiliation(s)
- Simon Loose
- Department of Anesthesiology and Intensive Care & CBBM - Center of Brain, Behavior and Metabolism, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Annette Lischka
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Samuel Kuehs
- Department of Anesthesiology and Intensive Care & CBBM - Center of Brain, Behavior and Metabolism, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Carla Nau
- Department of Anesthesiology and Intensive Care & CBBM - Center of Brain, Behavior and Metabolism, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care & CBBM - Center of Brain, Behavior and Metabolism, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
| |
Collapse
|
42
|
Yang R, Wang QQ, Feng Y, Li XH, Li GX, She FL, Zhu XJ, Li CL. Over-expression of miR-3584-5p Represses Nav1.8 Channel Aggravating Neuropathic Pain caused by Chronic Constriction Injury. Mol Neurobiol 2023; 60:5237-5255. [PMID: 37280408 DOI: 10.1007/s12035-023-03394-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Nav1.8, a tetrodotoxin-resistant voltage-gated sodium channels (VGSCs) subtype encoded by SCN10A, which plays an important role in the production and transmission of peripheral neuropathic pain signals. Studies have shown that VGSCs may be key targets of MicroRNAs (miRNAs) in the regulation of neuropathic pain. In our study, bioinformatics analysis showed that the targeting relationship between miR-3584-5p and Nav1.8 was the most closely. The purpose of this study was to investigate the roles of miR-3584-5p and Nav1.8 in neuropathic pain. The effects of miR-3584-5p on chronic constriction injury (CCI)-induced neuropathic pain in rats was investigated by intrathecal injection of miR-3584-5p agomir (an agonist, 20 μM, 15 μL) or antagomir (an antagonist, 20 μM, 15 μL). The results showed that over-expression of miR-3584-5p aggravated neuronal injury by hematoxylin-eosin (H&E) staining and mechanical/thermal hypersensitivity in CCI rats. MiR-3584-5p indirectly inhibited the expression of Nav1.8 by up-regulating the expression of key proteins in the ERK5/CREB signaling pathway, and also inhibited the current density of the Nav1.8 channel, changed its channel dynamics characteristic, thereby accelerating the transmission of pain signals, and further aggravating pain. Similarly, in PC12 and SH-SY5Y cell cultures, miR-3584-5p increased the level of reactive oxygen species (ROS) and inhibited mitochondrial membrane potential (Δψm) in the mitochondrial pathway, decreased the ratio of apoptosis-related factor Bcl-2/Bax, and thus promoted neuronal apoptosis. In brief, over-expression of miR-3584-5p aggravates neuropathic pain by directly inhibiting the current density of Nav1.8 channel and altering its channel dynamics, or indirectly inhibiting Nav1.8 expression through ERK5/CREB pathway, and promoting apoptosis through mitochondrial pathway.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Qian-Qian Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yuan Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xue-Hao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Gui-Xia Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Feng-Lin She
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xi-Jin Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
43
|
Haroun R, Gossage SJ, Luiz AP, Arcangeletti M, Sikandar S, Zhao J, Cox JJ, Wood JN. Chemogenetic Silencing of Na V1.8-Positive Sensory Neurons Reverses Chronic Neuropathic and Bone Cancer Pain in FLEx PSAM 4-GlyR Mice. eNeuro 2023; 10:ENEURO.0151-23.2023. [PMID: 37679042 PMCID: PMC10523839 DOI: 10.1523/eneuro.0151-23.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Drive from peripheral neurons is essential in almost all pain states, but pharmacological silencing of these neurons to effect analgesia has proved problematic. Reversible gene therapy using long-lived chemogenetic approaches is an appealing option. We used the genetically activated chloride channel PSAM4-GlyR to examine pain pathways in mice. Using recombinant AAV9-based delivery to sensory neurons, we found a reversal of acute pain behavior and diminished neuronal activity using in vitro and in vivo GCaMP imaging on activation of PSAM4-GlyR with varenicline. A significant reduction in inflammatory heat hyperalgesia and oxaliplatin-induced cold allodynia was also observed. Importantly, there was no impairment of motor coordination, but innocuous von Frey sensation was inhibited. We generated a transgenic mouse that expresses a CAG-driven FLExed PSAM4-GlyR downstream of the Rosa26 locus that requires Cre recombinase to enable the expression of PSAM4-GlyR and tdTomato. We used NaV1.8 Cre to examine the role of predominantly nociceptive NaV1.8+ neurons in cancer-induced bone pain (CIBP) and neuropathic pain caused by chronic constriction injury (CCI). Varenicline activation of PSAM4-GlyR in NaV1.8-positive neurons reversed CCI-driven mechanical, thermal, and cold sensitivity. Additionally, varenicline treatment of mice with CIBP expressing PSAM4-GlyR in NaV1.8+ sensory neurons reversed cancer pain as assessed by weight-bearing. Moreover, when these mice were subjected to acute pain assays, an elevation in withdrawal thresholds to noxious mechanical and thermal stimuli was detected, but innocuous mechanical sensations remained unaffected. These studies confirm the utility of PSAM4-GlyR chemogenetic silencing in chronic pain states for mechanistic analysis and potential future therapeutic use.
Collapse
Affiliation(s)
- Rayan Haroun
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| | - Samuel J Gossage
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| | - Ana Paula Luiz
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| | - Manuel Arcangeletti
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jing Zhao
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| | - James J Cox
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| | - John N Wood
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
44
|
Jones J, Correll DJ, Lechner SM, Jazic I, Miao X, Shaw D, Simard C, Osteen JD, Hare B, Beaton A, Bertoch T, Buvanendran A, Habib AS, Pizzi LJ, Pollak RA, Weiner SG, Bozic C, Negulescu P, White PF. Selective Inhibition of Na V1.8 with VX-548 for Acute Pain. N Engl J Med 2023; 389:393-405. [PMID: 37530822 DOI: 10.1056/nejmoa2209870] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND The NaV1.8 voltage-gated sodium channel, expressed in peripheral nociceptive neurons, plays a role in transmitting nociceptive signals. The effect of VX-548, an oral, highly selective inhibitor of NaV1.8, on control of acute pain is being studied. METHODS After establishing the selectivity of VX-548 for NaV1.8 inhibition in vitro, we conducted two phase 2 trials involving participants with acute pain after abdominoplasty or bunionectomy. In the abdominoplasty trial, participants were randomly assigned in a 1:1:1:1 ratio to receive one of the following over a 48-hour period: a 100-mg oral loading dose of VX-548, followed by a 50-mg maintenance dose every 12 hours (the high-dose group); a 60-mg loading dose of VX-548, followed by a 30-mg maintenance dose every 12 hours (the middle-dose group); hydrocodone bitartrate-acetaminophen (5 mg of hydrocodone bitartrate and 325 mg of acetaminophen every 6 hours); or oral placebo every 6 hours. In the bunionectomy trial, participants were randomly assigned in a 2:2:1:2:2 ratio to receive one of the following over a 48-hour treatment period: oral high-dose VX-548; middle-dose VX-548; low-dose VX-548 (a 20-mg loading dose, followed by a 10-mg maintenance dose every 12 hours); oral hydrocodone bitartrate-acetaminophen (5 mg of hydrocodone bitartrate and 325 mg of acetaminophen every 6 hours); or oral placebo every 6 hours. The primary end point was the time-weighted sum of the pain-intensity difference (SPID) over the 48-hour period (SPID48), a measure derived from the score on the Numeric Pain Rating Scale (range, 0 to 10; higher scores indicate greater pain) at 19 time points after the first dose of VX-548 or placebo. The main analysis compared each dose of VX-548 with placebo. RESULTS A total of 303 participants were enrolled in the abdominoplasty trial and 274 in the bunionectomy trial. The least-squares mean difference between the high-dose VX-548 and placebo groups in the time-weighted SPID48 was 37.8 (95% confidence interval [CI], 9.2 to 66.4) after abdominoplasty and 36.8 (95% CI, 4.6 to 69.0) after bunionectomy. In both trials, participants who received lower doses of VX-548 had results similar to those with placebo. Headache and constipation were common adverse events with VX-548. CONCLUSIONS As compared with placebo, VX-548 at the highest dose, but not at lower doses, reduced acute pain over a period of 48 hours after abdominoplasty or bunionectomy. VX-548 was associated with adverse events that were mild to moderate in severity. (Funded by Vertex Pharmaceuticals; VX21-548-101 and VX21-548-102 ClinicalTrials.gov numbers, NCT04977336 and NCT05034952.).
Collapse
Affiliation(s)
- Jim Jones
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Darin J Correll
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Sandra M Lechner
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Ina Jazic
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Xiaopeng Miao
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - David Shaw
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Christopher Simard
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Jeremiah D Osteen
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Brian Hare
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Alina Beaton
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Todd Bertoch
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Asokumar Buvanendran
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Ashraf S Habib
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Lois J Pizzi
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Richard A Pollak
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Scott G Weiner
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Carmen Bozic
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Paul Negulescu
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| | - Paul F White
- From Vertex Pharmaceuticals (J.J., D.J.C., S.M.L., I.J., X.M., D.S., C.S., J.D.O., B.H., C.B., P.N.) and Brigham and Women's Hospital (S.G.W.) - both in Boston; Lotus Clinical Research, Pasadena (A. Beaton), Cedars-Sinai Medical Center, Los Angeles (P.F.W.), and White Mountain Institute, Sea Ranch (P.F.W.) - all in California; JBR Clinical Research, Salt Lake City (T.B.); Rush University Medical Center, Chicago (A. Buvanendran); Duke University School of Medicine, Durham, NC (A.S.H.); the University of Pittsburgh Medical Center, Pittsburgh (L.J.P.); and Endeavor Clinical Trials, San Antonio, TX (R.A.P.)
| |
Collapse
|
45
|
Kim G, Kim H, Jang IS. Trichloroethanol, an active metabolite of chloral hydrate, modulates tetrodotoxin-resistant Na + channels in rat nociceptive neurons. BMC Anesthesiol 2023; 23:145. [PMID: 37120567 PMCID: PMC10148498 DOI: 10.1186/s12871-023-02105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Chloral hydrate is a sedative-hypnotic drug widely used for relieving fear and anxiety in pediatric patients. However, mechanisms underlying the chloral hydrate-mediated analgesic action remain unexplored. Therefore, we investigated the effect of 2',2',2'-trichloroethanol (TCE), the active metabolite of chloral hydrate, on tetrodotoxin-resistant (TTX-R) Na+ channels expressed in nociceptive sensory neurons. METHODS The TTX-R Na+ current (INa) was recorded from acutely isolated rat trigeminal ganglion neurons using the whole-cell patch-clamp technique. RESULTS Trichloroethanol decreased the peak amplitude of transient TTX-R INa in a concentration-dependent manner and potently inhibited persistent components of transient TTX-R INa and slow voltage-ramp-induced INa at clinically relevant concentrations. Trichloroethanol exerted multiple effects on various properties of TTX-R Na+ channels; it (1) induced a hyperpolarizing shift on the steady-state fast inactivation relationship, (2) increased use-dependent inhibition, (3) accelerated the onset of inactivation, and (4) retarded the recovery of inactivated TTX-R Na+ channels. Under current-clamp conditions, TCE increased the threshold for the generation of action potentials, as well as decreased the number of action potentials elicited by depolarizing current stimuli. CONCLUSIONS Our findings suggest that chloral hydrate, through its active metabolite TCE, inhibits TTX-R INa and modulates various properties of these channels, resulting in the decreased excitability of nociceptive neurons. These pharmacological characteristics provide novel insights into the analgesic efficacy exerted by chloral hydrate.
Collapse
Affiliation(s)
- Gimin Kim
- Department of Pediatric Dentistry, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Hyunjung Kim
- Department of Pediatric Dentistry, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
46
|
Ovsepian SV, Waxman SG. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors. Nat Rev Neurosci 2023; 24:252-265. [PMID: 36658346 DOI: 10.1038/s41583-022-00673-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.
Collapse
Affiliation(s)
- Saak V Ovsepian
- School of Science, Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, UK.
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
47
|
Li Z, Gan Y, Kang T, Zhao Y, Huang T, Chen Y, Liu J, Ke B. Camphor Attenuates Hyperalgesia in Neuropathic Pain Models in Mice. J Pain Res 2023; 16:785-795. [PMID: 36925623 PMCID: PMC10013580 DOI: 10.2147/jpr.s398607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Background The treatment of neuropathic pain is still a major troublesome clinical problem. The existing therapeutic drugs have limited analgesic effect and obvious adverse reactions, which presents opportunities and challenges for the development of new analgesic drugs. Camphor, a kind of monoterpene, has been shown anti-inflammatory and analgesic effects in traditional Chinese medicine. But we know little about its effect in neuropathic pain. In this article, We have verified the reliable analgesic effect of camphor in the neuropathic pain model caused by different predispositions. Methods The nociceptive response of mice was induced by transient receptor potential A1 (TRPA1) agonist to verify the effect of camphor on the nociceptive response. Multiple paclitaxel (PTX) injection models, Single oxaliplatin (OXA) injection models, Chronic constriction injury (CCI) models and Streptozotocin-induced (STZ) diabetic neuropathic pain models were used in this study. We verified the analgesic effect of camphor in mice by acetone test and conditioned place aversion test. At the same time, comparing the adverse reaction of nervous system between camphor and pregabalin at equivalent dose in locomotor activity test and rotarod test. Using patch clamp to verify the effect of camphor on dorsal root ganglion (DRG) excitability. Results In behavioral test, compared with vehicle group, camphor significantly reduced the spontaneous nociception caused by TRPA1 agonist-formalina and allyl isothiocyanate (AITC). Compared with vehicle group, camphor significantly reduced the flinching and licking time in neuropathic pain model mice, including PTX, OXA, STZ and CCI induced peripheral neuralgia models. Compared with vehicle group, pregabalin significantly increased the resting time and reduced the average speed without resting and distance in locomotor activity test, reduced the time stayed on rotarod in rotarod test. In patch clamp test, compared with vehicle group, camphor significantly reduced the action potential (AP) firing frequency of DRG. Conclusion Camphor can alleviate the symptoms of hyperalgesia in various neuropathic pain models, and has no obvious adverse reactions compared with pregabalin. This effect is related to the down-regulation of DRG neuron excitability.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ting Kang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yi Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Tianguang Huang
- Frontiers Science Center for Disease-Related Molecular Network, Sichuan University West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yuhao Chen
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
48
|
Kim RE, Choi JS. Polysorbate 80 blocked a peripheral sodium channel, Na v1.7, and reduced neuronal excitability. Mol Pain 2023; 19:17448069221150138. [PMID: 36550597 PMCID: PMC9829885 DOI: 10.1177/17448069221150138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Polysorbate 80 is a non-ionic detergent derived from polyethoxylated sorbitan and oleic acid. It is widely used in pharmaceuticals, foods, and cosmetics as an emulsifier. Nav1.7 is a peripheral sodium channel that is highly expressed in sympathetic and sensory neurons, and it plays a critical role in determining the threshold of action potentials (APs). We found that 10 μg/mL polysorbate 80 either abolished APs or increased the threshold of the APs of dorsal root ganglions. We thus investigated whether polysorbate 80 inhibits Nav1.7 sodium current using a whole-cell patch-clamp recording technique. Polysorbate 80 decreased the Nav1.7 current in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 250.4 μg/mL at a holding potential of -120 mV. However, the IC50 was 1.1 μg/mL at a holding potential of -90 mV and was estimated to be 0.9 μg/mL at the resting potentials of neurons, where most channels are inactivated. The activation rate and the voltage dependency of activation of Nav1.7 were not changed by polysorbate 80. However, polysorbate 80 caused hyperpolarizing shifts in the voltage dependency of the steady-state fast inactivation curve. The blocking of Nav1.7 currents by polysorbate 80 was not reversible at a holding potential of -90 mV but was completely reversible at -120 mV, where the channels were mostly in the closed state. Polysorbate 80 also slowed recovery from inactivation and induced robust use-dependent inhibition, indicating that it is likely to bind to and stabilize the inactivated state. Our results indicate that polysorbate 80 inhibits Nav1.7 current in concentration-, state-, and use-dependent manners when used even below commercial concentrations. This suggests that polysorbate 80 may be helpful in pain medicine as an excipient. In addition, in vitro experiments using polysorbate 80 with neurons should be conducted with caution.
Collapse
Affiliation(s)
| | - Jin-Sung Choi
- Jin-Sung Choi, Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, South Korea.
| |
Collapse
|
49
|
Abstract
ABSTRACT Ambroxol is a multifaceted drug with primarily mucoactive and secretolytic actions, along with anti-inflammatory, antioxidant, and local anaesthetic properties. It has a long history of use in the treatment of respiratory tract diseases and has shown to be efficacious in relieving sore throat. In more recent years, ambroxol has gained interest for its potential usefulness in treating neuropathic pain. Research into this area has been slow, despite clear preclinical evidence to support its primary analgesic mechanism of action-blockade of voltage-gated sodium (Na v ) channels in sensory neurons. Ambroxol is a commercially available inhibitor of Na v 1.8, a crucial player in the pathophysiology of neuropathic pain, and Na v 1.7, a particularly exciting target for the treatment of chronic pain. In this review, we discuss the analgesic mechanisms of action of ambroxol, as well as proposed synergistic properties, followed by the preclinical and clinical results of its use in the treatment of persistent pain and neuropathic pain symptoms, including trigeminal neuralgia, fibromyalgia, and complex regional pain syndrome. With its well-established safety profile, extensive preclinical and clinical drug data, and early evidence of clinical effectiveness, ambroxol is an old drug worthy of further investigation for repurposing. As a patent-expired drug, a push is needed to progress the drug to clinical trials for neuropathic pain. We encourage the pharmaceutical industry to look at patented drug formulations and take an active role in bringing an optimized version for neuropathic pain to market.
Collapse
|
50
|
Martinowich K, Das D, Sripathy SR, Mai Y, Kenney RF, Maher BJ. Evaluation of Na v1.8 as a therapeutic target for Pitt Hopkins Syndrome. Mol Psychiatry 2023; 28:76-82. [PMID: 36224259 PMCID: PMC9812766 DOI: 10.1038/s41380-022-01811-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/20/2022] [Indexed: 02/06/2023]
Abstract
Pitt Hopkins Syndrome (PTHS) is a rare syndromic form of autism spectrum disorder (ASD) caused by autosomal dominant mutations in the Transcription Factor 4 (TCF4) gene. TCF4 is a basic helix-loop-helix transcription factor that is critical for neurodevelopment and brain function through its binding to cis-regulatory elements of target genes. One potential therapeutic strategy for PTHS is to identify dysregulated target genes and normalize their dysfunction. Here, we propose that SCN10A is an important target gene of TCF4 that is an applicable therapeutic approach for PTHS. Scn10a encodes the voltage-gated sodium channel Nav1.8 and is consistently shown to be upregulated in PTHS mouse models. In this perspective, we review prior literature and present novel data that suggests inhibiting Nav1.8 in PTHS mouse models is effective at normalizing neuron function, brain circuit activity and behavioral abnormalities and posit this therapeutic approach as a treatment for PTHS.
Collapse
Affiliation(s)
- Keri Martinowich
- grid.429552.d0000 0004 5913 1291Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Debamitra Das
- grid.429552.d0000 0004 5913 1291Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205 USA
| | - Srinidhi Rao Sripathy
- grid.429552.d0000 0004 5913 1291Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205 USA
| | - Yishan Mai
- grid.429552.d0000 0004 5913 1291Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205 USA
| | - Rakaia F. Kenney
- grid.429552.d0000 0004 5913 1291Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205 USA
| | - Brady J. Maher
- grid.429552.d0000 0004 5913 1291Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|