1
|
Xu NW, Lenczewska O, Wieten SE, Federico CA, Dabiri JO. Ethics of biohybrid robotics and invertebrate research: biohybrid robotic jellyfish as a case study. BIOINSPIRATION & BIOMIMETICS 2025; 20:033001. [PMID: 40085970 DOI: 10.1088/1748-3190/adc0d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/14/2025] [Indexed: 03/16/2025]
Abstract
Invertebrate research ethics has largely been ignored compared to the consideration of higher order animals, but more recent focus has questioned this trend. Using the robotic control ofAurelia auritaas a case study, we examine ethical considerations in invertebrate work and provide recommendations for future guidelines. We also analyze these issues for prior bioethics cases, such as cyborg insects and the 'microslavery' of microbes. However, biohybrid robotic jellyfish pose further ethical questions regarding potential ecological consequences as ocean monitoring tools, including the impact of electronic waste in the ocean. After in-depth evaluations, we recommend that publishers require brief ethical statements for invertebrate research, and we delineate the need for invertebrate nociception studies to revise or validate current standards. These actions provide a stronger basis for the ethical study of invertebrates, with implications for individual, species-wide, and ecological impacts, as well as for studies in science, engineering, and philosophy.
Collapse
Affiliation(s)
- Nicole W Xu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States of America
- Robotics Program, University of Colorado Boulder, Boulder, CO, United States of America
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, United States of America
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
| | - Olga Lenczewska
- Department of Philosophy, Florida State University, Tallahassee, FL, United States of America
| | - Sarah E Wieten
- Department of Philosophy, Durham University, Durham, United Kingdom
- Center for Biomedical Ethics, School of Medicine, Stanford University, Stanford, CA, United States of America
| | - Carole A Federico
- Center for Biomedical Ethics, School of Medicine, Stanford University, Stanford, CA, United States of America
| | - John O Dabiri
- Graduate Aerospace Laboratories (GALCIT), California Institute of Technology, Pasadena, CA, United States of America
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
2
|
Wilbanks B, Rolli J, Pearson K, Hrstka SCL, Hrstka RF, Warrington AE, Staff NP, Maher LJ. Selection of DNA Aptamers That Promote Neurite Outgrowth in Human iPSC-Derived Sensory Neuron Organoid Cultures. ACS Chem Neurosci 2025; 16:1258-1263. [PMID: 40098362 PMCID: PMC11969424 DOI: 10.1021/acschemneuro.5c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
Sensory neurons in the dorsal root ganglia transmit sensory signals from the periphery to the central nervous system. Induced pluripotent stem cell derived models of sensory neurons and dorsal root ganglia are among the most advanced available tools for the study of sensory neuron activity and development in human genetic backgrounds. However, few available reagents modify sensory neuron growth with disease or other model-relevant outcomes. Small molecules, peptides, or oligonucleotides that predictably alter sensory neuron behavior in these contexts would be valuable tools with potentially wide-ranging application. Here we describe the selection and characterization of DNA aptamers that specifically interact with human sensory neurons. Several selected aptamers increase neurite outgrowth from sensory neuron organoid cultures after single-dose treatments.
Collapse
Affiliation(s)
- Brandon Wilbanks
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Rochester, Minnesota 55905, United States
| | - Jenelle Rolli
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Rochester, Minnesota 55905, United States
| | - Keenan Pearson
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Rochester, Minnesota 55905, United States
| | - Sybil C. L. Hrstka
- Department
of Neurology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Ronald F. Hrstka
- Department
of Neurology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Arthur E. Warrington
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Nathan P. Staff
- Department
of Neurology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - L. James Maher
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Rochester, Minnesota 55905, United States
| |
Collapse
|
3
|
Tobori S, Tamada K, Uemura N, Sawada K, Kakae M, Nagayasu K, Nakagawa T, Mori Y, Kaneko S, Shirakawa H. Spinal TRPC3 promotes neuropathic pain and coordinates phospholipase C-induced mechanical hypersensitivity. Proc Natl Acad Sci U S A 2025; 122:e2416828122. [PMID: 40080643 PMCID: PMC11929457 DOI: 10.1073/pnas.2416828122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/12/2025] [Indexed: 03/15/2025] Open
Abstract
Neuropathic pain is a debilitating chronic condition mainly caused by peripheral nerve injury. However, the cellular and molecular mechanisms underlying this condition remain unclear. Transient receptor potential canonical 3 (TRPC3), a TRP channel that is activated by downstream of the Gq-phospholipase C (PLC) axis, is expressed in the somatosensory system. Therefore, the present study investigated its pathophysiological role in neuropathic pain following peripheral nerve injury. Here, partial sciatic nerve ligation (pSNL) elicited mechanical and thermal hypersensitivity in wild-type mice, which was suppressed in TRPC3-KO mice. In situ hybridization revealed that TRPC3 is predominantly expressed in neurons in the spinal dorsal horn. Furthermore, spinal dorsal horn neuron-specific downregulation using miRNA attenuated pSNL-induced mechanical hypersensitivity. Spinal TRPC3 activation elicited acute mechanical hypersensitivity. Moreover, its genetic ablation reduced the mechanical hypersensitivity caused by spinal NK1R or PLC activation. These findings demonstrate that TRPC3 in spinal dorsal horn neurons facilitates the development of neuropathic pain. Therefore, TRPC3 may be a promising therapeutic target for neuropathic pain caused by peripheral nerve injury.
Collapse
Affiliation(s)
- Shota Tobori
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kosei Tamada
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Nagi Uemura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kyoko Sawada
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Department of Clinical Pharmacology and Pharmacotherapy, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Pharmacotherapy, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
4
|
Mota-Rojas D, Whittaker AL, Coria-Avila GA, Martínez-Burnes J, Mora-Medina P, Domínguez-Oliva A, Hernández-Avalos I, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Grandin T. How facial expressions reveal acute pain in domestic animals with facial pain scales as a diagnostic tool. Front Vet Sci 2025; 12:1546719. [PMID: 40104548 PMCID: PMC11913824 DOI: 10.3389/fvets.2025.1546719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
The growing interest in managing and recognizing pain in animals has led to the search for more sensitive methods to evaluate it, especially because some species conceal any visible changes associated with pain or are not easily assessed. Research has shown that an animal's facial expression changes when exposed to painful stimuli. Thus, developing several pain scales (grimace scales) in species such as horses, cattle, pigs, sheep, donkeys, rabbits, rats, mice, and cats has helped to improve the study of pain in veterinary medicine. The possibility of using facial expression as an indicator of pain is due to the direct relationship between the activation of different regions of the Central Nervous System such as the somatosensory cortex, prefrontal cortex, amygdala, hippocampus, and hypothalamus, and their connections with the motor cortex to elicit motor responses including the movement of facial muscles. The present review aims to discuss the neurobiological association between acute pain and facial expressions in animals. It will analyze the importance of facial expression characterization and the use of grimace scales in farm, companion, and laboratory species.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Genaro A Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Julio Martínez-Burnes
- Instituto de Ecología Aplicada, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Temple Grandin
- Department of Animal Science, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
5
|
Scaini S, Davies S, De Francesco S, Pelucchi A, Rubino S, Battaglia M. Altered pain perception and nociceptive thresholds in major depression and anxiety disorders: A meta-analysis. Neurosci Biobehav Rev 2025; 169:106014. [PMID: 39828235 DOI: 10.1016/j.neubiorev.2025.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Psychiatric conditions can affect the experience of pain. Several reports indicate that Major Depressive Disorder (MDD) is associated with an increased pain threshold, while Anxiety Disorders (ADs) may amplify the perception of pain. However, available data on the nociceptive threshold in these psychiatric conditions are controversial. This meta-analysis examines: 1) the nociceptive threshold among people diagnosed with MDD or ADs compared to healthy controls, and 2) the available evidence that pharmacological treatments affect these relationships. Electronic searches were conducted in PubMed and PsycINFO between June 2022 and December 2024. A total of 25 studies were included. "Pain threshold" measurement was considered as a direct comparison between subjects affected by MDD or ADs (both medicated and unmedicated) and healthy control subjects. For each study, the effect size (ES) was calculated, with a positive ES indicating a lower pain threshold. The heterogeneity of the specific set of effect sizes and the effects of selected moderators were tested using the I² index and the Q statistic. Results indicated that patients with Major Depressive Disorder (MDD) had a higher pain threshold (ES: -0.60), while those with Anxiety Disorders (ADs) had a lower pain threshold (ES: -0.34) compared to healthy controls. These findings were confirmed when analyses were limited to studies of unmedicated patients. Exploratory analyses restricted to studies containing medicated MDD patients were inconclusive, and for medicated ADs patients, analyses were not possible due to insufficient data. These meta-analytic data support higher pain threshold associated with MDD, and lower pain threshold associated with ADs.
Collapse
Affiliation(s)
- Simona Scaini
- Child and Youth Lab, Sigmund Freud University, Milan, Italy; Child and Adolescent Unit, Italian Psychotherapy Clinics, Milan, Italy.
| | - Simon Davies
- Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada
| | | | | | - Sofia Rubino
- Child and Youth Lab, Sigmund Freud University, Milan, Italy
| | - Marco Battaglia
- Department of Psychiatry, University of Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada; Cundill Centre for Child and Youth Depression, Toronto, ON, Canada
| |
Collapse
|
6
|
Dyson A, Gajjar G, Hoffman KC, Lewis D, Palega S, Rangel Silva E, Auwn J, Bellemer A. A nociceptor-specific RNAi screen in Drosophila larvae identifies RNA-binding proteins that regulate thermal nociception. PeerJ 2025; 13:e18857. [PMID: 39866556 PMCID: PMC11759608 DOI: 10.7717/peerj.18857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity. The larvae of Drosophila melanogaster have been developed as a powerful model for studying mechanisms of nociception, nociceptor plasticity, and nociceptor development. Diverse RNA-binding proteins regulate the development and morphology of larval nociceptors, implying important roles for post-transcriptional regulation of gene expression in these neurons, but the importance of these mechanisms for nociceptive behavior has not been investigated systematically. In this study, we conducted a nociceptor-specific RNAi screen of 112 candidate RNA-binding protein genes to identify those that are required for normal sensitivity to noxious thermal stimuli. The screen and subsequent validation experiments identified nine candidate genes (eIF2α, eIF4A, eIF4AIII, eIF4G2, mbl, SC35, snf, Larp4B and CG10445) that produce defects in nociceptive response latency when knocked down in larval nociceptors. Some of the genes identified have well-understood roles in the regulation of translation initiation and regulation of nociceptor sensitization in vertebrate and invertebrate animal models, suggesting an evolutionarily conserved role for these mechanisms in regulating nociceptor sensitivity. Other screen isolates have previously described roles in regulating nociceptor morphology and mRNA processing, but less clear roles in regulating nociceptor function. Further studies will be necessary to identify the mechanisms by which the identified RNA-binding proteins regulate sensory neuron function and the identities of the mRNAs that they target.
Collapse
Affiliation(s)
- Amber Dyson
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Gita Gajjar
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, North Carolina, United States
| | - Katherine C. Hoffman
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Dakota Lewis
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Sara Palega
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Erik Rangel Silva
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - James Auwn
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| | - Andrew Bellemer
- Department of Biology, Appalachian State University, Boone, North Carolina, United States
| |
Collapse
|
7
|
Brooks SG, King J, Smith JA, Yosipovitch G. Cough and itch: Common mechanisms of irritation in the throat and skin. J Allergy Clin Immunol 2025; 155:36-52. [PMID: 39321991 DOI: 10.1016/j.jaci.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Cough and itch are protective mechanisms in the body. Cough occurs as a reflex motor response to foreign body inhalation, while itch is a sensation that similarly evokes a scratch response to remove irritants from the skin. Both cough and itch can last for sustained periods, leading to debilitating chronic disorders that negatively impact quality of life. Understanding the parallels and differences between chronic cough and chronic itch may be paramount to developing novel therapeutic approaches. In this article, we identify connections in the mechanisms contributing to the complex cough and scratch reflexes and summarize potential shared therapeutic targets. An online search was performed using various search engines, including PubMed, Web of Science, Google Scholar, and ClinicalTrials.gov from 1983 to 2024. Articles were assessed for quality, and those relevant to the objective were analyzed and summarized. The literature demonstrated similarities in the triggers, peripheral and central nervous system processing, feedback mechanisms, immunologic mediators, and receptors involved in the cough and itch responses, with the neuronal sensitization processes exhibiting the greatest parallels between cough and itch. Given the substantial impact on quality of life, novel therapies targeting similar neuroimmune pathways may apply to both itch and cough and provide new avenues for enhancing their management.
Collapse
Affiliation(s)
- Sarah G Brooks
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla
| | - Jenny King
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Wythenshawe Hospital, University of Manchester, Manchester, United Kingdom; North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jaclyn Ann Smith
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Wythenshawe Hospital, University of Manchester, Manchester, United Kingdom; North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla.
| |
Collapse
|
8
|
Lennox-Bulow D, Courtney R, Seymour J. Geographic variation in stonefish (Synanceia spp.) venom. Toxicon 2025; 254:108222. [PMID: 39725328 DOI: 10.1016/j.toxicon.2024.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Stonefish (Synanceia spp.) possess a medically significant venom and are widely distributed throughout the Indo-Pacific. Yet, little is known about how the ecology of these animals may influence their venom. The aim of this study was to explore the effect of species and geographic location on stonefish venom composition. We collected the venom of Synanceia horrida (Estuarine Stonefish) and Synanceia verrucosa (Reef Stonefish) from various locations across Australia (Cairns, Brisbane, Caloundra, and Onslow), and Southeast Asia (Kota Kinabalu, and Cebu) and analysed these samples using SDS-PAGE, FPLC, and HPLC. Stonefish have a complex venom comprised of numerous components. Stonefish venom exhibited both similarities and variations in composition within species between geographically isolated populations, as well as between species in a single location. We speculate that the observed geographic and interspecific trends may be driven by similarities and differences in the selective pressures faced by these animals, particularly those associated with predator dynamics. The findings of this study have furthered our understanding of the ecology of stonefish and their toxins.
Collapse
Affiliation(s)
- Danica Lennox-Bulow
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia.
| | - Robert Courtney
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| |
Collapse
|
9
|
Karcz M, Abd-Elsayed A, Chakravarthy K, Aman MM, Strand N, Malinowski MN, Latif U, Dickerson D, Suvar T, Lubenow T, Peskin E, D’Souza R, Cornidez E, Dudas A, Lam C, Farrell II M, Sim GY, Sebai M, Garcia R, Bracero L, Ibrahim Y, Mahmood SJ, Lawandy M, Jimenez D, Shahgholi L, Sochacki K, Ramadan ME, Tieppo Francio V, Sayed D, Deer T. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). J Pain Res 2024; 17:3757-3790. [PMID: 39583192 PMCID: PMC11581984 DOI: 10.2147/jpr.s475351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pain serves as a vital innate defense mechanism that can significantly impact an individual's quality of life. Understanding the physiological effects of pain well plays an important role in developing novel pain treatments. Nociceptor neurons play a key role in pain and inflammation. Interactions between nociceptors and the immune system occur both at the site of injury and within the central nervous system. Modulating chemical mediators and nociceptor activity offers promising new approaches to pain management. Essentially, the sensory nervous system is essential for modulating the body's protective response, making it critical to understand these interactions to discover new pain treatment strategies. New innovations in neuromodulation have led to alternatives to opioids individuals with chronic pain with consequent improvement in disease-based treatment and nerve targeting. New neural targets from cellular and structural perspectives have revolutionized the field of neuromodulation. This narrative review aims to elucidate the mechanisms of pain transmission and processing, examine the characteristics and properties of nociceptors, and explore how the immune system influences pain perception. It further provides an updated overview of the physiology of pain and neuromodulatory mechanisms essential for managing acute and chronic pain. We assess the current understanding of different pain types, focusing on key molecules involved in each type and their physiological effects. Additionally, we compare painful and painless neuropathies and discuss the neuroimmune interactions involved in pain manifestation.
Collapse
Affiliation(s)
- Marcin Karcz
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | | | - Mansoor M Aman
- Aurora Pain Management, Aurora Health Care, Oshkosh, WI, USA
| | - Natalie Strand
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Mark N Malinowski
- OhioHealth Neurological Physicians, OhioHealth Inc, Columbus, OH, USA
| | - Usman Latif
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David Dickerson
- Department of Pain Medicine, Northshore University Health System, Skokie, IL, USA
| | - Tolga Suvar
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Timothy Lubenow
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Evan Peskin
- Department of Pain Management, Insight Institute of Neurosurgery & Neuroscience, Flint, MI, USA
| | - Ryan D’Souza
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Andrew Dudas
- Mays and Schnapp Neurospine and Pain, Memphis, TN, USA
| | - Christopher Lam
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Farrell II
- Department of Pain Management, Erie County Medical Center, Buffalo, NY, USA
| | - Geum Yeon Sim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Mohamad Sebai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosa Garcia
- Department of Physical Medicine & Rehabilitation, Larkin Hospital Health System, Miami, FL, USA
| | - Lucas Bracero
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Yussr Ibrahim
- Department of Pain Management at Northern Light Health – Eastern Maine Medical Center, Bangor, ME, USA
| | - Syed Jafar Mahmood
- Department of Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Marco Lawandy
- Department of Physical Medicine & Rehabilitation, Montefiore Medical Center, Bronx, NY, USA
| | - Daniel Jimenez
- Department of Physical Medicine & Rehabilitation, Michigan State University, Lansing, MI, USA
| | - Leili Shahgholi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Sochacki
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson, New Brunswick, NJ, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinicius Tieppo Francio
- Division of Pain Medicine, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
10
|
Asiri YI, Moni SS, Ramar M, Chidambaram K. Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings. Pharmaceuticals (Basel) 2024; 17:1439. [PMID: 39598351 PMCID: PMC11597627 DOI: 10.3390/ph17111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Despite major advancements in our understanding of its fundamental causes, pain-both acute and chronic-remains a serious health concern. Various preclinical investigations utilizing diverse animal, cellular, and alternative models are required and frequently demanded by regulatory approval bodies to bridge the gap between the lab and the clinic. Investigating naturally occurring painful disorders can speed up medication development at the preclinical and clinical levels by illuminating molecular pathways. A wide range of animal models related to pain have been developed to elucidate pathophysiological mechanisms and aid in identifying novel targets for treatment. Pain sometimes drugs fail clinically, causing high translational costs due to poor selection and the use of preclinical tools and reporting. To improve the study of pain in a clinical context, researchers have been creating innovative models over the past few decades that better represent pathological pain conditions. In this paper, we provide a summary of traditional animal models, including rodents, cellular models, human volunteers, and alternative models, as well as the specific characteristics of pain diseases they model. However, a more rigorous approach to preclinical research and cutting-edge analgesic technologies may be necessary to successfully create novel analgesics. The research highlights from this review emphasize new opportunities to develop research that includes animals and non-animals using proven methods pertinent to comprehending and treating human suffering. This review highlights the value of using a variety of modern pain models in animals before human trials. These models can help us understand the different mechanisms behind various pain types. This will ultimately lead to the development of more effective pain medications.
Collapse
Affiliation(s)
- Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| |
Collapse
|
11
|
Ameen-Ali KE, Allen C. The 3Rs in zebrafish research. Zebrafish 2024:225-250. [DOI: 10.1079/9781800629431.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
12
|
Kasiouras E, Hubbard PC, Gräns A, Sneddon LU. Putative Nociceptive Responses in a Decapod Crustacean: The Shore Crab ( Carcinus maenas). BIOLOGY 2024; 13:851. [PMID: 39596806 PMCID: PMC11591628 DOI: 10.3390/biology13110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Nociceptors are receptors that detect injurious stimuli and are necessary to convey such information from the periphery to the central nervous system. While nociception has been extensively studied in various taxa, there is relatively little electrophysiological evidence for the existence of nociceptors in decapod crustaceans. This study investigated putative nociceptive responses in the shore crabs, specifically their response to mechanical and noxious chemical stimuli. Extracellular multi-unit electrophysiological recordings were conducted from the anterior ganglion and the circumesophageal connective ganglia to assess nociceptive responses. Soft tissues at the joints of the chelae, antennae, and walking legs were stimulated using acetic acid (noxious stimulus) and von Frey hairs (mechanical stimulus), while nearby ganglion activity was recorded. The results indicate the existence of nociceptors in the tested areas, with mechanical stimuli eliciting shorter, more intense neural activity compared with acetic acid. Although acetic acid triggered responses in all areas, the antennae and antennules did not respond to mechanical stimuli. Though we acknowledge the challenges of conducting in vivo electrophysiological recordings, future research should focus on further characterizing nociceptor activity because the results suggest the presence of nociceptors.
Collapse
Affiliation(s)
- Eleftherios Kasiouras
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 463, 405 31 Gothenburg, Sweden;
| | - Peter C. Hubbard
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Albin Gräns
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, P.O. Box 463, 405 31 Gothenburg, Sweden;
| | - Lynne U. Sneddon
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 463, 405 31 Gothenburg, Sweden;
| |
Collapse
|
13
|
Khan A, Kashtoh H, Rehman NU, Shahid M, Ullah I, Khalid A, Jan A, Ahsan Halim S, Baek KH, Al-Harrasi A. Novel efficacy of pregnane and flavonoid glycosides from Desmidorchis flava in in vivo nociceptive and inflammatory paradigms and their target prediction by cheminformatics approach. Nat Prod Res 2024:1-9. [PMID: 39340238 DOI: 10.1080/14786419.2024.2407508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Inflammation is associated with multiple life-threatening conditions. Desmidorchis flava is an edible plant and traditionally used for managing various diseases. Three novel molecules, namely desmiflavaside-C (1), nizwaside (2), and desmiflanoside (3) were isolated from Desmidorchis flava, and their structures were confirmed by mass spectrometry and through reported literature. These compounds were in vivo examined for antinociceptive (tonic visceral nociception) and anti-inflammatory (carrageenan induced paw edema) activities. Significant antinociceptive potential was demonstrated by compound 1 at 0.5 and 1 mg/kg doses followed by compounds 2 and 3. At similar doses, significant anti-inflammatory activity was noted for all the tested compounds. Their antinociceptive and anti-inflammatory activities were comparable to the reference standards. In silico predicted binding modes suggests that these compounds may target allosteric sites of COX-1 and COX-2 enzymes to elicit their anti-inflammatory activities. These isolated natural products may have therapeutic potential in conditions afflicted with pain and inflammation.
Collapse
Affiliation(s)
- Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Muhammad Shahid
- Department of Pharmacy, CECOS University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Irfan Ullah
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
14
|
Zoltick AH, Mann S, Coetzee JF. Pain pathophysiology and pharmacology of cattle: how improved understanding can enhance pain prevention, mitigation, and welfare. FRONTIERS IN PAIN RESEARCH 2024; 5:1396992. [PMID: 39258013 PMCID: PMC11385012 DOI: 10.3389/fpain.2024.1396992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Globally, humans rely on cattle for food production; however, there is rising societal concern surrounding the welfare of farm animals. From a young age, cattle raised for dairy and beef production experience pain caused by routine management procedures and common disease conditions. The fundamental mechanisms, nociceptive pathways, and central nervous system structures required for pain perception are highly conserved among mammalian species. However, there are limitations to a comparative approach to pain assessment due to interspecies differences in the expression of pain. The stoicism of prey species may impede pain identification and lead to the assumption that cattle lack pain sensitivity. This highlights the importance of establishing validated bovine-specific indicators of pain-a prerequisite for evidence-based pain assessment and mitigation. Our first objective is to provide an overview of pain pathophysiology to illustrate the importance of targeted analgesia in livestock medicine and the negative welfare outcomes associated with unmitigated pain. This is followed by a review of available analgesics, the regulations governing their use, and barriers to implementation of on-farm pain management. We then investigate the current research undertaken to evaluate the pain response in cattle-a critical aspect of the drug approval process. With an emphasis on emerging research in animal cognition and pain pathology, we conclude by discussing the significant influence that pain has on cattle welfare and areas where further research and modified practices are indicated.
Collapse
Affiliation(s)
- Abigale H Zoltick
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Johann F Coetzee
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
15
|
Mészár Z, Erdei V, Szücs P, Varga A. Epigenetic Regulation and Molecular Mechanisms of Burn Injury-Induced Nociception in the Spinal Cord of Mice. Int J Mol Sci 2024; 25:8510. [PMID: 39126078 PMCID: PMC11313498 DOI: 10.3390/ijms25158510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Epigenetic mechanisms, including histone post-translational modifications (PTMs), play a critical role in regulating pain perception and the pathophysiology of burn injury. However, the epigenetic regulation and molecular mechanisms underlying burn injury-induced pain remain insufficiently explored. Spinal dynorphinergic (Pdyn) neurons contribute to heat hyperalgesia induced by severe scalding-type burn injury through p-S10H3-dependent signaling. Beyond p-S10H3, burn injury may impact various other histone H3 PTMs. Double immunofluorescent staining and histone H3 protein analyses demonstrated significant hypermethylation at H3K4me1 and H3K4me3 sites and hyperphosphorylation at S10H3 within the spinal cord. By analyzing Pdyn neurons in the spinal dorsal horn, we found evidence of chromatin activation with a significant elevation in p-S10H3 immunoreactivity. We used RNA-seq analysis to compare the effects of burn injury and formalin-induced inflammatory pain on spinal cord transcriptomic profiles. We identified 98 DEGs for burn injury and 86 DEGs for formalin-induced inflammatory pain. A limited number of shared differentially expressed genes (DEGs) suggest distinct central pain processing mechanisms between burn injury and formalin models. KEGG pathway analysis supported this divergence, with burn injury activating Wnt signaling. This study enhances our understanding of burn injury mechanisms and uncovers converging and diverging pathways in pain models with different origins.
Collapse
Affiliation(s)
- Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.M.); (P.S.)
| | - Virág Erdei
- Department of Radiology, Central Hospital of Northern Pest—Military Hospital, H-1134 Budapest, Hungary;
| | - Péter Szücs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.M.); (P.S.)
- HUN-REN-DE Neuroscience Research Group, H-4032 Debrecen, Hungary
| | - Angelika Varga
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.M.); (P.S.)
| |
Collapse
|
16
|
Likar R, Köstenberger M. [Developments in anesthesia : Thinking outside the box is worthwhile!]. DIE ANAESTHESIOLOGIE 2024; 73:221-222. [PMID: 38625540 DOI: 10.1007/s00101-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Affiliation(s)
- Rudolf Likar
- Abteilung für Anästhesiologie, allgemeine Intensivmedizin, Notfallmedizin, interdisziplinäre Schmerztherapie und Palliativmedizin, Klinikum Klagenfurt am Wörthersee, Landeskrankenanstalten-Betriebsgesellschaft - KABEG, Klagenfurt am Wörthersee, Österreich
| | - Markus Köstenberger
- Abteilung für Anästhesiologie, allgemeine Intensivmedizin, Notfallmedizin, interdisziplinäre Schmerztherapie und Palliativmedizin, Klinikum Klagenfurt am Wörthersee, Landeskrankenanstalten-Betriebsgesellschaft - KABEG, Klagenfurt am Wörthersee, Österreich.
| |
Collapse
|
17
|
Pereira WF, Everson da Silva L, do Amaral W, Andrade Rebelo R, Quefi B, Wlisses da Silva A, Silva Marinho E, Borges Leal ALA, Mesquita Cajazeiras FF, Amâncio Ferreira MK, Bezerra Maciel J, Ribeiro Liberato H, Guedes JM, Silva Alencar de Menezes JE, Teixeira AMR, Silva Dos Santosa H. Essential Oils from the Genus Piper Promote Antinociception by Modulating TRP Channels and Anti-Inflammatory Effects in Adult Zebrafish. Chem Biodivers 2024; 21:e202301807. [PMID: 38284478 DOI: 10.1002/cbdv.202301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
The Piper genus, known for its pharmacological potential, comprises 2,263 species primarily found in tropical regions. Despite recent advancements in pain therapies, the demand for more effective and well-tolerated analgesics and anti-inflammatories, particularly for chronic pain, remains. This study assessed the effects of essential oils from Piper caldense, Piper mosenii, and Piper mikanianum on nociceptive behavior induced by formalin and capsaicin, as well as their anti-inflammatory impact induced by carrageenan, using adult zebrafish models. Results indicated non-toxic essential oils with antinociceptive properties in both neurogenic and inflammatory phases of formalin-induced nociception through interaction with the TRPA1 receptor. Additionally, P. mosenii essential oil also blocked the nociceptive effect of capsaicin, a TRPV1 receptor agonist. Furthermore, essential oils from P. caldense and P. mikanianum exhibited significant anti-inflammatory effects by reducing carrageenan-induced abdominal edema. These findings highlight the pharmacological potential of Piper's essential oils as antinociceptive and anti-inflammatory agents.
Collapse
Affiliation(s)
| | - Luiz Everson da Silva
- Postgraduate Program in Sustainable Territorial Development, Federal University of Paraná, Matinhos, PR, Brazil
| | - Wanderlei do Amaral
- Department of Chemical Engineering, Federal University of Parana, Curitiba, Parana, Brazil
| | - Ricardo Andrade Rebelo
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, SC, Brazil
| | - Blasco Quefi
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, SC, Brazil
| | - Antonio Wlisses da Silva
- Postgraduate Program in Biotechnology - RENORBIO, State University of Ceará, Fortaleza, CE, Brazil
| | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | | | | | | | - Jéssica Bezerra Maciel
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | | | - Jesyka Macêdo Guedes
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | | | - Alexandre Magno Rodrigues Teixeira
- Postgraduate Program in Biotechnology - RENORBIO, State University of Ceará, Fortaleza, CE, Brazil
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | - Helcio Silva Dos Santosa
- Postgraduate Program in Biotechnology - RENORBIO, State University of Ceará, Fortaleza, CE, Brazil
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
- Chemistry Course, State University of Vale do Acaraú, Sobral, CE, Brazil
| |
Collapse
|
18
|
Granovsky Y, Sprecher E, Yarovinsky N, Shor M, Crystal S. Body-site effect on CPM efficiency in healthy subjects: Central vs. peripheral stimulation. Heliyon 2024; 10:e25156. [PMID: 38317925 PMCID: PMC10839622 DOI: 10.1016/j.heliyon.2024.e25156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Structural changes in the peripheral nerve system in neuropathic states alter sensory capacity of the affected area, thus biasing results of conditioned pain modulation (CPM) responses. The aim of this study was to evaluate CPM efficiency of central (i.e. trunk) vs. peripheral (i.e. limb) application of 'test' and 'conditioning' stimuli. Methods: Healthy volunteers (ages 18-73 yrs) underwent two CPM protocols: 'CPM Limb' and 'CPM Trunk'. Each included two types of test stimuli (Ts) (pressure pain threshold: PPT; and contact heat) conditioned either to hand immersion in cold noxious water (CPM limb), or to noxious contact heat applied on lower back (CPM trunk). Results: Both protocols generated efficient pain inhibition for each of the applied Ts; the PPT-based protocol induced more efficient CPM when the conditioned stimulus was applied on the trunk (p = 0.016). Moreover, the PPT-based CPM responses were significantly correlated (ρ = 0.349; p = 0.007). Conclusions: An efficient CPM induced by both central and peripheral stimulation, along with significant correlation between PPT-based responses, advances using the central 'CPM Trunk' protocol in patients with peripheral neuropathy.
Collapse
Affiliation(s)
- Y. Granovsky
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - E. Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - N. Yarovinsky
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - M. Shor
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - S. Crystal
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
Straszak D, Woźniak S, Siwek A, Głuch-Lutwin M, Kołaczkowski M, Pietrzak A, Drop B, Matosiuk D. Novel 1-(1-Arylimiazolin-2-Yl)-3-Arylalkilurea Derivatives with Modulatory Activity on Opioid MOP Receptors. Molecules 2024; 29:571. [PMID: 38338317 PMCID: PMC10856196 DOI: 10.3390/molecules29030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
μ-opioid receptor ligands such as morphine and fentanyl are the most known and potent painkillers. However, the severe side effects seen with their use significantly limit their widespread use. The continuous broadening of knowledge about the properties of the interactions of the MOP receptor (human mu opioid receptor, OP3) with ligands and specific intracellular signaling pathways allows for the designation of new directions of research with respect to compounds with analgesic effects in a mechanism different from classical ligands. Allosteric modulation is an extremely promising line of research. Compounds with modulator properties may provide a safer alternative to the currently used opioids. The aim of our research was to obtain a series of urea derivatives of 1-aryl-2-aminoimidazoline and to determine their activity, mechanism of biological action and selectivity toward the MOP receptor. The obtained compounds were subjected to functional tests (cAMP accumulation and β-arrestin recruitment) in vitro. One of the obtained compounds, when administered alone, did not show any biological activity, while when co-administered with DAMGO, it inhibited β-arrestin recruitment. These results indicate that this compound is a negative allosteric modulator (NAM) of the human MOP receptor.
Collapse
Affiliation(s)
- Dominik Straszak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| | - Sylwia Woźniak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Aldona Pietrzak
- Department of Dermatology, Venereology, and Paediatric Dermatology, Faculty of Medicine, Medical University, Staszica 11, 20-080 Lublin, Poland;
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics, Medical University, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| |
Collapse
|
20
|
Peier F, Mouthon M, De Pretto M, Chabwine JN. Response to experimental cold-induced pain discloses a resistant category among endurance athletes, with a distinct profile of pain-related behavior and GABAergic EEG markers: a case-control preliminary study. Front Neurosci 2024; 17:1287233. [PMID: 38287989 PMCID: PMC10822956 DOI: 10.3389/fnins.2023.1287233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Pain is a major public health problem worldwide, with a high rate of treatment failure. Among promising non-pharmacological therapies, physical exercise is an attractive, cheap, accessible and innocuous method; beyond other health benefits. However, its highly variable therapeutic effect and incompletely understood underlying mechanisms (plausibly involving the GABAergic neurotransmission) require further research. This case-control study aimed to investigate the impact of long-lasting intensive endurance sport practice (≥7 h/week for the last 6 months at the time of the experiment) on the response to experimental cold-induced pain (as a suitable chronic pain model), assuming that highly trained individual would better resist to pain, develop advantageous pain-copying strategies and enhance their GABAergic signaling. For this purpose, clinical pain-related data, response to a cold-pressor test and high-density EEG high (Hβ) and low beta (Lβ) oscillations were documented. Among 27 athletes and 27 age-adjusted non-trained controls (right-handed males), a category of highly pain-resistant participants (mostly athletes, 48.1%) was identified, displaying lower fear of pain, compared to non-resistant non-athletes. Furthermore, they tolerated longer cold-water immersion and perceived lower maximal sensory pain. However, while having similar Hβ and Lβ powers at baseline, they exhibited a reduction between cold and pain perceptions and between pain threshold and tolerance (respectively -60% and - 6.6%; -179.5% and - 5.9%; normalized differences), in contrast to the increase noticed in non-resistant non-athletes (+21% and + 14%; +23.3% and + 13.6% respectively). Our results suggest a beneficial effect of long-lasting physical exercise on resistance to pain and pain-related behaviors, and a modification in brain GABAergic signaling. In light of the current knowledge, we propose that the GABAergic neurotransmission could display multifaceted changes to be differently interpreted, depending on the training profile and on the homeostatic setting (e.g., in pain-free versus chronic pain conditions). Despite limitations related to the sample size and to absence of direct observations under acute physical exercise, this precursory study brings into light the unique profile of resistant individuals (probably favored by training) allowing highly informative observation on physical exercise-induced analgesia and paving the way for future clinical translation. Further characterizing pain-resistant individuals would open avenues for a targeted and physiologically informed pain management.
Collapse
Affiliation(s)
- Franziska Peier
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael De Pretto
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Joelle Nsimire Chabwine
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Neurology Division, Department of Internal Medicine, Fribourg-Cantonal Hospital, Fribourg, Switzerland
| |
Collapse
|
21
|
da Silva PR, Nunes Pazos ND, de Andrade JC, de Sousa NF, Oliveira Pires HF, de Figueiredo Lima JL, Dias AL, da Silva Stiebbe Salvadori MG, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Patil VM, Bezerra Felipe CF, de Almeida RN, Scotti L. An In Silico Approach to Exploring the Antinociceptive Biological Activities of Linalool and its Metabolites. Mini Rev Med Chem 2024; 24:1556-1574. [PMID: 38243945 DOI: 10.2174/0113895575261945231122062659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/22/2024]
Abstract
Pain is characterized by the unpleasant sensory and emotional sensation associated with actual or potential tissue damage, whereas nociception refers to the mechanism by which noxious stimuli are transmitted from the periphery to the CNS. The main drugs used to treat pain are nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics, which have side effects that limit their use. Therefore, in the search for new drugs with potential antinociceptive effects, essential oils have been studied, whose constituents (monoterpenes) are emerging as a new therapeutic possibility. Among them, linalool and its metabolites stand out. The present study aims to investigate the antinociceptive potential of linalool and its metabolites through a screening using an in silico approach. Molecular docking was used to evaluate possible interactions with important targets involved in antinociceptive activity, such as α2-adrenergic, GABAergic, muscarinic, opioid, adenosinergic, transient potential, and glutamatergic receptors. The compounds in the investigated series obtained negative energies for all enzymes, representing satisfactory interactions with the targets and highlighting the multi-target potential of the L4 metabolite. Linalool and its metabolites have a high likelihood of modulatory activity against the targets involved in nociception and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natalia Diniz Nunes Pazos
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jaislânia Lucena de Figueiredo Lima
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Vaishali M Patil
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
22
|
Zhai R, Wang Q. Phylogenetic Analysis Provides Insight Into the Molecular Evolution of Nociception and Pain-Related Proteins. Evol Bioinform Online 2023; 19:11769343231216914. [PMID: 38107163 PMCID: PMC10725132 DOI: 10.1177/11769343231216914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Nociception and pain sensation are important neural processes in humans to avoid injury. Many proteins are involved in nociception and pain sensation in humans; however, the evolution of these proteins in animals is unknown. Here, we chose nociception- and pain-related proteins, including G protein-coupled receptors (GPCRs), ion channels (ICs), and neuropeptides (NPs), which are reportedly associated with nociception and pain in humans, and identified their homologs in various animals by BLAST, phylogenetic analysis and protein architecture comparison to reveal their evolution from protozoans to humans. We found that the homologs of transient receptor potential channel A 1 (TRPA1), TRAPM, acid-sensing IC (ASIC), and voltage-dependent calcium channel (VDCC) first appear in Porifera. Substance-P receptor 1 (TACR1) emerged from Coelenterata. Somatostatin receptor type 2 (SSTR2), TRPV1 and voltage-dependent sodium channels (VDSC) appear in Platyhelminthes. Calcitonin gene-related peptide receptor (CGRPR) was first identified in Nematoda. However, opioid receptors (OPRs) and most NPs were discovered only in vertebrates and exist from agnatha to humans. The results demonstrated that homologs of nociception and pain-related ICs exist from lower animal phyla to high animal phyla, and that most of the GPCRs originate from low to high phyla sequentially, whereas OPRs and NPs are newly evolved in vertebrates, which provides hints of the evolution of nociception and pain-related proteins in animals and humans.
Collapse
Affiliation(s)
- Rujun Zhai
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Qian Wang
- Changping Laboratory, Beijing, P. R. China
| |
Collapse
|
23
|
Cohen M, Quintner J, Weisman A. "Nociplastic Pain": A Challenge to Nosology and to Nociception. THE JOURNAL OF PAIN 2023; 24:2131-2139. [PMID: 37482233 DOI: 10.1016/j.jpain.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
The construct of "nociplastic pain" has met with divergent receptions. On the one hand it has been enthusiastically embraced, to the extent of conflation with central sensitization of nociception and the International Classification of Diseases 11th Revision (ICD-11) entity of "primary" pain, and the promulgation of "nociplastic pain syndromes." On the other hand, it has been rejected by those whose skepticism derives from the absence, by definition, of underlying activation of nociceptors. This article seeks to dissect these divergent views and search for reconciliation between them. One line of argument is that "nociplastic" pain, "primary" pain, and "central sensitisation of nociception" reflect different domains of inquiry and should not be conflated. "Nociplastic" pain emerges as a hypothesis that confers clinical legitimacy and utility; while that hypothesis needs a minor but important modification and continues to require testing, discipline in its usage is necessary. The other line of argument discovers an unexpected impasse: the construct of "nociplastic pain" describes a phenomenon that accords with the International Association for the Study of Pain definition of pain but occurs in the absence of nociception-as-currently-defined, thus challenging the definitional link between pain and tissue damage. The article offers a resolution of this impasse by suggesting that nociception-as-currently-defined be replaced by the resurrected concept of a nociceptive apparatus, activation of which is necessary but not sufficient for the experience of pain. One consequence would be to allow the assertions underpinning "nociplastic" to be tested empirically; another would be to relate the phenomenon of pain to a more biologically plausible basis than "actual" or "resemblance to" tissue damage. PERSPECTIVE: This article explores the major challenges posed by "nociplastic pain" to nosology and to nociception. While discipline in the clinical use of the construct is required, it also emerges that the main issue is the International Association for the Study of Pain definition of nociception. A reconceptualization of nociception is proposed for logical, biological, and clinical coherence.
Collapse
Affiliation(s)
- Milton Cohen
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, UNSW Sydney, Sydney, New South Wales, Australia
| | - John Quintner
- Arthritis and Osteoporosis Foundation of Western Australia, Shenton Park, Western Australia, Australia
| | - Asaf Weisman
- Spinal Research Laboratory, Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Párraga JP, Castellanos A. A Manifesto in Defense of Pain Complexity: A Critical Review of Essential Insights in Pain Neuroscience. J Clin Med 2023; 12:7080. [PMID: 38002692 PMCID: PMC10672144 DOI: 10.3390/jcm12227080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic pain has increasingly become a significant health challenge, not just as a symptomatic manifestation but also as a pathological condition with profound socioeconomic implications. Despite the expansion of medical interventions, the prevalence of chronic pain remains remarkably persistent, prompting a turn towards non-pharmacological treatments, such as therapeutic education, exercise, and cognitive-behavioral therapy. With the advent of cognitive neuroscience, pain is often presented as a primary output derived from the brain, aligning with Engel's Biopsychosocial Model that views disease not solely from a biological perspective but also considering psychological and social factors. This paradigm shift brings forward potential misconceptions and over-simplifications. The current review delves into the intricacies of nociception and pain perception. It questions long-standing beliefs like the cerebral-centric view of pain, the forgotten role of the peripheral nervous system in pain chronification, misconceptions around central sensitization syndromes, the controversy about the existence of a dedicated pain neuromatrix, the consciousness of the pain experience, and the possible oversight of factors beyond the nervous system. In re-evaluating these aspects, the review emphasizes the critical need for understanding the complexity of pain, urging the scientific and clinical community to move beyond reductionist perspectives and consider the multifaceted nature of this phenomenon.
Collapse
Affiliation(s)
- Javier Picañol Párraga
- Laboratory of Neurophysiology, Biomedicine Department, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
| | | |
Collapse
|
25
|
Lawn T, Sendel M, Baron R, Vollert J. Beyond biopsychosocial: The keystone mechanism theory of pain. Brain Behav Immun 2023; 114:187-192. [PMID: 37625555 DOI: 10.1016/j.bbi.2023.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is a deeply personal experience, with interindividual differences in its chronification and treatment presenting a formidable healthcare challenge. The biopsychosocial model (BPSm) has been hugely influential within nascent attempts at precision pain medicine, steering the field away from a reductionist biomechanical viewpoint and emphasising complex interactions of biological, psychological, and social factors which shape the individuality of pain. However, despite offering a strong theoretical foundation and holistic perspective, we contend that the BPSm remains limited in its capacity to deliver truly mechanistically informed treatment of pain. We therefore propose the keystone model of pain which offers a pragmatic balance between the dimensionality expansive BPSm and overly reductive approaches, providing both theoretical and practical advantages for the transition from treating populations to individual people.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Jan Vollert
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany; Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Germany; Pain Research, Department of Surgery and Cancer, Imperial College, London, UK; Neurophysiology, Mannheim Centre for Translational Neuroscience MCTN, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg, Germany
| |
Collapse
|
26
|
Xu Y, Dong X, Xu H, Jiao P, Zhao LX, Su G. Nanomaterial-Based Drug Delivery Systems for Pain Treatment and Relief: From the Delivery of a Single Drug to Co-Delivery of Multiple Therapeutics. Pharmaceutics 2023; 15:2309. [PMID: 37765278 PMCID: PMC10537372 DOI: 10.3390/pharmaceutics15092309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The use of nanomaterials in drug delivery systems for pain treatment is becoming increasingly common. This review aims to summarize how nanomaterial-based drug delivery systems can be used to effectively treat and relieve pain, whether via the delivery of a single drug or a combination of multiple therapeutics. By utilizing nanoformulations, the solubility of analgesics can be increased. Meanwhile, controlled drug release and targeted delivery can be realized. These not only improve the pharmacokinetics and biodistribution of analgesics but also lead to improved pain relief effects with fewer side effects. Additionally, combination therapy is frequently applied to anesthesia and analgesia. The co-encapsulation of multiple therapeutics into a single nanoformulation for drug co-delivery has garnered significant interest. Numerous approaches using nanoformulation-based combination therapy have been developed and evaluated for pain management. These methods offer prolonged analgesic effects and reduced administration frequency by harnessing the synergy and co-action of multiple targets. However, it is important to note that these nanomaterial-based pain treatment methods are still in the exploratory stage and require further research to be effectively translated into clinical practice.
Collapse
Affiliation(s)
- Yuhang Xu
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xingpeng Dong
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Heming Xu
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Lin-Xia Zhao
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Gaoxing Su
- School of Pharmacy, Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
27
|
Kollmansperger S, Anders M, Werner J, Saller AM, Weiss L, Süß SC, Reiser J, Schneider G, Schusser B, Baumgartner C, Fenzl T. Nociception in Chicken Embryos, Part II: Embryonal Development of Electroencephalic Neuronal Activity In Ovo as a Prerequisite for Nociception. Animals (Basel) 2023; 13:2839. [PMID: 37760239 PMCID: PMC10525651 DOI: 10.3390/ani13182839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Chicken culling has been forbidden in Germany since 2022; male/female selection and male elimination must be brought to an embryonic status prior to the onset of nociception. The present study evaluated the ontogenetic point at which noxious stimuli could potentially be perceived/processed in the brain in ovo. EEG recordings from randomized hyperpallial brain sites were recorded in ovo and noxious stimuli were applied. Temporal and spectral analyses of the EEG were performed. The onset of physiological neuronal signals could be determined at developmental day 13. ERP/ERSP/ITC analysis did not reveal phase-locked nociceptive responses. Although no central nociceptive responses were documented, adequate EEG responses to noxious stimuli from other brain areas cannot be excluded. The extreme stress impact on the embryo during the recording may overwrite the perception of noniceptive stimuli. The results suggest developmental day 13 as the earliest embryonal stage being able to receive and process nociceptive stimuli.
Collapse
Affiliation(s)
- Sandra Kollmansperger
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
| | - Malte Anders
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Julia Werner
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Anna M. Saller
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Larissa Weiss
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Stephanie C. Süß
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Judith Reiser
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Gerhard Schneider
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
| | - Benjamin Schusser
- Department of Molecular Life Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany;
| | - Christine Baumgartner
- Center for Preclinical Research, Technical University of Munich, 81675 Munich, Germany; (J.W.); (A.M.S.); (L.W.); (S.C.S.); (J.R.); (C.B.)
| | - Thomas Fenzl
- Department of Anaesthesiology and Intensive Care, School of Medicine, Technical University Munich, 81675 Munich, Germany; (S.K.); (M.A.); (G.S.)
| |
Collapse
|
28
|
Weiss L, Saller AM, Werner J, Süß SC, Reiser J, Kollmansperger S, Anders M, Potschka H, Fenzl T, Schusser B, Baumgartner C. Nociception in Chicken Embryos, Part I: Analysis of Cardiovascular Responses to a Mechanical Noxious Stimulus. Animals (Basel) 2023; 13:2710. [PMID: 37684974 PMCID: PMC10486618 DOI: 10.3390/ani13172710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Although it is assumed that chicken embryos acquire the capacity for nociception while developing in the egg, an exact time point has not yet been specified. The present research was an exploratory study aiming to determine when the capacity of nociception emerges during embryonic development in chickens. Changes in blood pressure and heart rate (HR) in response to a noxious mechanical stimulus at the base of the beak versus a light touch on the beak were examined in chicken embryos between embryonic days (EDs) 7 and 18. Mean arterial pressure (MAP) was the most sensitive parameter for assessing cardiovascular responses. Significant changes in MAP in response to a noxious stimulus were detected in embryos at ED16 to ED18, whereas significant changes in HR were observed at ED17 and ED18. Infiltration anesthesia with the local anesthetic lidocaine significantly reduced the response of MAP on ED18, so the measured cardiovascular changes may be interpreted as nociceptive responses.
Collapse
Affiliation(s)
- Larissa Weiss
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.W.); (A.M.S.); (J.W.); (S.C.S.); (J.R.)
| | - Anna M. Saller
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.W.); (A.M.S.); (J.W.); (S.C.S.); (J.R.)
| | - Julia Werner
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.W.); (A.M.S.); (J.W.); (S.C.S.); (J.R.)
| | - Stephanie C. Süß
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.W.); (A.M.S.); (J.W.); (S.C.S.); (J.R.)
| | - Judith Reiser
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.W.); (A.M.S.); (J.W.); (S.C.S.); (J.R.)
| | - Sandra Kollmansperger
- Clinic for Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.K.); (M.A.); (T.F.)
| | - Malte Anders
- Clinic for Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.K.); (M.A.); (T.F.)
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
| | - Thomas Fenzl
- Clinic for Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.K.); (M.A.); (T.F.)
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Christine Baumgartner
- Center for Preclinical Research, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.W.); (A.M.S.); (J.W.); (S.C.S.); (J.R.)
- Veterinary Faculty, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| |
Collapse
|
29
|
Grandin T, Velarde A, Strappini A, Gerritzen M, Ghezzi M, Martínez-Burnes J, Hernández-Ávalos I, Domínguez-Oliva A, Casas-Alvarado A, Mota-Rojas D. Slaughtering of Water Buffalo ( Bubalus bubalis) with and without Stunning: A Focus on the Neurobiology of Pain, Hyperalgesia, and Sensitization. Animals (Basel) 2023; 13:2406. [PMID: 37570215 PMCID: PMC10417361 DOI: 10.3390/ani13152406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The slaughter process in livestock is considered a stressor where the transport and handling of animals, as well as the selected stunning and bleeding methods, can cause acute pain, distress, and suffering. In water buffaloes, although stunning is known to be performed before bleeding to induce unconsciousness, no emphasis is made on the nociceptive events during this process. Particularly, current mechanical stunning methods applied to cattle are unsuitable for water buffaloes due to anatomical differences in the skull from other large ruminants. Furthermore, although very high-pressure pneumatic (200-220 psi) may be effective in the frontal position for lighter-weight water buffalos, for heavier animals, it is less likely to be effective. The present review aims: (1) to analyze the anatomical particularities of water buffaloes to discuss the importance of selecting a stunning method suitable for buffaloes, and (2) to revise the potential pain-related consequences, such as hyperalgesia and sensitization, and the signs to assess the stun quality and death to comprehend the relevance of a proper technique according to the species.
Collapse
Affiliation(s)
- Temple Grandin
- Department of Animal Science, Colorado State University, Fort Collins, CO 80526, USA;
| | - Antonio Velarde
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), Veinat Sies S-N, 17121 Monells, Spain;
| | - Ana Strappini
- Animal Health & Welfare, Wageningen Livestock Research, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (A.S.); (M.G.)
| | - Marien Gerritzen
- Animal Health & Welfare, Wageningen Livestock Research, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (A.S.); (M.G.)
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina;
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, FESC, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| |
Collapse
|
30
|
Shimomura K, Oikawa H, Yamamoto K, Terajima T, Yajima S, Tomizawa M. Noxious chemical discrimination by Tribolium castaneum TRPA1 channel in the HEK293 cell expression system. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100066. [PMID: 37559797 PMCID: PMC10407194 DOI: 10.1016/j.cris.2023.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Nociception is the sensory perception of noxious chemical stimuli. Repellent behavior to avoid noxious stimuli is indispensable for survival, and this mechanism has been evolutionarily conserved across a wide range of species, from mammals to insects. The transient receptor potential ankyrin 1 (TRPA1) channel is one of the most conserved noxious chemical sensors. Here, we describe the heterologous stable expression of Tribolium castaneum TRPA1 (TcTRPA1) in human embryonic kidney (HEK293) cells. The intracellular Ca2+ influx was measured when two compounds, citronellal and l-menthol, derived from plant essential oils, were applied in vitro using a fluorescence assay. The analysis revealed that citronellal evoked Ca2+ influx dose-dependently for TcTRPA1, whereas l-menthol did not. In combination with our present and previous results of the avoidance-behavioral assay at the organism level, we suggest that TcTRPA1 discriminates between these two toxic compounds, and diversification in the chemical nociception selectivity has occurred in TRPA1 channel among insect taxa.
Collapse
Affiliation(s)
- Kenji Shimomura
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Hinoki Oikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Kosuke Yamamoto
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Takehito Terajima
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Motohiro Tomizawa
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| |
Collapse
|
31
|
Riganello F, Tonin P, Soddu A. I Feel! Therefore, I Am from Pain to Consciousness in DOC Patients. Int J Mol Sci 2023; 24:11825. [PMID: 37511583 PMCID: PMC10380260 DOI: 10.3390/ijms241411825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pain assessment and management in patients with disorders of consciousness (DOC) is a challenging and important aspect of care, with implications for detecting consciousness and promoting recovery. This narrative review explores the role of pain in consciousness, the challenges of pain assessment, pharmacological treatment in DOC, and the implications of pain assessment when detecting changes in consciousness. The review discusses the Nociception Coma Scale and its revised version, which are behavioral scales used to assess pain in DOC patients, and the challenges and controversies surrounding the appropriate pharmacological treatment of pain in these patients. Moreover, we highlight recent evidence suggesting that an accurate pain assessment may predict changes in the level of consciousness in unresponsive wakefulness syndrome/vegetative state patients, underscoring the importance of ongoing pain management in these patients.
Collapse
Affiliation(s)
- Francesco Riganello
- Research in Advanced Neurorehabilitation, S. Anna Institute, 88900 Crotone, Italy
| | - Paolo Tonin
- Research in Advanced Neurorehabilitation, S. Anna Institute, 88900 Crotone, Italy
| | - Andrea Soddu
- Physics, and Astronomy Department, Western Institute for Neuroscience, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
32
|
Becerra D, Calixto A, Orio P. The Conscious Nematode: Exploring Hallmarks of Minimal Phenomenal Consciousness in Caenorhabditis Elegans. Int J Psychol Res (Medellin) 2023; 16:87-104. [PMID: 38106963 PMCID: PMC10723751 DOI: 10.21500/20112084.6487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 12/19/2023] Open
Abstract
While subcellular components of cognition and affectivity that involve the interaction between experience, environment, and physiology -such as learning, trauma, or emotion- are being identified, the physical mechanisms of phenomenal consciousness remain more elusive. We are interested in exploring whether ancient, simpler organisms such as nematodes have minimal consciousness. Is there something that feels like to be a worm? Or are worms blind machines? 'Simpler' models allow us to simultaneously extract data from multiple levels such as slow and fast neural dynamics, structural connectivity, molecular dynamics, behavior, decision making, etc., and thus, to test predictions of the current frameworks in dispute. In the present critical review, we summarize the current models of consciousness in order to reassess in light of the new evidence whether Caenorhabditis elegans, a nematode with a nervous system composed of 302 neurons, has minimal consciousness. We also suggest empirical paths to further advance consciousness research using C. elegans.
Collapse
Affiliation(s)
- Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Doctorado en Ciencias, mención Biofísica y Biología Computacional, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| |
Collapse
|
33
|
Whittaker AL, Muns R, Wang D, Martínez-Burnes J, Hernández-Ávalos I, Casas-Alvarado A, Domínguez-Oliva A, Mota-Rojas D. Assessment of Pain and Inflammation in Domestic Animals Using Infrared Thermography: A Narrative Review. Animals (Basel) 2023; 13:2065. [PMID: 37443863 DOI: 10.3390/ani13132065] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Pain assessment in domestic animals has gained importance in recent years due to the recognition of the physiological, behavioral, and endocrine consequences of acute pain on animal production, welfare, and animal model validity. Current approaches to identifying acute pain mainly rely on behavioral-based scales, quantifying pain-related biomarkers, and the use of devices monitoring sympathetic activity. Infrared thermography is an alternative that could be used to correlate the changes in the superficial temperature with other tools and thus be an additional or alternate acute pain assessment marker. Moreover, its non-invasiveness and the objective nature of its readout make it potentially very valuable. However, at the current time, it is not in widespread use as an assessment strategy. The present review discusses scientific evidence for infrared thermography as a tool to evaluate pain, limiting its use to monitor acute pain in pathological processes and invasive procedures, as well as its use for perioperative monitoring in domestic animals.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5116, Australia
| | - Ramon Muns
- Agri-Food and Biosciences Institute, Hillsborough, Co Down BT 26 6DR, Northern Ireland, UK
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behaviour and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Adriana Domínguez-Oliva
- Agri-Food and Biosciences Institute, Hillsborough, Co Down BT 26 6DR, Northern Ireland, UK
- Neurophysiology, Behaviour and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behaviour and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| |
Collapse
|
34
|
Oikawa I, Kondo S, Hashimoto K, Yoshida A, Hamajima M, Tanimoto H, Furukubo-Tokunaga K, Honjo K. A descending inhibitory mechanism of nociception mediated by an evolutionarily conserved neuropeptide system in Drosophila. eLife 2023; 12:RP85760. [PMID: 37310871 DOI: 10.7554/elife.85760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Nociception is a neural process that animals have developed to avoid potentially tissue-damaging stimuli. While nociception is triggered in the peripheral nervous system, its modulation by the central nervous system is a critical process in mammals, whose dysfunction has been extensively implicated in chronic pain pathogenesis. The peripheral mechanisms of nociception are largely conserved across the animal kingdom. However, it is unclear whether the brain-mediated modulation is also conserved in non-mammalian species. Here, we show that Drosophila has a descending inhibitory mechanism of nociception from the brain, mediated by the neuropeptide Drosulfakinin (DSK), a homolog of cholecystokinin (CCK) that plays an important role in the descending control of nociception in mammals. We found that mutants lacking dsk or its receptors are hypersensitive to noxious heat. Through a combination of genetic, behavioral, histological, and Ca2+ imaging analyses, we subsequently revealed neurons involved in DSK-mediated nociceptive regulation at a single-cell resolution and identified a DSKergic descending neuronal pathway that inhibits nociception. This study provides the first evidence for a descending modulatory mechanism of nociception from the brain in a non-mammalian species that is mediated by the evolutionarily conserved CCK system, raising the possibility that the descending inhibition is an ancient mechanism to regulate nociception.
Collapse
Affiliation(s)
- Izumi Oikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Kao Hashimoto
- College of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akiho Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Megumi Hamajima
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ken Honjo
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
35
|
Alqudah A, Qnais EY, Wedyan MA, AlKhateeb H, Abdalla SS, Gammoh O, AlQudah MA. Lysionotin exerts antinociceptive effects in various models of nociception induction. Heliyon 2023; 9:e15619. [PMID: 37151635 PMCID: PMC10161701 DOI: 10.1016/j.heliyon.2023.e15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
Background Lysionotin, a natural flavonoid extracted from Lysionotus pauciflorus Maxim (Gesneriaceae), has several pharmacological effects including anti-bacterial, anti-hypertensive and anti-inflammatory effects. However, its analgesic effect has not been investigated. This study aimed to assess the antinociceptive activity of lysionotin using chemically and thermally induced nociception in a mouse model. Methods The antinociceptive effects of various lysionotin doses (50, 100, 150, and 200 μg/kg) were assessed in mice using the acetic acid-induced writhing test, hot plate test, and formalin-induced paw licking assay. The effects were compared to those of mice treated with acetylsalicylic acid or morphine in the presence or absence of naloxone (an opioid receptor antagonist). Capsaicin- and glutamate-induced paw licking tests were also used to evaluate the involvement of the vanilloid and glutamatergic systems, respectively. Results Lysionotin produced significant dose-dependent inhibition of nociceptive behavior in the acetic acid-induced writhing test, showing 60% inhibition at a dose of 200 μg/kg. Lysionotin also caused a significant increase in the latency period in response to the hot plate test (76.4% at 200 μg/kg), and significantly inhibited both the neurogenic and inflammatory phases in the formalin-induced paw licking test. Naloxone significantly reverses the effect of lysionotin in both hot plate test and formalin-induced paw licking test. Moreover, lysionotin significantly inhibited the neurogenic nociception induced by intraplantar injections of glutamate and capsaicin (57% and 67.2%, respectively at a dose of 200 μg/kg). Thus, lysionotin exhibited peripheral and central antinociception through the modulation of vanilloid receptors, opioid receptors, and the glutamatergic system. Conclusion Lysionotin possesses antinociceptive activity on adult mice that is mediated through both central and peripheral pathways.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
- Corresponding author.
| | - Esam Y. Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed A. Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Hakam AlKhateeb
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Shtaywy S. Abdalla
- Department of Biological Sciences, Faculty of Science, University of Jordan, Amman, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Mohammad A. AlQudah
- Department of Physiology, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
36
|
Boivin JC, Zhu J, Ohyama T. Nociception in fruit fly larvae. FRONTIERS IN PAIN RESEARCH 2023; 4:1076017. [PMID: 37006412 PMCID: PMC10063880 DOI: 10.3389/fpain.2023.1076017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Nociception, the process of encoding and processing noxious or painful stimuli, allows animals to detect and avoid or escape from potentially life-threatening stimuli. Here, we provide a brief overview of recent technical developments and studies that have advanced our understanding of the Drosophila larval nociceptive circuit and demonstrated its potential as a model system to elucidate the mechanistic basis of nociception. The nervous system of a Drosophila larva contains roughly 15,000 neurons, which allows for reconstructing the connectivity among them directly by transmission electron microscopy. In addition, the availability of genetic tools for manipulating the activity of individual neurons and recent advances in computational and high-throughput behavior analysis methods have facilitated the identification of a neural circuit underlying a characteristic nocifensive behavior. We also discuss how neuromodulators may play a key role in modulating the nociceptive circuit and behavioral output. A detailed understanding of the structure and function of Drosophila larval nociceptive neural circuit could provide insights into the organization and operation of pain circuits in mammals and generate new knowledge to advance the development of treatment options for pain in humans.
Collapse
Affiliation(s)
- Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jiayi Zhu
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat Commun 2023; 14:821. [PMID: 36788242 PMCID: PMC9929093 DOI: 10.1038/s41467-023-36480-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The human olfactory system comprises olfactory receptor neurons, projection neurons, and interneurons that perform remarkably sophisticated functions, including sensing, filtration, memorization, and forgetting of chemical stimuli for perception. Developing an artificial olfactory system that can mimic these functions has proved to be challenging. Herein, inspired by the neuronal network inside the glomerulus of the olfactory bulb, we present an artificial chemosensory neuronal synapse that can sense chemical stimuli and mimic the functions of excitatory and inhibitory neurotransmitter release in the synapses between olfactory receptor neurons, projection neurons, and interneurons. The proposed device is based on a flexible organic electrochemical transistor gated by the potential generated by the interaction of gas molecules with ions in a chemoreceptive ionogel. The combined use of a chemoreceptive ionogel and an organic semiconductor channel allows for a long retentive memory in response to chemical stimuli. Long-term memorization of the excitatory chemical stimulus can be also erased by applying an inhibitory electrical stimulus due to ion dynamics in the chemoresponsive ionogel gate electrolyte. Applying a simple device design, we were able to mimic the excitatory and inhibitory synaptic functions of chemical synapses in the olfactory system, which can further advance the development of artificial neuronal systems for biomimetic chemosensory applications.
Collapse
|
38
|
Di-Bonaventura S, Fernández-Carnero J, Matesanz-García L, Arribas-Romano A, Polli A, Ferrer-Peña R. Effect of Different Physical Therapy Interventions on Brain-Derived Neurotrophic Factor Levels in Chronic Musculoskeletal Pain Patients: A Systematic Review. Life (Basel) 2023; 13:163. [PMID: 36676112 PMCID: PMC9867147 DOI: 10.3390/life13010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The main objectives of this review were, firstly, to study the effect of different physiotherapy interventions on BDNF levels, and, secondly, to analyze the influence of physiotherapy on pain levels to subsequently draw conclusions about its possible relationship with BDNF. BACKGROUND Based on the theory that neurotrophic factors such as BDNF play a fundamental role in the initiation and/or maintenance of hyperexcitability of central neurons in pain, it was hypothesized that the levels of this neurotrophic factor may be modified by the application of therapeutic interventions, favoring a reduction in pain intensity. METHODS A literature search of multiple electronic databases (Pubmed, PsycINFO, Medline (Ebsco), Scopus, WOS, Embase) was conducted to identify randomized control trials (RCTs) published without language restrictions up to and including March 2022. The search strategy was based on the combination of medical terms (Mesh) and keywords relating to the following concepts: "pain", "chronic pain", "brain derived neurotrophic factor", "BDNF", "physiotherapy", and "physical therapy". A total of seven papers were included. RESULTS There were two studies that showed statistically significant differences in pain intensity reduction and an increase in the BDNF levels that used therapies such as rTMS and EIMS in patients with chronic myofascial pain. However, the same conclusions cannot be drawn for the other physical therapies applied. CONCLUSIONS rTMS and EIMS interventions achieved greater short-term reductions in pain intensity and increased BDNF over other types of interventions in chronic myofascial pain patients, as demonstrated by a moderate amount of evidence. In contrast, other types of physical therapy (PT) interventions did not appear to be more effective in decreasing pain intensity and increasing BDNF levels than placebo PT or minimal intervention, as a low amount of evidence was found.
Collapse
Affiliation(s)
- Silvia Di-Bonaventura
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, 28922 Madrid, Spain
- La Paz Hospital Institute for Health Research, IdiPAZ, 28029 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Movement Sciences (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
- Grupo de Investigación de Dolor Musculoesqueletico y Control Motor, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Luis Matesanz-García
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, CSEU La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Pleinlaan 22, 1050 Brussels, Belgium
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Blok D, Bus 7001, 3000 Leuven, Belgium
| | - Raúl Ferrer-Peña
- La Paz Hospital Institute for Health Research, IdiPAZ, 28029 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Movement Sciences (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, CSEU La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
| |
Collapse
|
39
|
Sneddon LU, Roques JAC. Pain Recognition in Fish. Vet Clin North Am Exot Anim Pract 2023; 26:1-10. [PMID: 36402476 DOI: 10.1016/j.cvex.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Empirical evidence has demonstrated that fish experience pain, and so to ensure their good welfare, it is vital that we can recognize and assess pain. A range of general, behavioral, and physiologic indicators can be used when assessing pain in fish. Many of these can be used at the tank side and are termed operational welfare indicators, whereas some require further computer or laboratory analysis. Behavioral indicators are valid and have been shown to profoundly differ between nonpainful and painful treatments in fish. However, these are not universal, and species-specific differences exist in behavioral responses to pain.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Department of Biology and Environmental Sciences, University of Gothenburg, Medicineragatan 18A, Gothenburg 413 90, Sweden.
| | - Jonathan A C Roques
- Department of Biology and Environmental Sciences, University of Gothenburg, Medicineragatan 18A, Gothenburg 413 90, Sweden; SWEMARC, the Swedish Mariculture Research Center, University of Gothenburg, 18A, Gothenburg 413 90, Sweden
| |
Collapse
|
40
|
Lee SM, Jang HB, Fan Y, Lee BH, Kim SC, Bills KB, Steffensen SC, Kim HY. Nociceptive Stimuli Activate the Hypothalamus-Habenula Circuit to Inhibit the Mesolimbic Reward System and Cocaine-Seeking Behaviors. J Neurosci 2022; 42:9180-9192. [PMID: 36280259 PMCID: PMC9761669 DOI: 10.1523/jneurosci.0577-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023] Open
Abstract
Nociceptive signals interact with various regions of the brain, including those involved in physical sensation, reward, cognition, and emotion. Emerging evidence points to a role of nociception in the modulation of the mesolimbic reward system. The mechanism by which nociception affects dopamine (DA) signaling and reward is unclear. The lateral hypothalamus (LH) and the lateral habenula (LHb) receive somatosensory inputs and are structurally connected with the mesolimbic DA system. Here, we show that the LH-LHb pathway is necessary for nociceptive modulation of this system using male Sprague Dawley rats. Our extracellular single-unit recordings and head-mounted microendoscopic calcium imaging revealed that nociceptive stimulation by tail pinch excited LHb and LH neurons, which was inhibited by chemical lesion of the LH. Tail pinch increased activity of GABA neurons in ventral tegmental area, decreased the extracellular DA level in the nucleus accumbens ventrolateral shell in intact rats, and reduced cocaine-increased DA concentration, which was blocked by disruption of the LH. Furthermore, tail pinch attenuated cocaine-induced locomotor activity, 22 and 50 kHz ultrasonic vocalizations, and reinstatement of cocaine-seeking behavior, which was inhibited by chemogenetic silencing of the LH-LHb pathway. Our findings suggest that nociceptive stimulation recruits the LH-LHb pathway to inhibit mesolimbic DA system and drug reinstatement.SIGNIFICANCE STATEMENT The LHb and the LH have been implicated in processing nociceptive signals and modulating DA release in the mesolimbic DA system. Here, we show that the LH-LHb pathway is critical for nociception-induced modulation of mesolimbic DA release and cocaine reinstatement. Nociceptive stimulation alleviates extracellular DA release in the mesolimbic DA system, cocaine-induced psychomotor activities, and reinstatement of cocaine-seeking behaviors through the LH-LHb pathway. These findings provide novel evidence for sensory modulation of the mesolimbic DA system and drug addiction.
Collapse
Affiliation(s)
- Soo Min Lee
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Han Byeol Jang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Bong Hyo Lee
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Sang Chan Kim
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Kyle B Bills
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, Utah 84606
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, Utah 84602
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, South Korea
| |
Collapse
|
41
|
Xiu M, Wang Y, Yang D, Zhang X, Dai Y, Liu Y, Lin X, Li B, He J. Using Drosophila melanogaster as a suitable platform for drug discovery from natural products in inflammatory bowel disease. Front Pharmacol 2022; 13:1072715. [PMID: 36545307 PMCID: PMC9760693 DOI: 10.3389/fphar.2022.1072715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and life-treating inflammatory disease that can occur in multiple parts of the human intestine and has become a worldwide problem with a continually increasing incidence. Because of its mild early symptoms, most of them will not attract people's attention and may cause more serious consequences. There is an urgent need for new therapeutics to prevent disease progression. Natural products have a variety of active ingredients, diverse biological activities, and low toxicity or side effects, which are the new options for preventing and treating the intestinal inflammatory diseases. Because of multiple genetic models, less ethical concerns, conserved signaling pathways with mammals, and low maintenance costs, the fruit fly Drosophila melanogaster has become a suitable model for studying mechanism and treatment strategy of IBD. Here, we review the advantages of fly model as screening platform in drug discovery, describe the conserved molecular pathways as therapetic targets for IBD between mammals and flies, dissect the feasibility of Drosophila model in IBD research, and summarize the natural products for IBD treatment using flies. This review comprehensively elaborates that the benefit of flies as a perfact model to evaluate the therapeutic potential of phytochemicals against IBD.
Collapse
Affiliation(s)
- Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China,Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dan Yang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xueyan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Xingyao Lin
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Botong Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Jianzheng He,
| |
Collapse
|
42
|
da Costa RHS, Martins AOBPB, Pessoa RT, Alshehri SA, Wahab S, Ahmad MF, Suliman M, da Silva LYS, Alcântara IS, Ramos AGB, de Oliveira MRC, Batista FLA, Delmondes GDA, de Farias PAM, Rocha JE, Coutinho HDM, Raposo A, Carrascosa C, Jaber JR, de Menezes IRA. Mechanisms of Actions Involved in The Antinociceptive Effect of Estragole and its β-Cyclodextrin Inclusion Complex in Animal Models. PLANTS (BASEL, SWITZERLAND) 2022; 11:2854. [PMID: 36365307 PMCID: PMC9654024 DOI: 10.3390/plants11212854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: estragole is a monoterpene found in the essential oils of several aromatic plants, which can be used for several pharmacological activities. The aim of this study was to evaluate the antinociceptive effect of estragole (Es) and its β-cyclodextrins inclusion complex (Es/β-CD). (2) Methods: the effects of Es and Es/β-CD on the central nervous system (CNS) were evaluated through open field and rota-rod assays, and the antinociceptive effect in formalin models, abdominal writhing induced by acetic acid, hot plate, tail flick test and plantar mechanical hyperalgesia. (3) Results: Es and Es/β-CD showed no alterations on the CNS evaluated parameters and the results suggested there was an antinociceptive action in the formalin, abdominal writhing, hot plate, tail flick tests and plantar mechanical hyperalgesia, proposing the involvement of the nitric oxide, glutamatergic signaling pathways, cyclic guanosine monophosphate and vanilloid pathways. (4) Conclusion: the results suggest that Es and Es/β-CD have a promising antinociceptive potential as a possible alternative for the pharmacological treatment of pain, also showing that the encapsulation of Es in β-cyclodextrins probably improves its pharmacological properties, since the complexation process involves much lower amounts of the compound, contributing to better bioavailability and a lower probability of adverse effect development.
Collapse
Affiliation(s)
- Roger Henrique Sousa da Costa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | | | - Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Isabel Sousa Alcântara
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Andreza Guedes Barbosa Ramos
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Maria Rayane Correia de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), State University of Ceará (UECE), Fortaleza 60741-000, Ceará, Brazil
| | - Francisco Lucas Alves Batista
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | | | | | - Janaína Esmeraldo Rocha
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - José Raduan Jaber
- Departamento de Morfologia, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Las Palmas de Gran Canaria, Spain
| | - Irwin Rose Alencar de Menezes
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| |
Collapse
|
43
|
Jhumka ZA, Abdus-Saboor IJ. Next generation behavioral sequencing for advancing pain quantification. Curr Opin Neurobiol 2022; 76:102598. [PMID: 35780688 DOI: 10.1016/j.conb.2022.102598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
With symptoms such as spontaneous pain and pathologically heightened sensitivity to stimuli, chronic pain accounts for about 20% of physician visits and up to 2/3 of patients are dissatisfied with current treatments. Much of our knowledge on pain processing and analgesics has emerged from behavioral studies performed on animals presenting the same symptoms under pathological conditions. While humans can verbally describe their pain, studies on rodents have relied on behavioral assays providing non-exhaustive characterization or altering animals' original sensitivity through repetitive stimulations. The emergence of what we term "next-generation behavioral sequencing" is now permitting us to quantitatively describe behavioral features on millisecond to minutes long timescales that lie beyond easy detection with the unaided eye. Here, we summarize emerging videography and computational based behavioral approaches that have the potential to significantly improve pain research.
Collapse
Affiliation(s)
- Z Anissa Jhumka
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. https://twitter.com/AnissaJhumka
| | - Ishmail J Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. ia2458columbia.edu
| |
Collapse
|
44
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
45
|
Kazachenko E, Garmanova T, Derinov A, Markaryan D, Lee H, Magbulova S, Tsarkov P. Preemptive analgesia for hemorrhoidectomy: study protocol for a prospective, randomized, double-blind trial. Trials 2022; 23:536. [PMID: 35761383 PMCID: PMC9235219 DOI: 10.1186/s13063-022-06107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hemorrhoidectomy is associated with intense postoperative pain that requires multimodal analgesia. It includes nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen, and local anesthetics to reach adequate pain control. There are data in literature preemptive analgesia could decrease postoperative pain after hemorrhoidectomy. The aim of this study is to assess the efficacy of preemptive analgesia with ketoprofen 100 mg 2 h before procedure per os with spinal anesthesia to decrease postoperative pain according to visual analog scale and to reduce the opioids and other analgesics consumption. METHODS Patients of our clinic who meet the following inclusion criteria are included: hemorrhoids grade III-IV and the planned Milligan-Morgan hemorrhoidectomy. After signing the consent all participants are randomly divided into 2 groups: the first one gets a tablet with 100 mg ketoprofen, the second one gets a tablet containing starch per os 2 h before surgery (72 participants per arm). Patients of both arms receive spinal anesthesia and undergo open hemorrhoidectomy. Following the procedure the primary and secondary outcomes are evaluated: opioid administration intake, the pain at rest and during defecation, duration, and frequency of other analgesics intake, readmission rate, overall quality of life, time from the procedure to returning to work, and the complications rate. DISCUSSION Multimodality pain management has been shown to improve pain control and decrease opioid intake in patients after hemorrhoidectomy in several studies. Gabapentin can be considered as an alternative approach to pain control as NSAIDs have limitative adverse effects. Systemic admission of ketorolac with local anesthetics also showed significant efficacy in patients undergoing anorectal surgery. We hope to prove the efficacy of multimodal analgesia including preemptive one for patients undergoing excisional hemorrhoidectomy that will help to hold postoperative pain levels no more than 3-4 points on VAS with minimal consumption of opioid analgesics. TRIAL REGISTRATION ClinicalTrial.gov NCT04361695 . Registered on April 24, 2020, version 1.0.
Collapse
Affiliation(s)
- Ekaterina Kazachenko
- Surgical Department, Moscow Research Educational Center of the Lomonosov Moscow State University, Moscow, 101000, Russia
| | - Tatiana Garmanova
- Surgical Department, Moscow Research Educational Center of the Lomonosov Moscow State University, Moscow, 101000, Russia
| | - Alexander Derinov
- Department: Clinic of Colorectal and Minimally Invasive Surgery, Sechenov First Moscow State Medical University, Moscow, 101000, Russia
| | - Daniil Markaryan
- Surgical Department, Moscow Research Educational Center of the Lomonosov Moscow State University, Moscow, 101000, Russia
| | - Hanjoo Lee
- Section of Colorectal Surgery, Department of Surgery, New York Medical College, Westchester Medical Center, Taylor Pavilion, Suite D-361, 100 Woods Road, Valhalla, NY, 10595, USA
| | - Sabrina Magbulova
- Department: Clinic of Colorectal and Minimally Invasive Surgery, Sechenov First Moscow State Medical University, Moscow, 101000, Russia.
| | - Petr Tsarkov
- Department: Clinic of Colorectal and Minimally Invasive Surgery, Sechenov First Moscow State Medical University, Moscow, 101000, Russia
| |
Collapse
|
46
|
Peixoto D, Machado M, Azeredo R, Costas B. Chronic Inflammation Modulates Opioid Receptor Gene Expression and Triggers Respiratory Burst in a Teleost Model. BIOLOGY 2022; 11:biology11050764. [PMID: 35625492 PMCID: PMC9138576 DOI: 10.3390/biology11050764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022]
Abstract
Stress-inducing husbandry and rearing conditions, bacterial infections or parasitic diseases may all lead to chronic inflammation. The immune response will then channel energy away from growth, reproduction and other important physiological processes, to fuel immune-related metabolic responses. The present study aims to unravel the mechanisms and contribute with new information on the molecular, cellular and humoral parameters of European seabass (Dicentrarchus labrax) undergoing chronic inflammation that can be used as health indicators for application in fish health management. European seabass individuals were intra-peritoneally injected with either Freund’s Incomplete Adjuvant (FIA) to induce inflammation or Hanks Balanced Salt Solution (HBSS) to serve as sham. Fish were sampled at 24 h, 7, 14 and 21 days post-injection and blood, plasma and head-kidney were collected. The results found were clear indicators of an inflamed peritoneal cavity and an ongoing systemic immune response that persisted for at least 21 days. Locally, inflammation was characterized by an intense recruitment of immune cells that was still evident 21 days after injection, thus illustrating the chronic character of the immune response. Cellular response was also noticed peripherally with leukocyte numbers rising in the blood of FIA-injected fish. Furthermore, the cellular-mediated respiratory burst peaked at 21 days post-FIA injection, suggesting that phagocytes were still actively fighting the phlogistic agent. Regarding the head-kidney molecular analysis, cxcr4 and il34 appear to be good markers of a chronic inflammation response due to their importance for pathways with high relevance in chronic inflammation settings. In addition, opioid receptor nopr seems to be a good marker of a chronic inflammation response due to its role in detecting noxious stimuli. The present study can serve as a baseline to assess long-term immune-related responses in future studies. For that, more research is nonetheless required to select more responsive and specific molecular markers.
Collapse
Affiliation(s)
- Diogo Peixoto
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (M.M.); (R.A.)
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, 11519 Puerto Real, Spain
- Correspondence: (D.P.); (B.C.)
| | - Marina Machado
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (M.M.); (R.A.)
| | - Rita Azeredo
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (M.M.); (R.A.)
| | - Benjamín Costas
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (M.M.); (R.A.)
- Correspondence: (D.P.); (B.C.)
| |
Collapse
|
47
|
Cohen SP, Wang EJ, Doshi TL, Vase L, Cawcutt KA, Tontisirin N. Chronic pain and infection: mechanisms, causes, conditions, treatments, and controversies. BMJ MEDICINE 2022; 1:e000108. [PMID: 36936554 PMCID: PMC10012866 DOI: 10.1136/bmjmed-2021-000108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/10/2022] [Indexed: 12/20/2022]
Abstract
Throughout human history, infection has been the leading cause of morbidity and mortality, with pain being one of the cardinal warning signs. However, in a substantial percentage of cases, pain can persist after resolution of acute illness, manifesting as neuropathic, nociplastic (eg, fibromyalgia, irritable bowel syndrome), or nociceptive pain. Mechanisms by which acute infectious pain becomes chronic are variable and can include immunological phenomena (eg, bystander activation, molecular mimicry), direct microbe invasion, central sensitization from physical or psychological triggers, and complications from treatment. Microbes resulting in a high incidence of chronic pain include bacteria such as the Borrelia species and Mycobacterium leprae, as well as viruses such as HIV, SARS-CoV-2 and herpeses. Emerging evidence also supports an infectious cause in a subset of patients with discogenic low back pain and inflammatory bowel disease. Although antimicrobial treatment might have a role in treating chronic pain states that involve active infectious inflammatory processes, their use in chronic pain conditions resulting from autoimmune mechanisms, central sensitization and irrevocable tissue (eg, arthropathy, vasculitis) or nerve injury, are likely to cause more harm than benefit. This review focuses on the relation between infection and chronic pain, with an emphasis on common viral and bacterial causes.
Collapse
Affiliation(s)
- Steven P Cohen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Departments of Physical Medicine and Rehabilitation, Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Departments of Physical Medicine and Rehabilitation and Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Eric J Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tina L Doshi
- Departments of Anesthesiology & Critical Care Medicine and Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lene Vase
- Department of Psychology, Aarhus University Hospital, Aarhus, Denmark
| | - Kelly A Cawcutt
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nuj Tontisirin
- Department of Anaesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand, Mahidol University, Bangkok, Thailand
| |
Collapse
|
48
|
He J, Li B, Han S, Zhang Y, Liu K, Yi S, Liu Y, Xiu M. Drosophila as a Model to Study the Mechanism of Nociception. Front Physiol 2022; 13:854124. [PMID: 35418874 PMCID: PMC8996152 DOI: 10.3389/fphys.2022.854124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Nociception refers to the process of encoding and processing noxious stimuli, which allow animals to detect and avoid potentially harmful stimuli. Several types of stimuli can trigger nociceptive sensory transduction, including thermal, noxious chemicals, and harsh mechanical stimulation that depend on the corresponding nociceptors. In view of the high evolutionary conservation of the mechanisms that govern nociception from Drosophila melanogaster to mammals, investigation in the fruit fly Drosophila help us understand how the sensory nervous system works and what happen in nociception. Here, we present an overview of currently identified conserved genetics of nociception, the nociceptive sensory neurons responsible for detecting noxious stimuli, and various assays for evaluating different nociception. Finally, we cover development of anti-pain drug using fly model. These comparisons illustrate the value of using Drosophila as model for uncovering nociception mechanisms, which are essential for identifying new treatment goals and developing novel analgesics that are applicable to human health.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Yongqi Liu,
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Minghui Xiu,
| |
Collapse
|
49
|
Voltage-dependent Ca V3.2 and Ca V2.2 channels in nociceptive pathways. Pflugers Arch 2022; 474:421-434. [PMID: 35043234 DOI: 10.1007/s00424-022-02666-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Noxious stimuli like cold, heat, pH change, tissue damage, and inflammation depolarize a membrane of peripheral endings of specialized nociceptive neurons which eventually results in the generation of an action potential. The electrical signal is carried along a long axon of nociceptive neurons from peripheral organs to soma located in dorsal root ganglions and further to the dorsal horn of the spinal cord where it is transmitted through a chemical synapse and is carried through the spinal thalamic tract into the brain. Two subtypes of voltage-activated calcium play a major role in signal transmission: a low voltage-activated CaV3.2 channel and a high voltage-activated CaV2.2 channel. The CaV3.2 channel contributes mainly to the signal conductance along nociceptive neurons while the principal role of the CaV2.2 channel is in the synaptic transmission at the dorsal horn. Both channels contribute to the signal initiation at peripheral nerve endings. This review summarizes current knowledge about the expression and distribution of these channels in a nociceptive pathway, the regulation of their expression and gating during pain pathology, and their suitability as targets for pharmacological therapy.
Collapse
|
50
|
Gao L, Cui S, Huang Z, Cui H, Awad Alahmadi T, Manikandan V. Antinociceptive and anti-inflammatory activities of butein in different nociceptive and inflammatory mice models. Saudi J Biol Sci 2021; 28:7090-7097. [PMID: 34867011 PMCID: PMC8626269 DOI: 10.1016/j.sjbs.2021.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 11/26/2022] Open
Abstract
Background Around 30% world population affected by acute and chronic pain due to inflammation and accidental injuries. Pain is a uncomfortable sensation and it reduce the patients’ life quality. Objective The present exploration focuses to explore the beneficial effects of butein on the different chemical and thermal-provoked nociceptive and inflammatory mice models. Methodology The nociception was induced to the Swiss mice using different chemical (formalin, acetic acid, glutamate, and capsaicin) and thermal (hot plate and tail immersion) methods. the mice were supplemented with 10, 15, and 20 mg/kg of butein and respective standard drugs like morphine, diclofenac sodium, and dexamethasone. The anti-inflammatory effects of butein was studied using carrageenan-provoked inflammation in mice. Results The present findings clearly demonstrated that the butein was substantially lessened the different thermal and chemical provoked nociception in mice. The carrageenan-triggered paw edema and inflammatory cell infiltrations were appreciably suppressed by the butein treatment. The TNF-α, IL-1β, and IL-6 levels in the carrageenan-induced mice were effectively depleted by the butein. Conclusion Altogether, the present findings evidenced the potent antinociceptive and anti-inflammatory properties of the butein in different nociceptive mice models.
Collapse
Affiliation(s)
- Li Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154002, China
| | - Shasha Cui
- Department of Anesthesiology, Jincheng People's Hospital, Jincheng, Shanxi Province 048000, China
| | - Zhiqiang Huang
- Department of Anesthesiology, Xilingo League Central Hospital, Xilingo league, Inner Mongolia Autonomous Region 026000,China
| | - Hailong Cui
- Department of Anesthesiology, Hohhot Maternal and Child Health Hospital, Hohhot, Inner Mongolia Autonomous Region 010031, China
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Velu Manikandan
- Division of Biotechnology,College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, South Korea
| |
Collapse
|