1
|
Zhu Y, Xie G, Qi F, Tang S, Xun W. CD73 alleviates podocytes injury in adriamycin-induced nephrotic syndrome. Tissue Cell 2025; 93:102647. [PMID: 39637490 DOI: 10.1016/j.tice.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Podocyte injury is considered one of the main causes of kidney diseases occurrence and development. We have demonstrated that Ecto-5'-Nucleotidase (CD73) upregulated during podocyte injury, yet its function in podocyte is still unclear. Mouse podocytes cell line (MPC5) were exposed to the adriamycin (ADR, 0.25 μg/ml) to establish the model of podocytes injury, as well as low expression CD73 with lentivirus transfected shRNA. CD73 expression was verified by western blot and immunofluorescence assay. Cytokines (IL-1β, IL-18), apoptosis and apoposis-related protein (Bax, Caspase-3, Desmin) levels were measured using ELISA assay, Flow cytometry and Western blot, respectively. CD73, the cytokines of IL-1β and IL-18, apoptosis rate and the expression of Bax, Caspase-3 and Desmin were significantly increased in ADR group compared with the control group. Moreover, we also successfully constructed a CD73 down-expressed podocytes cell line. However, in comparsion with the ADR group, the cytokines of IL-1β and IL-18, apoptosis rate and the expression of Bax, Caspase-3 and Desmin protein were remarkably lowered in the ADR+CD73 shRNA group. These findings demonstrate that CD73 alleviates podocyte damage by reducing the inflammation and increasing apoptosis.
Collapse
Affiliation(s)
- Yanji Zhu
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao 276800, PR China
| | - Guiling Xie
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao 276800, PR China
| | - Fangyan Qi
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao 276800, PR China
| | - ShenWei Tang
- College of Clinical Medicine, Jining Medical University, Jining 272000, PR China
| | - Wenlong Xun
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao 276800, PR China.
| |
Collapse
|
2
|
Wang Z, Zhang C. Nanomaterials for targeted therapy of kidney diseases: Strategies and advances. Mater Today Bio 2025; 31:101534. [PMID: 39990736 PMCID: PMC11846943 DOI: 10.1016/j.mtbio.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The treatment and management of kidney diseases pose a significant global burden. Due to the presence of blood circulation barriers and glomerular filtration barriers, drug therapy for kidney diseases faces challenges such as poor renal targeting, short half-life, and severe systemic side effects, severely hindering therapeutic progress. Therefore, the research and development of kidney-targeted therapeutic agents is of great clinical significance. In recent years, the application of nanotechnology in the field of nephrology has shown potential for revolutionizing the diagnosis and treatment of kidney diseases. Carefully designed nanomaterials can exhibit optimal biological characteristics, influencing various aspects such as circulation, retention, targeting, and excretion. Rationally designing and modifying nanomaterials based on the anatomical structure and pathophysiological environment of the kidney to achieve highly specific kidney-targeted nanomaterials or nanodrug delivery systems is both feasible and promising. Based on the targeted therapy of kidney diseases, this review discusses the advantages and limitations of current nanomedicine in the targeted therapy of kidney diseases, and summarizes the application and challenges of current renal active/passive targeting strategies, in order to further promote the development of kidney-targeted nanomedicine through a preliminary summary of previous studies and future prospects.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Nishii N, Kawai T, Yasuoka H, Abe T, Tatsumi N, Harada Y, Miyaji T, Li S, Tsukano M, Watanabe M, Ogawa D, Wada J, Takei K, Yamada H. Vesicular Glutamate Transporter 3 Is Involved in Glutamatergic Signalling in Podocytes. Int J Mol Sci 2025; 26:2485. [PMID: 40141129 PMCID: PMC11941860 DOI: 10.3390/ijms26062485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes release glutamate. Here, we demonstrated vesicular glutamate transporter 3 (VGLUT3)-dependent glutamate release from podocytes. Immunofluorescence analysis revealed that rat glomerular podocytes and an immortal mouse podocyte cell line (MPC) express VGLUT1 and VGLUT3. Consistent with this finding, quantitative RT-PCR revealed the expression of VGLUT1 and VGLUT3 mRNA in undifferentiated and differentiated MPCs. In addition, the exocytotic proteins vesicle-associated membrane protein 2, synapsin 1, and synaptophysin 1 were present in punctate patterns and colocalized with VGLUT3 in MPCs. Interestingly, approximately 30% of VGLUT3 colocalized with VGLUT1. By immunoelectron microscopy, VGLUT3 was often observed around clear vesicle-like structures in differentiated MPCs. Differentiated MPCs released glutamate following depolarization with high potassium levels and after stimulation with the muscarinic agonist pilocarpine. The depletion of VGLUT3 in MPCs by RNA interference reduced depolarization-dependent glutamate release. These results strongly suggest that VGLUT3 is involved in glutamatergic signalling in podocytes and may be a new drug target for various kidney diseases.
Collapse
Affiliation(s)
- Naoko Nishii
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (D.O.); (J.W.)
| | - Tomoko Kawai
- Department of Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan;
| | - Hiroki Yasuoka
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| | - Tadashi Abe
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| | - Nanami Tatsumi
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| | - Yuika Harada
- Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan; (Y.H.); (T.M.)
| | - Takaaki Miyaji
- Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan; (Y.H.); (T.M.)
| | - Shunai Li
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (S.L.); (M.W.)
| | - Moemi Tsukano
- Central Research Laboratory, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Masami Watanabe
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (S.L.); (M.W.)
| | - Daisuke Ogawa
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (D.O.); (J.W.)
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (D.O.); (J.W.)
| | - Kohji Takei
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| | - Hiroshi Yamada
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan (T.A.); (K.T.)
| |
Collapse
|
4
|
Hanna C, Etry HE, Ibrahim M, Khalife L, Bahous SA, Faour WH. Podocyturia an emerging biomarker for kidney injury. BMC Nephrol 2025; 26:118. [PMID: 40045253 PMCID: PMC11884025 DOI: 10.1186/s12882-025-04039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Podocyte injury is an established hallmark of kidney disease progression. Podocyte loss is a widely proven hypothesis to explain, in part, glomerular damage. Regardless of the underlying kidney disease, the pathophysiologic processes frequently involve the glomerulus. A growing body of evidence considered that podocytes detachment (podocytopathy) and their presence in the urine (podocyturia) are the hallmark of glomerular disease progression. As such, developing new tools to monitor disease progression non-invasively is of major clinical importance. Detection of podocytes in the urine as a biomarker of disease progression would be a major achievement toward the development of such tools. This review summarizes current knowledge about podocyturia.
Collapse
Affiliation(s)
- Charbel Hanna
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Hady El Etry
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Maroun Ibrahim
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Lynn Khalife
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon
| | - Sola Aoun Bahous
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon.
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Room 4722, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
5
|
Noureddine M, Mikolajek H, Morgan NV, Denning C, Loughna S, Gehmlich K, Mohammed F. Structural and functional insights into α-actinin isoforms and their implications in cardiovascular disease. J Gen Physiol 2025; 157:e202413684. [PMID: 39918740 PMCID: PMC11804879 DOI: 10.1085/jgp.202413684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
α-actinin (ACTN) is a pivotal member of the actin-binding protein family, crucial for the anchoring and organization of actin filaments within the cytoskeleton. Four isoforms of α-actinin exist: two non-muscle isoforms (ACTN1 and ACTN4) primarily associated with actin stress fibers and focal adhesions, and two muscle-specific isoforms (ACTN2 and ACTN3) localized to the Z-disk of the striated muscle. Although these isoforms share structural similarities, they exhibit distinct functional characteristics that reflect their specialized roles in various tissues. Genetic variants in α-actinin isoforms have been implicated in a range of pathologies, including cardiomyopathies, thrombocytopenia, and non-cardiovascular diseases, such as nephropathy. However, the precise impact of these genetic variants on the α-actinin structure and their contribution to disease pathogenesis remains poorly understood. This review provides a comprehensive overview of the structural and functional attributes of the four α-actinin isoforms, emphasizing their roles in actin crosslinking and sarcomere stabilization. Furthermore, we present detailed structural modeling of select ACTN1 and ACTN2 variants to elucidate mechanisms underlying disease pathogenesis, with a particular focus on macrothrombocytopenia and hypertrophic cardiomyopathy. By advancing our understanding of α-actinin's role in both normal cellular function and disease states, this review lays the groundwork for future research and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maya Noureddine
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Halina Mikolajek
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Neil V. Morgan
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Li X, Zhao S, Xie J, Li M, Tong S, Ma J, Yang R, Zhao Q, Zhang J, Xu A. Targeting the NF-κB p65-MMP28 axis: Wogonoside as a novel therapeutic agent for attenuating podocyte injury in diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156406. [PMID: 39862792 DOI: 10.1016/j.phymed.2025.156406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Although recent progress provides mechanistic insights into diabetic nephropathy (DN), effective treatments remain scarce. DN, characterized by proteinuria and a progressive decline in renal function, primarily arises from podocyte injury, which impairs the glomerular filtration barrier. Wogonoside, a bioactive compound from the traditional Chinese herb Scutellaria baicalensis, has not been explored for its role in DN. PURPOSE This study aimed to investigate the therapeutic effects of wogonoside on podocyte injury in DN and its molecular mechanisms. METHODS The effects of wogonoside were examined using HFD/STZ-induced DN mouse models and high glucose (HG)-induced MPC-5 cells. Oxidative stress and inflammation markers were analyzed via Western blot and RT-qPCR. Wogonoside targets were identified through DARTS-MS and validated by SPR, molecular docking, alanine scanning, and CETSA. RNA-Seq analysis was employed to identify downstream targets, and the p65-MMP28 axis was explored through p65 knockdown and overexpression studies. The regulatory effect of p65 on Mmp28 was confirmed through dual-luciferase reporter assays and ChIP-qPCR. RESULTS Wogonoside treatment significantly reduced oxidative stress and inflammation in vivo and in vitro. Mechanistic studies identified p65 as a direct target of wogonoside, with SPR confirming a strong binding affinity (KD = 25.05 μM). Molecular docking and alanine scanning identified LYS221 as a critical binding site, which was further supported by CETSA using the p65 K221A mutant. RNA-Seq analysis revealed Mmp28 as a downstream effector of p65 involved in HG-induced podocyte injury. Functional studies demonstrated that wogonoside's protective effects on antioxidant and inflammatory pathways are mediated via the p65-MMP28 axis. Dual-luciferase reporter assays revealed that p65 regulates Mmp28 transcription, and ChIP-qPCR confirmed its direct promoter binding. CONCLUSIONS This study highlights wogonoside as a promising candidate for the treatment of podocyte injury in DN by targeting the NF-κB p65-MMP28 signaling axis. These findings provide novel insights into wogonoside's therapeutic potential and its molecular mechanisms, paving the way for its further development as a DN intervention.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shuyan Zhao
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Xie
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Ma
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rui Yang
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Zeng D, Wang B, Guo Y, Wang Q, Tang X, Xiao Z, Yao X, Huang C, Guo W, Li M, Wang P, Feng Q, Yu XA, Dai Y. Rapid and non-invasive renal injury diagnosis unlocked by a glimpse into urinary protein particle size and charge. Biosens Bioelectron 2025; 271:116994. [PMID: 39644527 DOI: 10.1016/j.bios.2024.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Urinary protein, an important marker for early detection of kidney injury, would change in type and content dynamically with the degree of kidney injury due to the particle size and charge selectivity of the glomerular filtration system, making it significantly valuable for accurate classification and early diagnosis. In this study, we developed a fluorescence sensor (Ami-AuNP/DNAs) based on charge interaction to rapidly identify the progression of kidney injury. When the positively charged Ami-AuNP combines with negatively charged DNAs, fluorescence quenching occurs, and urine proteins that appear compete with the DNAs, leading to fluorescence recovery. Based on these signal changes, PCA and PSO-BP neural network analysis were used to successfully identified kidney injury progression in 197 animal kidney injury and 62 clinical chronic kidney disease urine samples through a simple urine sample drop. Additionally, the sensor could also evaluate the effect of Huangkui capsule on kidney injury in adriamycin nephropathy model mice. Accordingly, this method transforms complex biological signals in vivo into macroscopic visual optical signals, amplifying differences of urinary protein, making up for the deficiency of the traditional method in hysteresis and low accuracy, and promoting urinary protein as the potential noninvasive biomarker for evaluating kidney injury.
Collapse
Affiliation(s)
- Duanna Zeng
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, China; NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanhong Guo
- The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Qiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Xiyang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Zheng Xiao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Xinsheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Cong Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China; Anshun Hospital of Traditional Chinese Medicine, Anshun, 561000, China
| | - Wenting Guo
- Anshun Hospital of Traditional Chinese Medicine, Anshun, 561000, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Qitong Feng
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, VIC, 3052, Australia.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Qi B, Chen Y, Chai S, Lu X, Kang L. O-linked β-N-acetylglucosamine (O-GlcNAc) modification: Emerging pathogenesis and a therapeutic target of diabetic nephropathy. Diabet Med 2025; 42:e15436. [PMID: 39279604 PMCID: PMC11733667 DOI: 10.1111/dme.15436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
AIMS O-Linked β-N-acetylglucosamine (O-GlcNAc) modification, a unique post-translational modification of proteins, is elevated in diabetic nephropathy. This review aims to summarize the current knowledge on the mechanisms by which O-GlcNAcylation of proteins contributes to the pathogenesis and progression of diabetic nephropathy, as well as the therapeutic potential of targeting O-GlcNAc modification for its treatment. METHODS Current evidence in the literature was reviewed and synthesized in a narrative review. RESULTS Hyperglycemia increases glucose flux into the hexosamine biosynthesis pathway, which activates glucosamino-fructose aminotransferase expression and activity, leading to the production of O-GlcNAcylation substrate UDP-GlcNAc and an increase in protein O-GlcNAcylation in kidney cells. Protein O-GlcNAcylation regulates the function of kidney cells including mesangial cells, podocytes, and proximal tubular cells, and promotes renal interstitial fibrosis, resulting in kidney damage. Current treatments for diabetic nephropathy, such as sodium-glucose cotransporter 2 (SGLT-2) inhibitors and renin-angiotensin-aldosterone system (RAAS) inhibitors, delay disease progression, and suppress protein O-GlcNAcylation. CONCLUSIONS Increased protein O-GlcNAcylation mediates renal cell damage and promotes renal interstitial fibrosis, leading to diabetic nephropathy. Although the full significance of inhibition of O-GlcNAcylation is not yet understood, it may represent a novel target for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Bingxue Qi
- Precision Molecular Medicine CenterJilin Province People's HospitalChangchunChina
| | - Yang Chen
- Clinical Medicine CollegeChangchun University of Chinese MedicineChangchunChina
| | - Siyang Chai
- Clinical Medicine CollegeChangchun University of Chinese MedicineChangchunChina
| | - Xiaodan Lu
- Precision Molecular Medicine CenterJilin Province People's HospitalChangchunChina
| | - Li Kang
- Division of Cellular and Systems MedicineSchool of Medicine, University of DundeeDundeeUK
| |
Collapse
|
9
|
Lv J, Yu H, Du S, Xu P, Zhao Y, Qi W, Wang X. Targeting endoplasmic reticulum stress: an innovative therapeutic strategy for podocyte-related kidney diseases. J Transl Med 2025; 23:95. [PMID: 39838496 PMCID: PMC11752968 DOI: 10.1186/s12967-025-06076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
The endoplasmic reticulum (ER) is a vital organelle responsible for protein quality control, including the folding, modification, and transport of proteins. When misfolded or unfolded proteins accumulate in the ER, it triggers endoplasmic reticulum stress (ERS) and activates the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or excessive ERS can lead to apoptosis. The kidneys play a crucial role in maintaining physiological functions by excreting metabolic waste, regulating blood volume, balancing electrolytes and acid-base levels, and secreting various bioactive substances. Podocytes, epithelial cells situated outside the glomerular basement membrane, are essential for maintaining the structural integrity and permeability of the glomerular filtration barrier. Previous studies have shown that ERS in podocytes can contribute to the development of diseases such as glomerulonephritis, hereditary nephropathy, and diabetic kidney disease, potentially progressing to end-stage renal disease and causing patient mortality. As such, investigating ERS in podocytes has become a key area of focus in kidney disease research. This study examines recent advancements in understanding the effects of excessive ERS on podocytes across various kidney diseases, highlights the role of podocyte ERS in disease progression, and explores the potential therapeutic benefits of targeting the UPR to manage ERS in kidney diseases, thereby providing a scientific basis for clinical interventions.
Collapse
Affiliation(s)
- Jiao Lv
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Honghai Yu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Sasa Du
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Pengyu Xu
- College of Acupuncture and Moxibustion, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Yunyun Zhao
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiuge Wang
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
10
|
Junli W, Zhihong H, Lina W, Qiaoqun O, Jing Q, Jiaqi H, Yu S. Research hotspots and frontiers of endoplasmic reticulum in glomerular podocytes: a bibliometric and visual analysis from 2005 to 2023. Front Pharmacol 2025; 15:1488340. [PMID: 39840101 PMCID: PMC11747773 DOI: 10.3389/fphar.2024.1488340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Background The glomerular podocyte endoplasmic reticulum is a critical component in renal function, yet its research landscape is not fully understood. This study aims to map the existing research on podocyte endoplasmic reticulum by analyzing publications in the Web of Science Core Collection (WOSCC) from the past 19 years. Methods We conducted a bibliometric analysis using Citespace, VOSviewer, the Metrology Literature Online platform, and the Bibliometrix software package to visualize and interpret the data from WOSCC. The analysis focused on publication volume, authorship, institutional contributions, and research trends. Results The analysis revealed a significant growth in publications, indicating a surge in interest in podocyte endoplasmic reticulum research. Cybulsky, Andrey V, and Papillon, Joan emerge as the most prolific authors, and the Journal of the American Society of Nephrology is the leading journal in this field. China is the top contributor in terms of publications, with McGill University being the most productive institution. The research primarily focuses on endoplasmic reticulum stress, diabetic nephropathy, and apoptosis, with emerging trends in "foot cell apoptosis," "cell signaling pathways," and "autophagy." Conclusion The findings highlight the expanding scope of podocyte endoplasmic reticulum research, with a particular emphasis on the mechanisms of endoplasmic reticulum stress and podocyte apoptosis. Future research directions may include the identification of specific therapeutic targets, detailed exploration of podocyte signaling pathways, and the role of autophagy. This study provides a comprehensive overview of the major research areas, frontiers, and trends in podocyte endoplasmic reticulum research, which are pivotal for guiding future investigations.
Collapse
Affiliation(s)
- Wang Junli
- Department of Pediatrics, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hao Zhihong
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wang Lina
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ou Qiaoqun
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qu Jing
- Department of Pediatrics, Guangzhou First People’s Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hu Jiaqi
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shengyou Yu
- Department of Pediatrics, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pediatrics, Guangzhou First People’s Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Hu Z, Cano I, Lei F, Liu J, Bossardi Ramos R, Gordon H, Paschalis EI, Saint-Geniez M, Ng YSE, D'Amore PA. Loss of the Endothelial Glycocalyx Component EMCN Leads to Glomerular Impairment. Circ Res 2025; 136:59-74. [PMID: 39584795 DOI: 10.1161/circresaha.124.325218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND EMCN (endomucin), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of VEGF (vascular endothelial growth factor) activity through modulating VEGFR2 (VEGF receptor 2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model. METHODS Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was used to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, whereas urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP (enhanced green fluorescent protein), CD45 (cluster of differentiation 45), CD31, CD34, podocin, and albumin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a noninvasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA sequencing. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis. Protein levels of EMCN, albumin, and podocin were quantified by Western blot. RESULTS The EMCN-/- mice exhibited increased infiltration of CD45+ cells, with an increased proportion of Ly6GhighLy6Chigh myeloid cells and higher VCAM-1 (vascular cell adhesion molecule 1) expression. EMCN-/- mice displayed albuminuria with increased albumin in the Bowman's space compared with the EMCN+/+ littermates. Glomeruli in EMCN-/- mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA sequencing of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm. CONCLUSION Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.
Collapse
Affiliation(s)
- Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Issahy Cano
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Fengyang Lei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Jie Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical Center, NY (R.B.R.)
| | - Harper Gordon
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Eleftherios I Paschalis
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
- Now with Biomedical Research, Novartis, Cambridge, MA (M.S.-G.)
| | - Yin Shan Eric Ng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
- Now with EyeBiotech Limited, a subsidiary of Merck & Co, Inc, Rahway, NJ (Y.S.E.N.)
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.)
- Department of Ophthalmology (Z.H., I.C., F.L., J.L., H.G., E.I.P., M.S.-G., Y.S.E.N., P.A.D.), Harvard Medical School, Boston, MA
- Department of Pathology (P.A.D.), Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Zhang YY, Zhou XT, Huang GZ, Liao WJ, Chen X, Ma YR. The pro-fibrotic role of autophagy in renal intrinsic cells: mechanisms and therapeutic potential in chronic kidney disease. Front Cell Dev Biol 2024; 12:1499457. [PMID: 39723243 PMCID: PMC11669005 DOI: 10.3389/fcell.2024.1499457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) represents a significant global public health burden, affecting over 10% of the world's population. Its high morbidity, multifactorial complications, and substantial mortality impose significant burdens on healthcare systems and patients, necessitating considerable investment in healthcare resources. Renal fibrosis (RF) is a key pathological feature and driver of CKD progression. Extensive research indicates that autophagy participates in the complete pathogenesis of RF. Under physiological conditions, autophagy is essential for maintaining renal cellular homeostasis. However, under pathological conditions, perhaps aberrant and sustained activation of autophagy contributes to oxidative stress, apoptosis, inflammation, etc. Ultimately, they accelerate the development of RF. The role of autophagy in RF is currently controversial. This review investigates the molecular mechanisms by which intrinsic renal cell autophagy contributes to RF across diverse disease models, suggesting that autophagy and its associated regulatory pathways represent potential diagnostic and therapeutic targets for CKD.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Tao Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Geng-Zhen Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu second people’s Hospital, Chengdu, China
| | - Wen-Jun Liao
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue-Rong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Yu T, Ji Y, Cui X, Liang N, Wu S, Xiang C, Li Y, Tao H, Xie Y, Zuo H, Wang W, Khan N, Ullah K, Xu F, Zhang Y, Lin C. Novel Pathogenic Mutation of P209L in TRPC6 Gene Causes Adult Focal Segmental Glomerulosclerosis. Biochem Genet 2024; 62:4432-4445. [PMID: 38315264 DOI: 10.1007/s10528-023-10651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a leading kidney disease, clinically associated with proteinuria and progressive renal failure. The occurrence of this disease is partly related to gene mutations. We describe a single affected family member who presented with FSGS. We used high-throughput sequencing, sanger sequencing to identify the pathogenic mutations, and a systems genetics analysis in the BXD mice was conducted to explore the genetic regulatory mechanisms of pathogenic genes in the development of FSGS. We identified high urinary protein (++++) and creatinine levels (149 μmol/L) in a 29-year-old male diagnosed with a 5-year history of grade 2 hypertension. Histopathology of the kidney biopsy showed stromal hyperplasia at the glomerular segmental sclerosis and endothelial cell vacuolation degeneration. Whole-exome sequencing followed by Sanger sequencing revealed a heterozygous missense mutation (c.643C > T) in exon 2 of TRPC6, leading to the substitution of arginine with tryptophan at position 215 (p.Arg215Trp). Systems genetics analysis of the 53 BXD mice kidney transcriptomes identified Pygm as the upstream regulator of Trpc6. Those two genes are jointly involved in the regulation of FSGS mainly via Wnt and Hippo signaling pathways. We present a novel variant in the TRPC6 gene that causes FSGS. Moreover, our data suggested TRPC6 works with PYGM, as well as Wnt and Hippo signaling pathways to regulate renal function, which could guide future clinical prevention and targeted treatment for FSGS outcomes.
Collapse
Affiliation(s)
- Tianxi Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xin Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Ning Liang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Shuang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Chongjun Xiang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yue Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Huiying Tao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yaqi Xie
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongwei Zuo
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- The 2nd Medical College of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenting Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Nauman Khan
- Department of Biology, Faculty of Biological and Biomedical Sciences, The University of Haripur, Haripur, KP, Pakistan
| | - Kamran Ullah
- Department of Biology, Faculty of Biological and Biomedical Sciences, The University of Haripur, Haripur, KP, Pakistan
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yan Zhang
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
14
|
Lu Q, Hu X, Hou Q, Yu L, Cao K, Ding D, Lu Y, Dai C. Rheb1 deficiency elicits mitochondrial dysfunction and accelerates podocyte senescence through promoting Atp5f1c acetylation. Cell Signal 2024; 124:111451. [PMID: 39389178 DOI: 10.1016/j.cellsig.2024.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Podocyte senescence can cause persistent podocyte injury and albuminuria in diabetic kidney disease (DKD), but the mechanism remains obscure. In this study, podocyte senescence was confirmed by immunohistochemical staining in podocytes from patients and mice with DKD. Rheb1 knockout in podocytes aggravated podocyte senescence and injury in diabetic mice, but mitigated podocyte injury in mice with podocyte-specific mTORC1 activation induced by Tsc1 deletion. In cultured podocytes, Rheb1 knockdown remarkably accelerated podocyte senescence, independent of mTORC1. Mechanistically, PDH phosphorylation in podocyte was correlated with podocyte senescence in DKD patients. Rheb1 deficiency decreased ATP, mitochondrial membrane potential and partial components of respiratory chain complex, and enhanced ROS production and PDH phosphorylation, which indicates mitochondrial dysfunction, both in vitro and in vivo. Furthermore, Rheb1 interacted with Atp5f1c, and regulated its acetylation under a high-glucose condition. Together, Rheb1 deficiency elicits mitochondrial dysfunction and accelerates podocyte senescence through promoting Atp5f1c acetylation, in an mTORC1-independent manner, which provides experimental basis for the treatment of DKD.
Collapse
Affiliation(s)
- Qingmiao Lu
- Department of Endocrinology, 2(nd) Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, China
| | - Xiao Hu
- Department of Endocrinology, 2(nd) Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, China; Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, No. 666 Shengli Road, Nantong 226001, China
| | - Qing Hou
- Center for Kidney Disease, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Long Yu
- Center for Kidney Disease, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Kai Cao
- Center for Kidney Disease, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Dafa Ding
- Department of Endocrinology, 2(nd) Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, China
| | - Yibing Lu
- Department of Endocrinology, 2(nd) Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, China.
| | - Chunsun Dai
- Center for Kidney Disease, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China; Department of Clinical Genetics, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Schulz K, Hazelton-Cavill P, Alornyo KK, Edenhofer I, Lindenmeyer M, Lohr C, Huber TB, Denholm B, Koehler S. Piezo activity levels need to be tightly regulated to maintain normal morphology and function in pericardial nephrocytes. Sci Rep 2024; 14:28254. [PMID: 39548228 PMCID: PMC11568303 DOI: 10.1038/s41598-024-79352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Due to their position on glomerular capillaries, podocytes are continuously counteracting biomechanical filtration forces. Most therapeutic interventions known to generally slow or prevent the progression of chronic kidney disease appear to lower these biomechanical forces on podocytes, highlighting the critical need to better understand podocyte mechano-signalling pathways. Here we investigated whether the mechanotransducer Piezo is involved in a mechanosensation pathway in Drosophila nephrocytes, the podocyte homologue in the fly. Loss of function analysis in Piezo depleted nephrocytes reveal a severe morphological and functional phenotype. Further, pharmacological activation of endogenous Piezo with Yoda1 causes a significant increase of intracellular Ca++ upon exposure to a mechanical stimulus in nephrocytes, as well as filtration disturbances. Elevated Piezo expression levels also result in a severe nephrocyte phenotype. Interestingly, expression of Piezo which lacks mechanosensitive channel activity, does not result in a severe nephrocyte phenotype, suggesting the observed changes in Piezo wildtype overexpressing cells are caused by the mechanosensitive channel activity. Moreover, blocking Piezo activity using the tarantula toxin GsMTx4 reverses the phenotypes observed in nephrocytes overexpressing Piezo. Taken together, here we provide evidence that Piezo activity levels need to be tightly regulated to maintain normal pericardial nephrocyte morphology and function.
Collapse
Affiliation(s)
- Kristina Schulz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paris Hazelton-Cavill
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl K Alornyo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
16
|
Cybulsky AV, Papillon J, Guillemette J, Navarro-Betancourt JR, Elimam H, Fantus IG. Genetic deletion of calcium-independent phospholipase A2γ protects mice from diabetic nephropathy. PLoS One 2024; 19:e0311404. [PMID: 39480824 PMCID: PMC11527321 DOI: 10.1371/journal.pone.0311404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024] Open
Abstract
Calcium-independent phospholipase A2γ (iPLA2γ) is localized in glomerular epithelial cells (GECs)/podocytes at the mitochondria and endoplasmic reticulum, and can mediate release of arachidonic acid and prostanoids. Global knockout (KO) of iPLA2γ in mice did not cause albuminuria, but resulted in mitochondrial structural abnormalities and enhanced autophagy in podocytes. In acute glomerulonephritis, deletion of iPLA2γ exacerbated albuminuria and podocyte injury. This study addresses the role of iPLA2γ in diabetic nephropathy. Hyperglycemia was induced in male mice with streptozotocin (STZ). STZ induced progressive albuminuria in control mice (over 21 weeks), while albuminuria did not increase in iPLA2γ KO mice, remaining comparable to untreated groups. Despite similar exposure to STZ, the STZ-treated iPLA2γ KO mice developed a lower level of hyperglycemia compared to STZ-treated control. However, there was no significant correlation between the degree of hyperglycemia and albuminuria, and even iPLA2γ KO mice with greatest hyperglycemia did not develop significant albuminuria. Mortality at 21 weeks was greatest in diabetic control mice. Sclerotic glomeruli and enlarged glomerular capillary loops were increased significantly in diabetic control compared to diabetic iPLA2γ KO mice. Glomerular matrix was expanded in diabetic mice, with control exceeding iPLA2γ KO. Glomerular autophagy (increased LC3-II and decreased p62) was enhanced in diabetic iPLA2γ KO mice compared to control. Treatment of cultured GECs with H2O2 resulted in increased cell death in control GECs compared to iPLA2γ KO, and the increase was slightly greater in medium with high glucose compared to low glucose. H2O2-induced cell death was not affected by inhibition of prostanoid production with indomethacin. In conclusion, mice with global deletion of iPLA2γ are protected from developing chronic glomerular injury in diabetic nephropathy. This is associated with increased glomerular autophagy.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - I. George Fantus
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Zeng D, Wang B, Xiao Z, Wang X, Tang X, Yao X, Wang P, Li M, Dai Y, Yu X. Early Diagnosis and Treatment of Kidney Injury: A Focus on Urine Protein. Int J Mol Sci 2024; 25:11171. [PMID: 39456955 PMCID: PMC11508809 DOI: 10.3390/ijms252011171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney, an essential excretory organ of the body, performs a series of crucial physiological functions such as waste removal, maintenance of electrolyte and acid-base balance, and endocrine regulation. Due to its rich blood flow and high metabolic activity, the kidney is susceptible to damage. Currently, kidney injury is classified into acute kidney injury (AKI) and chronic kidney disease (CKD), both of which are associated with high rates of morbidity and mortality on a global scale. The current clinical diagnosis of renal injury relies on the assessment of renal filtration function using creatinine and urea nitrogen as "gold-standard" markers. However, the delayed response time, limited specificity, and reduced accuracy of creatinine and urea nitrogen in evaluating kidney injury have significantly hindered advancements in diagnostic methods for kidney injury. Urinary protein is widely utilized as a biomarker for the early diagnosis of kidney injury due to the selectivity of the glomerular filtration system determining whether proteins can pass through the filtration barrier based on their size and charge. Therefore, as a complex biological sample with varying charges and particle sizes, urinary protein is considered an ideal indicator for monitoring the progression of kidney disease. Exploring the relationship between urinary protein and the advancement of kidney injury based on differences in particle size and charge offers a new perspective for assessing and treating such injuries. Hence, we conducted a comprehensive review of 74 relevant studies to gain a thorough understanding of the physiological mechanism and significance of proteinuria production. The aim was to explore the challenges and opportunities in clinical urine protein detection, as well as to discuss strategies targeting glomerular filtration barriers in order to effectively reduce urine protein levels and treat kidney injury, which could provide a new perspective for identifying the progression of kidney injury.
Collapse
Affiliation(s)
- Duanna Zeng
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, China; (D.Z.); (Z.X.); (X.T.); (X.Y.)
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (X.W.); (P.W.); (M.L.)
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (X.W.); (P.W.); (M.L.)
| | - Zheng Xiao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, China; (D.Z.); (Z.X.); (X.T.); (X.Y.)
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (X.W.); (P.W.); (M.L.)
| | - Xiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (X.W.); (P.W.); (M.L.)
| | - Xiyang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, China; (D.Z.); (Z.X.); (X.T.); (X.Y.)
| | - Xinsheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, China; (D.Z.); (Z.X.); (X.T.); (X.Y.)
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (X.W.); (P.W.); (M.L.)
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (X.W.); (P.W.); (M.L.)
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, China; (D.Z.); (Z.X.); (X.T.); (X.Y.)
| | - Xiean Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (X.W.); (P.W.); (M.L.)
| |
Collapse
|
18
|
Zhang Y, Musah S. Mechanosensitive Differentiation of Human iPS Cell-Derived Podocytes. Bioengineering (Basel) 2024; 11:1038. [PMID: 39451413 PMCID: PMC11504473 DOI: 10.3390/bioengineering11101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Stem cell fate decisions, including proliferation, differentiation, morphological changes, and viability, are impacted by microenvironmental cues such as physical and biochemical signals. However, the specific impact of matrix elasticity on kidney cell development and function remains less understood due to the lack of models that can closely recapitulate human kidney biology. An established protocol to differentiate podocytes from human-induced pluripotent stem (iPS) cells provides a promising avenue to elucidate the role of matrix elasticity in kidney tissue development and lineage determination. In this study, we synthesized polyacrylamide hydrogels with different stiffnesses and investigated their ability to promote podocyte differentiation and biomolecular characteristics. We found that 3 kPa and 10 kPa hydrogels significantly support the adhesion, differentiation, and viability of podocytes. Differentiating podocytes on a more compliant (0.7 kPa) hydrogel resulted in significant cell loss and detachment. Further investigation of the mechanosensitive proteins yes-associated protein (YAP) and synaptopodin revealed nuanced molecular distinctions in cellular responses to matrix elasticity that may otherwise be overlooked if morphology and cell spreading alone were used as the primary metric for selecting matrices for podocyte differentiation. Specifically, hydrogels with kidney-like rigidities outperformed traditional tissue culture plates at modulating the molecular-level expression of active mechanosensitive proteins critical for podocyte health and function. These findings could guide the development of physiologically relevant platforms for kidney tissue engineering, disease modeling, and mechanistic studies of organ physiology and pathophysiology. Such advances are critical for realizing the full potential of in vitro platforms in accurately predicting human biological responses.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
19
|
Harvey BJ, Alvarez de la Rosa D. Sex Differences in Kidney Health and Disease. Nephron Clin Pract 2024; 149:77-103. [PMID: 39406203 DOI: 10.1159/000541352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Sex differences exist in kidney physiology and disease which are underpinned by the biological actions of the sex hormones estrogen, progesterone and testosterone. In this review, we present an up-to-date discussion of the hormonal and molecular signalling pathways implicated in sex differences in kidney health and disease. SUMMARY Estrogen and progesterone have protective effects on renal blood flow, glomerular filtration rate and nephron ion and water reabsorptive processes, whereas testosterone tends to compromise these functions. The biological effects of estrogen appear to be the most important in reinforcing kidney function and protecting against kidney diseases in females. The actions of estrogen are myriad but all tend to bolster kidney physiology to maintain a steady-state and adaptable extracellular fluid volume (ECFV) and blood pressure. Estrogen safeguards ECFV homeostasis by stimulating renal epithelial sodium channel (ENaC) and water channel (AQP2) expression and transport function. Renal maintenance of ECFV within narrow physiological limits is a first-line of defense against hypertension and lowers the risk of cardiovascular disease in women. The estrogenic and XX chromosome basis for a female advantage are evident in a wide range of kidney diseases including acute kidney injury, chronic kidney disease, end-stage kidney disease, diabetic kidney disease, and polycystic kidney disease. The molecular mechanisms involve estrogen regulation of nephron ion and water transport, genetic immunogenic responses, activation of the protective arm of the renin angiotensin-aldosterone system and XX chromosome reinforcement of immune responses. Kidney disease can also predispose patients to cancer and women are protected in renal cancer with lower incidence, morbidity, and mortality than age-matched men with the disease. KEY MESSAGES This review underscores the importance of incorporating sex-specific considerations into clinical practice and basic research to bridge the gap in understanding and addressing biological sex disparities in kidney disease and renal cancer.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Centro de Estudios Científicos, Valdivia, Chile
| | - Diego Alvarez de la Rosa
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
20
|
Miyaki T, Homma N, Kawasaki Y, Kishi M, Yamaguchi J, Kakuta S, Shindo T, Sugiura M, Oliva Trejo JA, Kaneda H, Omotehara T, Takechi M, Negishi-Koga T, Ishijima M, Aoto K, Iseki S, Kitamura K, Muto S, Amagasa M, Hotchi S, Ogura K, Shibata S, Sakai T, Suzuki Y, Ichimura K. Ultrastructural analysis of whole glomeruli using array tomography. J Cell Sci 2024; 137:jcs262154. [PMID: 39171439 DOI: 10.1242/jcs.262154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
The renal glomerulus produces primary urine from blood plasma by ultrafiltration. The ultrastructure of the glomerulus is closely related to filtration function and disease development. The ultrastructure of glomeruli has mainly been evaluated using transmission electron microscopy; however, the volume that can be observed using transmission electron microscopy is extremely limited relative to the total volume of the glomerulus. Consequently, observing structures that exist in only one location in each glomerulus, such as the vascular pole, and evaluating low-density or localized lesions are challenging tasks. Array tomography (AT) is a technique used to analyze the ultrastructure of tissues and cells via scanning electron microscopy of serial sections. In this study, we present an AT workflow that is optimized for observing complete serial sections of the whole glomerulus, and we share several analytical examples that use the optimized AT workflow, demonstrating the usefulness of this approach. Overall, this AT workflow can be a powerful tool for structural and pathological evaluation of the glomerulus. This workflow is also expected to provide new insights into the ultrastructure of the glomerulus and its constituent cells.
Collapse
Affiliation(s)
- Takayuki Miyaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nozomi Homma
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuto Kawasaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Mami Kishi
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Core Facilities , Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Research Core Facilities , Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Makoto Sugiura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hisako Kaneda
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takuya Omotehara
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Masaki Takechi
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takako Negishi-Koga
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazushi Aoto
- Central Laboratory, Graduate School of Biomedical and Health Sciences , Hiroshima University, Hiroshima 734-8551, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kosuke Kitamura
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Mao Amagasa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shiori Hotchi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kanako Ogura
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-0016, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences , Niigata University, Niigata City 951-8510, Japan
| | - Tatsuo Sakai
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Laboratory of Morphology and Image Analysis, Research Core Facilities , Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
21
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Jia Y, Xiong S, Chen H, Liu D, Wu X. Exosomes secreted by podocytes regulate the differentiation of Th17/Treg cells in idiopathic nephrotic syndrome. Heliyon 2024; 10:e37866. [PMID: 39315171 PMCID: PMC11417541 DOI: 10.1016/j.heliyon.2024.e37866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have demonstrated that immune cells release exosomes, which act as antigen-presenting vesicles to activate T cells. In our previous study, we discovered that podocytes, a type of kidney cell, can also exhibit antigen-presenting functions to naïve CD4+ T cells in idiopathic nephrotic syndrome (INS). Building upon these findings, the objective of this study was to investigate whether podocytes can regulate the balance between Th17 and Treg cells through the release of exosomes. Methods We co-cultured naïve CD4+ T cells with LPS-treated bone marrow dendritic cells (LPS-BMDC), LPS-treated mouse podocyte clone 5 (LPS-MPC-5), and exosomes derived from LPS-MPC-5 (LPS-EXO). As a control group, naïve CD4+ T cells were cultured with exosomes from untreated MPC-5 (EXO). After 48 h, we analyzed the percentages of Th17 and Treg cells using flow cytometry, measured the concentrations of IL-17A, IL-10, and IL-4 were using ELISA, and examined the expressions of IL-17a, IL-10, RORC, and FOXP3 using RT-qPCR. Results We confirmed the presence of exosomes derived from podocytes based on their morphology, size distribution, concentrations, and the levels of exosomes-specific markers. The percentage of Th17 and Treg cells in the LPS-EXO group was significantly higher than that in the control groups, but lower than in the LPS-MPC-5 group. Furthermore, the ratio of Th17/Treg was relatively higher in the LPS-EXO group compared to the LPS-MPC-5 group. Conclusion This study indicated further insights into the role of exosomes released from LPS-treated podocytes in regulating the balance between Th17 and Treg cells in INS.
Collapse
Affiliation(s)
- Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shiqiu Xiong
- Department of Gastroenterology, Xi'an Children's Hospital, Xi 'an, Shanxi, China
| | - Haixia Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Donghai Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Xu J, Hu H, Sun Y, Zhao Z, Zhang D, Yang L, Lu Q. The fate of immune complexes in membranous nephropathy. Front Immunol 2024; 15:1441017. [PMID: 39185424 PMCID: PMC11342396 DOI: 10.3389/fimmu.2024.1441017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The most characteristic feature of membranous nephropathy (MN) is the presence of subepithelial electron dense deposits and the consequential thickening of the glomerular basement membrane. There have been great advances in the understanding of the destiny of immune complexes in MN by the benefit of experimental models represented by Heymann nephritis. Subepithelial immune complexes are formed in situ by autoantibodies targeting native autoantigens or exogenous planted antigens such as the phospholipase A2 receptor (PLA2R) and cationic BSA respectively. The nascent immune complexes would not be pathogenic until they develop into immune deposits. Podocytes are the major source of autoantigens in idiopathic membranous nephropathy. They also participate in the modulation and removal of the immune complexes to a large extent. The balance between deposition and clearance is regulated by a wide range of factors such as the composition and physicochemical properties of the immune complexes and the complement system. Complement components such as C3 and C1q have been reported to be precipitated with the deposits whereas a complement regulatory protein CR1 expressed by podocytes is involved in the phagocytosis of immune complexes by podocytes. Podocytes regulate the dynamic change of immune complexes which is disturbed in membranous nephropathy. To elucidate the precise fate of the immune complexes is essential for developing more rational and novel therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhe Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Danyuan Zhang
- Qi Huang of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Nephropathy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Kruangkum T, Jaiboon K, Pakawanit P, Saetan J, Pudgerd A, Wannapaiboon S, Chotwiwatthanakun C, Cummins SF, Sobhon P, Vanichviriyakit R. Anatomical and molecular insights into the antennal gland of the giant freshwater prawn Macrobrachium rosenbergii. Cell Tissue Res 2024; 397:125-146. [PMID: 38878176 PMCID: PMC11291661 DOI: 10.1007/s00441-024-03898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/07/2024] [Indexed: 08/03/2024]
Abstract
In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.
Collapse
Affiliation(s)
- Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Kornchanok Jaiboon
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Phakkhananan Pakawanit
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Arnon Pudgerd
- Division of Anatomy, School of Medical Science, University of Phayao, Muang, Phayao, 56000, Thailand
| | - Suttipong Wannapaiboon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand
| | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, Sippy Downs, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Sippy Downs, QLD, 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| |
Collapse
|
25
|
Hu Z, Cano I, Lei F, Liu J, Ramos RB, Gordon H, Paschalis EI, Saint-Geniez M, Ng YSE, D'Amore PA. Deletion of the endothelial glycocalyx component endomucin leads to impaired glomerular structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603749. [PMID: 39071302 PMCID: PMC11275787 DOI: 10.1101/2024.07.16.603749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Endomucin (EMCN), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of vascular endothelial growth factor (VEGF) activity through modulating VEGF receptor 2 (VEGFR2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model. Methods Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was employed to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, while urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP, CD45, CD31, CD34, podocin, albumin, and α-smooth muscle actin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a non-invasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA-seq. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis of up- and down-regulated genes. Protein levels of EMCN, albumin, and podocin were quantified by Western blot. Results EMCN -/- mice were viable with no gross anatomical defects in kidneys. The EMCN -/- mice exhibited increased infiltration of CD45 + cells, with an increased proportion of Ly6G high Ly6C high myeloid cells and higher VCAM-1 expression. EMCN -/- mice displayed albuminuria with increased albumin in the Bowman's space compared to the EMCN +/+ littermates. Glomeruli in EMCN -/- mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA-seq of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK/ERK pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm. Conclusion Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.
Collapse
|
26
|
Monte Neto JTD, Kirsztajn GM. The role of podocyte injury in the pathogenesis of Fabry disease nephropathy. J Bras Nefrol 2024; 46:e20240035. [PMID: 39058283 PMCID: PMC11287863 DOI: 10.1590/2175-8239-jbn-2024-0035en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 07/28/2024] Open
Abstract
Renal involvement is one of the most severe morbidities of Fabry disease (FD), a multisystemic lysosomal storage disease with an X-linked inheritance pattern. It results from pathogenic variants in the GLA gene (Xq22.2), which encodes the production of alpha-galactosidase A (α-Gal), responsible for glycosphingolipid metabolism. Insufficient activity of this lysosomal enzyme generates deposits of unprocessed intermediate substrates, especially globotriaosylceramide (Gb3) and derivatives, triggering cellular injury and subsequently, multiple organ dysfunction, including chronic nephropathy. Kidney injury in FD is classically attributed to Gb3 deposits in renal cells, with podocytes being the main target of the pathological process, in which structural and functional alterations are established early and severely. This configures a typical hereditary metabolic podocytopathy, whose clinical manifestations are proteinuria and progressive renal failure. Although late clinical outcomes and morphological changes are well established in this nephropathy, the molecular mechanisms that trigger and accelerate podocyte injury have not yet been fully elucidated. Podocytes are highly specialized and differentiated cells that cover the outer surface of glomerular capillaries, playing a crucial role in preserving the structure and function of the glomerular filtration barrier. They are frequent targets of injury in many nephropathies. Furthermore, dysfunction and depletion of glomerular podocytes are essential events implicated in the pathogenesis of chronic kidney disease progression. We will review the biology of podocytes and their crucial role in regulating the glomerular filtration barrier, analyzing the main pathogenic pathways involved in podocyte injury, especially related to FD nephropathy.
Collapse
|
27
|
Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, Liu X, Zhang M, Li W, Li Q, Chen X. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioact Mater 2024; 37:206-221. [PMID: 38560369 PMCID: PMC10979125 DOI: 10.1016/j.bioactmat.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
With the development of nanomedicine, nanomaterials have been widely used, offering specific drug delivery to target sites, minimal side effects, and significant therapeutic effects. The kidneys have filtration and reabsorption functions, with various potential target cell types and a complex structural environment, making the strategies for kidney function protection and recovery after injury complex. This also lays the foundation for the application of nanomedicine in kidney diseases. Currently, evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials. The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility, including nanoparticles, hydrogels, liposomes, micelles, dendrimer polymers, adenoviruses, lysozymes, and elastin-like polypeptides. These carriers have precise renal uptake, longer half-life, and targeted organ distribution, protecting and improving the efficacy of the drugs they carry. Additionally, attention should also be paid to the toxicity and solubility of the carriers. While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro, extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body. This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases, provide a more comprehensive catalog of nanocarrier materials, and offer prospects for their drug-loading efficacy and clinical applications.
Collapse
Affiliation(s)
- Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangmeng Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, China
- Peking Union Medical College, Beijing, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yena Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Keying Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
28
|
Labat-de-Hoz L, Fernández-Martín L, Correas I, Alonso MA. INF2 formin variants linked to human inherited kidney disease reprogram the transcriptome, causing mitotic chaos and cell death. Cell Mol Life Sci 2024; 81:279. [PMID: 38916773 PMCID: PMC11335204 DOI: 10.1007/s00018-024-05323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
29
|
Yamada Y, Yokoyama H, Kinoshita R, Kitamoto K, Kawaba Y, Okada S, Horie T, Nagano C, Nozu K, Namba N. Familial focal segmental glomerulosclerosis with Alport-like glomerular basement changes caused by paired box protein 2 gene variant. CEN Case Rep 2024; 13:204-208. [PMID: 37897632 PMCID: PMC11144176 DOI: 10.1007/s13730-023-00830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023] Open
Abstract
Paired box protein 2 (PAX2) gene variant causes renal coloboma syndrome (MIM#120330). Further, they are associated with focal segmental glomerulosclerosis and characterized by basement membrane changes similar to Alport syndrome.Herein, we report an 8-year-old boy who presented with proteinuria and decreased renal function. His paternal uncle has focal segmental glomerulosclerosis and renal failure, and his paternal grandmother has renal failure and is receiving peritoneal dialysis. Further, his father has stage 2 chronic kidney disease. At 3 years of age, his serum creatinine-estimated glomerular filtration rate was 40-50 mL/min/1.73 m2. At 8 years of age, his renal function further decreased and he had proteinuria (urinary protein/Cr 3.39 g/g Cr). Renal histopathology showed oligonephronia and focal segmental glomerulosclerosis. A partial basket-weave pattern, similar to Alport syndrome, was also observed on a transmission electron microscope, and low-vacuum scanning electron microscopy revealed coarse meshwork changes in the glomerular basement membrane. Genetic analysis revealed a PAX2 heterozygous variant (NM_003987.4:c.959C > G), a nonsense variant in which the serine at position 320 changes to a stop codon, in our patient and his father. PAX2 is a transcription factor that is important for the podocyte variant. However, podocytes with PAX2 gene variants may cause abnormal basement membrane production and repair, thereby resulting in Alport-like changes.
Collapse
Affiliation(s)
- Yuko Yamada
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1, Nishi-Cho, Yonago, Tottori, 683-8504, Japan.
| | - Hiroki Yokoyama
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1, Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Ryo Kinoshita
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1, Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Koichi Kitamoto
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1, Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Yasuo Kawaba
- Department of Pediatrics, Tottori Prefectural Kousei Hospital, Kurayoshi, Tottori, Japan
| | - Shinichi Okada
- Department of Pediatrics, Yonago Medical Center, Yonago, Tottori, Japan
| | - Takashi Horie
- Laboratory of Electron Microscopy, Tottori University, Yonago, Tottori, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1, Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
30
|
Tolerico M, Merscher S, Fornoni A. Normal and Dysregulated Sphingolipid Metabolism: Contributions to Podocyte Injury and Beyond. Cells 2024; 13:890. [PMID: 38891023 PMCID: PMC11171506 DOI: 10.3390/cells13110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Podocyte health is vital for maintaining proper glomerular filtration in the kidney. Interdigitating foot processes from podocytes form slit diaphragms which regulate the filtration of molecules through size and charge selectivity. The abundance of lipid rafts, which are ordered membrane domains rich in cholesterol and sphingolipids, near the slit diaphragm highlights the importance of lipid metabolism in podocyte health. Emerging research shows the importance of sphingolipid metabolism to podocyte health through structural and signaling roles. Dysregulation in sphingolipid metabolism has been shown to cause podocyte injury and drive glomerular disease progression. In this review, we discuss the structure and metabolism of sphingolipids, as well as their role in proper podocyte function and how alterations in sphingolipid metabolism contributes to podocyte injury and drives glomerular disease progression.
Collapse
Affiliation(s)
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
31
|
Cybulsky AV, Papillon J, Guillemette J, Navarro-Betancourt JR, Chung CF, Iwawaki T, Fantus IG. Deletion of IRE1α in podocytes exacerbates diabetic nephropathy in mice. Sci Rep 2024; 14:11718. [PMID: 38778209 PMCID: PMC11111796 DOI: 10.1038/s41598-024-62599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Protein misfolding in the endoplasmic reticulum (ER) of podocytes contributes to the pathogenesis of glomerular diseases. Protein misfolding activates the unfolded protein response (UPR), a compensatory signaling network. We address the role of the UPR and the UPR transducer, inositol-requiring enzyme 1α (IRE1α), in streptozotocin-induced diabetic nephropathy in mice. Diabetes caused progressive albuminuria in control mice that was exacerbated in podocyte-specific IRE1α knockout (KO) mice. Compared to diabetic controls, diabetic IRE1α KO mice showed reductions in podocyte number and synaptopodin. Glomerular ultrastructure was altered only in diabetic IRE1α KO mice; the major changes included widening of podocyte foot processes and glomerular basement membrane. Activation of the UPR and autophagy was evident in diabetic control, but not diabetic IRE1α KO mice. Analysis of human glomerular gene expression in the JuCKD-Glom database demonstrated induction of genes associated with the ER, UPR and autophagy in diabetic nephropathy. Thus, mice with podocyte-specific deletion of IRE1α demonstrate more severe diabetic nephropathy and attenuation of the glomerular UPR and autophagy, implying a protective effect of IRE1α. These results are consistent with data in human diabetic nephropathy and highlight the potential for therapeutically targeting these pathways.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - José R Navarro-Betancourt
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Takao Iwawaki
- Department of Life Science, Kanazawa Medical University, Uchinada, Japan
| | - I George Fantus
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Leroy C, Lang K, Spitz D, Milosavljevic J, Heinkele H, Kayser S, Helmstädter M, Walz G, Ulbrich MH, Hermle T. Linking Basement Membrane and Slit Diaphragm in Drosophila Nephrocytes. J Am Soc Nephrol 2024; 35:00001751-990000000-00329. [PMID: 38776165 PMCID: PMC11387032 DOI: 10.1681/asn.0000000000000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/17/2024] [Indexed: 05/24/2024] Open
Abstract
Key Points
Drosophila nephrocytes feature a special basement membrane that may serve to model joint function of the glomerular filtration barrier.Silencing of Drosophila laminin and collagen IV genes reduced the density of slit diaphragms in nephrocytes, showing a direct effect of the matrix.Matrix receptor silencing phenocopied basement membrane disruption, indicating that the matrix guides slit diaphragm position through matrix receptors.
Background
The glomerular basement membrane and the slit diaphragm are essential parts of the filtration barrier. How these layers collaborate remains unclear. The podocyte-like nephrocytes in Drosophila harbor both a slit diaphragm and a basement membrane, serving as a model to address this critical question.
Methods
Basement membrane components and matrix receptors were silenced using RNA interference in nephrocytes. Slit diaphragms were analyzed using immunofluorescence, followed by automated quantification. Tracer endocytosis was applied for functional readouts.
Results
Immunofluorescence indicated a significant reduction in slit diaphragm density upon loss of laminin and collagen IV components. This was accompanied by reduced expression of fly nephrin and shallower membrane invaginations. Tracer studies revealed that the basement membrane defines properties of the nephrocyte filtration barrier. Acute enzymatic disruption of the basement membrane via collagenase rapidly caused slit diaphragm mislocalization and disintegration, which was independent of cell death. Loss of matrix-interacting receptors, particularly integrins mys and mew, phenocopied basement membrane disruption. Integrins and nephrin colocalized at the slit diaphragm in nephrocytes in a mutually dependent manner, interacting genetically. Human integrin α3 interacted physically with nephrin.
Conclusions
The glomerular basement membrane model in Drosophila nephrocytes reveals that matrix receptor–mediated cues ensure correct positioning of the slit diaphragm and the overall filtration barrier architecture.
Collapse
Grants
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 â€" SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/6-1 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
Collapse
Affiliation(s)
- Claire Leroy
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Dominik Spitz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Helena Heinkele
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Séverine Kayser
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- EMcore, Renal Division, Department of Medicine, University Hospital Freiburg, University Faculty of Medicine, Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- EMcore, Renal Division, Department of Medicine, University Hospital Freiburg, University Faculty of Medicine, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Maximilian H Ulbrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Mendoza-Soto P, Jara C, Torres-Arévalo Á, Oyarzún C, Mardones GA, Quezada-Monrás C, San Martín R. Pharmacological Blockade of the Adenosine A 2B Receptor Is Protective of Proteinuria in Diabetic Rats, through Affecting Focal Adhesion Kinase Activation and the Adhesion Dynamics of Podocytes. Cells 2024; 13:846. [PMID: 38786068 PMCID: PMC11119713 DOI: 10.3390/cells13100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.
Collapse
Affiliation(s)
- Pablo Mendoza-Soto
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Claudia Jara
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Ángelo Torres-Arévalo
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Carlos Oyarzún
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Gonzalo A. Mardones
- Institute of Physiology, Medicine Faculty, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Claudia Quezada-Monrás
- Tumor Biology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Rody San Martín
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| |
Collapse
|
34
|
Wang M, Zhou J, Niu Q, Wang H. Mechanism of tacrolimus in the treatment of lupus nephritis. Front Pharmacol 2024; 15:1331800. [PMID: 38774214 PMCID: PMC11106426 DOI: 10.3389/fphar.2024.1331800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder, with more than half of the patients developing lupus nephritis (LN), which significantly contributes to chronic kidney disease (CKD) and end-stage renal disease (ESRD). The treatment of lupus nephritis has always been challenging. Tacrolimus (TAC), an effective immunosuppressant, has been increasingly used in the treatment of LN in recent years. This review aims to explore the mechanisms of action of tacrolimus in treating LN. Firstly, we briefly introduce the pharmacological properties of tacrolimus, including its role as a calcineurin (CaN) inhibitor, exerting immunosuppressive effects by inhibiting T cell activation and cytokine production. Subsequently, we focus on various other immunomodulatory mechanisms of tacrolimus in LN therapy, including its effects on T cells, B cells, and immune cells in kidney. Particularly, we emphasize tacrolimus' regulatory effect on inflammatory mediators and its importance in modulating the Th1/Th2 and Th17/Treg balance. Additionally, we review its effects on actin cytoskeleton, angiotensin II (Ang II)-specific vascular contraction, and P-glycoprotein activity, summarizing its impacts on non-immune mechanisms. Finally, we summarize the efficacy and safety of tacrolimus in clinical studies and trials. Although some studies have shown significant efficacy of tacrolimus in treating LN, its safety remains a challenge. We outline the potential adverse reactions of long-term tacrolimus use and provide suggestions on effectively monitoring and managing these adverse reactions in clinical practice. In general, tacrolimus, as a novel immunosuppressant, holds promising prospects for treating LN. Of course, further research is needed to better understand its therapeutic mechanisms and ensure its safety and efficacy in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Hongyue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Ichinose K. The role of podocytes in lupus nephritis: Insights and implications. Clin Immunol 2024; 262:110180. [PMID: 38462157 DOI: 10.1016/j.clim.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus, with high mortality rates despite medical advancements. The complexity of its pathogenesis, including the pivotal role of podocytes - kidney-localized cells - remains a challenge, lacking effective treatments and biomarkers. Recent studies highlight the significant contribution of these cells to LN's development, particularly through their immune-related functions and interaction with other kidney cells. This new understanding opens possibilities for targeted therapies aimed at these cellular mechanisms. This review aims to summarize these recent developments, shedding light on the intricate involvement of podocytes in LN and potential avenues for innovative treatments.
Collapse
Affiliation(s)
- Kunihiro Ichinose
- Department of Rheumatology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan; Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan.
| |
Collapse
|
36
|
Hua W, Peng L, Chen XM, Jiang X, Hu J, Jiang XH, Xiang X, Wan J, Long Y, Xiong J, Ma X, Du X. CD36-mediated podocyte lipotoxicity promotes foot process effacement. Open Med (Wars) 2024; 19:20240918. [PMID: 38584832 PMCID: PMC10996993 DOI: 10.1515/med-2024-0918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 04/09/2024] Open
Abstract
Background Lipid metabolism disorders lead to lipotoxicity. The hyperlipidemia-induced early stage of renal injury mainly manifests as podocyte damage. CD36 mediates fatty acid uptake and the subsequent accumulation of toxic lipid metabolites, resulting in podocyte lipotoxicity. Methods Male Sprague-Dawley rats were divided into two groups: the normal control group and the high-fat diet group (HFD). Podocytes were cultured and treated with palmitic acid (PA) and sulfo-N-succinimidyl oleate (SSO). Protein expression was measured by immunofluorescence and western blot analysis. Boron-dipyrromethene staining and Oil Red O staining was used to analyze fatty acid accumulation. Results Podocyte foot process (FP) effacement and marked proteinuria occurred in the HFD group. CD36 protein expression was upregulated in the HFD group and in PA-treated podocytes. PA-treated podocytes showed increased fatty acid accumulation, reactive oxygen species (ROS) production, and actin cytoskeleton rearrangement. However, pretreatment with the CD36 inhibitor SSO decreased lipid accumulation and ROS production and alleviated actin cytoskeleton rearrangement in podocytes. The antioxidant N-acetylcysteine suppressed PA-induced podocyte FP effacement and ROS generation. Conclusions CD36 participated in fatty acid-induced FP effacement in podocytes via oxidative stress, and CD36 inhibitors may be helpful for early treatment of kidney injury.
Collapse
Affiliation(s)
- Wei Hua
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing400000, China
| | - Lan Peng
- Basic Department, Chongqing Medical and Pharmaceutical College, Chongqing401331, China
| | - Xue-mei Chen
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing400042, China
| | - XuShun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing400042, China
| | - JianGuo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xian-Hong Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing400000, China
| | - Xu Xiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing400000, China
| | - Jiangmin Wan
- Department of Nephrology, People’s Hospital of Qijiang District, Chongqing401420, China
| | - Yingfei Long
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | | | - Xueyi Ma
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing400000, China
| | - Xiaogang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing 400042, China
| |
Collapse
|
37
|
Schindler M, Endlich N. Zebrafish as a model for podocyte research. Am J Physiol Renal Physiol 2024; 326:F369-F381. [PMID: 38205541 DOI: 10.1152/ajprenal.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
38
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
39
|
Ullah S, Burki S, Munir AB, Yousaf G, Shafique M. Nanocarrier-based localized and effective treatment of renal disorders: currently employed targeting strategies. Nanomedicine (Lond) 2024; 19:345-361. [PMID: 38293889 DOI: 10.2217/nnm-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Renal disorders pose a global health threat, with targeted drug-delivery systems emerging as a promising strategy to enhance therapy safety and efficacy. Recent efforts have harnessed targeted nanomaterials for kidney disease treatment. While some systems remain in the early stages, they show immense potential in delivering cargo to specific sites. Through animal model experimentations, it has been demonstrated to reduce systemic side effects and enhance treatment effectiveness. This review presents current strategies for kidney disorder treatment, emphasizing site-specific targeting critical to renal disease pathophysiology. Recent advancements in nano-drug delivery systems for kidney targeting are explored. Finally, toxicological aspects and prospects of the most promising kidney-targeting delivery systems are discussed in this review article.
Collapse
Affiliation(s)
- Shafi Ullah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Superior University, Lahore, Punjab, 54000, Pakistan
| | - Samiullah Burki
- Department of Pharmacology, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | - Abu Bakar Munir
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Superior University, Lahore, Punjab, 54000, Pakistan
| | - Ghulam Yousaf
- PAF Ruth Pfau Medical College and Hospital Faisal Base Karachi, Karachi, 75350, Pakistan
| | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| |
Collapse
|
40
|
Guo H, Rogg M, Keller J, Scherzinger AK, Jäckel J, Meyer C, Sammarco A, Helmstädter M, Gorka O, Groß O, Schell C, Bechtel-Walz W. ADP-Ribosylation Factor-Interacting Protein 2 Acts as a Novel Regulator of Mitophagy and Autophagy in Podocytes in Diabetic Nephropathy. Antioxidants (Basel) 2024; 13:81. [PMID: 38247505 PMCID: PMC10812550 DOI: 10.3390/antiox13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: Differentiated podocytes are particularly vulnerable to oxidative stress and cellular waste products. The disease-related loss of postmitotic podocytes is a direct indicator of renal disease progression and aging. Podocytes use highly specific regulated networks of autophagy and endocytosis that counteract the increasing number of damaged protein aggregates and help maintain cellular homeostasis. Here, we demonstrate that ARFIP2 is a regulator of autophagy and mitophagy in podocytes both in vitro and in vivo. (2) Methods: In a recent molecular regulatory network analysis of mouse glomeruli, we identified ADP-ribosylation factor-interacting protein 2 (Arfip2), a cytoskeletal regulator and cofactor of ATG9-mediated autophagosome formation, to be differentially expressed with age. We generated an Arfip2-deficient immortalized podocyte cell line using the CRISPR/Cas technique to investigate the significance of Arfip2 for renal homeostasis in vitro. For the in vivo analyses of Arfip2 deficiency, we used a mouse model of Streptozotozin-induced type I diabetes and investigated physiological data and (patho)histological (ultra)structural modifications. (3) Results: ARFIP2 deficiency in immortalized human podocytes impedes autophagy. Beyond this, ARFIP2 deficiency in human podocytes interferes with ATG9A trafficking and the PINK1-Parkin pathway, leading to the compromised fission of mitochondria and short-term increase in mitochondrial respiration and induction of mitophagy. In diabetic mice, Arfip2 deficiency deteriorates autophagy and leads to foot process effacement, histopathological changes, and early albuminuria. (4) Conclusions: In summary, we show that ARFIP2 is a novel regulator of autophagy and mitochondrial homeostasis in podocytes by facilitating ATG9A trafficking during PINK1/Parkin-regulated mitophagy.
Collapse
Affiliation(s)
- Haihua Guo
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Manuel Rogg
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Keller
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Ann-Kathrin Scherzinger
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Jäckel
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Charlotte Meyer
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- EMcore, Renal Division, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Experimental Neuropathology, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Experimental Neuropathology, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| | - Wibke Bechtel-Walz
- Department of Medicine IV, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Berta-Ottenstein Program, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
41
|
Schlichenmaier N, Zielinski A, Beneke S, Dietrich DR. PODO/TERT256 - A promising human immortalized podocyte cell line and its potential use for in vitro research at different oxygen levels. Chem Biol Interact 2024; 387:110813. [PMID: 38006960 DOI: 10.1016/j.cbi.2023.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023]
Abstract
Podocytes are of key interest for the prediction of nephrotoxicity as they are especially sensitive to toxic insults due to their central role in the glomerular filtration apparatus. However, currently, prediction of nephrotoxicity in humans remains insufficiently reliable, thus highlighting the need for advanced in vitro model systems using human cells with improved prediction capacity. Recent approaches for refining in vitro model systems focus on closely replicating physiological conditions as observed under the in vivo situation typical of the respective nephron section of interest. PODO/TERT256, a human immortalized podocyte cell line, were employed in a semi-static transwell system to evaluate its potential use as a human podocyte in vitro system for modelling potential human glomerular toxicity. Furthermore, the impact of routinely employed excessive oxygen tension (21 % - AtmOx), when compared to the physiological oxygen tensions (10 % - PhysOx) observed in vivo, was analyzed. Generally, cultured PODO/TERT256 formed a stable, contact-inhibited monolayer with typical podocyte morphology (large cell body, apical microvilli, finger-like cytoplasmic projections (reminiscent of foot processes), and interdigitating cell-cell junctions) and developed a size-selective filtration barrier. PhysOx, however, induced a more pronounced in vivo like phenotype, comprised of significantly larger cell bodies, significantly enhanced filtration barrier size-selectivity, and a remarkable re-localization of nephrin to the cell membrane, thus suggesting an improved in vitro replication of in vivo characteristics. Preliminary toxicity characterization with the known glomerulotoxin doxorubicin (DOX) suggested an increasing change in filtration permeability, already at the lowest DOX concentrations tested (0.01 μM) under PhysOx, whereas obvious changes under AtmOx were observed as of 0.16 μM and higher with a near all or nothing effect. The latter findings suggested that PODO/TERT256 could serve as an in vitro human podocyte model for studying glomerulotoxicity, whereby culturing at PhyOx tension appeared critical for an improved in vivo-like phenotype and functionality. Moreover, PODO/TERT256 could be incorporated into advanced human glomerulus systems in vitro, recapitulating microfluidic conditions and multiple cell types (endothelial and mesenchymal cells) that can even better predict human glomerular toxicity.
Collapse
Affiliation(s)
- Nadja Schlichenmaier
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Zielinski
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Sascha Beneke
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Daniel R Dietrich
- Human and Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
42
|
Bhattacharjee B, Chakrovorty A, Biswas M, Samadder A, Nandi S. To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds. Curr Med Chem 2024; 31:3752-3790. [PMID: 37211853 DOI: 10.2174/0929867330666230519112312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action. INTRODUCTION DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN. METHODS Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article. RESULT This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN. CONCLUSION This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
Collapse
Affiliation(s)
- Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Maharaj Biswas
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
43
|
Cybulsky AV, Papillon J, Bryan C, Navarro‐Betancourt JR, Sabourin LA. Role of the Ste20-like kinase SLK in podocyte adhesion. Physiol Rep 2024; 12:e15897. [PMID: 38163671 PMCID: PMC10758337 DOI: 10.14814/phy2.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Joan Papillon
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Craig Bryan
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - José R. Navarro‐Betancourt
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Luc A. Sabourin
- Ottawa Hospital Research Institute, Cancer TherapeuticsOttawaOntarioCanada
| |
Collapse
|
44
|
Schindler M, Siegerist F, Lange T, Simm S, Bach SM, Klawitter M, Gehrig J, Gul S, Endlich N. A Novel High-Content Screening Assay Identified Belinostat as Protective in a FSGS-Like Zebrafish Model. J Am Soc Nephrol 2023; 34:1977-1990. [PMID: 37752628 PMCID: PMC10703078 DOI: 10.1681/asn.0000000000000235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND FSGS affects the complex three-dimensional morphology of podocytes, resulting in loss of filtration barrier function and the development of sclerotic lesions. Therapies to treat FSGS are limited, and podocyte-specific drugs are unavailable. To address the need for treatments to delay or stop FSGS progression, researchers are exploring the repurposing of drugs that have been approved by the US Food and Drug Administration (FDA) for other purposes. METHODS To identify drugs with potential to treat FSGS, we used a specific zebrafish screening strain to combine a high-content screening (HCS) approach with an in vivo model. This zebrafish screening strain expresses nitroreductase and the red fluorescent protein mCherry exclusively in podocytes (providing an indicator for podocyte depletion), as well as a circulating 78 kDa vitamin D-binding enhanced green fluorescent protein fusion protein (as a readout for proteinuria). To produce FSGS-like lesions in the zebrafish, we added 80 µ M metronidazole into the fish water. We used a specific screening microscope in conjunction with advanced image analysis methods to screen a library of 138 drugs and compounds (including some FDA-approved drugs) for podocyte-protective effects. Promising candidates were validated to be suitable for translational studies. RESULTS After establishing this novel in vivo HCS assay, we identified seven drugs or compounds that were protective in our FSGS-like model. Validation experiments confirmed that the FDA-approved drug belinostat was protective against larval FSGS. Similar pan-histone deacetylase inhibitors also showed potential to reproduce this effect. CONCLUSIONS Using an FSGS-like zebrafish model, we developed a novel in vivo HCS assay that identified belinostat and related pan-histone deacetylase inhibitors as potential candidates for treating FSGS.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Tim Lange
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Simm
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Sophia-Marie Bach
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Marianne Klawitter
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Ji B, Liu J, Ma Y, Yin Y, Xu H, Shen Q, Yu J. Minnelide Markedly Reduces Proteinuria in Mice with Adriamycin Nephropathy by Protecting Against Podocyte Injury. Appl Biochem Biotechnol 2023; 195:7379-7396. [PMID: 37000351 PMCID: PMC10754751 DOI: 10.1007/s12010-023-04333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 04/01/2023]
Abstract
Minimal change disease (MCD) is the most common cause of idiopathic nephrotic syndrome in children. The current major therapy is hormones for most steroid-sensitive patients. However, many patients have recurrent relapses of the disease and require long-term immunosuppression, leading to significant morbidity due to the side effects of the drugs. Therefore, better drugs need to be urgently explored to treat nephrotic syndrome while avoiding the side effects of drugs. Minnelide, a water-soluble prodrug of triptolide, has been proved to be effective in treating cancers in many clinical trials. This study aimed to investigate the therapeutic effect of minnelide in mice with adriamycin (ADR) nephropathy, its underlying protection mechanisms, and its reproductive toxicity. Minnelide was administered intraperitoneally to 6-8-week female mice with adriamycin nephropathy for 2 weeks, and the urine, blood, and kidney tissues were taken to analyze the therapeutic effect. In addition, we evaluated reproductive toxicity by measuring the levels of gonadal hormones and observing the histological changes in ovaries and testes. Primary mouse podocytes were exposed to puromycin (PAN) to damage the cytoskeleton and induce apoptosis, and then, triptolide was used to evaluate the therapeutic effect and underlying protection mechanisms in vitro. It was observed that minnelide dramatically alleviated proteinuria and apoptosis in mice with adriamycin nephropathy. In vitro, triptolide ameliorated puromycin-induced cytoskeletal rearrangement and apoptosis via reactive oxygen species-mediated mitochondrial pathway. In addition, minnelide caused no reproductive toxicity to male and female mice. The results suggested that minnelide might be a promising drug for nephrotic syndrome.
Collapse
Affiliation(s)
- Baowei Ji
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Junchao Liu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yanli Ma
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Ye Yin
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Jian Yu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
46
|
Zhang Y, Chen P, Wang B, Tang X, Wei Y, Cao W, Tang L, Wang Z, Zhao N. Containing anti-PLA2R IgG antibody induces podocyte injury in idiopathic membranous nephropathy. Ren Fail 2023; 45:2271986. [PMID: 37905942 PMCID: PMC11001355 DOI: 10.1080/0886022x.2023.2271986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Background: Idiopathic membranous nephropathy is widely recognized as an autoimmune kidney disease that is accompanied by the discovery of several autoantibodies, and the antibody subclass in the circulation of patients with iMN is mainly IgG. However, the direct pathogenic effect of the containing anti-PLA2R IgG antibody on podocytes is not clear.Method: A protein G affinity chromatography column was used to purify serum IgG antibodies. Containing anti-PLA2R IgG antibodies from iMN patients and IgG from healthy controls were also obtained. Based on the established in vitro podocyte culture system, purified IgG antibodies from the two groups were used to stimulate podocytes, and the expression of essential podocyte proteins (podocin), the levels of inflammatory cytokines in the cell supernatant, cytoskeletal disorders, and podocyte apoptosis were analyzed.Results: Compared with that in the normal IgG group, the expression of podocin and podocin mRNA was reduced (p = 0.016 and p = 0.005, respectively), the fluorescence intensity of podocin on the surface of podocytes was reduced, the cytoskeleton of podocytes was disordered and reorganized, and the ratio of podocyte apoptosis was increased in the iMN group (p = 0.008).Conclusion: The containing anti-PLA2R IgG antibody might have a direct damaging effect on podocytes in idiopathic membranous nephropathy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Baobao Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Xueqing Tang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Yong Wei
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Wei Cao
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Lijun Tang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Zunsong Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Na Zhao
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| |
Collapse
|
47
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
48
|
Yang C, Zhang Z, Liu J, Chen P, Li J, Shu H, Chu Y, Li L. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease. Mol Med 2023; 29:135. [PMID: 37828444 PMCID: PMC10571269 DOI: 10.1186/s10020-023-00732-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and its clinical manifestations are progressive proteinuria, decreased glomerular filtration rate, and renal failure. The injury and death of glomerular podocytes are the keys to DKD. Currently, a variety of cell death modes have been identified in podocytes, including apoptosis, autophagy, endoplasmic reticulum (ER) stress, pyroptosis, necroptosis, ferroptosis, mitotic catastrophe, etc. The signaling pathways leading to these cell death processes are interconnected and can be activated simultaneously or in parallel. They are essential for cell survival and death that determine the fate of cells. With the deepening of the research on the mechanism of cell death, more and more researchers have devoted their attention to the underlying pathologic research and the drug therapy research of DKD. In this paper, we discussed the podocyte physiologic role and DKD processes. We also provide an overview of the types and specific mechanisms involved in each type of cell death in DKD, as well as related targeted therapy methods and drugs are reviewed. In the last part we discuss the complexity and potential crosstalk between various modes of cell death, which will help improve the understanding of podocyte death and lay a foundation for new and ideal targeted therapy strategies for DKD treatment in the future.
Collapse
Affiliation(s)
- Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jialing Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China.
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| |
Collapse
|
49
|
Yasuda H, Fukusumi Y, Zhang Y, Kawachi H. 14-3-3 Proteins stabilize actin and vimentin filaments to maintain processes in renal glomerular podocyte. FASEB J 2023; 37:e23168. [PMID: 37651095 DOI: 10.1096/fj.202300865r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
14-3-3 proteins are a ubiquitously expressed family of adaptor proteins. Despite exhibiting high sequence homology, several 14-3-3 isoforms have isoform-specific binding partners and roles. We reported that 14-3-3β interacts with FKBP12 and synaptopodin to maintain the structure of actin fibers in podocytes. However, the precise localization and differential role of 14-3-3 isoforms in kidneys are unclear. Herein, we showed that 14-3-3β in glomeruli was restricted in podocytes, and 14-3-3σ in glomeruli was expressed in podocytes and mesangial cells. Although 14-3-3β was dominantly co-localized with FKBP12 in the foot processes, a part of 14-3-3β was co-localized with Par3 at the slit diaphragm. 14-3-3β interacted with Par3, and FKBP12 bound to 14-3-3β competitively with Par3. Deletion of 14-3-3β enhanced the interaction of Par3 with Par6 in podocytes. Gene silencing for 14-3-3β altered the structure of actin fibers and process formation. 14-3-3β and synaptopodin expression was decreased in podocyte injury models. In contrast, 14-3-3σ in podocytes was expressed in the primary processes. 14-3-3σ interacted with vimentin but not with the actin-associated proteins FKBP12 and synaptopodin. Gene silencing for 14-3-3σ altered the structure of vimentin fibers and process formation. 14-3-3σ and vimentin expression was increased in the early phase of podocyte injury models but was decreased in the late stage. Together, the localization of 14-3-3β at actin cytoskeleton plays a role in maintaining the foot processes and the Par complex in podocytes. In contrast, 14-3-3σ at vimentin cytoskeleton is essential for maintaining primary processes.
Collapse
Affiliation(s)
- Hidenori Yasuda
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ying Zhang
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
50
|
Li C, Yang Y, Li L, Chen Y, Shi Q, Zhang H, Zhang L, Chen Y, Li R, Li Z, Liu S, Ye Z, Zhao X, Liang X. Role of TFEB in regulation of the podocyte actin cytoskeleton. Arch Biochem Biophys 2023; 747:109752. [PMID: 37714254 DOI: 10.1016/j.abb.2023.109752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Podocyte injury is linked to the pathogenesis and progression of renal disease. The Transcription Factor EB (TFEB), a master regulator of the autophagy and lysosomal pathways, has been found to exert cell- and tissue-specific biological function. To explore TFEB function and underlying mechanisms in podocytes, a total of 4645 differentially expressed genes (DEGs) were detected in TFEB-knockdown mouse podocytes by transcriptome sequencing. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Ingenuity Pathway Analysis showed that, apart from the enrichment in autophagy and lysosomal pathways, DEGs were enriched in cytoskeleton structure (Actin Cytoskeleton, Focal Adhesion, and Adherens Junction), as well as cytoskeleton regulatory molecular signaling (Hippo and Rho GTPase Signaling). In vitro, TFEB knockdown resulted in podocyte cytoskeletal rearrangement, which was disorganized with cortical distribution of actin filaments. Further, TFEB knockdown decreased mRNA and protein levels of Synaptopodin and led to the rearrangement of Synaptopodin. Inhibition of TFEB decreased mRNA levels for proteins involved in actin cytoskeleton dynamics. Moreover, apoptosis was increased by TFEB knockdown in podocyte. In summary, this study initiated a comprehensive analysis of the role of TFEB in podocyte function and the potential underlying mechanisms, and identified a novel role for TFEB in regulation of the podocyte actin cytoskeleton.
Collapse
Affiliation(s)
- Cuili Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yan Yang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Luan Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yingwen Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qingying Shi
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hong Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhilian Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Xinling Liang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|